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Abstract

The problem of 3D surface reconstruction from calibrated images or laser-scans is well
studied in computer vision. There are two main sub-problems that are studied. It is the
problem of depth-map computation from images and the problem of depth-maps fusion.
In this work, we present several contributions to both sub-problems.

First, we present methods that contribute to the sub-problem of depth-map compu-
tation from images. In particular we describe an effective seed construction method for
3D reconstruction which starts with initial estimates of seed position, improves them
and computes good estimates normals. Next, to avoid searching for optimal surface po-
sition and orientation based on nondiscriminative texture, we (over)segment images into
segments of low variation of color and intensity and use each segment to generate a can-
didate 3D planar patch explaining the underlying 3D surface. We use the effective seed
construction method to improve the candidate 3D planar patch. The method further
improve, filter and combine the 3D planar patches to produce the resulting 3D surface
reconstruction. Finally, we present a scalable multi-view stereo reconstruction method
which can deal with a large number of large unorganized images in affordable time and
effort. The computational effort of our technique is a linear function of the surface area
of the observed scene which is conveniently discretized to represent sufficient but not
excessive detail. Our technique works as a filter on a limited number of images at a time
and can thus process arbitrarily large data sets using limited memory.

Second, we present methods that contribute to the sub-problem of depth-maps fusion.
We compute input points augmented with visibility information from the input depth-
maps. We observe that it is even possible to reconstruct a surface that does not contain
input points. Instead of modeling the surface from input points, we model free space from
visibility information of the input points. The complement of the modeled free space is
considered as full space. The surface occurs at interface between the free and the full
space. We show that under certain conditions a part of the full space surrounded by
the free space must contain a real object also when the real object does not contain any
input points, i.e., an occluder reveals itself through occlusion. Our key contribution is
the proposal of a new interface classifier that can also detect the presence of an occluder
in the scene just from the visibility of input points. To be practical, we assume that
the occluder surface contains a reasonable number of input points in order to be able
to approximately reconstruct the occluders surface i.e., weakly-supported surface. We
use the interface classifier to modify a state-of-the-art surface reconstruction method so
that it gains the ability to reconstruct weakly-supported surfaces.

Finally, we present methods that contribute to the problem of hallucinations removal
from 3D surface reconstruction and to the problem of globally optimal large-scale 3D
surface reconstruction by parts.
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1 Introduction

The problem of surface reconstruction from input 3D points is well studied and different
solutions are widely used in many industries. The demand for high quality 3D content
is growing rapidly in recent years thanks to growing markets with 3D-printers, UAVs,
smartphones, cameras and other gadgets. Image and depth data produced by cameras
and depth-sensors can be used to create high quality 3D content.

The input 3D points can be obtained using different techniques. Laser-scanners and
structured-light based systems along with a registration method are probably the most
widely used as sources of input 3D points. Recently, images processed with a Structure-
from-Motion (SFM) method [29, 72, 90, 89] and a Multi-View-Stereo (MVS) method [68,
77, 13, 64, 36, 74, 75, 84, 22, 67] have become another popular source of input 3D points.

Given the input 3D points, different methods [38, 52, 34, 94, 14, 63, 20, 25, 64] are
used to create a different output 3D content. It can be filtered and grouped 3D point
cloud, triangular 3D mesh, ortho-photo, digital-elevation map etc.

However, producing complete reconstructions of outdoor and complicated scenes is
still an open problem. Moreover, the processing of large amount of such data can take
long time also on nowadays powerful PC. Therefore, there is still need of algorithms
that can both speedup the computation time and increase accuracy and completeness
of surface reconstructions.
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2 Contribution of the thesis

The thesis deals with the problem of surface 3D reconstruction from images or from a
given 3D point cloud augmented with sensors-to-point visibility information. The main
contributions of the thesis are:

Effective seed generation for 3D reconstruction [39]. We focus on studying photo-
consistency measures. We study criterial functions based on the similarity of reprojection
of images on a circular planar patch (seed). We discover that the criterial function is
unimodal in a certain domain part and all criterial function values of arguments from
this domain part are greater than all criterial function values of arguments outside of
this domain part. We propose a new globally optimal method for effective seed gen-
eration for 3D reconstruction that is based on the discovered property. The ability to
estimate seeds depends on a discriminativity of a surface texture. The method is also
able to detect situations when a seed orientation is not possible to detect, e.g., because
the texture is not discriminative. See Chapter 4.

Segmentation based Multi-View Stereo [40]. The ability to reconstruct a 3D surface
from images depends on a texture discriminativity. Therefore, we (over)segment image
into discriminative segments. Instead of using circular planar patches (as in Chapter 4),
we use nonuniform shapes of the patches given by an image segments. Following this idea,
we have proposed a novel multi-view segmentation based method [40]. See Chapter 5.

Scalable Multi-View Stereo [45]. The method proposed in the Chapter 5 is able to
compute complete depth-maps fast. However, in our previous work [40] (Chapter 5) we
used Poisson surface reconstruction [47] to generate the final 3D mesh. Now we develop
our own solution to final 3D mesh generation. More specifically, we propose a scalable
method that can compute the final 3D mesh in large-scale scenarios. The contribution
is that the computational effort of our technique is a linear function of the surface area
of the observed scene which is conveniently discretized to represent sufficient but not
excessive detail. See Chapter 6.

Background. Work presented in Chapter 6 is scalable but has two major disadvan-
tages (i) it does not produce watertight mesh and (ii) it is rather conservative since it
reconstructs just surfaces that are strongly supported by input data. Therefore, we have
decided to study volumetric-based methods that model observer-to-surface visibility in

3



2. Contribution of the thesis

Figure 2.1.: Weakly supported surfaces. Columns from left to right: Input images.
Input points. Results produced by our implementation of Labatut’s method
proposed in [52]. Results produced by our method proposed in [41, 38].

order to reconstruct object surface. We have realized that tetrahedral representation of
volume is better than voxel based representations. The tetrahedral one better adapts to
the distribution of input points and can fit into memory much larger portion of space.
We have further focused on volumetric (tetrahedral) approach pioneered by Labatut
et.al., proposed in [52]. It is, in our opinion, the best approach to 3D reconstruction
because (i) it models observer-to-surface visibility (ii) it solves the problem globally by
a global optimization method. Therefore, we have implemented the approach and based
on experimental results on many real-world datasets we have figured out that it has the
following disadvantages:

• It does not reconstructs weakly-supported surfaces. We have been visually brows-
ing a lot of input point-clouds and output meshes. We consider input points that
do not represent a real surface as outliers and points that represent a real surface
as inliers. We have observed that besides that the input point cloud contained a
surface, the surface was not reconstructed. This happened mainly in situations

4



when the density and amount of outliers was at least the same as the density and
amount of inliers. We call such surfaces weakly-supported surfaces, see Figure 2.1.

• It produces hallucinations. We have also observed that the method produces sur-
faces that do not represent a real surface i.e. hallucinations, see Figure 2.1 (row 4,
column 3) for illustration (the sky is hallucinated).

• It is not scalable. Another big disadvantage is that the method needs all data to
fit into the computer memory in order to be able to run the global optimization
process. Nowadays computers have tens of gigabytes of RAM memory and the
tetrahedral volume representation can fit a relatively large space into the memory.
Nevertheless, for city-scale reconstructions the data that need to be processed do
not fit into the memory.

Therefore the next main contributions of the thesis are:

Exploiting visibility information in surface reconstruction to preserve weakly-supp-
orted surfaces [41, 38]. We present a novel method for 3D surface reconstruction
from an input cloud of 3D points augmented with sensor-to-point visibility information.
We observe that it is possible to reconstruct surfaces that do not contain input points.
Instead of modeling the surface from the input points, we model a free space from the
visibility information of the input points. The complement of the modeled free space
is considered as full space. The surface occurs at the interface between the free and
the full space. We show that under certain conditions the full space surrounded by the
free space must contain a real object also when the real object does not contain any
input points, i.e., an occluder reveals itself through occlusion. Our key contribution
is the proposal of a new interface classifier that can also detect the occluder interface
just from the visibility of input points. We use the interface classifier to modify a sta-
te-of-the-art surface reconstruction method so that it gains the ability to reconstruct
weakly-supported surfaces. See Chapters 7, 8, and 9.

Hallucination-free Multi-View Stereo [44]. We present a novel method for 3D recon-
struction that does not produce hallucinations. The method is based on the observation
that hallucinated surfaces are unstable under small input variations. The method can
detect and remove such surfaces. See Chapter 10, and Section 10.1.

Hallucination-free Multi-View Stereo using Priors [43]. The method proposed in the
Section 10.1 works well. However, it has the following disadvantages (i) it is relative slow
since it must run the global optimization several times, (ii) it does not preserve weakly-
supported surfaces. It is sometimes impossible to distinguish between hallucinated and
weakly-supported surfaces just from input visibility-augmented point cloud. We explain
it in Section 7.1. We found that we need to use a prior knowledge in order to be able to
distinguish between a hallucinated and weakly-supported surface. Therefore, we propose

5



2. Contribution of the thesis

a new method for hallucinations removal that is fast and can consider a prior knowledge
of the scene. See Chapter 10, and Section 10.2.

Scalability [42]. We propose a novel semi-global method for 3D reconstruction by parts.
We divide scene into parts. Instead of running the global optimization for all input data,
we run it on each part separately. However, we propagate important information from
neighboring parts in order to be able to achieve semi-globally optimal solution. See
Chapter 11.

Experiments: Kinect vs photogrammetry [70]. We have joined all methods proposed
in Chapter 9, Section 10.2, and Chapter 11 into one pipeline called CMPMVS as a result
of our research. Work presented in [70] contributes with comparison of photogrammetry
results with results obtained from input depth-maps produced by Microsoft Kinect depth
camera. See Chapter 12.

6



2.1. Authors Contributions not Included in the Thesis

2.1. Authors Contributions not Included in the Thesis

Several contributions were proposed by the author. However they were left out of the
thesis to keep the thesis more homogeneous and focused.

• Dynamic 3D Scene Analysis from Omni-Directional Video Data [80].

• AWEAR 2.0 System: Omni-directional Audio-Visual Data Acquisition and Pro-
cessing [30].

• Stereoscopic Imaging Project Summary Report [37].

• Automatic Reconstruction of Mars Artifacts [33].

• 3D Surface Models from Opportunity MER NavCam [31].

• Digital Elevation Modeling from Aerobot Camera Images [32].
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3 State of the Art

In this chapter, we summarize the state-of-the-art of the MVS methods. We focus on
the methods that are related to our contributions. Figure 3.1 generalizes structure of
most of the methods.

In Section 3.1, we summarize the state-of-the-art methods that are focused on depth-
maps computation.

In Section 3.2 we focus on methods that contribute to depth-maps fusion part.

3.1. Depth-Maps computation

The depth-map can be computed from images or can be obtained from a depth-sensor
like Microsoft Kinect. To compute depth-map from images the most commonly used
approaches are a (two-view) stereo method or a MVS method, for example methods
proposed in [20, 67, 36, 13, 64, 75, 74]. Traditional two-view stereo methods [76, 10, 67]
first rectify images and then compute depth-map by comparing similarity of small sur-
rounding of points (5x5 pixels) on horizontal epipolar lines. Multi-view plane sweeping
based methods [13, 87, 4] sweep a plane to discover the intersections of the plane with
a scene. Multi-view growing based methods [96, 27, 21, 93] first detect a seed and then
grow it according to photoconsistency. Our contributions falls to the group of multi-view
growing based methods.

3.1.1. Growing based methods

Multi-view growing based methods [21, 93, 96, 27] share the same approach. The 3D
reconstruction process starts by surface growing from initial seeds represented by a 3D

Images, cameras & sparse matches
↓

Depth-Maps computation
↓

Depth-Maps fusion
↓

Final mesh postprocessing

Figure 3.1.: General reconstruction pipeline.
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3. State of the Art

point and a normal. The quality of this 3D reconstruction depends on the quality of
seeds. Therefore, it is necessary to start with a good estimate of seeds. Initial positions
can often be obtained from guided matching [21] or as centers of voxels [92]. Improved
positions and normals need to be computed. In Chapter 4, as in [39], we propose method
that can compute the seed position and orientation in an efficient way.

A point cloud based approach to seed detection was used in [96]. First, a 3D point
cloud is obtained using Lhuillier and Quan’s technique proposed in [54]. Next, to com-
pute normals to the surface for every scene point, a plane is fitted to nearest neighboring
points in 3D. This approach can fail when the point cloud is not dense enough or when
there are many outliers.

In the work proposed in [27], the problem of seed detection is solved by 2D matching
approach closely related to motion estimation and image alignment, a research field
pioneered by Lucas and Kanade [58]. Unlike [27], our approach to the problem of seed
construction (proposed in Chapter 4) is similar to approaches proposed in [21, 93].

In the work proposed in [93], a small planar patches are swept in 3D and exhaustive
multiresolution search is used to detect seeds.

In the work proposed in [21], a small planar patches are swept in 3D and optimize
their positions and orientations photometrically using conjugate gradient method.

InChapter 4, as in [39], we propose a method that has advantages of the two methods
proposed in [93, 21]. In particular, the method proposed in [93] often finds the globally
optimal solution, since it uses multiresolution exhaustive search. On the other hand,
this method needs to evaluate the objective function many times. In our implementation
of the method proposed in [93], we observed good results with 500 evaluations of the
objective function (100 evaluations for each of the 5 resolutions).

In the method proposed in [21], a conjugate gradients optimization technique is used to
find a local optimum of a photoconsistency based objective function. This method does
not need to evaluate the objective function so many times as in the method proposed
in [93]. In our implementation of the method proposed in [21], we use gradient descent
instead of conjugate gradients. It follows from our experiments, that if it finds globally
optimal solution, it does 15 evaluations of the objective function, on average. However
the method proposed in [21] often gets stuck in a local optimum.

Our method proposed in Chapter 4, as in [39], finds the globally optimal solution as
the method proposed in [93], but with substantially smaller number of evaluations of the
objective function. We show that the criterial function is unimodal in a certain part of
range and additionally all values in this part are greater than the values outside of this
part. Thus, we can perform exhaustive search only on the coarsest resolution and then
we use the gradient descent optimization to refine the solution. Therefore, our method
needs on average only 100 + 15 evaluations of the objective function in order to be able
to find globally optimal solution.

In the method proposed in [27], a variance of intensities of a seed texture is evaluated
to decide whether is it possible to determine the surface normal uniquely by comparing
image reprojection errors. We show that there also exist nonhomogenous seed textures
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for which it is not possible to determine the surface normal uniquely and our method is
able to detect them.

3.1.2. Segmentation based methods

In Chapter 5, as in [40], we propose a multi-view stereo reconstruction method that can
deal with nondiscriminative texture in very homogeneous image areas and that process
large images in affordable time.

Our method was motivated by color segmentation based stereo method [78]. This
approach was originally designed to achieve the following goals: (1) enforcing global
visibility constraints, (2) obtaining reliable depths for depth boundaries and thin struc-
tures, (3) obtaining correct depths for textureless regions, and (4) hypothesizing correct
depths for unmatched regions. We adapt this approach to multi-view stereo and show
that it brings considerable benefits in the quality of results as well as in efficiency.

Many multi-view stereo algorithms cannot find correct depths in low-textured regions.
Because of the matching ambiguity involved in these regions, the depth-maps created
by picking the best matching score of small windows (usually 5 × 5 or 7 × 7 [21]) is
usually not well determined. On the other hand, it has been observed in the method
proposed in [39] (Chapter 4) that it is possible to obtain the globally optimal position
and orientation of a circular 3D patch that approximates the scene surface near some
initial 3D position with high success (94% of their test data) when the texture covered
by the patch projection is informative. It often calls for large patch sizes in homogeneous
image areas.

Work proposed in [78] advocates using image segmentation by assuming that regions
with homogeneous color usually do not cover large depth discontinuities. We would
rather say that regions with homogeneous intensity and color rarely contain large change
in surface normal. Considering lambertian surfaces, the perceived intensity depends on
the angle between the surface normal and the line pointing from the surface to the
light source. Let us assume that the surface is close to planar, close to lambertian, and
the light source is distant. Then, the corresponding textures in different images are
related (at least approximately) by affine intensity transforms and thus their correlation
coefficient is close to one. These assumptions are valid for large class of real scenes and if
they are not valid (or not replaced by other valid assumptions), very little can be done.
Therefore, we consider as reasonable to hypothesize that homogeneous image segments,
as generated by, e.g., segmentation [17], were generated by 3D planar patches.

The new idea inChapter 5 is to generate candidates for 3D planar patches from image
segments that are informative, i.e. to use as large image patches as to gather sufficiently
informative texture for non-ambiguous evaluation of 3D planar patch consistency. To do
so, we segment images [17] into regions with which extend as far as to reach considerable
texture variation on region borders.

Method proposed in [61] also reconstructs 3D planar patches of image segments shapes.
The method is focused on the reconstruction of urban environment that often consist of

11



3. State of the Art

planar surfaces with just several orientations. The method postulates the orientations
and formulates the problem of the 3D reconstruction in MRF framework.

3.2. Depth-Maps fusion

We have reviewed the state-of-the-art methods that are focused on depth-map compu-
tation, and are related to our contributions in the previous section. In this section,
we review the state-of-the-art methods that are focused on depth-map fusion part of
the general pipeline, see Figure 3.1. The depth-map fusion takes depth-maps on the
input and produces a triangular mesh or a volumetric representation of the scene on the
output.

Depth-maps often contain many outliers and are noisy or incomplete, especially when
computed from images. Some depth-map fusion methods [52, 34, 94] are designed to
be robust against outliers and to produce complete, accurate and visibility-consistent
results. Some of them [47] are focused to produce accurate and high quality results.
Another depth-map fusion methods [14, 63] can produce high quality result fast however
require many and relatively high-quality depth-maps.

3.2.1. Depth-Maps filtering methods

Depth-maps filtering methods [20, 25, 64] alternate the depth-map computation from
images with depth-map filtering in order to obtain complete and outlier-less depth-maps.
The depth-maps are later processed by an depth-map fusion method, usually the method
proposed in [47], to produce the final surface 3D reconstruction.

Depth-map filtering methods proposed in [64, 21, 24, 20, 60] use the same principle
to filter out bad depths. The principle is based on the consistency of visibility i.e. the
space between the observer and observed surface is free. That means that if two depths
from different cameras violate this principle then at least one of them must be removed.
The removal is based on various heuristics, usually the more photoconsistent depth
stays. The same principle is applied in depth-map filtering methods proposed in [9, 45]
but instead of the removal heuristic the problem is formulated as global optimization
labeling problem where different labels of a node are represented by different depths from
neighboring depth-maps. In general, for depth-map filtering methods there holds that
the depth for a pixel is selected from k most probable values obtained from neighboring
depth-maps. On the other hand, depth for a pixel is selected from all reasonable space
that projects to the pixel in our method.

Depth-map filtering-methods proposed in [24, 20] that deals with problems of scalabil-
ity, distributability and variation in reconstruction quality has appeared in recent years.
Both methods are focused on the reconstruction of large unorganized photo collections.
They deal with the problem of optimal grouping of input images according to resolu-
tion, color intensity mutual position and orientation etc. The goal is to choose such a
minimal subset of images that is best for surface 3D reconstruction, i.e., they remove
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redundant images that do not increase the reconstruction quality. This is done on the
level of images as well as on the pixel level.

In Chapter 6, as in [45], we build on previous works [60, 21, 25, 9]. We follow the
reconstruction paradigm of [21] but with important improvements and modifications. In
particular, we modify the reconstruction process to be scalable by accumulating partial
scene reconstructions and avoiding unnecessary computations and we improve the filter-
ing step by using MRF filtering formulation [9] but with a new optimization scheme that
is scalable. We borrowed the 3D scene representation by points on rays of all cameras
from [25] (which was also used in [21]) but we work with this representation in a more
efficient way avoiding redundant processing of already well reconstructed structures. As
in [9], we use the graph cut to recover meshes from 3D points independently recon-
structed from image subsets but we developed a new implementation of an approximate
graph cut for this problem that can process data locally with acceptable results. Some
basic concepts and techniques are also similar to elements from [60, 94, 6].

3.2.2. Volumetric methods

Methods proposed in [14, 24, 63] incrementally accumulate values of a volumetric trun-
cated signed distance function (TSDF) of the input depth-maps in the scene volume.
Final surface is considered on the places of volume with zero value. Therefore these meth-
ods can produce high quality result fast but require many and relatively high-quality
depth-maps.

Methods pioneered by [94] adopted the same approach as previous methods but in-
troduced regularizations and are based on continuous optimization. Methods [52, 34]
are based on the discrete s-t cut optimization. Volumetric depth-map fusion meth-
ods [14, 94, 34, 52, 41, 38] employ the same visibility consistency principle but in more
robust and optimal way.

In Chapters Chapters 7, 8, and 9, as in [41, 38], we proposed new volumetric
methods that are also able to reconstruct weakly-supported surfaces. We introduce new
paradigm of weakly-supported surfaces in the next section and we review state-of-the-art
methods with respect to the new paradigm.

Weakly supported surfaces

An input point cloud augmented with a visibility information can be computed from
given depth-maps. Depth-maps can be obtained from images using an MVS method or
a depth-sensor like Kinect, Laser-Scan etc. By visibility information of an input point
we mean that 3D position(s) of sensor(s) that produce the input point are known. We
consider input points that are close to the real surface but do not represent the real
surface as noise, and input points that are far from the real surface as outliers.

Surfaces that do not have strong support in the input points but represent real sur-
faces in the scene, i.e, weakly-supported surfaces, are essential for achieving complete
reconstructions. Such surfaces may be transparent, highly reflective, lacking in texture
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or, as in the case of the ground planes, they can be occluded by moving objects such as
people and cars. Weakly-supported surfaces are present especially when the input points
were obtained from images processed by SFM and MVS methods. Frequent examples
are the ground planes in tourist photo collections, which are often blurred, since the
cameras are mostly focused on objects of interest (facades and landmarks) and on peo-
ple above the ground. Additionally, input points can contain relatively large amounts
of outliers. The density of outlier points is often similar or greater than the density of
points of a weakly-supported surface. We propose a novel method that can reconstruct
these difficult weakly-supported surfaces.

Here we review previous work that is most relevant to our methods proposed in Chap-
ters Chapters 7, 8, and 9, as in [41, 38].

Silhouette based methods are mostly related to the idea of Visual hull that was intro-
duced by Laurentini in [53]. This technique relies on the ability to clearly separate the
scene objects from the background on input images. These objects silhouettes are used to
infer shapes. A more robust approach exploiting the same idea is proposed in [19]. This
approach introduces occupancy grid concept. It infers where and how likely the matter
is present in the scene from given silhouette cues. The method proposed in [26] obtains
moving occluder silhouette information from video sequences of static calibrated cameras
using a background subtraction technique. A Bayesian sensor fusion formulation is used
to process all occlusion cues in the multi-view sequence. The method proposed in [48]
is similar to the method proposed in [26] but applies the state-of-the-art natural image
matting algorithms for multi-view sequences to obtain occluder silhouette cues. The
image matting information is later merged into a 3D coordinate system and a composite
model is created. All these methods rely on silhouette cues information and use it to
reconstruct occluders in the scene. Our methods build on another principle and do not
need any occluder silhouette information.

Local depth-map filtering methods [20, 22, 25, 64, 79, 46] alternate depth-map compu-
tation from images with depth-map filtering in order to obtain complete and outlier-less
depth-maps. Some of them [20, 22, 25, 64] use a visibility-based filtering approach.
Another [46] use bundle adjustment minimization of the camera re-projection error to
filter outliers and improve accuracy. The final filtered depth-maps are later processed by
a depth-map fusion method, usually the method proposed in [47], to produce the final
surface 3D reconstruction. The depth-map filtering methods are rather conservative and
tend to reconstruct only those surfaces that are strongly supported by the input data.
Unlike our methods, the local depth-map filtering methods leaves the space free where
the support is weak.

Volumetric depth-map fusion methods have achieved great success in recent years.
Depth-maps often contain many outliers and are noisy or non-complete, especially when
computed from images. Some volumetric depth-map fusion methods [52, 34, 94] are
designed to be robust angainst outliers and to produce complete, accurate and visibility-
consistent results. Some of them [47] are focused to produce smooth and high quality
results. Another volumetric depth-map fusion methods [14, 63] can produce high quality
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result fast but require many and relatively high-quality depth-maps. Our methods falls
to the group of robust volumetric depth-map fusion methods.

Space carving introduced in [50] produces an approximate reconstruction called Photo-
Hull, which is, under very strict conditions, guaranteed to subsume all other photocon-
sistent reconstructions. The assumptions are so strict that the method is useless for
reconstruction of outdoor scenes. It also does not reconstruct weakly-supported surfaces
well since all non-photo consistent volume is carved out. Photo Flux was introduced
in [8]. It is closely related to Photo Hull but allows the recovery of finer shape details
without over-smoothing while still handling noise robustly. An approach to multi-view
image based 3D reconstruction by statistically inversing the ray-tracing based image
generation process was presented in [56]. The method proposed in [34] uses octree par-
titioning of a 3D space and computes the minimal s-t cut of a graph derived from the
octree in order to label each voxel as being occupied (full) or free. The discontinuity
cost used in [34] is based on photo consistency (or sensor depth-maps). All previously
mentioned methods proposed in [50, 8, 56, 34] rely on 3D reconstruction of a visible,
solid, well-textured, and static scenes from images. The photo-consistency of the scene
surface plays an important role in all these methods while non-photo consistent parts are
usually not reconstructed. These methods do not pay any particular attention to occlud-
ers and weakly-supported surfaces. Moreover, the methods using voxel-based volumetric
representation of the space. Since the number of voxels depends on the resolution of
the volume cubically, the computational and memory costs quickly reach machine lim-
its. For this reason, the voxel-based volumetric methods are suited for reconstruction of
small and compact objects only.

The methods proposed in [69, 52] work with Delaunay tetrahedralization of the input
points instead of voxel-based volumetric representation. The tetrahedral-based volu-
metric representation suites better for large real-world reconstructions than voxel-based
one. The size of tetrahedra depends just on the spatial distribution and density of in-
put points. Therefore we have adopted the tetrahedral volumetric representation in our
methods.

Pioneered by [52], our methods as well as the method proposed in [52] are based on a
minimal s-t cut approach. In these methods, an s-t graph is derived from the Delaunay
tetrahedralization of the input points in order to reconstruct the final surface. The
minimal s-t cut of the graph labels each tetrahedron as “being full” with a full label
or “being free” with a free label. The final surface consists of the faces shared by the
tetrahedra labeled as being “free” (empty space) and the tetrahedra labeled as being
“full” (full space). Therefore, the surface can be seen as an interface between the free
and the full. The new element in our methods with respect to the method proposed
in [52] is that they can reconstruct weakly-supported surfaces.

Hallucinations removal

Many MVS methods [22, 52, 41, 38] can produce surfaces that do not represent real
surface, i.e. hallucinations.
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To our knowledge, there seem to be few works that deal with hallucination removal.
In [22, 52] the problem of hallucination removal is solved by removing large triangles.
The problem with this approach is that hallucinated surfaces do not necessary contain
large triangles, and hence it may not be possible to distinguish between weakly-supported
surfaces and hallucinated surfaces using this approach.

In Section 10.1, as in [44], a confidence value is assigned to each tetrahedron based
on the sensitivity to perturbations in the input 3D points. This approach works rea-
sonably well though on the other hand it is computationally expensive since it needs to
reconstruct the scene multiple times in order to compute the confidence value for each
tetrahedron. In Section 10.2, we focus on a particular type of hallucinations and we
propose a fast approach that can effectively remove them.

Large-scale reconstruction

Many volumetric based methods [69, 52, 34, 94, 41, 38] solve a global optimization
problem and require therefore to have all data loaded in memory. However, we are
working with too huge data to solve the problem globally. In Chapter 11, as in [42], we
propose new semi-global distributed method that can reconstruct huge scenes by parts
without the need of storing all data in the memory.
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Local filtering
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4 Effective seed generation for 3D
reconstruction

The ability of estimation a surface normal and 3D position for a given pixel of an image
is a crucial for many Multi-View Stereo (MVS) methods. We call the estimated surface
normal and 3D position the seed. Given a pair of calibrated cameras, we describe an
effective seed construction method in this chapter. It starts with initial estimates of
seed positions, improves them and computes good estimates of normals. We formulate
the seed construction as an optimization problem with a criterial function based on the
similarity of reprojection of images on a hypothetical circular planar patch.

The main contribution of this chapter is that we discover that the criterial function
is unimodal in a certain domain part and all criterial function values of arguments from
this domain part are greater than all criterial function values of arguments outside of
this domain part.

4.1. Texture discriminativity vs. homogeneity

The ability to estimate seeds depends on the surface texture. Some methods evaluate the
variance of intensities of seed texture to decide about the possibility of normal detection.
We show that there also exist nonhomogenous textures which are nondiscriminative. Our
method is able to detect situations when the seed normal is not possible to detect, i.e.
the texture is nondiscriminative. Our method founds global optimum in 94% of our
test data. We show in experiments, that our approach outperforms other most relevant
approaches.

(a) (b) (c)

Figure 4.1.: Three different texture types: (a) discriminative, (b) nondiscriminative
and homogeneous, (c) nondiscriminative and nonhomogenous.

Figure 4.1 shows three typical situations. Table 4.1 shows a comparison of the seed
homogeneity and the range of our criterial function for three different textures from
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Texture Homogenity Range size
Figure 4.1 (a) 24589 0.6
Figure 4.1 (b) 0.0 0.0
Figure 4.1 (c) 79856 0.0001

Table 4.1.: Comparison of the seed homogeneity and criterial function (Eq.
4.6) range size for three different textures. Seed homogeneity is the
variance of intensities of image reprojection to the seed. We take an minimal
homogeneity of the seed from the set of 1802 seeds with uniformly distributed
normals. The criterial function range size is the difference between maximal
and minimal value of the criterial function evaluated for the same 1802 uni-
formly distributed normals. The criterial function codomain is 〈0, 1〉.

figure 4.1. Seed homogeneity is the variance of intensities of image reprojection to the
seed. In [27], they say that if the variance of intensities of seed pixels is bellow the
threshold (equals to 4) then the seed is homogeneous. We use the minimal homogeneity
of the seed from the set of 1802 seeds with uniformly distributed normals (to be able to
compare with [27]) as the threshold. The range of our criterial function equals to the
difference between maximal and minimal value of the criterial function evaluated for the
same 1802 uniformly distributed normals. The criterial function codomain is 〈0, 1〉. If
the criterial function range size is very small, all values of the criterial function are very
similar, and therefore it is not possible to determine the surface normal uniquely with
our approach. As one can see in the first row of the table 4.1, the homogeneity for the
texture figure 4.1 (a) is high enough. The range of the criterial function is enough high,
too. Therefore, with Habbecke’s [27] and our approach too, it is possible to determine
the surface normal uniquely. The second row shows that, the homogeneity for the
texture figure 4.1 (b) is small. The criterial function range size is small, too. Therefore,
with Habbecke’s [27] and our approach too, it is not possible to determine the surface
normal uniquely. On the other hand, the third row shows that the homogeneity for the
texture figure 4.1 (c) is enough high, but the range of the criterial function is small.
Therefore, this texture is nonhomogenous but it is not possible to determine the surface
normal uniquely. Therefore, our approach is better than Habbecke’s [27] because we can
distinguish such situations.

4.2. Seed detection

Our approach to seed detection is based on the principle of backprojection. If there is a
planar part of the scene surface visible in both images, then the image backprojections
to this planar part of the surface will match.

Technically, the patch ring ρ, is the part of the plane between two circles with the
same center p and normal n. See figure 4.2 (b) which illustrates rings for three different
normals. The ring is parametrized by point p, normal n, radius r1 and radius r2.
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4.2. Seed detection

ρ(p,n) = {x ∈ R
3|n⊤(x− p) = 0& r1 ≤ ‖x− p‖ ≤ r2} (4.1)

We use r1 = 1/2 r2. For the ring ρ(p,n) we choose its coordinate system with the center
in the point p and the z axis along the normal n. The points of the ring x ∈ ρ(p,n) have
the coordinates xR = (x1, x2, 0)

⊤ in this coordinate system of the ring. The coordinates
of these points can be written in a global coordinate system as x = R(n)xR + p, where
the rotation R(n) is the function of the normal n of the ring ρ.

We define the grid with the step δ for the ring ρ(p,n) as

S(i, j) = R(n) (iδ, jδ, 0)⊤ − p (4.2)

with i, j ∈ Z.

When the ring ρ(p,n) is on a surface in the scene, then the image Ik is created by
projecting the texture of the ring ρ(p,n) to images. It is reasonable to reconstruct this
texture Tk(p,n) of the ring ρ(p,n) from the image Ik as follows.

Tk(p,n)(i, j) =
{

f(Pk S(i, j), Ik) S(i, j) ∈ ρ(p,n)
0 S(i, j) /∈ ρ(p,n)

(4.3)

The matrix Pk is the projection matrix for image Ik. The function f represents the
bilinear interpolation. If the images Ik and Im were created as projections of the texture
of the ring ρ(p,n), then the textures Tk(p, n) and Tm(p, n) will match. Therefore, it
is reasonable, for given images Ik, Im and 3D point p, to search for normals n∗ which
maximize the similarity of the textures Tk(p, n) and Tm(p, n)

n∗ = arg max
n,‖n‖=1

(sim(Tk(p,n), Tm(p,n)) (4.4)

This is also known as photoconsistency. If the point p is not known, then we can
formulate the problem as

n∗,p∗ = arg max
n,‖n‖=1,p,p∈ω

(sim(Tk(p,n), Tm(p,n)) (4.5)

where the point p is from some reasonable set ω. Set ω can, for example, consist of
uniformly distributed points along a vector v around the point p. The vector v equals
to l̂ such that l = p− (Ck +Cm)/2, where Ck, Cm are the kth and mth camera centers.

We have to point out that the high similarity of the textures Tk(p,n) and Tm(p,n)
does not imply that the ring ρ(p,n) is a part of a scene surface. It is often happens that
textures of the surface generate very similar Tk(p,n) and Tm(p,n) for many different
p near the surface and for many different n. The most common example is a planar
surfaces of a constant color. Then, the solution to equation 4.5 is not unique and p and
n can’t be determined.

In all our experiments we used adaptive size of the ring ρ. It means, that we computed
r2 separately for each point p. The size r2 varies with the distance from the cameras.

21



4. Effective seed generation for 3D reconstruction

The goal is to set the size r2 so that the Tk(p,n) and Tm(p,n) will not be oversampled
or undersampled with respect to images Ik, Im. The size r2 of the ring is computed so,
that, the projection of the ring to the image will cover approximately R2 pixels (e.g.
142).

In all of our experiments we use MNCC [62] as the function sim to measure of the
similarity of textures.

ˇ 45ˇ = 45

ˇ = 75

(a)

ʾ = 90 ʾ = 120

(a)

ʾ = 90 ʾ = 120

(c)

MNCC( )=,

(b) (d)

Figure 4.2.: Criterial function fs.(a) Cyclopean eye coordinate system, (c) fs function
values. (b) rings for three different normals, (d) Tk(p, φ, θ), Tm(p, φ, θ) for
one of the normals.

4.3. Seed normal detection

We assume a given calibrated stereo pair Ik, Im, Pk, Pm (the I means image and P means
the corresponding projection matrix) and a point p in 3D. In this section, we further
assume that the point p lies on a planar surface. The goal is to find the normal of the
surface.

We formulate the problem as searching for the global maximum of the criterial function
fs : 〈0, 180〉 × 〈0, 180〉 → R :

fs(φ, θ) = sim(Tk(p, φ, θ), Tm(p, φ, θ)) (4.6)
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We parametrize normals by two angles (φ, θ) in spherical coordinates

n = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ))⊤.

Figure 4.2 illustrates evaluation of criterial function fs. The cyclopean eye coordinate
system shown in figure 4.2 (a). The normal vector (φ, θ) is expressed in the cyclopean
eye coordinate system. The rings for three different normals are shown in figure 4.2 (b).
The textures Tk(p, φ, θ), Tm(p, φ, θ) for one of the normals are shown in figure 4.2 (c).
The three green dots in figure 4.2 (c) show the values of the function fs corresponding
to the three normals shown in figure 4.2 (b). The values are computed only for normals
which correspond to surface normals that are visible on both cameras.
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Figure 4.3.: Global maximum detection for 1D r-unimodal function. The r-
unimodal f is defined on interval 〈0, 1〉, with the global maximum in m.
The distances between points xi are ‖xi−1 − xi‖ = 2 r− ǫ. The first point is
x0 = 0. Point x4 is the point with the maximal value among all values f(xi)
and therefore lies in 〈m− r,m+ r〉. The interval 〈a, b〉 is the top-unimodal
part of f .

4.3.1. Finding global maximum of r-unimodal function in 1D

In this section we introduce a method for finding global maximum of r-unimodal 1D
function f : 〈0, 1〉 → R. A function f is unimodal on 〈a, b〉 ⊆ 〈0, 1〉 if for some value m ∈
(a, b) (the mode), it is monotonically increasing for x ∈ 〈a, b〉;x ≤ m and monotonically
decreasing for x ∈ 〈a, b〉;x ≥ m. In that case, the maximum value of f(x) for x ∈ 〈a, b〉
is f(m) and there are no other local maxims. We define r-unimodality of the function as
follows

Definition 1 Top-unimodal part: The interval 〈a, b〉 is the top-unimodal part of the
function f : 〈0, 1〉 → R if:
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Figure 4.4.: 18 textures used in our experiments.

• f is unimodal on 〈a b〉

• ∀x /∈ 〈a, b〉 ∧ y ∈ 〈a, b〉; f(x) < f(y)

Definition 2 r-unimodality: The function f : 〈0, 1〉 → R is r-unimodal for some r if
〈m− r,m+ r〉 ⊆ 〈a, b〉 ⊆ 〈0, 1〉, where 〈a, b〉 is some top-unimodal part of f and m is the
global maximum of f .

Any local optimization method starting from any point of the interval 〈a, b〉 will find the
global maximum of any unimodal function defined on the interval 〈a, b〉. Let the function
f : 〈0, 1〉 → R be r-unimodal for some known r. We want to find the global maximum
m. Let k be in interval 〈m− r,m+ r〉 then any local optimization method starting from
point k will find m. We divide interval 〈0, 1〉 by points xi; ‖xi−1 − xi‖ = 2 r− ǫ for some
small ǫ (we call it the sampling step). Then, there is j such that xj is in the interval
〈m− r,m+ r〉. Next, we know from r-unimodality that j = argmaxi{f(xi)}. The whole
method is illustrated in Figure 4.3.
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Instead of a local optimization method we can use the Binary or Fibonacci Search to
find the global maximum. Then, for any r-unimodal function f : 〈0, 1〉 → R we will be
able to guarantee the total number of evaluation of f to find the global maximum with
a chosen precision.

4.3.2. Properties of the criterial function fs

Our method is guaranteed to work only when fs is r-unimodal. Therefore, we need
to show properties of the function fs experimentally. We compute the function values
in each point φ ∈ {0, 1, ..., 179, 180} × θ ∈ {0, 1, ..., 179, 180}, for 18 different types of
texture, see figure 4.4, and for different sizes of R ∈ 7, 8, ..., 50 of patch projections on a
simulated scene. So for each texture and each R we have 1802 values of fs and we can
compute the size of the r-unimodal region around the global maximum. The result of
these experiment we suggest that function fs is r-unimodal and in most of the cases the
lower bound of r equals 9.
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Figure 4.5.: Criterial function fs. The yellow circle represents a local optimum of fs
obtained by a gradient descent starting from (φ, θ) = (90, 90) marked by
the yellow dot. The green cross represents the global optimum. Red dots
represent uniformly distributed points with distance 18 degrees.

We observed that some textures are degenerate in the sense that the global maximum
of fs does not represent the normal to the scene surface. For these textures it is not
possible to find the surface normal using our technique. We observed that these textures
have the common property, the reconstructed textures Tk(p, φ, θ), Tm(p, φ, θ) are very
similar for all φ, θ, i.e. fs, as s function of φ, θ is high everywhere, see table 4.1. Therefore,
we can incorporate this observation to our algorithm. We simply take the minimal value
of fs over all φ, θ. If the difference of the maximum and the minimum of fs is bellow some
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4. Effective seed generation for 3D reconstruction

threshold, we say that we are not able to find the normal. Otherwise, we assume that
fs is r-unimodal and the global maximum represents the normal to the scene surface.

Figure 4.5 shows the values of function fs. The green cross shows the global maximum
of fs which corresponds to the ground truth. The yellow dot represents the normal for
(φ, θ) = (90, 90) this normal is known as the fronto-parallel normal. The yellow circle
represents the nearest local maximum. Therefore the gradient descent and probably
most other local optimization methods starting from (φ, θ) = (90, 90) would stop in this
incorrect point. On the other hand, our method can find the global maximum.

4.3.3. Algorithm

Min. r>9Max.

( ) (b)(a) (b)

Figure 4.6.: Global maximum detection of r-unimodal criterial function fs. (a)
Values sampled with inter distance 18 degrees and minimal and maximal
samples. (b) The top-unimodal part of criterial function fs is highlighted
part. The black circle is r-unimodal part of the criterial function fs. The
green dot is the maximal sample.

The method for finding the global maximum of a r-unimodal function defined on some
interval (Section 4.3.1) can be easily extended to n-D, since the r-unimodality can be
extended to n-D. Assuming that our function fs is r-unimodal, we can use the method
Algorithm 1 to find its global maximum. The figure 4.6 (a) illustrates the first part of
Algorithm 1. It first takes the samples marked with red dots. Then, it finds the global
maximum by the gradient ascent starting form the sample with the maximal value, see
Figure 4.6 (b). There are two thresholds α, β : α for maximal value, β for the difference
between maximal and minimal value from the samples. If maximal value of the criterial
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4.4. Improving 3D position

Algorithm 1 Normal computation

Require: Ik, Im, Pk, Pm - calibrated stereo pair (I image, P corresponding projection
matrix)

1: α, β - thresholds for max value of the final similarity, and max-min value from
sampling, and the minimal value for homogeneity check

2: function n = findNormal(p)
3: smax = 0; smin = 1
4: for all φ = 0 to 180 step r do
5: for all θ = 0 to 180 step r do
6: s = fs(φ, θ)
7: if s > smax then
8: smax = s
9: φmax = φ

10: θmax = θ
11: end if
12: if s < smin then
13: smin = s
14: end if
15: end for
16: end for
17: β′ = smax − smin

18: if β′ > β then
19: (φ, θ, s) = do local optimization on parameters (φ, θ) of function fs(φ, θ) start-

ing form (φmax, θmax) to find a local extrema (we use gradient descent algorithm)
20: if s < α then
21: return failed;
22: else
23: return φ, θ, s
24: end if
25: else
26: return failed;
27: end if
28: end function

function is lower than α, then textures are not similar. If the difference between the
maximal and the minimal values from the samples is smaller than β, then the normal is
not well determined.

4.4. Improving 3D position

The method explained in the previous section has one strong assumption. The assump-
tion is that point p lies on a planar part of a scene. In this section, we relax this strong
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4. Effective seed generation for 3D reconstruction

assumption and make our algorithm to work in more general and more practical situa-
tions. We assume that point p lies near a planar part of the surface. The goal is to find
the orientation and position of this planar part.

We formulate the problem as searching for a global maximum of the criterial function

fd : 〈0, 180〉 × 〈0, 180〉 × 〈−K,K〉 → R

fd(φ, θ, k) =
sim(T1(p+ v δ k, φ, θ), T2(p+ v δ k, φ, θ)),

(4.7)

where the feasible range of K is chosen discretization count of steps, K should be greater
than R we use K = 5R, and δ is computed as

δ = (r2/2)/K (4.8)

The step δ between p + v δ k and p + v δ (k + 1) should be small enough to make the
function fd r-unimodal in r neighborhood of the position. The vector v equals to l̂ such
that l = p− (Ck +Cm)/2, where Ck,Cm are the kth and the mth camera centers.

The method based on r-unimodality principle works also for 3D function defined by
eq. 4.7.

4.4.1. Properties of the criterial function fd

Figure 4.7.: Values of fd in the parameter space φ, θ, k. The values are colored
using a JET color map. The slice φ, θ, 0 is top-unimodal part of fs in the
surface point p. The maximal value of fd is the most red point this slice.
Vertical axis z in this figure is scaled such that the interval 〈−44, 44〉 is
mapped to 〈0, 88〉.
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4.4. Improving 3D position

The values of the unction fd for some point k ∈ 〈−K,K〉 equals fs for point p′ =
p + n δ k. We made a series of simulated experiments to see properties of the function
fd with ground truth point p and obtained a volume of values of fd in the parameter
space, see figure 4.7.

We observed that the function fd is r-unimodal. The consequence is that the function
fs is r-unimodal in points near the ground truth point p, too. The question is how does
r-unimodality of fs changes when changing k. We did not do as exhaustive experiments
with fd as with fs. Nevertheless, we observed that the lower bound of r in the third
dimension of fd is r = 5.

The lower bound of r of fs for points p′ = p+ n δ k, where k ∈ 〈−5, 5〉 was r = 9. As
you can see in figure 4.8 (a) and (b). In this case K = 49. Figure 4.8 (a) shows r of the
fs as a function of k. Figure 4.8 (b) shows the global maximum of fs as a function of k.

Figure 4.8 (c) shows the values of fd for fixed (φ, θ) = (90, 90) as a function of k. The
gradient descent optimization of fd starting from (φ, θ, k) = (90, 90, 0) stopped at a local
optimum far from the global optimum. Figure 4.8 (d) shows the values of fd for fixed
ground truth (φ, θ) = (90, 45) as a function of k. The maximal value corresponds to the
ground truth point.
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Figure 4.8.: Values across depths i.e. across k. (a) r as a function of k, (b) the
global maximum of fs as a function of k, (c) fd for fixed (φ, θ) = (90, 90) as
a function of k, (d) fd for fixed ground truth (φ, θ) = (90, 45) as function of
k. Horizontal axis x in these figures is scaled such that the interval 〈−44, 44〉
is mapped to 〈0, 88〉.

4.4.2. Algorithm

In this section, we describe Algorithm 2 for improving the position of point p and
finding the normal n. This algorithm first evaluates regularly spaced samples from
Algorithm 1. Next, the algorithm starts a local optimization from the maximal sample.
First, the algorithm optimizes the value d in function fd(φ, θ, k) with fixed φ, θ obtained
previously. Then, the algorithm optimizes (φ, θ) using the gradient descent on function
fs in previously computed point p′ defined by the value k. These two last steps are
iteratively repeated until a convergence.
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4. Effective seed generation for 3D reconstruction

Algorithm 2 Position improovement

Require: Ik, Im, Pk, Pm - calibrated stereo pair (I image, P corresponding projection
matrix)

1: α, β - thresholds for max value of the final similarity and max-min value from sam-
pling

2: function (n,p′) = improvePosition(p)
3: c = vector from the point p to the middle point between k-th and m-th camera

center
4: smax = 0
5: for all d = -15 to 15 step 5 do
6: p′ = p+ c d
7: if (φ, θ, s) = findNormal(p′) success then
8: if s > smax then
9: (φmax, θmax, smax) = (φ, θ, s)

10: else
11: return failed;
12: end if
13: end if
14: end for
15: p′ = p
16: s′ = 1.0
17: p′

old = p′

18: s′old = s′

19: while not convergence of s′ − s′old and p′ − p′
old do

20: p′
old = p′

21: s′old = s′

22: (p′, s′) = do local optimization on parameter d of function fd(φ, θ, d) starting
from (φmax, θmax, 0) where d ∈ 〈−K,K〉

23: (φmax, θmax) = do local optimization on parameters (φ, θ) of function fs(φ, θ)
for point p′ starting form (φmax, θmax) to find a local extrema (we use gradient
descent algorithm)

24: end while
25: return φmax, θmax,p

′

26: end function

4.5. Experiments

In this section, we show the comparison of results of our method (OUR) with method
[93] (ZAB) and with method [21] (FUR). The experiments were carried out on simulated
data, see Figure 4.9. We generated 5356 3D points uniformly distributed on each of the
two faces of the scene. The size of the ring was computed from R = 14. We compare the
results of each of three methods (OUR, FUR, ZAB) with the ground truth. For each
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Figure 4.9.: Simulated scene: (a) top view, (b) left image, (c) right image

Method OURZAB [93] FUR [21]
% of inliers 94.0 94.6 76.0
% of outliers 6.0 5.4 24.0
comp time in section 1264 6139 335

Table 4.2.: Comparison of methods: OUR,FUR,ZAB.

Method OUR: improvePositionOUR: findNormal
% of inliers 75.4 16.9
% of outliers 24.6 83.1

Table 4.3.: Comparison of methods improvePosition and findNormal on trans-
lated face points in the face normal direction.

point we computed degree between detected and the ground truth normal. In the first
experiment, we detected only normal of ground truth 3D point.

Table 4.2 shows that our method gives the same result as method ZAB in 99, 5% of
cases but is 4, 9 times faster. On the other hand, our method is 3, 8 times slower than
FUR but gives 18% more inliers. The precision threshold was set to angle 5 degrees
difference from the ground truth normal.

The second experiment was carried out on the 1250 3D points uniformly distributed
on each of the two faces of the same scene and translated in the face normal direction
by 10 δ (that means approximately 2 pixels of reprojection error on the image). The
table 4.3 shows that normal detection method ( findNormal 1 ) found correct normal in
16, 9% cases on translated points. The improving position and normal detection method
( improvePosition 2 ) found truth normal in 75.4% cases on the same data.

The next experiment was carried out on another simulated scene, see Figure 4.10. The
red dots are the seed positions with nondiscriminative texture and the blue dots are the
seeds positions with discriminative texture. By texture discriminativity we mean the
texture when the function findNormal 1 fails (threshold β = 0.1).

The last experiment was carried out on a real scene, see Figure 4.11. The red polygons
show the seeds with nondiscriminative texture, see 4.11 (b). The blue polygons show
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4. Effective seed generation for 3D reconstruction

Figure 4.10.: Simulated scene by Image Modeller [1]. The red dots are the seeds
positions with nondiscriminative texture and the blue dots are the seeds
positions with discriminative texture. By texture discriminativity we mean
the texture when the function findNormal 1 fails (threshold β = 0.1).

the seeds with discriminative texture, see 4.11 (c). By texture discriminativity we mean
the texture when the function improvePosition 2 fails (threshold β = 0.1).
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4.5. Experiments

(a)

(b) (c)

Figure 4.11.: Real scene. (a) detected seeds using algorithm improvePosition 2. The
red polygons shows the seeds with nondiscriminative texture (b). The
blue polygons shows the seeds with discriminative texture (c). By texture
discriminativity we mean the texture when the function improvePosition 2
fails (threshold β = 0.1).
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5 Segmentation based Multi-View
Stereo

This chapter presents a segmentation based multi-view stereo reconstruction method.
We address (i) dealing with nondiscriminative texture in very homogeneous image areas
and (ii) processing large images in affordable time. To avoid searching for optimal surface
position and orientation based on nondiscriminative texture, we (over)segment images
into segments of low variation of color and intensity and use each segment to generate
a candidate 3D planar patch explaining the underlying 3D surface. Every point of
the surface is explained by multiple candidate patches generated from image segments
from different images. Observing that the correctly reconstructed surface is consistently
generated from different images, the candidates that do not have consistent support by
other candidates from other images are rejected. This approach leads to stable and

(a) (b)

(c) (d)

Figure 5.1.: Strecha‘s Fountain-P11 data set reconstruction. (a) first image (b)
segmentation of the first image (c) 3D segments of first image (d) final mesh
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5. Segmentation based Multi-View Stereo

Images, cameras & sparse matches
↓

Sparse 3D point cloud
↓

Segmentation based multi-view stereo
↓

Filtering
↓

Final mesh construction

Figure 5.2.: Our reconstruction pipeline.

good results since (i) we use larger 3D patches in homogeneous image areas where small
patches covered by nondiscriminative texture would lead to ambiguous results, and (ii)
we accept only candidates that are consistent across several images. Since the image
segmentation used is very fast and it considerably reduces the number of candidates
per image on typical scenes, we typically generate and test relatively small number of
3D hypotheses per image and thus can process large images in affordable time. We
demonstrate the performance of our algorithm on large images from Strecha’s dataset.

Let us first give a gist of our approach. First, we use efficient graph-based image
segmentation [17] to obtain image segments of each image, see Figure 5.1(b). We also
compute initial sparse 3D point cloud by guided feature matching similarly to [21]. Next
we compute a planar approximation of scene surface for each segment and for each
feature of the segment, see Figure 5.1(c). We use corresponding 3D point of the feature
from the guided matching as initial position of the segment planar approximation.

Next, we use the method described in previous Chapter 4 to compute precise segment
planar approximation. Instead of using a circular patch, we use a nonuniform shape of
the patch given by a image segment.

The part of the 3D plane that projects to an image segment is further called 3D
segment. The confidence of this 3D segment is the similarity (the normalized cross-
correlation) of image reprojections onto this planar 3D segment. We call this 3D segment
creation procedure. If there are more features in one image segment, we then choose
the 3D segment with the maximal confidence and accept it if its confidence is above
a threshold. Later, we alternate between greedy hypothesizing of neighboring image
segments and optimizing them using the method described in previous Chapter 4.

Finally, we perform a filtering step to remove inconsistent 3D segments. Filtering is
done by clustering 3D segments generated from the corresponding image segments from
different images. We use Poisson surface reconstruction [47] to generate the final 3D
mesh, see Figure 5.1(d).
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5.1. The processing pipeline

5.1. The processing pipeline

Next we give a detailed description of our reconstruction pipeline. The workflow, Fig-
ure 5.2, is described in detail below.

5.1.1. Cameras, and their calibration

We assume that images were obtained by cameras with known internal and external
calibration or which was computed by, e.g., feature based structure from motion [71, 59,
55]. For each camera i, we keep its corresponding camera matrices [29, p.163] Ki, Ri,
the camera center Ci and the radial distortion parameter κi. We assume that the radial
distortion center coincides with the principal point. A point X from space is projected
to the image point xi = πi

(

Ri(X−Ci)/(r
⊤
i (X−Ci))

)

of the i-th camera with

πi((x, y, 1)
⊤) = K

(

(1 + κi(x
2 + y2))x

(1 + κi(x
2 + y2)) y
1

)

(5.1)

5.1.2. Segmentation

We use the implementation [17] of efficient graph-based image segmentation [17]. We
use σ = 0.5, k = 50,minSegSize = 100 in all our experiments. We have to point out
that it is possible to use other segmentation algorithms segmenting image into piecewise
constant areas. Over-segmentation of smooth surfaces is tolerated.

5.1.3. Data structures

We shall use the following concepts and data structures:

• Ir stands for the r-th image and Cr stands for the corresponding camera. Vector
(x, y) represents an image point and the corresponding ray. Sr stands for the set
of all segments of image Ir. The segment si ∈ Sr is a set of all pixels of the i-th
segment.

• Ik(si) stands for the set of intensities of si pixels in k-th image. Our basic 3D
element is a 3D segment σi = (X,n, r,Σ, i), which is a part of the plane π = (X,n)
that projects to a segment si of the image Ir. The set Σ is the set of images which
see the patch p.

We also work with patch p = (X,n, r,Σ), which is a planar circular disk with center in
X, normal n, inner, resp. outer, radius R/2, resp. R, and the set Σ of images which see
the patch p. R depends on the smallest image detail γr and the distance of X from Cr,
R = dr(X) s, (s = 0 in all of our experiments) so that p covers approximately (2 s+ 1)2

pixels in on images {Ii|i ∈ {r ∪ Σ}} (dr is defined in Section 6.1.3).
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5. Segmentation based Multi-View Stereo

5.1.4. Level of detail

The level of detail dr(X) of a point X is a function of camera index r and point X in
space. It is set to the radius of the ball centered in X that projects to the image detail
γr = 1. Given Cr and projection matrix Pr = [Mr|−MrCr], dr(X) = argminα∈R ‖Rr (X−
Cr)−απ−1

r (x+(γr/2, 0, 0)
⊤)‖ is the distance of X from the ray of sight emanating from

the camera center Cr, γr/2 pixels away from the projection x of X. The detail dr(X)
depends on the corresponding camera detail and on the distance from the camera and
is set to avoid working with too fine 3D detail not well captured in images.

5.1.5. Sparse 3D point cloud

Inspired by previous works, e.g. [21], we reconstruct sparse 3D point cloud from sparse
matches by guided matching [29] in image pairs along epipolar lines. We do it as follows.

We partition image r into rectangular tiles of size D × D (D = 16 in all of our
experiments). For every target image It, t ∈ {1, 2, ..., n}∧t 6= r do. If there are any sparse
matches between Ir and It available from the feature based structure from motion, assign
them to the tiles where they project. Then, in the tiles which have m < K (K = 4 in
all of our experiments) matches, compute Harris feature points [28] and keep the K−m
strongest ones. This, according to our experience, generates sufficient but not excessive
amount of candidate feature points.

For every feature point x in Ir, search in the neighborhood of ±δ (δ = 2 in all of our
experiments) pixels around the corresponding epipolar line lrt in It for the most similar
Harris feature point y. Evaluate the similarity as the normalized cross-correlation (NCC)
of l× l (l = 5 in all of our experiments) image patches centered at x and y. Points x, y
form a new match if x is also the most similar point to y among all candidates in the
±δ vicinity of the epipolar line ltr generated by y in image Ir, i.e. they are mutually
best matches.

Next, for each match (x,y) with x = (x, y), triangulate the match (x,y) into point
X and check if the (apical [82]) angle contained by rays (x and y) is larger than a
predefined threshold αS = 5. If yes, then we construct patch p = (X,n, r,Σ) with
n equal the normal of the reference image plane and Σ = {t}. This reconstructs a
non-ambiguous (large apical angle) patch that is strongly supported by image matches.

After processing all target images It, we cluster according to their centers Xp by the
QL clustering [35] with the diameter equal 3 dr(Xp). We replace clusters by patches
p = (Xs,n, r,Σs) with the centroid of the cluster Xs, the normal of the reference camera
plane n, and the Σs containing the union of all target cameras of the cluster.

5.1.6. Segmentation based multi-view stereo

We take each image as reference image Ir exactly once. To obtain at most one 3D
segment for each image segment of reference image we perform following two steps which
are described in detail below.
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5.1. The processing pipeline

Optimal 3D segment creation. We create the optimal 3D segment for each patch
p = (X,n, r,Σ) of Ir. Let us consider a patch p = (X,n, r,Σ) and a segment si ∈
Sr;Pr X ∈ si of the reference image Ir. The goal is to maximize the similarity of images
(reference Ir and all target It; t ∈ Σ) re-projections to a plane π = (X,n) constrained
by a segment si. We optimize criterial function

fs(p, si) =

∑

t∈Σ c(Ir(si), It(H si))

|Σ|
, (5.2)

where H is the homography inducted by the plane π and consistent with epipolar ge-
ometry between cameras r and t.

We want to find such a p∗ = (X∗,n∗, r,Σ) that

fs(p
∗, si) = arg max

X∈R3;n∈〈0..180〉2
fs(p, si) (5.3)

We are searching for an optimum as in Chapter 4.

We parametrize normals by two angles (φ, θ) in spherical coordinates

~n = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ))T . First, we compute the samples of fs in the
patches uniformly distributed in orientation space only by the distance of 18 degrees in
a L× L grid (L = 7 in all of our experiment) around the n of the input patch point p.
Then we run the gradient descent optimization from the best sample. Then we optimize
the patch orientation and position, too. The patch position is optimized on the ray
connecting p and the center of the reference camera with the step of dr(X).

After processing of all segments we accept only those segments si which satisfy the
following: (1) if there are more features (patches projections) inside the segment si, then
we choose the 3D segment with the maximal confidence and (2) the maximal confidence
has to be greater than a threshold µ (µ = 0.6 in all of our experiments).

Greedy searching of unexplored segments. We do a greedy searching of unexplored
segments to explore more segments. We iterate following steps. For each unexplored
segment su do. First, for each neighboring explored segment se create a new patch
pue = (Xue

,ne, r,Σe, u) with the position at the intersection Xue
of the ray defined by

the center of gravity of the su in the reference camera r and the plane πse . Finally we
find optimal 3D segment for it using abovementioned approach. Next we choose the best
3D segment according to fs(pue). We do 5 iterations in all of our experiments.

5.1.7. Filtering

We perform a filtering step to remove inconsistent 3D segments. Filtering is done by
clustering segments from different images for the same 3D planar part. For each image
we create a patch pei from each pixel i ∈ se of each explored segment se = (X,n, r,Σ, e).
The pei = (Xei ,n, r,Σ), where Xei is the intersection of the corresponding ray to the
pixel i with the plane π = (X,n).
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5. Segmentation based Multi-View Stereo

(a) (b)

Figure 5.3.: Strecha’s evaluation [77] for the Fountain-P11 data set. OUR -
proposed method, FUR [21], ST4 [74], ST6 [75], ZAH [95].

(a) (b) (c) (d)

Figure 5.4.: Strecha‘s Fountain-P11 data set reconstruction cutout. (a) first
image (b) segmentation of the first image (c) untextured 3D segments (d)
textured 3D segments

First, we filter out patches pi = (X,n, i,Σ) which do not have at least δ (δ = 1 or 2
in all of our experiments) neighboring patches from at least δ other images in 3 di(X)
neighborhood of the center of pi.

Next, we filter out all patches from images Ij 6= Ii contained in this neighborhood
fulfilling di(X) < dj(X) to preserve the best level of detail.

5.1.8. Final mesh construction

We use Poisson surface reconstruction (PSR) [47] for final mesh construction. The input
to PSR is an oriented point cloud with all filtered patches.

5.2. Results

To evaluate the quality of reconstructions, we present results on data sets from the
standard evaluation Middlebury [68] and Strecha’s [77] databases.

Figure 5.3 shows the evaluation on the Strecha’s Fountain-P11 data set. The his-
tograms (a), (b) show that our method is comparable to other methods on the Fountain-
P11 set.
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5.2. Results

(a) (b) (c) (d)

Figure 5.5.: Final mesh. Four different views of final mesh of Strecha‘s Fountain-P11
data set reconstruction.

(a) (b) (c)

(d) (e) (f)

Figure 5.6.: Midlebury‘s dinoRing data set reconstruction. (a) first image (b)
segmentation of the first image (c,e) two views of untextured 3D segments
of the first image (d,f) two views of textured 3D segments of the first image

Figure 5.4 shows the detailed view on the 3D segments of first image of Strechas
Fountain-P11 data set. The dataset consists of 3072 × 2048 resolution images. There-
fore, the segmentation of such big images can handle all important details (see Fig-
ure 5.4(a)(b)).

Figure 5.5 shows PSR reconstruction of filtered patches from different views.

To demonstrate the ability of dealing with nondiscriminative texture in very homo-
geneous image areas, we show reconstructions on the dinoRing dataset from Middle-
bury [68] standard evaluation database. Figure 5.6 shows the detailed view on the 3D
segments of the first image of Midleburys‘s dinoRing data set. The large homogenous
segments on the dino’s neck are problematic in patch based approaches [25, 21]. Even
thought PSR usually interpolate missing ungrowed parts well, Figure 5.7 shows that our
method can deal with such areas without any posterior interpolation.
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5. Segmentation based Multi-View Stereo

(a) (b)

Figure 5.7.: Two different views of Midlebury‘s dinoRing data set reconstruc-
tion.

Figure 5.7 shows reconstructions for the dinoRing data set containing 47 640 × 480
images of the Middlebury Dino. We achieved 0.79 mm accuracy and 95.9% completeness
on this dataset. See the Middlebury evaluation page for JancosekCVWW results and
their comparison. We conclude that our results are comparable to other state of the art
techniques. We have to point out that we do not use silhouettes in our method.
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6 Scalable Multi-View Stereo

This chapter presents a scalable multi-view stereo reconstruction method which can
deal with a large number of large unorganized images in affordable time and effort. The
main contribution is that the computational effort of our technique is a linear function
of the surface area of the observed scene which is conveniently discretized to represent
a sufficient but not excessive detail.

(a) (b)

(c) (d)

Figure 6.1.: Reconstruction of an outdoor scene from 294 (1296 × 972 pixels)
images from the Marseille Data Set, computed in 92 minutes. (a)
3D seeds and cameras , (b,c) textured and untextured reconstruction, (d)
reconstruction Ir-colored to show central cameras used (see the text).
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6. Scalable Multi-View Stereo

By “scalable” we mean that we can process a very large image data with computational
effort growing not more than is necessary for obtaining a required accuracy. When
dealing with very large data, we are more interested in an acceptable result in a limited
time rather than in “the optimal” result in time which is not acceptable. Clearly, we often
can’t afford equal treatment of all data since this “linear” approach would eventually
become infeasible. We consider large data in three particular situations when (1) a very
large number of images covers a very large scene, e.g. a complete city, (2) an object
of interest is covered repeatedly by a very large number of images, e.g. the dense ring
of the Middlebury temple, and (3) a scene is captured by high resolution images, e.g.
3072× 2048.

Dealing with (1) calls for fast processing that does not need to load all data into
memory at the same time. The case (2) calls for remembering already solved parts of
the scene and avoiding unnecessary processing of redundant data which brings a little
improvement. Situation (3) calls for controlling the level of detail in space as well as in
images.

We present a scalable multi-view stereo computation technique with the following
properties: (1) the computational effort of our technique is a linear function of the surface
area of the observed scene which is conveniently discretized to represent sufficient but not
excessive detail. Our technique works as a filter on a limited number of images at a time
and can process arbitrarily large data sets in limited memory; (2) scene reconstruction
is built gradually and new image data are processed only if they noticeably improve the
current reconstruction; (3) scene reconstruction uses a variable level of detail, which is
not greater than what can be reconstructed from images.

For very large scenes economically covered by images, the effort of our technique is
proportional to the number of images (thus also to the total number of captured pixels).
For scenes covered redundantly by many overlapping images, the effort is considerably
smaller than the effort needed to process all pixels of all the images and is proportional
to the scene surface area. For scenes captured in excessive resolution, the effort is limited
by the resolution sufficient for reconstructing the scene on a chosen level of detail.

We demonstrate in experiments with Middlebury and Strecha’s databases [68, 77] that
we achieve the quality comparable to other state-of-the-art techniques. It is clear from
our experiments that we can efficiently process redundant data sets, e.g. we used only 7%
of pixels of the 311 images of the Middlebury temple and computed the reconstruction
in 49 minutes with maximum 1 GB of memory.

A large scale experiment in which we processed 1000 images from the Google Street
View Pittsburgh Experimental Data Set [2] in 183 minutes with maximum 1 GB of
memory demonstrates that we can process very large data sets. Although the data set
has been acquired as a sequence, we were considering it as unorganized. In another
large scale experiment, we processed 294 unorganized images (calibrated by [71]) in 92
minutes, Figure 6.1, with maximum 1 GB of memory. These experiments demonstrate
that we can process very large unorganized data sets with large images.
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Images, cameras & sparse matches

Feasible camera pairs

Mesh initilization

3D  seeds
Meshing Growing

Filtering

Mesh

Figure 6.2.: Our reconstruction pipeline.

6.1. The processing pipeline

Next we give the description of our reconstruction pipeline. We assume that images
were obtained by cameras with known internal and external calibration or which was
computed by a feature based SFM method [71, 59, 55]. The workflow, Figure 6.2,
is described below in detail and related to the previous work and computational and
memory requirements.

6.1.1. Data structures

We shall use the following concepts and data structures. Ir stands for the r-th image
and cr stands for the corresponding camera. Vector (x, y) represents an image point
and the corresponding ray. Our basic 3D element is a patch p = (X,n, r,Σ), which is a
planar circular disk with center in X, normal n, reference image index r, and the set Σ
of target image indexes which see the patch p.

The radius of the patch R is a function of camera index r and point X in space. It is
set to the radius of the ball centered in X that projects to the image detail with radius
s (s = 2or3 pixels in all of our experiments) so that p covers approximately (2 s + 1)2

pixels in image Ir.

To avoid processing the space that is occluded in cr by already accepted (Section 6.1.7)
reconstruction (visible in cr), we use buffer Vr which holds the closest known patch to

45



6. Scalable Multi-View Stereo

cr (visible in cr) on the ray (x, y). To facilitate efficient 3D reconstruction by growing,
we use buffer Gr that holds up to 10 patches on a ray (x, y). The final mesh is assumed
to be consisting of a set of contiguous triangulated meshes. Each of these meshes M
is represented per parts in buffers Mr associated with reference images Ir concurrently.
This is possible since only one mesh can be seen by one pixel. Each point of M is
represented in exactly one Mr, i.e. Mr partitions M .

6.1.2. Feasible camera pairs

To avoid unnecessary matching of camera pairs, which see only a few points in space
generating good matches, we construct feasible camera pairs. We say that two cameras
form a feasible pair if there are points in space “whose projections do not change scale
more than by 80%”. We check it as follows.

We find the shortest transversal of the optical axes of cameras say ci, cj . Let points
A,B, resp. C, be the endpoints, resp. the center, of the transversal. Let αij be the angle
contained by the rays projecting C into the cameras. Let the unit ball centered in C
projects to circles with diameters di, dj

1. The camera pair is feasible if A,B,C is in front
of both cameras, projects to both images, 5◦ ≤ αij ≤ 50◦, and min(di, dj)/max(di, dj) ≥
0.8.
This computation is done only if matches from SFM are not present. Otherwise we use

the matches to compute the feasibility. We consider two cameras as feasible if there are
some matches (at least 10 in all our experiments). We store the feasibility information
in camera incidence matrix CI with rows and columns corresponding to cameras and
CI(i, j) = 1 for a feasible pair i, j and CI(i, j) = 0 otherwise.
Using CI we construct the feasibility neighborhood Or of camera r to consist of all

cameras forming feasible pairs with r. It is determined by non-zero bits in the i-th row
of CI . The matrix CI will be used in the further processing to keep track of unprocessed
cameras by zeroing element of CI corresponding to already processed cameras.

Computational effort & memory requirements Computing feasible camera pairs of
N cameras naively calls for computing with N(N − 1)/2 camera pairs. This is feasible
for thousands of cameras. If many more cameras are to be processed, subquadratic
algorithms are available in Computer graphics [12], assuming that CI is sparse. To store
(uncompressed) CI , we need only N(N − 1)/2 bits.

6.1.3. Level of detail

To exploit the information efficiently, we control the level of detail in images and in
space. The level of detail dr(X) in space is a function of camera index r and point X
in space. It is set to the radius of the ball centered in X that projects to the image
detail γr. The detail dr(X) depends on the corresponding camera detail and on the
distance from the camera to avoid working with too fine 3D detail not well captured in

1For ellipses, di, dj are the lengths of their major axes.
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6.1. The processing pipeline

images. Parameter γr controls overall level of detail and is determined by memory and
time constraints. We used γr = 1 for Middlebury and γr = 2 for Strecha’s and Marseille
data.

Computational effort & memory requirements Values dr(X) are evaluated online
when processing 3D points.

6.1.4. Reference image selection

Take the next reference image Ir by finding the row r of CI with the maximal sum, i.e.
select the camera with high potential of producing large and reliable 3D structure.

Compute buffer Vr(x, y) using already accepted meshes (Section 6.1.7). Later, Vr(x, y)
will contain the closest visible accepted patch to ci. Buffers Vr are used for efficient
processing of redundant data. Everything behind the accepted patch is not considered
further.

Computational effort & memory requirements For a fixed r we need to keep in mem-
ory buffers Vr, Gr, Mr, which altogether consist of approximately 12 times the number
of image pixels divided by γ2r . They fit in memory even for large images.

6.1.5. 3D seeds

We create 3D seeds similarly to [21] with the following modifications. We use Harris
feature points [28] and the seeds from SFM if available. We are searching for matches
in all pairs formed by the reference camera r and all cameras in Or. We work with
seeds that are not occluded by closest already accepted surface (stored in Vr(x, y)) and
whose apical angle [82] is larger than a predefined threshold αS (we use αS = 3 in all our
experiments). We also update the camera incidence matrix CI by removing the camera
pairs r, t which have less than mS (mS = 10 in all our experiments) seeds.

Computational effort & memory requirements Computing Harris points is feasible
even for large images since it can be implemented as a filter [5]. The computational
effort is linear in the number of image pixels. The typical number of seed patches per
ray is 1-3.

6.1.6. Growing

Patches grow in space. The growing starts from seed patches and is guided by patch
quality, a function of the patch pose in 3D, the reference image and its feasibility neigh-
borhood. The goal is to obtain reliable proposals on 3D structure efficiently. This step
has been inspired by technique [10] used for fast stereo reconstruction from image pairs
and [21] used in multi-view stereo.

To evaluate the quality q(p) of a patch p = (X,n, r,Σ), we set
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Figure 6.3.: Expansion of patch p. See the text.

q(p) = meani∈ΣNCC(Ir(p), Ii(p)), i.e., to the mean NCC of the texture reprojected
from image r to images i ∈ Σ by the patch p.

To make the growth more efficient, we use buffers Vr to suppress the growth of weak
patches that become occluded. We compute buffer Vr by finding the closest visible patch
to the camera r among all patches in already accepted meshes Mi (Section 6.1.7).

The growing starts from seed patches associated with image r by expanding them
into new patches. The growing uses two queues. The priority queue Qopen contains
patches prepared for the expansion ordered by their quality. Initially, Qopen contains all
seed patches. The queue Qclosed contains the expanded patches. The growing process
repeatedly removes the top patch p = (X,n, r,Σ) from Qopen, expands it into 3×4 = 12
tentative patches pjk = (Xjk,njk, r,Σ), j = 1, . . . 4, k = −1, 0, 1, out of which the four
successor patches are selected and those which pass a series of tests are placed in Qopen,
see Figure 6.3. Expanded patch p is placed into Qclosed. The process stops when Qopen

becomes empty.

First, 12 patch centers are constructed in 4 groups with 3 points in each. The centers
of the patches pj0 are constructed as the four points Xj0 on the rays ρj obtained by
backprojecting points in the γr 4-neighborhood of the projection of X into Ir. Patches
pjk for k 6= 0 are constructed with centers Xjk on ρjk in the distance dr(xjk) from Xj0.
Next, njk are set to the normals of planes approximating (in the least squares sense)
centers of patches already grown from p and not farther than 10 dr(Xjk) from Xjk.

From each group, we then select a patch with the maximal quality pj = argmaxk=−1,0,1 q(pjk).
We place pj = (Xj ,nj , r,Σ) into Qopen if the following conditions are met: (1) no patch
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has grown before on the ray (x, y) of Xj from the same seed as pj , (2) the patch has
high quality, i.e. q(pj) > 0.6 and q(pj) > qm − 0.1, where qm is the maximal quality on
the same ray, (3) point Xj is not occluded by an accepted patch Vr(x, y) with higher
quality on the same ray, (4) none of the previously reconstructed patches is closer to Xj

than dr(Xj), and finally (5) there are less than 10 patches on the ray of Xj . We update
Gr(x, y).

Computational effort & memory requirements The maximal number of objects in
memory during the growing step is 10Nr/γ

2
r , where Nr is the number of pixels in Ir in

pixels and 10 stands for the maximal number of patches on a ray in Gr. This number
decreases on redundant images as the scene becomes more and more reconstructed since
the growing is limited by already accepted structures (Vr).

6.1.7. Filtering and Meshing

MRF Filtering Inspired by the approach in [9], we recover a filtered 3D mesh from grown
patches in Gr by MRF optimization. To fit MRF structures in memory for very large
images, we design an approximate optimization procedure for the problem posed in [9],
which does not need to load Gr in memory at once in order to get a good suboptimal
solution.
We model the problem as a discrete MRF where each node may get assigned one

of 11 labels. Nodes are arranged into a 2D lattice which inherits the layout from the
rectangular image pixel lattice. We will coordinate it by (r, c) with pixel coordinates
(x, y) = γr(r, c). There are up to 10 points on each ray (r, c). Therefore, we use labels
xs ∈ {1, ..., 10} to select patches along the ray and use label 0 to select no patch. The
cost of a particular labeling x = {xs} can be written as

E(x|θ) =
∑

s

θs(xs) +
∑

st

θst(xs, xt) (6.1)

where unary costs θs(xs) are constants c0 (c0 = 1 in all our experiments) for xs = 0 and

− q(p)+1
2 for non-zero xs.

The pairwise costs θst(xs, xt) are defined as follows: θst(0, 0) = e00 and θst(0, i) = e0
for labels i 6= 0, where e00 and e0 are conveniently defined constants (e00 = 0 and e0 = 1

in all our experiments). To define θst(i, j) for labels i, j 6= 0, we compute δij =
dij

5 dr(X2)
,

where dij is the distance of the centers of patches i, j and dr(X2) is the size of the spatial
detail at the center of the (closer) patch j. Then, we set θst(i, j) = δij if δij ≤ 1 and
the angle between the normals of the patches is less than 60◦. We set θst(i, j) = ∞
otherwise.

To obtain the filtered surface, which we store in Fr, we need to determine the optimal
labeling x̂ such that

E(x̂|θ) = argmin
x

E(x|θ) (6.2)

by a large-scale MRF optimization.
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6. Scalable Multi-View Stereo

Solving Large-scale MRF optimization We consider a pairwise Gibbs energy mini-
mization problem for discontinuous surface reconstruction (6.2). There are methods
developed, e.g . [16], to find global solution for submodular instances, even large-scale,
which do not fit into memory. However, they do not apply here. The problem (6.2) is of
general type and cannot be solved efficiently to global optimality. For our purposes it is
sufficient to have just a good suboptimal solution as in other major parts of the pipeline.
We apply TRW-S algorithm [86, 49]. We use the following heuristic to handle large-
scale problems by parts. To get solution inside a window A we take a larger set B ⊃ A
covering all the terms, say, not farther that 50 nodes from A. We solve the “small-size
problem” in B, then fix the solution inside A and process to the next window. The
intuition is that the solution, e.g . in the upper left conner of a large image, does not
really depend on the data in the lower right conner. Each next window is conditioned on
the solution already fixed in all previously processed windows, so there will be no seems
in the ambiguous places. Experimentally, we found that this approach gives a solution
which agrees well with the solution by TRW-S applied globally. In fact, solving by parts
often yields a lower energy (which is possible because TRW-S is a suboptimal method
itself). Let us also note that any available method for general MRFs could be used for
solving the problem by parts.

…
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Figure 6.4.: Meshing: Fi – filtered meshes, Mi – accepted meshes. A consistent overlap
of several (2 or 3 in our experiments) filtered meshes forms an accepted mesh.

Meshing Meshing is one of the crucial steps in our pipeline. Figure 6.4 illustrates
the meshing step. Our final mesh consists of at most n (the number of cameras) parts.
Each camera is associated with it’s part, which is stored in a file. Therefore, we do not
need to remember all reconstructed parts in one file. We detect overlapping parts of the
previously filtered meshes (from the Or) with actual (reference) filtered mesh. If a part
of the actual filtered mesh is supported by at least Ka (2 or 3 in our experiments) other
filtered meshes, then it is considered as an accepted mesh for the reference camera. In
more details, we update the part Mr of the final mesh M , which is associated with the
reference image Ir. We accept the patch p = (X,n, r,Σ) of Fr(x, y) on the ray (x, y) into
Mr(x, y) if there are at least Ka (2 or 3 in our experiments) filtered patches computed
from at least Ka other reference cameras in the ball 3 dr(X).
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6.2. Results

(T-16) (T-47) (T-311)

Figure 6.5.: Middlebury Temple data set reconstructions. Ir-colored 3D meshes:
(T-16) 16 images, 6 mintes, (T-47) 47 images, 20 minutes, (T-311) 311
images, 58 minutes.

Since meshes Fi partly overlap and growing is restricted by Vr, meshes Mj form a
contiguous mesh, see Figs 6.4, 6.5, 6.8 (a), 6.10 (c) and 6.7 (b).

Computational effort & memory requirements In the filtering step, we process one
Gr at a time. However, the number of variables and edge weights in the MRF problem
becomes 112 times the number of nodes, which is too large to fit in memory for large
images. Our block MRF optimization provides an acceptable suboptimal solution with
negligible overhead. In the meshing step, we need to keep in memory only two or three
different filtered meshes Fr and one Mr.

It is important to realize that we optimize only those parts of Gr which indeed have
grown. The amount of this data is often decreasing as we proceed in reconstructing a
scene from a large number of overlapping images since more and more images are covered
by accepted points of Mr, therefore less image area is grown and so less nodes of Gr are
optimized.

6.2. Results

To evaluate the quality of reconstructions, we present results on data sets from the
standard evaluation Middlebury [68] and Strecha’s [77] databases. To demonstrate the
scalability of our algorithm we show reconstructions on the large Castle data set from [77]
on a 294 image Marseille data set and on a 1000 image Google Street View Pittsburgh
Experimental data set [2].

Figure 6.5 shows reconstructions for the three Temple data sets containing 16, 47, resp.
311 640 × 480 images of the Middlebury Temple. See the Middlebury evaluation page
for Jancosek-3DIM09 results and their comparison. We conclude that our results are
comparable to other state-of-the-art techniques. When comparing computation times
on, e.g., Temple 311, we see that our method is comparatively faster as it takes 49
minutes, compared to method [21] taking 4 hours, [25] 81 hours, and [9] 6 hours.
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6. Scalable Multi-View Stereo

Figure 6.6.: The fraction of pixels of the reprojection of the final mesh to
Ir. Processed in the growing (Growing) and meshing (Meshing) for Temple
311 data set. Cameras are shown on the horizontal axes in the order of
processing. The fraction in % is shown on the vertical axes.

(a) (b) (c)

Figure 6.7.: Strecha’s Fountain-P11 data set reconstructions: 11 3072 × 2048
images, 219 minutes. (a) Residuals w.r.t. ground truth (light colors represent
smaller errors) (b) Ir-colored 3D mesh (c) textured 3D mesh.

Figure 6.6 shows the fraction of pixels of the reprojection of the final mesh to Ir
processed in the growing (Growing) and meshing (Meshing) for Temple 311 data set.
There are two cluster of cameras (5-15) and (80-100) which support large part of the
final mesh in their Mr buffers. We see that growing in other cameras was greatly reduced
by using previous reconstructions in Vr.

Figure 6.7 shows our reconstructions of Strecha’s Fountain-P11 data set containing 11
3072 × 2048 images. Figure 6.8 shows reconstructions of the Strecha’s Castle-P30 data
set containing 30 3072× 2048 images.

Figure 6.9 shows the evaluation on the Strecha’s Fountain-P11 as well as Castle-P30
data sets. See the Strecha’s evaluation page for JAN09 results and their comparison. Our
method is comparable to other methods on the Fountain-P11 set, although it reconstructs
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(a) (b) (c)

Figure 6.8.: Strecha’s Castle-P30 dataset reconstructions: 30 3072×2048 images,
368 minutes. (a) Ir-colored 3D mesh (b) textured 3D mesh (c) textured 3D
mesh cutout.

(a) (b)

(c) (d)

Figure 6.9.: Strecha’s evaluation [77] for the Fountain-P11 (a,b) and Castle-
P30 (c,d) data sets. OUR - proposed method, FUR [21], ST4 [74],
ST6 [75], ZAH [95], VU [85], JAN segmentation based method described
in previous Chapter 5, TYL [83].

less points than the best method [85]. There is still room for improvement since we
obtained only about 75% of points at sigma = 10 on Castle-P30 dataset.
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(a) (b) (c)

(d) (e) (f)

Figure 6.10.: Google Street Views Pittsburg Experimental dataset reconstruc-
tion of 1000 600 × 800 images in 183 minutes: (a) 3D seeds and
cameras, (b–f) five different views.

Figure 6.1 shows our reconstruction of Marseille dataset containing 294 (1296 × 972
pixels) unorganized images computed in 92 minutes. Figure 6.1(b,c) shows textured
and untextured 3D reconstruction from a general viewpoint. Cameras and sparse 3D
structure, Figure 6.1(a), have been computed by [71]. Figure 6.1(d) shows reconstructed
3D structure Ir-colored to show what has been reconstructed from which central camera.

Figure 6.10 shows reconstruction of a 1000 image data set from the Google Street
View Pittsburgh Experimental data set [2]. We have chosen a sequence of 200 viewpoints
represented by five-tuples of perspective 600× 800 images capturing complete 360◦ field
of view. The density as well as the precision of the reconstruction varies across the scene.
There are still many holes and the accuracy is not very high. This might be caused by
incorrect calibrations, which were guessed from the viewing angle of the photographs,
as well as distortions introduced by the process of acquisition and processing of image
panoramas when making the data set.

Nevertheless, the experiments demonstrates that we were able to process a large image
datasets in affordable time and thus we could aim at reconstructing city parts.
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7 Weakly-supported surfaces reveal
themselves through occlusion

Surfaces that do not have strong support in the input points but represent real surfaces
in the scene, i.e, weakly-supported surfaces, are essential for achieving complete recon-
structions. In this chapter we propose a novel method that can reconstruct these difficult
weakly-supported surfaces.

The main idea of improving the reconstruction of weakly-supported surfaces is that
even weakly-supported surfaces exhibit themselves by occluding other input points. We
next review this idea for an infinite number of noiseless and outlier-less input points
augmented with visibility information.
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Figure 7.1.: Occluder reveals itself through occlusion. Three sensors with centers
A, B, C, shown as blue, red, and green wedges, observe an L-shaped (black)
object. Each ray r from a sensor center O to a reconstructed point X
indicates that the space along the line segment OX is free. See the text for
a more detailed explanation.
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7. Weakly-supported surfaces reveal themselves through occlusion

Figure 7.1(a) shows a two-dimensional schematic illustration of three sensors (blue,
green, and red wedges) with their respective fields of view. The sensors observe the
corner of an L-shaped object. Some points of the object are not observed by any sensor
(shown as the solid black line), some are observed by one sensor, some by two sensors
(line segments marked by AB and by BC), and some by all three sensors (corner marked
by ABC). For simplicity, we assume that all points of the L-shaped object that are seen
by at least two sensors are on the input. Note that we are assuming continuous case in
this example. Therefore, the number of input points is infinite.

Let us next add a circular object as an occluder to the scene, Figure 7.1(b), which
has no point in the input points. We can still reconstruct the same surface of L-shaped
object as in Figure 7.1(a), but all points are now visible from only (and exactly) two
sensors. It is important to notice here that while the set of input points has not changed,
the visibility information of the input points has changed. The visibility information has
changed in the way that an input point that is occluded by the occluder is not seen by
the sensors in which it is occluded.

Let us now introduce a new concept that conveniently captures the effect of having
an occluder in the scene. For each point in the space we can construct a measure of its
emptiness. We will call this measure free space support. Consider the point marked by
“3” in Figure 7.1(c). The emptiness of this point is supported by three observations.
There are three line segments passing through this point that connect the sensor centers
A, B, C with the respective input points. Hence, the free space support of the point
is equal to three. The emptiness of the point marked by “2” is supported only by two
observations. The ray from sensor C through the point 2 does not end in an input point.
It ends in a point seen by only one sensor: sensor C. Hence the free space support of
this point is equal to two. Note that there are only points that are seen by at least two
sensors are on the input.

After the introduction of the occluder into the scene, Figure 7.1(d), the free space
support decreases at some points because some of the rays get blocked by the occluder.

Figure 7.1(e) shows the space partitioned by sensor visibility cones into regions with
constant free space support, which is denoted by black numbers. Figure 7.1(f) shows the
same after introducing the occluder. We see that a region with zero free space support
surrounded by non-zero free space support emerged in the scene center. Such a region
provides evidence of an occluder even when no point on the occluder has been on the
input.

We can consider the space with non-zero free-space-support as free and the comple-
ment as full. Therefore the evidence of the occluder interface can be detected by nonzero
to zero change of the free-space-support in this ideal noiseless, outlier-less, and contin-
uous case. Additionally, the L-shaped object has zero free-space-support and nonzero
to zero change is evidence for the L-shaped object interface as well. Therefore, we can
say that nonzero to zero change of the free-space-support is interface evidence for all
objects.
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7.1. Hallucinations

Figure 7.1(f) shows that there is another nonzero to zero change of the free-space-sup-
port that is not an evidence for any object. It is the zero to nonzero change of the
free-space-support at the boundaries of visibility cones. We call these types of evidences
hallucinations. Hallucinations cause problems in datasets where the scene is not captured
from all sides. We refer the reader to the Chapter 10 for more information on solving
this problem.

7.2. Space discretization by Delaunay tetrahedralization

It is impossible to compute the free-space-support for all points of the space. To be
practical, the space is discretized into tetrahedra constructed by the Delaunay tetrahe-
dralization [15] and the free-space-support is evaluated for the tetrahedra. The space
discretization is constructed by tetrahedralizing the union of the input points and sensor
centers. By having the sensor centers in the tetrahedralization, the space between the
sensors centers and the input points is covered by the tetrahedralization.

The interface evidence can be easily detected by nonzero to zero change of the free-
space-support in ideal noiseless, outliers-less and continuous case. In real-world scenarios
however, the number of input points is finite and the amount of noise and outliers can be
significant. Nevertheless, we experimentally show in the next Chapter 8 that the interface
of a scene object, weakly-supported as well as strongly supported by input points, can
be detected by measuring large free-space-support change of nearby tetrahedra. Let us
introduce the notation first.

Tetrahedralization We denote a tetrahedron of the delaunay tetrahedralization of the
input points as T .

The unit σ We introduce a constant σ that equals 2.0 times the median of the lengths
of all edges of all tetrahedra. The value σ corresponds to the smallest reconstructible
object.

Input points and segments (lines) of sight We assume that we have on the input a set
C of sensor centers c ∈ C and a set S of pairs (c,p) ∈ S where c ∈ C and p is an input
3D point. The set S is a set of input points augmented with the visibility information.
We call the line segment defined by 3D points (c,p) ∈ S the segment of sight or simply
the segment. We call the line defined by 3D points (c,p) ∈ S the line of sight. We call
input points augmented with visibility information, i.e. the set S, the input segments of
sight.

The set of input points is denoted as P (S) = {p|(c,p) ∈ S}. Note that one input
point p can be augmented (and typically is) with multiple sensor centers.
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Figure 7.2.: Free-space-support on line of sight. Illustration of functions fcp(x),
βcp(k) and γcp(k). See text for more details.

Input point weights We assign to each of the input points p a weight denoted by α(p).
The weight α(p) ≥ 1 reflects the amount of input points in σ surrounding of the point p.

Free-space-support Free space support f is a measure of emptiness. Roughly speaking,
if a sensor with center c sees a point p, then the segment of sight (c,p) ∈ S supports
the emptiness of space between c and p. The free-space-support f(T ) of tetrahedron T
is computed from segments (c,p) ∈ S intersecting T as

f(T ) =
∑

(c,p)∈ST

α(p) with (7.1)

ST = {(c,p) ∈ S | (c,p) ∩ T 6= ∅}.

where (c,p)∩T denotes the intersection of the line of sight (c,p) and the tetrahedron T .

Free-space-support on a line of sight We denote the free-space-support on a line of
sight (c,p) ∈ S by fcp. Figure 7.2 illustrates how the free-space-support on a line of
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7.2. Space discretization by Delaunay tetrahedralization

sight is computed. The function fcp(x) is a piece-wise linear function that interpolates
the free space supports f(Tj) of tetrahedra Tj crossed by the line of sight (c,p) ∈ S
(bottom). Notice that the domain of the function fcp is in units σ. We introduce the
following notations to measure extremal values of the function fcp on specific intervals:

βcp(k) = max(fcp(x)|x ∈ 〈−k, 0〉) (7.2)

γcp(k) = (max(fcp(x)|x ∈ 〈0, k〉) + (7.3)

min(fcp(x)|x ∈ 〈0, k〉))/2 (7.4)

The function βcp(k) measures the maximal value of fcp(x) in range 〈−k, 0〉, i.e. in kσ
distance from the point p toward the sensor c. The function γcp(k) measures the average
of maximal and minimal values of fcp(x) in range 〈0, k〉, i.e. in kσ distance from the
point p away from the sensor c. See Figure 7.2.

Free-space-support jump We define the following functions to be able to measure
free-space-support change in a close surrounding of an input point.

ǫabscp (kf , kb) = βcp(kf )− γcp(kb) (7.5)

ǫrelcp (kf , kb) =
γcp(kb)

βcp(kf )
(7.6)

The function ǫabscp evaluates the absolute change of the free-space-support on the line

of sight (c,p) in the 〈−kfσ, kbσ〉 surrounding of the input point p. The function ǫrelcp

evaluates a relative change of the same free-space-support.
The functions are chosen this way because we want to be able to detect big change in

free space evidence near some 3D point. However, measuring just the relative change of
the free-space-support is not enough because relative change of small (noise) numbers
can be also significant. Therefore we study a combination of the absolute and relative
changes.

Outliers level If a point p represents a real interface point then the value of the function
γcp represents the amount of outlier lines of sight (c,p) ∈ S crossing the corresponding
part of full space. The function reflects average free space evidence accumulated in the
space that should be occupied by an object. Only an outlier that is seen by a sensor but
should be occluded by the object can contribute to this evidence, therefore the function
γcp reflects the outliers level.

The first and the last crossing tetrahedron The first crossing tetrahedron of a line
segment (c,p) is denoted by F p

c . It is the tetrahedron containing point p, the tetrahedron
T0 on Figure 7.2. We denote as Lp

c(d) the tetrahedron (Lp
c(σ) = T3 on Figure 7.2) that

contains the point p+ d
−−−→
(c,p) ∈ Lp

c(d) (gray point for d = σ on Figure 7.2).

61



7. Weakly-supported surfaces reveal themselves through occlusion

7.3. Finding surfaces by solving a graph optimization problem

Let us now introduce an efficient graph representation of the input points and formulate
the surface reconstruction problem as a graph optimization problem.

7.3.1. Discretization graph

The Delaunay tetrahedralization of the input points induces its dual Voronoi graph [15]
(Vd, Ed). Vertices Vd of the graph correspond to the tetrahedra. Edges Ed of the graph
correspond to the faces of the tetrahedra. There is exactly one edge in Ed for every face
of the tetrahedralization.

We use the Voronoi graph to construct the Discretization graph (DG) (V,E). First, a
set Ev of v-edges is constructed by orienting the edges of Ed and augmenting them with
normal vectors of the faces. For every edge (v1, v2) in Ed we add two edges, (v1, v2,n12)
and (v2, v1,n21), to Ev, where n12 is the normal of the face between v1, v2 oriented from
v1 to v2, n21 = −n12. Secondly, a set V = Vd∪{s, t} of vertices is constructed by adding
two additional vertices s, t to Vd. Finally, a set Es = {(s, v) | v ∈ Vd} of s-edges oriented
from s to the vertices in Vd and a set Et = {(v, t) | v ∈ Vd} of t-edges oriented from the
vertices in Vd to t are built. By putting all edges together, we get E = Ev ∪ Es ∪ Et.

We denote tetrahedron T that corresponds to a node v ∈ Vd as T (v). We denote
oriented face F of the tetrahedralization that corresponds to an oriented v-edge e ∈ Ev

by F (e).

7.3.2. Surface reconstruction using minimal s-t cut of the DG

Given the graph DG and weights w(e) of all of its edges e ∈ E an s − t − cut C(ς, τ)
is a partition of V into two disjoint sets ς and τ where s ∈ ς and t ∈ τ . The C(ς, τ) is
defined as follows:

C(ς, τ) =
∑

e=(u,v)|u,v∈ς\{s}

w(e) +
∑

e=(s,v)|v∈ς\{s}

w(e)+

∑

e=(v,t)|v∈τ\{t}

w(e)
(7.7)

The minimum s-t-cut optimization problem is the minimization of the s−t−cut value
C(ς, τ). There are many classical algorithms that efficiently solve this problem [7].

We cast the surface reconstruction problem as the minimal s− t− cut problem of the
graph DG. We interpret the final sets ς and τ as that tetrahedra T (v)|v ∈ ς are labeled
as being free and tetrahedra T (v)|v ∈ τ are labeled as being full. The final surface
is then reconstructed as the union of oriented faces (triangles) of the DG that are on
the full-free interface. The surface is therefore guaranteed to bind a volume, i.e., to be
watertight and self non-intersecting.

62



7.3. Finding surfaces by solving a graph optimization problem

7.3.3. Computing edges weights of the DG

The method proposed in [52] shows that the surface separating the free space from the
full space can be found as the minimal s− t−cut of the DG where weights are computed
as follows:

Weights of v-edges Weight w(e) of an oriented v-edge e = (u, v) ∈ Ev is set to

w(e) =
∑

(c,p)∈Sv(e)

α(p) with (7.8)

Sv(e) = {(c,p) ∈ S | (c,p+ σ
−−−→
(c,p)) ∩ F (e) 6= ∅

∧
−−−→
(c,p) · n > 0}

Weights of s-edges Weights w(e) of s-edges e = (s, v) ∈ Es are set as follows: w(e) =
∞ if a sensor center is one of the vertices of T (v), otherwise w(e) = 0.

Weights of t-edges Weight w(e) of an t-edge e = (v, t) ∈ Et is set to

w(e) =
∑

(c,p)∈St(v)

α(p) with (7.9)

St(v) = {(c,p) ∈ S | p ∈ Lp
c(σ) ∧ Lp

c(σ) = T (v)}

where Lp
c(σ) is the last crossing tetrahedron at σ distance from the point p backward

from the sensor c defined in section 7.2.

The weight of t-edge as non-emptiness support of tetrahedron

The weight of an t-edge e = (v, t) ∈ Et can be considered as non-emptiness support
of tetrahedron T (v). It is computed from segments of sight (c,p) ∈ S, which when
extended by σ behind the point p, end inside of the tetrahedron T (v) i.e., it reflects the
number of input points that are close to T (v) and additionally that “occlude” T (v) in a
sensor.

The difference between the free-space-support of a tetrahedron and the v-edge
weight

In [52] free-space-support f(T ) of tetrahedron T is not defined. However, there is a
relation between v-edge weight w(e) of oriented v-edge e = (u, v) ∈ Ev and the free-spa-
ce-support f(T (u)) of the tetrahedron T (u). Let us denote the sum of the weights of all
(four) incoming edges to the node u as:
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Figure 7.3.: DG weights. Illustration of DG related to thetrahedralization and the
difference between the weight of oriented v-edges, free-space-support f and
ϕ on line of sight (c,p) ∈ S. The point p (x = 0) is a point of ground-truth
strongly supported surface. See text for more details.

ϕ(T (u)) = ϕ(u) =
∑

e=(u,v)∈Ev

w(e) (7.10)

If σ equals zero then f(T (u)) = ϕ(T (u)), i.e., if σ = 0 then the free-space-support of the
tetrahedron T (u) equals the sum of the weights of all the incoming edges to the node u.
We define ϕcp(x) on the line of sight (c,p) ∈ S for the function ϕ in the same way

as is defined the free-space-support weight fcp(x) on the line of sight (c,p) ∈ S for the
function f , in order to be able to visualize the difference between ϕ and f , see Figure 7.3.

Figure 7.3 illustrates the difference between the weight of the oriented v-edge e =
(u, v) ∈ Ev and the free-space-support f(T (u)) of the tetrahedron T (u). The parameter
σ is what makes the difference. The free-space-support f is in this case monotonically
decreasing in front of p (x = 0 represents the p) and almost constant (near zero) behind
the p. The weights of oriented v-edges are similar to the free-space-support of tetrahedra
in front of p but have a small peak behind p. This peak is caused by the parameter σ
in the equation 7.8.
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7.3. Finding surfaces by solving a graph optimization problem

The minimum s-t cut optimization tends to label tetrahedra with large free-space-sup-
port as free and simultaneously it tends to label tetrahedra with large non-emptiness
support as full, while the optimal cut of v-edges tends to occur on the v-edge with
minimum weight in front of the point with maximal value of the non-emptiness support.
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7. Weakly-supported surfaces reveal themselves through occlusion

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.4.: Results for the ’strecha’ data set. (a) Input image, (b) input 3D point
cloud, (c) the free-space-support of the tetrahedra on a cut of the tetrahe-
dralization with a plane using αvis = 32 as in the base-line method, (e), (g)
the same but (e) using αvis(p) instead and (g) our method. The free-spa-
ce-support is different. (d),(f) are reconstructions of our implementation of
the base-line method, (d) using αvis = 32, (f) using αvis(p). The results
are similar. (h) is the result using our method. (d), (f) demonstrate that
the introduction of αvis(p) into the base-line method is not sufficient to re-
construct weakly-supported ground plane. (h), (g) shows that our method,
reconstructs the weakly-supported ground plane. The jet-color-map was
used for the range 〈0, 1000〉, where the blue color corresponds to 0 and the
dark red color corresponds to 1000.

7.4. Observation based approach to weakly-supported surfaces
reconstruction

Figure 7.4 shows the influence of the α(p) on computation the free-space-support values
of the tetrahedra. Figure 7.4 (c) shows the free-space-support values of the tetrahedra
on a cut of the tetrahedralization with a plane using α(p) := 32 as in the base-line
method and (e) using the adaptive α(p). When using adaptive α(p) the free-space-sup-
port describes visually the weakly-supported ground plane better. Nevertheless, in both
cases, it is not enough to reconstruct the weakly-supported ground plane. We provide
a synthetic example in next Section 7.4.3 in order to be able to explain the reason. We
also show in the synthetic example how to modify STG t-weights so that the method
described in the Section 7.3.2 gains ability to reconstruct the weakly-supported surfaces.

Le us introduce two observation based assumptions in order to be able to continue.
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7.4. Observation based approach to weakly-supported surfaces reconstruction

7.4.1. Large free-space-support jump assumption

The free-space-support of a tetrahedron, which is near or lies on the real surface, and
should be labeled as outside, should be much larger than free-space-support of a nearby
tetrahedron which should be labeled as inside. We assume that this holds for surfaces
which are densely sampled by the input point cloud as well as for weakly-supported
surfaces.

This assumption is well reviewed in the beginning of this chapter for ideal case of
an infinite number of noiseless and outlier-less input points augmented with visibility
information.

Furthermore, Figure 7.4(e) shows that it indeed holds. The free-space-support jump
is large on both the densely sampled facade (because the facade is reconstructed) as well
as on the weakly-supported ground plane.
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7. Weakly-supported surfaces reveal themselves through occlusion

7.4.2. Weakly-supported surfaces t-weight assumption

v ǀ͛ 
t 

v͛ v 
ws 

wt 

Figure 7.5.: Weakly-supported surfaces t-weight example. The black face occludes
3 points in 3 cameras. Therefore the corresponding edge has weight ws = 9.
The corresponding tetrahedron v, which is nearest to the cameras is behind
just one point, which has 3 cameras associated (and ray defined by the
camera center and the point intersects v). Hence the corresponding t-edge
has weight wt = 3. Furthermore, each point, which is occluded by the black
face in c associated cameras, increases the ws by the number c while wt

remains unchanged.

We assume that the t-edge weights for tetrahedra, which are near or lie on the real
but weakly-supported surface and should be labeled as inside, are much smaller than the
free-space-supports of the corresponding nodes. Let us assume that σ = 0 and denote
a tetrahedron which lies on the real but weakly-supported surface, and which should
be labeled as inside, by v. In this situation, the t-edge weight wt of the tetrahedron v
depends on the number of cameras associated with the four points of the tetrahedron
v. The free-space-support ws of the tetrahedron v depends on the number of cameras
of all points which are occluded (in the cameras) by the tetrahedron v. Therefore, even
a small number of wrongly reconstructed points makes the value ws much greater than
the value wt (see Figure 7.5). While we assumed σ = 0 the conclusion holds for small
σ, too. The parameter σ can not be set to large value (see [52]).
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7.4.3. Synthetic example

The top parts of Figures 7.6(a), (b) illustrates the situation when a weakly-supported
surface appears as a part of the tetrahedralization. The bottom represents the corre-
sponding graph. The middle represents the weights for the corresponding edges. Weights
for edges between nodes are light blue and weights for t-edges are dark brown. There is a
large free-space-support jump on the surface; w56 is much higher than w67 (w78). In this
example there holds: ∞ > w12 > ... > w56 > w67+t6 > w78+t6+t7 > w89+t6+t7+t8 <
t6 + t7 + t8 + t9 and w56 > w57. The minimal cut in this synthetic example is the cut
illustrated by the red lines. The labeling for the minimal cut does not correspond to the
correct solution.

The weakly-supported surfaces t-weight assumption holds: w67 is much higher than
t7 and all other ti are approximately same as t7, Figure 7.6(a). This causes that the
minimal cut will be further from the correct surface. This effect is demonstrated by the
real experiment in Figure 7.4. The free-space-support jump is large near the weakly-
supported ground plane, 7.4(c),(e) but using αvis(p) alone in the base-line method is not
sufficient to reconstruct the weakly-supported-ground plane, Figure 7.4(f). Therefore,
in the place of a large jump, we multiply t7 by a conveniently chosen x so that the cut
described in Figure 7.6(b) becomes minimal and we get the correct labeling. One can
see that if we set x to w56−w78, then we will achieve the correct solution. Our approach
is sequential. We first compute all weights in the same way as the base-line approach.
Then we search for all large jumps and multiply the corresponding t-edge weights as
demonstrated in the example. This is supported experimentally in Figure 7.4(h) by
the fact that our method only changes weights of t-edges as described by the synthetic
example and it is sufficient to reconstruct the weakly-supported-ground plane.

It is clear that in situation where the amount of noise is significantly lower than the
density of surface samples, t-edges weights of the tetrahedra which are in the σ distance
to the real surface and are in the real object are greater than the free-space-supports
of the corresponding nodes. Otherwise, the base-line method would not give any result.
Therefore in this situation our method should give exactly the same result.

7.4.4. Setting up the weights

We denote the first tetrahedron which contains point p and is related to the nearest
crossing-face of the line segment (c,p) as f c

p . We denote the last tetrahedron which
is within distance σ from the point p crossing the directed line (p,p − c) as lcp. See
Section 7.2.

Our approach to setting up the weights of the graph is sequential. In the first step,
we compute all weights of all edges except weights of the t-edges in exactly the same
way as in the base-line method but instead of αvis we use αvis(p). In the second step,
we compute weights of the t-edges which are updated in a similar way to the base-line
method, but with different weights. For each point p and each associated camera centre
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Figure 7.6.: Representative example. Light blue: source label (free space), brown:
sink label (full space). (a,b) top: a part of the triangulation, bottom: the
associated s-t graph, middle: the weights of the associated edges. (a) Min-
imal cut for weights computed by the base-line approach leads to a wrong
solution (b) Multiplying t7 by (w56 − w78) leads to the correct solution.

71



7. Weakly-supported surfaces reveal themselves through occlusion

c we take the free-space-support e(f c
p) of the f c

p tetrahedron and the free-space-support
e(lcp) of the lcp tetrahedron. And we add the value t(c,p)

t(c,p) =







αvis(p)(e(f
c
p)− e(lcp))

e(lcp)

e(fc
p)

< δ ∧ e(f c
p) < β

αvis(p)
e(lcp)

e(fc
p)

≥ δ ∨ e(f c
p) ≥ β

(7.11)

to the t-edge of the lcp tetrahedron. The parameter δ determines that there is a large
jump i.e. when there should be a surface. We use very conservative approach and set
δ = 0.5, β = 1000 in all of our experiments.

7.5. Results

All experiments were computed on Intel Core i7 CPU machine with nVidia 285GTX
graphics card, 12GB RAM and 64-bit Windows 7 OS. We use four different calibrated
image sets (data sets) in this chapter: bottle, strecha, castle and dragon. The bottle data
set contains 24 1950× 1307 images. The street-view data set ’strecha’ was provided by
Christopher Strecha and contains 1514 2000×1500 images. We compute the depth-map
for each of the 1500 images but to reconstruct different parts of the city we choose 3D
points from different volumes parts defined by boxes in order to fit into memory. The
castle data set is the benchmark data set [77] and contains 30 3072× 2048. The dragon
data set was used in [44] and contains 114 1936 × 1296 images. We use the same αvis

and σ as in the base-line method. The parameter δ is set to 0.5 in all of our experiments.
The parameter γ is set in terms of the two points re-projection pixels distance to a value
in the range 〈2, 10〉 in order to be able to fit the data into memory.
We have to note that as our method produces more complete scenes than the base-line

method but it tends to produce more hallucinations. We use the approach described in
[43] to remove them.
Figures 7.7, 7.4, 7.10, 7.11, 7.9, 7.8 demonstrate that our method reconstructs wea-

kly-supported surfaces better than the base-line method. The weakly-supported surface
in the Figure 7.7(a) is the bottle. The weakly-supported surface in the date-sets 7.4,
7.10, 7.11, 7.9 is mostly the ground plane.
Figure 7.8 demonstrates that our method reconstructs densely sampled surfaces at

the same level of detail as the base-line method. Additionally, our method reconstructed
weakly-supported surfaces, i.e. water and ladles. Note that the ladles were not at the
same place in all images. Figure 7.9 presents results on the castle data set from the
standard Strecha’s [77] evaluation database. The histograms (c), (d) show that our
reconstruction achieves almost the same quality as the method [85] which uses an addi-
tional mesh refinement step. Figure 7.9 (e), (f) shows that, unlike the base-line method
(f), our method (e) can reconstruct weakly-supported ground planes. Additionally, the
histograms (c), (d) show that our reconstructions are more or less on the same level at
2σ and 3σ as the base-line method which means that our method produces results on
the same level of detail as the base-line method.
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(a) (b)

(c) (d)

Figure 7.7.: Results for the ’bottle’ data set. (a) Input image, (b) input 3D point
cloud, (c) results using our implementation of [52], (d) the technique pre-
sented in this work reconstructs weakly-supported surfaces (the bottle) bet-
ter.

(a) (b) (c) (d)

Figure 7.8.: Results for the ’dragon’ data set. (a) Input image, (b) input 3D point
cloud, (c) result of our implementation of the base-line method, (d) result
using our method. Our method reconstructs densely sampled surfaces at
the same level of detail as the base-line method but also reconstructs wea-
kly-supported surfaces i.e. water, and ladles.
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(e) (f)

Figure 7.9.: Results for the ’castle’ data set. (a) Input image, (b) input 3D point
cloud, (c),(d) Strechas evaluation [77] for the Castle-P30 data sets. OUR
- proposed method, BL - our implementation of the base-line method [52],
VU [85], JAN09 [14]. (c) Histograms of the relative error with respect to
nσ for all views. The σ is determined from reference data by simulating
the process of measurement and can vary across the surface and views, (d)
relative error cumulated histograms, (e) result of our implementation of the
base-line method textured, (f) result using our method textured.
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7.5. Results

(a) (b)

Figure 7.10.: Results for the ’strecha’ data set. (a) reconstruction using our imple-
mentation of the base-line approach, (b) reconstruction using our approach.
Weakly-supported surfaces are better reconstructed using our approach
than by base-line approach.
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(a) (b)

(c) (d)

Figure 7.11.: Results for the ’strecha’ data set. (a) Input image, (b) input 3D
point cloud, (c) result of the our implementation of the base-line method
untextured, (d) result using our method untextured. The weakly supported
ground plane is preserved using our method.
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7.5. Results

(a) (b)

Figure 7.12.: Results for the ’strecha’ data set. (a) result of the our implementation
of the base-line method textured, (b) result using our method, textured.
The weakly supported ground plane is preserved using our method and
other surfaces are also constructed better.
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8 Experimental evaluation of the
free-space-support properties

(a) (b)

Figure 8.1.: Ground-truth datasets (a) Rendering of the mesh and sensors positions
of the “Bunny” dataset. 36 sensors in two elevations are placed in the scene.
Ground-truth for each sensor is computed directly from the mesh. Random
undersampling and noisifying of the bunny object (without plate) and outlier
injection is used at different levels to generate depth-maps for quantitative
analysis. (b) Ground-truth laser-scan of the “Fountain” dataset and the
related 11 cameras (registered to the scan).

We have introduced two observation based assumptions (i) the Weakly-supported sur-
faces t-weight assumption and (ii) the Large free-space-support jump assumption in the
previous chapter, see sections 7.4.2, 7.4.1. We have proposed and experimentally veri-
fied a new method for weakly-supported surfaces reconstruction that is based on these
the observation based assumptions in the Section 7.4. However, the method was based
just on observations and assumptions.

In this chapter we experimentally evaluate how the free-space-support of thetrahedra
looks in free and full space near ground-truth weakly and strongly supported surfaces in a
real world scenario. Here we also experimentally confirm that the two observation based
assumptions holds. Furthermore, based on the evaluations, we propose and evaluate a
new method for occluder (weakly-supported surface) detection.

We evaluate the free-space-support properties under controlled levels of noise and
controlled levels of undersampling. More specifically, we evaluate fcp(x) at 25 discrete
points x ∈ {−12, 12}. Note that the domain of the function fcp is in σ units.

We evaluate the free-space-support in two scenes (see Figure 8.1). The first scene is
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8. Experimental evaluation of the free-space-support properties

a synthetically created scene of a bunny on a plate. We have downloaded the publicly
available Bunny dataset from the Stanford 3D Scanning Repository1 and we have created
the plate in a 3D modeling software. We have uniformly distributed 36 sensors on two
circles in two elevations around the bunny so that each sensor sees the whole bunny
and, more importantly, each sensor is oriented so that the plate is visible all around the
bunny. The bunny occludes a part of the plate in each view.

The plate is always strongly-supported. The bunny object is represented by 160K
of input points and the plate object is represented by 2.4M of input points. We have
created three datasets from the bunny on the plate scene with the 36 sensors:

• (i) original scene without undersampling and without outliers,

• (ii) bunny undersampled to 3% of the original points plus 30K outliers, and

• (iii) bunny undersampled to 3% of the original points plus 130K outliers.

The second scene is a real-world scene of a “Fountain”. The “Fountain” data set is
a benchmark data set [77] provided by Christopher Strecha and contains 11 calibrated
images with resolution 3072 × 2048 together with ground-truth laser-scan. We have
computed input segments of sight by MVS plane-sweeping technique described in [41].
We consider input points that are within 2σ distance to the ground-truth laser-scan as
ground-truth input points.
We denote the input segments of sight i.e., the set S, of the “Bunny” (i-iii) and

“Fountain” datasets as BunnySSS, BunnyWSS, BunnyWSSO and FountainSSS. Where
SSS stands for Strongly Supported Surface, WSS stands for Weakly-Supported Surface
and WSSO stands for Weakly-Supported Surface with large amount of Outliers.
Note that in all the datasets we know exactly which points are ground-truth interface

points and in the “Bunny” datasets we additionally know which ground-truth points are
from the bunny object surface and from the plate object surface. We also know which
points are located inside or outside the object i.e., in full or free space.
In this section we use the following notation: SUR(S) ⊆ S is the set of input segments

of sight that contain ground-truth interface points of the bunny without the plate (of
the fountain), FREE(S) ⊆ S is the set of input segments of sight that contain input
points that are located in the free space, FULL(S) ⊆ S is the set of input segments of
sight that contain input points that are located in the full space.

8.1. Free-space-support distribution evaluation

In this section we evaluate fcp(x) at points {−12, ..., 12} just for the ground-truth
interface points p ∈ P (SUR(S)). Figure 8.2 shows the Matlab boxplots2 of values
{fcp(x)|(c,p) ∈ SUR(S)} for each x ∈ {−12, ..., 12}. It can be seen that the free-space-
support between the observer and the surface, e.g. x ∈ {−3, ..., 0}, is in the majority of

1http://graphics.stanford.edu/data/3Dscanrep/
2http://en.wikipedia.org/wiki/Box plot
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8.1. Free-space-support distribution evaluation
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Figure 8.2.: Free-space-support evaluation. Free-space-support at different dis-
tances near the ground-truth surface points p ∈ P (SUR(S)) for S ∈
{BunnySSS, BunnyWSS, BunnyWSSO, FountainSSS} datasets. We com-
pute a set of free space supports {fcp(x)|(c,p) ∈ SUR(S)} for each point
x ∈ {−12, ..., 12} and visualize it using the Matlab boxplot function (see
text for more details).

cases relatively large compared to the free-space-support for x ∈ {1, ..., 4}, i.e., free-spa-
ce-support is large in free space. Moreover, it can be seen that the free-space-support
is relatively small at a small distance behind the surface, x ∈ {1, ..., 4}, i.e., the free-
-space-support is small in full space. This property holds for all datasets. It holds for
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8. Experimental evaluation of the free-space-support properties

weakly-supported as well as for strongly-supported surfaces. Therefore, it is reasonable
to measure the free-space-support jump in 〈−3σ, 4σ〉 surrounding the input points.

Results in Figure 8.2 are represented by the Matlab boxplot3 function which shows
values 25% to 75% quantile as a box with a horizontal line at the median. The red
crosses show data beyond 1.5 times the interquartile range.
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Figure 8.3.: Free-space-support jump evaluation. Top: relatively large number of
true positives at the price of up to 10% of false positives can be detected using
the relative free-space-support jump classifier Krel(c,p). Bottom: absolute
free-space-support jump classifier Kabs(c,p) can be used for detecting input
points that are located in full space. The set SUR(S) is considered as as
positive examples and the set FREE(S) (FULL(S)) as negative examples.
See text for more details.

3http://en.wikipedia.org/wiki/Box plot
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8.1. Free-space-support distribution evaluation

8.1.1. Free-space-support jump evaluation

Based on the experiments in the previous section, we choose kf = 3 a kb = 4. We evaluate
absolute ǫabscp (kf , kb) and relative ǫrelcp (kf , kb) free-space-support jump on ground-truth
interface input points p ∈ P (SUR(S)), input points located in ground-truth free space
p ∈ P (FREE(S)), and input points located in ground-truth full space p ∈ P (FULL(S)).
We introduce the two interface classifiers Krel(c,p) and Kabs(c,p) in order to capture
properties of the free-space-support jump functions. Given an input line of sight (c,p) ∈
S the classifiers classify the point p as being interface point INT or non-interface point
NOI according to the following rule:

Krel(c,p) =

{

INT for (ǫrelcp (kf , kb) < krel)

NOI otherwise
(8.1)

Kabs(c,p) =

{

INT for (ǫabscp (kf , kb) > kabs)

NOI otherwise
(8.2)

where kf , kb, krel and kabs are parameters of the classifiers Krel(c,p) and Kabs(c,p).

Figure 8.3 shows receiver operating characteristic curves

(ROC4) of the classifiers Krel(c,p) and Kabs(c,p). We evaluate classifier Krel(c,p)
(Kabs(c,p)) on a set A of segments of sight (c,p) ∈ A for classifier parameters kf = 3,
kb = 4 and

krel ∈ {0, 0.05, 0.1, ..., 1.0} (kabs ∈ {0, 500, 1000, ..., 10000}).
For given krel (kabs) we compute the rate of the results classified positively as INT

out of the positive examples A = SUR(S) i.e., the true positive rate. For the same
krel (kabs) we compute the rate of the results classified positively as INT out of the
negative examples A = FULL(S) (A = FREE(S)) i.e., the false positive rate. Finally,
we plot the (false positive rate, true positive rate) as point of the ROC. We have used
the set S of all segments of sights from all datasets i.e., S = BunnySSS ∪ BunnyWSS ∪
BunnyWSSO ∪ FountainSSS.

Figure 8.3 (top) shows that the classifier Krel(c,p) can detect relatively large number,
i.e. 84%, of interface input points correctly for the price of up to 10% of wrongly classified
non-interface input points. We have evaluated that when allowing 10% of false positives
then the parameter that gives the maximal percentage of true positives is krel = 0.3.
The classifier Krel(c,p) with this parameter krel = 0.3 gives 84% of true positives. The
smaller the parameter krel is, the lower the percentage of the false positives the classifier
Krel(c,p) gives at the price of lower true positives i.e., a conservative approach to the
krel parameter setting is to set a smaller value of the krel parameter.

Figure 8.3 (bottom) shows that the classifier Kabs(c,p) can be used to detect the
input point that is located in the full part of the space. We have evaluated that when
allowing just 2% of false positives for A = FULL(S) then the parameter that yields
the maximal percentage of true positives is kabs = 500. The classifier Kabs(c,p) with
this parameter kabs = 500 gives 79% of true positives. The larger the parameter kabs is,

4http://en.wikipedia.org/wiki/Receiver operating characteristic
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8. Experimental evaluation of the free-space-support properties

the lower the percentage of false positives the classifier Kabs(c,p) yields at the price of
lower true positives, i.e. a conservative approach to the kabs parameter setting is to set
a larger value of the kabs parameter.

8.1.2. Outlier level evaluation
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Figure 8.4.: Outliers level evaluation. Outliers level classifier Koutl(c,p) can be used
for detecting input points that are located in the free space. The set SUR(S)
is considered as as positive examples and the set FREE(S) (FULL(S)) as
negative examples. See text for more details.

We evaluate the level of outliers γmax
cp (kb) in the same way we have evaluated free-spa-

ce-support jump in the previous section. We use the following classifier

Koutl(c,p) =

{

INT for (γcp(kb) < koutl)

NOI otherwise
(8.3)

where kb and koutl are parameters of the classifier Koutl(c,p). We evaluate the classifier
Koutl(c,p) for koutl ∈ {0, 50, 100, ..., 1000}.

Figure 8.4 shows that the classifier Koutl(c,p) can be used to detect an input point
that is located in the free space. We have evaluated that if we allow just 1% of false
positives for A = FREE(S) then the parameter that yields the maximal percentage of
true positives is koutl = 700. The classifier Koutl(c,p) with this parameter koutl = 700
yields 83% of true positives. The smaller the parameter koutl is, the lower the percentage
of false positives the classifier Koutl(c,p) gives at the price of lower true positives, i.e. a
conservative approach to the koutl parameter setting is to set a smaller value of the kabs
parameter.
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8.2. Interface classifier

Parameter kabs krel koutl kf kb

Estimated 0.3 500 700

Used 0.1 1000 400 3 4

Table 8.1.: Computed and used interface classifier K parameters.

BunnySSS Interface Non-Interface

INT 82.7%TP 0.5%FP

NOI 17.3%FN 99.5%TN

BunnyWSS Interface Non-Interface

INT 41.7%TP 0.2%FP

NOI 58.3%FN 99.8%TN

BunnyWSSO Interface Non-Interface

INT 26.6%TP 0.2%FP

NOI 73.4%FN 99.8%TN

FountainSSS Interface Non-Interface

INT 55.4%TP 1.3%FP

NOI 44.6%FN 98.7%TN

Table 8.2.: Decision tables. Classification results of interface classifier K(c,p) on dif-
ferent datasets.

8.2. Interface classifier

In this section we design a new interface classifier. The classifier takes into account the
free-space-support jump and outliers level. Based on the experiments in the previous
sections we can say that a large free-space-support jump coupled with a low outliers
level in 〈−3σ, 4σ〉 surrounding an input point, is a good evidence for an interface. Given
an input line of sight (c,p) ∈ S the following classifier K(c,p) classifies the point p as
being an interface point INT or a non-interface point NOI

K(c,p) =















INT for (ǫrelcp (kf , kb) < krel)∧
(ǫabscp (kf , kb) > kabs)∧
(γcp(kb) < koutl)

NOI otherwise

(8.4)

where kf , kb, krel, kabs and koutl are parameters of the classifier K(c,p) and are
constant in all of our experiments. All parameters kf , kb, krel, kabs and koutl were
discussed and evaluated experimentally in the previous section. Table 8.1 summarizes
computed and used values. The used values were chosen using a conservative approach,
i.e., lower percentage of false positives at the price of lower true positives.
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8. Experimental evaluation of the free-space-support properties

Table 8.2 shows the decision rates of the interface classifier on sets S ∈ {BunnySSS,
BunnyWSS, BunnyWSSO and FountainSSS} of input segments of sight. We consider the
set SUR(S) as positive examples (i.e. “Interface”) and the set FREE(S) ∪ FULL(S)
as negative examples (i.e. “Non-Interface”).

Based on the experiments, we can say that if the classifier classifies a point as INT
then it is most likely an interface point in the real world. Note that this property holds
for weakly-supported surfaces as well! On the other hand if the classifier classifies a
point as NOI we can’t say that it is not an interface point in the real world. In the
next sections we show how we use the interface classifier to modify the state-of-the-art
method [52], which is not capable of reconstructing weakly-supported surfaces, so that it
will obtain the ability to reconstruct weakly-supported surfaces. Although the number
of true positives is around 50%, we will show that it is enough for the new method to
reconstruct weakly-supported surfaces.
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9
Using an interface classifier to
reconstruct weakly-supported

surfaces

We have introduced a way how to detect occluder just from the accumulated free-space
evidences in previous chapter. Now we use this tool to reconstruct them. Our idea
is to tell the optimization, described in the Section 7.3, that the positively classified
occluder tetrahedra must be labeled as full. Based on the synthetic example proposed
int the Section 7.4.3 we enforce weight of corresponding t-edges. This will force the
optimization to label the occluder nodes as full and the weakly-supported surface will
be reconstructed accordingly. It is important to note that we do not have to enforce all
occluder tetrahedra. Therefore, besides that the number of true positive of our classifier
is not 100% it is far enough for weakly-supported surfaces reconstruction.

Following the Section 7.4.3, all we need to do in order to preserve the weakly-support-
ed surface is to enforce the t-weights of nodes v ∈ V where tetrahedra T (v) are located
inside the occluder. We proceed sequentially. In the first iteration we compute the
weights of STG according the Section 7.3.3. Then we evaluate the interface classifier
and, for the segments of sight classified as INT (interface), we enforce t-weight in the
place we assume is inside of the object. Weight w(e) of a t-edge e = (v, t) ∈ E is enforced
to

w(e) = w(e)
∑

(c,p)∈SK(v)

ǫabscp (kf , kb) with (9.1)

SK(v) = {(c,p) ∈ S |p ∈ Lp
c(kbσ)

∧Lp
c(kb) = T (v)

∧K(c,p) = INT}

Algorithmic overview and the implementation details of the proposed method are in
section 9.2. Finally, in section 9.3, we provide an experimental evaluation of the accuracy
and the ability of reconstruction of weakly-supported surfaces on synthetic as well as on
real world datasets and compare them to other methods.

9.1. Comparison to the observation based approach

Both the newly proposed method and the observation based method proposed in the
Section 7.4 differ from the method proposed in [52] in how the STG edge weights are
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9. Using an interface classifier to reconstruct weakly-supported surfaces
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Figure 9.1.: New interface classifier K vs observation based approach (Sec-
tion 7.4) (a,b) Point p (x = 0) represents a real interface point of a ground-
truth weakly-supported surface. (a) Illustrates the typical situation when
classifier Kjan wrongly classifies a point p1 as an interface point and enforces
t-weight (red peak) in wrong place i.e., in space that should be labeled as
free. (b) Design of the new interface classifier K leads to the correct classi-
fication of interface point p and t-weight enforcement in correct place. Note
that the t-edge weights are low because this is illustration of weights near a
weakly-supported surface.

computed. First, the newly proposed method and the observation based method use
adaptive α(p) weight of input point p while the method proposed in [52] uses a constant
weight for each input point p. Second by the newly proposed method and the observation
based method use an interface classifier to enforce t-weights in order to be able to
reconstruct weakly-supported surfaces. The observation based method proposed in the
Section 7.4 does not define the interface classifier explicitly. However, it uses a decision
rule that can be formulated as interface classifier Kjan as follows:

Kjan(c,p) =







INT for (ϕ(L
p
c (σ))

ϕ(F p
c )

< 0.5)∧

(ϕ(Lp
c) < 1000)

NOI otherwise

(9.2)

where

ϕ(T (u)) = ϕ(u) =
∑

e=(u,v)∈Ev

w(e) (9.3)

If σ equals zero then f(T (u)) = ϕ(T (u)) i.e., if σ = 0 then the free-space-support of
the tetrahedron T (u) equals the sum of the weights of all the incoming edges to the node
u.
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9.1. Comparison to the observation based approach

We define ϕcp(x) on the line of sight (c,p) ∈ S for the function ϕ in the same way as
the free-space-support weight fcp(x) was defines on the line of sight (c,p) ∈ S for the
function f .

The major advantage of the newly proposed method with respect to the observation
based method is that it produces much more accurate results on strongly-supported
surfaces and reconstructs weakly-supported surfaces better as shown in experiments in
section 9.3.

9.1.1. Why is the newly proposed method more accurate than the
observation based method?

Figure 9.1(a) shows a typical situation where the classifier Kjan wrongly classifies the
point p1 as an interface point. While the free-space-support decreases rapidly in front
of the point p1, which is in front of a real surface point p (x = 0), the classifier Kjan

classifies the point p1 as interface point and enforces the t-weight behind p1 (red peak),
which leads to less accurate result. However, proposed interface classifier K searches
for such point p and an associated sensor c for which the free-space-support function
fcp is rapidly decreasing at some (reasonably) large distance kf in front of the point
p (i.e., toward the sensor c). Additionally it is reasonably small, and almost constant
at (reasonably) large distance kb behind the point p (i.e., backward the sensor c), see
Figure 9.1(b). Afterward, based on the positive interface classification we enforce t-
weight in distance kb (deep enough) behind the point p in order to ensure that it is
enforced inside of the real object (occluder).

Algorithm 3 Surface reconstruction preserving weakly-supported surfaces

Require: DT - Delaunay Tetrahedralization, a subset of sensors associated to each
vertex of the tetrahedralization

1: function reconstruct(DT )
2: Compute the STG weights as in [52] (using adaptive α(p) weight of vertex p ∈

DT ) ⊲ to1
3: for all (sensor c, vertex p) do ⊲ to2
4: Compute K(c,p)
5: if K(c,p) == INT then
6: Add the value ǫabscp (kf , kb) to weight of t-edge (v, t) where Lp

c(kbσ) = T (v)
7: end if
8: end for
9: Compute minimal s-t cut ⊲ tGC

10: Create mesh from the minimal s-t cut
11: Smooth
12: return Mesh
13: end function
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9. Using an interface classifier to reconstruct weakly-supported surfaces

9.2. Implementation Details

We use the Computational Geometry Algorithms Library (CGAL)1 [11] to create the
tetrahedralization. The tetrahedralization is created incrementally. When adding a new
point o from the input point cloud we first check if there is a vertex p of the actual
tetrahedralization within a certain distance from o. The distance is set in terms of the o
and p re-projection distance in pixels to a value in the range 〈2, 10〉 in order to be able
to fit the data into memory. If there is such a vertex p, then we do not add o to the
tetrahedralization but associate the sensor with the vertex p and increase α(p) by 1.
Otherwise, we will add the point o to the tetrahedralization, associate the sensor with
it, and initialize α(o) to 1. The approach is similar to [51]. Each vertex has a set of
sensors and an α(p) value associated with it. The vertices of the tetrahedralization are
considered as input points, associated sensors as visibility information of input points
and α(p) is the weight of the input point p.

The implementation of the proposed method is described in Algorithm 4. We build
the s-t graph. Next, we compute the weights of all edges. Our approach to setting up
the weights of the graph is sequential. In the first part, we compute all weights of all
edges as is described in section 7.3.3 (Line 2 in the Algorithm 4). In the second part,
we evaluate on each input point p and each associated sensor c the newly proposed
classifier K(c,p). If the classification result is INT , then we multiply the weight of the
t-edge (v, t) where Lp

c(kbσ) = T (v) by ǫabscp (kf , kb) value (Lines 3-8 in the Algorithm 4).
Table 8.1 shows classifier parameters, which we use in all of our experiments. Finally,
we solve the minimal s-t cut problem using the software2 described in [7] (Line 9 in the
Algorithm 4). Finally, we do two steps of a Laplacian based smoothing (Line 22 in the
Algorithm 4) as in [52]. We focus just on creating an initial surface, which can be later
refined as in [85].

result name to1 to2 tGC np Tt

Fountain 12 : 27 2 : 44 0 : 44 4.6M 30.0M
Street-view 05 : 00 2 : 34 0 : 52 2.9M 19.6M
Lausanne 20 : 02 3 : 28 0 : 53 4.9M 32.7M

Table 9.1.: Performance data for different results. to1 is the time of the first part
of the proposed algorithm and to2 is the time of the second one. tGC is the
time of solving the minimal s-t cut problem. The times are in the format:
minutes : seconds. np is the number of vertices and Tt is the number of
tetrahedra in the tetrahedralization. The letter M stands for million.

Table 10.1 shows the running times of different parts of the Algorithm 4 for different
data sets. Table 10.1 shows that the second part, to2 , is 2 to 10 times faster than the

1http://www.cgal.org/
2http://www.adastral.ucl.ac.uk/˜vladkolm/software.html
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first one, to1 . Iterations in all parts are performed in parallel in our implementation.
Therefore, all parts are relatively fast.

9.3. Experimental Results

All experiments were computed on Intel Core i7 CPU machine with NVIDIA 285GTX
graphics card, 12GB RAM and 64-bit Windows 7 OS. We use several different calibrated
data sets in this chapter: “bunny”, “lausanne”, “castle”, “herzjesu”, “fountain”, and
“googleStreetView”. The “bunny” and “fountain” data sets are described in chapter 8.
The street view data set “lausanne” was provided by Christopher Strecha and contains
1514 2000× 1500 images.

The street view data set “goolgeStreetView” is Google Street View Pittsburgh Ex-
perimental image set [2]. The first 10000 camera matrices were obtained by the method
proposed in [81]. We have to point out that the quality of images (compared to the
quality of images from a DLSR or compact camera) was poor in this data-set. The
calibration was not optimal either because the calibration was done on spherical images
where the internal parameters of each perspective camera out of 6 Ladybug perspective
cameras are unknown, and in the proposed pipeline we use 6 perspective cutouts from
one spherical image instead of original perspective images from the Ladybug device.
Therefore, we consider the “googleStreetView” data-set as the challenging one.
We compute the depth-maps for each of the 1500 (10000) images from “lausanne”

(“googleStreetView”) dataset but to reconstruct different parts of the city we choose 3D
points from different volumes parts defined by boxes in order to fit into memory.

The “castle”, “herzjesu”, and “fountain” data sets are the benchmark data sets [77].
The “castle” data set contains 30 3072× 2048 images, the “herzjesu” data set contains
8 3072× 2048 images, and the “fountain” data set contains 11 3072× 2048 images.

Let us denote the newly proposed method in this chapter as “proposed”, the obser-
vation bsed method proposed in Section 7.4 as “former”, method [52] as “baseline”
and method [47] as “poisson”.
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(a) Bunny (160K) points plus 0, 25K and 130K outliers

(b) Poisson [47]

(c) Baseline [52]

(d) Former

(e) Proposed

Figure 9.2.: Robustness to outliers (a) The input points are visualized without plate
input points in order to be able to visualize the level of outliers with respect
to input points of the bunny. (b)(c),(d),(e) Results of poisson, baseline,
former, and proposed methods. Baseline, former, and proposed methods
are all robust to large number of outliers (130K) when the surface of the
bunny is strongly supported (bunny is sampled by 160K input points).
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9. Using an interface classifier to reconstruct weakly-supported surfaces

9.3.1. Comparison with the ground truth

Let us describe how we compare our reconstruction to the ground-truth. We generate
two depth-maps dr for computed 3D mesh and dg for the ground truth mesh for each
sensor. The depth value for a pixel x of a depth-maps d is denoted as d(x). We evaluate

accuracy value acc(x, c) =
|dr(x)−dg(x)|

σ
for each sensor c and for each pixel x.

We compute a histogram from all acc(x, c) values as follows: Bins 1 to 10 represent
the histogram of accuracy values acc(x, c) of all pixels x and all sensors c where dr(x)
and dg(x) are defined, i.e., dr(x) > −1 ∧ dg(x) > −1. Bin 11 is the number of pixels
where acc(x, c) > 10, bin 12 is the number of pixels where the ground-truth depth-maps
dg is defined but the reconstructed depth-maps dr is not defined, i.e.
|{x|dr(x) = −1 ∧ dg(x) > −1}|.

Therefore, more accurate results have a higher numbers in the first bins. The first
two bins are authoritative because they contain the majority of the points. We call the
aforementioned histogram occupancy histogram. We call the value of a bin X occupancy
at σX or occupancy at bin X.

9.3.2. Quantitative analysis

In this section we provide a quantitative analysis of results of proposed, former, baseline,
and poisson method with respect to the ground truth.

Robustness to outliers Figure 9.2 shows robustness of evaluated methods to outliers.
It shows that proposed, frormer, and baseline methods are robust in the presence of 25K
and 130K randomly distributed outliers in manually selected cube around the bunny.
The poisson method fails completely when 130K of outliers were added to the scene.

Robustness to undersampling and outliers Figure 9.3 shows the robustness of eval-
uated methods to undersampling and outliers. We have randomly undersampled just
the bunny object (the plate object was not undersampled) to 30% and 3% of original
points. We have randomly distributed 130K and 1M outliers in manually selected cube
around the bunny. Figure 9.2 shows that poisson method has completely failed in all
cases. The baseline method was successful just in the first case where the surface is
relatively strongly-supported by the input points and the outliers level is lower than
the surface sampling by the input points. The former method can reconstruct the wea-
kly-supported object better than the baseline method however it is not perfect in all
cases. On the other hand, the proposed method is stable in all cases and it is able to
reconstruct weakly-supported surfaces perfectly. This experiment also shows that while
the TP classification rate showed in table 8.2 of the proposed interface classifier (section
8.2) is around 50% it is still enough to reconstruct weakly-supported surfaces.
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9.3. Experimental Results

(30%,130K) (30%,1M) (3%,30K) (3%,130K)

(a) Input points : (percent of bunny points, outliers)

(b) Poisson [47]

(c) Baseline [52]

(d) Former

(e) Proposed

Figure 9.3.: Robutness to undersampling and outliers (a) The input points are
visualized without plate input points in order to be able to visualize the
level of outliers with respect to input points of the undersampled bunny.
(b)(c),(d),(e) Results of poisson, baseline, former, and proposed methods.
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Figure 9.4.: Robustness to noise. Each function shows how the accuracy of a method
at a cetrain bin of the occupancy histogram changes with increasing level of
noise. See text for more details.

Robustness to noise Figure 9.4 shows robustness of evaluated methods to noise. We
randomly noisify the bunny input points with noise with normal distribution in
{0σ, 2σ, ..., 10σ} surrounding of ground input points. Next, for each noise level we
reconstruct the scene using a method and we compute the occupancy histogram of the
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9.3. Experimental Results

reconstruction (see section 9.3.1). We take a bin B from the occupancy histogram for
each noise level and plot it as a piecewise linear occupancy function of the method at
bin B. The occupancy function shows how the accuracy of a method at a certain bin of
the occupancy histogram changes with the increasing level of noise. Figure 9.4(a)(b,c,d)
shows the occupancy functions of poisson, baseline, former, and proposed methods at
bin 1 (2,3,10).

Figure 9.4(a) shows that the occupancy of poisson and former methods at bin 1 de-
crease rapidly with increasing noise level while the occupancy of the baseline and the
proposed methods at bin 1 decrease slowly and is almost at the same level.

Figure 9.4(b,c) shows that the occupancy of poisson and former methods at bins 2, 3
increase slowly with increasing noise level while the occupancy of the baseline and the
proposed methods at bins 2, 3 increase rapidly almost identically.

Note that the more slowly the occupancy at bin 1 decreases and the more slowly the
occupancy at bins ≥ 2 increases, the more accurate the reconstruction is.

Figure 9.4(d) shows that the occupancy of the poisson method at bin 11 is much higher
than all other methods. Note that bin 11 of the occupancy histogram is the number of
pixels where acc(x, c) > 10, see section 9.3.1.

We have experimentally shown that the proposed method is more accurate compared
to the former method. Additionally, we showed that the proposed method produces the
results at the same accuracy level as the baseline method and both the proposed and
the baseline are much more accurate than the poisson method with increasing the level
of noise.
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Figure 9.5.: Accuracy evaluation on realworld dataset. (a) ground truth gener-
ated by a laser-scan, (b) reconstruction using the proposed method on input
points generated by PMVS2 software and (c) reconstruction using the pro-
posed method on input points generated by the plane-sweeping approach
described in [44]. (d),(e) Bins 1 to 10 represent the histogram of recon-
struction distances from ground-truth laser-scan in units σ. Bin 11 is the
number of values above 10σ and bin 12 is the number of wrong values. See
text for more detailed description evaluation method. (d) Evaluations of re-
constructions using baseline, former, and proposed method on input points
generated by the plane-sweeping method. (e) Evaluations using input points
generated by the PMVS2 software.
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(a) (b) (c) (d)

Figure 9.6.: Middlebury results. Reconstruction results of Middlebury data sets
“templeRing” and “dinoRing”.

9.3.3. Accuracy evaluation on realworld dataset

Figure 9.5 shows renderings and occupancy histograms of reconstructions using baseline,
former, and proposed method with respect to a ground-truth laser-scan. The laser-scan,
images and calibrations were provided by Christopher Strecha and downloaded from
his evaluation page [77]. We have used two sources of point clouds as input to the
reconstruction methods. The first one was generated by PMVS2 software3. The second
one was generated by the plane-sweeping method described in [44].

Figure 9.5 (a,b,c) shows the rendering of a ground truth laser-scan, the rendering
of the reconstruction of proposed method on input points generated by PMVS2 and
the rendering of reconstruction of proposed method on input points computed from the
plane-sweeping method described in [44]. It shows that the proposed method works for
input points generated by different MVS based methods.

Figure 9.5 (d) shows the occupancy histograms of reconstructions of baseline, former,
and proposed methods on [44] input points. Figure 9.5 (e) shows the occupancy his-
tograms of reconstructions of baseline, former, and proposed methods on PMVS2 input
points. Figures 9.5 (d,e) show that baseline and proposed methods produce more accu-
rate results than the former method. Additionally, it shows that the proposed method
produces the results at same accuracy level as the baseline method.

9.3.4. Evaluation on Middlebury datasets

The datasets “templeRing” , and “dinoRing” are provided for benchmarking multi-view
reconstruction methods [68]4.

Figure 9.6 shows results of reconstruction of the “templeRing”, and “dinoRing” datasets
using the method proposed in this chapter. Note that we have not used silhouette images
at all.

3PMVS2 is software developed by Yasutaka Furukawa and Jean Ponce [22]
4http://vision.middlebury.edu/mview/
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9. Using an interface classifier to reconstruct weakly-supported surfaces

method “templeRing” “dinoRing”

Acc. Compl. Acc. Compl.

Vu [85] 0.45mm 99.8% 0.53mm 99.7%

Sinha [69] 0.79mm 94.9% 0.69mm 97.2%

Proposed 0.53mm 99.3% 0.4mm 99.5%

Table 9.2.: Middlebury results.

Table 9.2 shows quantitative evaluation comparing our results with the laser-scanned
ground truth. The accuracy values for the “templeRing” and “dinoRing” meshes are
0.53mm and 0.4mm, respectively. More remarkably, the completeness measures are
99.3% and 99.5%. The most relevant method evaluated in the Middlebury webpage is
the method proposed in [85]. The method [85] first reconstructs the scene using the
“baseline” method and then it refines the reconstruction using a final mesh refinement
step. It is important to note that we do not use any final mesh refinement step in the
proposed method. Nevertheless, the proposed method is among the best methods in
the evaluation page. Of course, the results will vary if a different depth-map estimation
method is employed.

9.3.5. Results of proposed method on real-world datasets

Figures 9.8 (bottom row), 9.7 demonstrate that the proposed method reconstructs wea-
kly-supported surfaces better than the baseline method. The weakly-supported surface
in the Figures 9.8, 9.7 is mostly the ground plane. Figure 9.8 (the first two rows) shows
other results using the proposed method where the weakly-supported ground plane is
reconstructed.
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9.3. Experimental Results

baseline [52] - textured baseline [52] - shaded proposed - textured proposed- shaded

Figure 9.7.: Results for the ’lausanne’ data set. Reconstruction using the baseline
approach is in the first two columns, Reconstruction using our approach is
in the second two columns. Textured results are shown in the first and the
third column of the images. Corresponding shaded results are in the second
and the fourth columns. Weakly-supported surfaces are better reconstructed
using the proposed approach than by the baseline approach.

Figure 9.8.: Results for the “googleStreetView”, “herzjesu”, and “castle”
datasets. Odd columns textured, even shaded.
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10 Hallucinations

We have introduced the concept of occluder detection just from the visibility of input
points in the beginning of the Chapter 7. We have defined the hallucinations in the
Section 7.1. We have also explained in the Section 7.1 that it is not always possible to
distinguish between weakly-supported real surfaces (e.g., trees or road) and hallucinated
ones (e.g., the sky) from sole 3D data.

In this chapter we propose two methods for hallucination removal. First, method
proposed in Section 10.1 is based on the observation that small variation of input data
leads to large change of hallucinated surface. We detect these large changes and so
we detect and remove hallucinated surface. This method works well but it has two
disadvantages: (i) it removes also weakly-supported surfaces and (ii) it is relatively slow.

Secondly, in order to solve the two above problems we propose a new method in
Section 10.2. Weakly-supported real surfaces as well as hallucinated surfaces consist of
larger triangles than strongly-supported real surfaces. Therefore, removing relatively
large triangles ([22, 52], Section 10.1) can lead to the removal of weakly-supported real
surfaces. Therefore, we need to use prior knowledge in order to distinguish them. We
focus on the special type of datasets, where sensors take measurements of a city near
the ground plane, called “street view datasets”. We use “sky hallucinations” to denote
weakly-supported hallucinated 3D surfaces reconstructed above real 3D structures. Sky
hallucinations often appear in reconstructions from street view data since there are no
sensors observing the city from above. In Section 10.2, we incorporate the sky prior into
our new approach to hallucinations removal in order to be able to keep the reconstructed
weakly-supported surfaces while removing the hallucinated ones.
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10. Hallucinations

(a) (b)

(c) (d)

Figure 10.1.: Dragon-P114 data set: (a) 3D surface before removing hallucinations,
(b) 3D surface wireframe before removing hallucinations, (c) 3D surface af-
ter removing hallucinations using approach proposed in [21], (d) 3D surface
after removing hallucinations using our method.

10.1. Hallucination-free Multi-View Stereo

We present a multi-view stereo method that avoids producing hallucinated surfaces which
do not correspond to real surfaces. Our approach to 3D reconstruction is based on the
minimal s-t cut of the graph derived from the Delaunay tetrahedralization of a dense 3D
point cloud, which produces water-tight meshes, see Section 7.3. This is often a desirable
property but it hallucinates surfaces in complicated scenes with multiple objects and free
open space. For example, a sequence of images obtained from a moving vehicle often
produces meshes where the sky is hallucinated because there are no images looking
from the above to the ground plane. We present a method for detecting and removing
such surfaces. The method is based on removing perturbation sensitive parts of the
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10.1. Hallucination-free Multi-View Stereo

(a) (b)

(c) (d)

Figure 10.2.: Castle-P30 data set: (a) 3D surface before removing hallucinations, (b)
3D surface wireframe before removing hallucinations, (c) 3D surface after
removing hallucinations using approach proposed in [21], (d) 3D surface
after removing hallucinations using our method.

reconstruction using multiple reconstructions of perturbed input data. We demonstrate
our method on several standard datasets often used to benchmark multi-view stereo and
show that it outperforms the state-of-the-art techniques.

10.1.1. Motivation

The approach by using some triangle (or related tetrahedron) property like average edge
length [21], maximal edge length, triangle area, radius of circumscribed sphere of the
related tetrahedron, and so on, can not be used to remove hallucinated surfaces well in
general. The reason is that it is possible (and we demonstrate it in our experiments) that
a reconstruction pipeline will produce the mesh where one can often find two subsets of
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10. Hallucinations

triangles of the same average edge length of the mesh such that the first subset corre-
sponds to a hallucination but the second one corresponds to a real surface. Therefore,
it is in general not possible to find a threshold on these dimensional parameters which
would separate hallucinated triangles, see Figure 10.5 .

The main idea behind our approach is motivated by the following observation. The
surfaces which have strong support from the data are mostly not affected by small
perturbations. By the strong support we mean that there are many reconstructed points
near the real surface. On the other hand the surfaces, which are originally created due to
false positive points, are usually strongly affected by perturbations because false positives
are generated randomly and usually sparsely distributed far from true surfaces.

We assign a confidence value to each triangle based on the sensitivity to perturbations
(see Section 10.1.5). We build the s-t graph [18] from the triangulation and the confi-
dences and solve it by the implementation [7]. If a triangle is labelled as sink we deem
the triangle as hallucinated.

One can argue that large triangles will be mostly created from false positive 3D points.
That is often true but large triangles are also created in texture-less parts of the scene
(see Figure 10.2) and in parts which have very oblique viewing angles (see Figure 10.1).
Such triangles are important because they make the reconstruction complete. The main
contribution of our method is to keep such triangles in the reconstruction while removing
the triangles that are hallucinated.

We have to point out that our method may keep unseen parts of the surface when they
are a part of the visual hull of the scene (see Figure 10.6 with the roof region behind
dormers is filled). We do not consider such parts as hallucinations.

10.1.2. Reconstruction pipeline

Our MVS pipeline is similar to the pipeline proposed in [85]. First, we compute feasible
camera pairs based on the epipolar geometry as in [45]. Next, we detect and match
SIFT features [57] in the feasible camera pairs using [88]. We triangulate matches and
create seeds. A seed is a 3D point with a set of cameras it was triangulated from.
For each camera we compute the minimal and the maximal depth based on the related
seeds. Then, we perform the plane-sweeping and filtering (see Section 10.1.3) at several
scales. To remove hallucinated surfaces, we run a mesh computation k times from
differently perturbed data. In each iteration we perturb (see Section 10.1.4) the point
cloud generated by plane-sweeping and use it as the input to our implementation of the
method proposed in [52]. We do not perform mesh refinement as in [85] but do mesh
smoothing as in [52]. This gives us k meshes. We remove hallucinated surfaces from the
first mesh using other meshes (see Section 10.1.5 and 10.1.6). This gives us the resulting
mesh.
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10.1. Hallucination-free Multi-View Stereo

(a) (b) (c)

Figure 10.3.: Histogram of log10 of confidences for: (a) Castle-P30 dataset, (b)
Fountain-P11 dataset and (c) Dragon-P114 dataset with s (red) and t
(green) values. (see text)

10.1.3. Plane-sweeping and filtering

Our plane-sweeping is slightly different from the state-of-the art [23, 91, 13]. We do
plane sweeping for each reference camera with respect to the set of α nearest feasible
target cameras (we use α = 4 in all of our experiments). For each pixel p and for each
depth d (corresponding to a plane parallel to the reference image plane) we compute
the photo-consistency f(p, d) of the depth as follows. For each pair of the reference
r and target t cameras we compute photo-consistency value c(p, d, r, t) as the NCC
between 5× 5 window centered in the pixel on the reference image and its projection to
the target image. The projection is generated by the homography inducted by the plane
and consistent with the epipolar geometry between the reference and target images. The
NCC value is in the range 〈−1, 1〉, where −1 corresponds to the worst photo-consistency
and 1 corresponds to the best one. The photo-consistency f(p, d) equals the maximum
of c(p, d, r, t) over all target cameras t and fixed r. The reconstructed depth γ(p) of the
pixel p is chosen as the depth d for which f(p, d) is maximal and f(p, d) > δ (we use
δ = 0.8 in all of our experiments). If there does not exist such depth, then we set γ(p)
as unknown. This plane-sweeping strategy produces a lot of true positive 3D points, but
a lot of false positive ones too. Therefore, we perform a simple but fast and effective
filtering after plane-sweeping. For each 3D point we search for other 3D points in its
small neighborhood. If there are at least β (we use β = 2 in Fountain dataset and β = 3
in all others) 3D points from β different cameras, then we accept the point. We consider
all depths which were filtered out as unknown. We choose this approach because we
have experimentally verified that this approach produces more true positives than, for
example [91, 13]. On the other hand it still (even after filtering) produces some false
positives. But this is not critical because we are later using a strong tool [52] which can
effectively deal with noise.
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10. Hallucinations

10.1.4. The principle of the removal of hallucinated surfaces

Method [52] tends to produce closed meshes and hence it generates false (hallucinated)
surfaces in places which are not well captured by any camera. The hallucinated surfaces
are often related to missing cameras which would otherwise lead to cleaning the space
between the cameras and the real surface of the scene. When cameras are not present,
method [52] hallucinates surfaces from sparsely distributed false positive points which are
present in the point cloud. On the other hand, surfaces, which are strongly supported
by the data, i.e. where the point cloud is dense near the real surface, or which are
strongly supported by a visibility prior, and hence do not have to be strongly supported
by the data, are not affected by the sparsely distributed false positive points. We build
our approach on this observation. We introduce a small amount of false positive points
into the original point cloud several times and filter out unstable hallucinated surfaces.
We implement it by adding a small amount of noise into the depth-maps constructed by
plane-sweeping in each iteration. Consider a depth-maps and all the pixels with unknown
depth in that map. We randomly choose γ (we use γ = 0.1 in all of our experiments)
percent of the pixels with unknown depth and assign them depths randomly. The new
depth is chosen randomly from the four times the depth range of the camera. The values
were selected experimentally and were sufficient in all of our experiments.

10.1.5. Perturbation based triangle confidence computation

We assign a confidence value to each triangle of each of the k meshes. Let’s assume the
i − th mesh and the j − th triangle t. For each k − th mesh k 6= i we find the nearest
triangle tk to the triangle t. We measure the distance of triangles by the distance of the
triangle centers (ct, ctk). Now, for each pair (t, tk) of triangles we compute d(t, tk) =
min{d(ct, tk), d(ctk , t)} over all pairs tk, t (with fixed t) where d(ct, tk) is the distance
of the point ct to the plane defined by triangle tk. To compute the confidence of the
triangle δ(t) we use Gaussian kernel voting to cluster values d(t, tk).

10.1.6. Graph-cut based hallucinations removing

To remove triangles with high confidence, we formulate a minimum s-t cut problem [18].
We create a graph from the mesh such that the nodes correspond to triangles. If two
triangles are neighboring, then we create the edge between the corresponding nodes. We
compute 90th percentile s of all triangle confidences to find the threshold on the triangle
confidence. The threshold at the 90th percentile is very conservative because majority
of confidences are from small triangles which have usually similar confidences that are
close to zero, see Figure 10.3. We introduce value t = 10 s. Value s should correspond to
triangles which should be definitely in the final mesh, value t to triangles which should
definitely be removed. We assign (s − δ(t))2 value to each s-edge and (t − δ(t))2 value
to each t-edge. To each edge between nodes we assign value s+ (t− s)/4. This value is
established experimentally to remove isolated triangles. We use this value in all of our
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Figure 10.4.: Strecha’s evaluation [77] for the Fountain-P11. (a,b) and Castle-
P30 (c,d) data sets. OUR - proposed method, VU [85], SAL [66], ST4 [74],
FUR [21], JAN09 [45]. (a,c) histograms of the relative error with respect
to nσ for all views. The σ is determined from reference data by simulating
the process of measurement and can vary across the surface and views.
(b,d) relative error cumulated histograms.

experiments. To solve the s-t cut problem we use the implementation described in [7].
The final mesh consists of the triangles represented by the s-nodes.

10.1.7. Performance discussion

In this section we provide the time performance discussion of our pipeline. We discuss
how to make significant speedup, too.

The plane-sweeping was performed on the original scale and on two, three and four
times sub-sampled images. The plane-sweeping is implemented on GPU. The compu-
tation time of one depth-maps varies from a few minutes on 3072 × 2048 resolution to
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(a) (b)

Figure 10.5.: Dragon-P114 data set: (a) 3D surface before removing hallucinations
colored by average edge length of the triangle, blue - smallest, red - 10-times
average edge length of the whole mesh and more (using JET color model),
(b) red - triangles with average edge length smaller than 3-times or larger
than 6-times average edge length of the whole mesh, green - triangles with
average edge length between 3-times and 6-times average edge length of
the whole mesh, top ellipse - real surface, bottom ellipses - hallucination.
Conclusion: average edge length does not separate real surface triangles
from the hallucinated ones.

(a) (b)

Figure 10.6.: Castle-P30 data set (top view): (a) 3D surface after removing hallu-
cinations using approach proposed in [21], (b) 3D surface after removing
hallucinations using our method.

a second on the smallest scale (768 × 512). The time complexity is cubic, because the
number of depths scales with the image resolution. The computation time of the filtering
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10.1. Hallucination-free Multi-View Stereo

step is approximately tens of seconds. We have to point out that the plane-sweeping
and filtering is performed only once for each camera at each scale. The computation
time of one perturbation iteration using our implementation of [52] is approximately
tens of minutes. The time depends on the number of input points. In our experiments
the number of points varies in the range of one to six millions. The computation time
of consistencies and graph-cut based hallucinations removal is approximately minutes.

We have tested our method with k = 10. We think that k = 3 should be enough, too.
The code can be later optimized with respect to that only small amount of 3D points
are changing in each iteration. Therefore we would build the triangulation from original
points and remember it. Later we would add perturbed points (0.1% of original points
in all of our experiments) and update the weights to the triangulation in each iteration.
This optimization would cause that the computation time of all iterations should be
similar to the computation time of one iteration.

10.1.8. Results

Based on the experiments we observed that using the criterial function based on the
triangle (or related tetrahedron) property like average edge length, maximal edge length,
triangle area and so on, can not be used to remove hallucinated surfaces with sufficient
quality. Figure 10.5 shows the input mesh (including hallucinations) colored by the
average edge lengths using JET color model. Red color represents the triangles whose
average edge lengths are greater or equal to 10-times average edge length of the whole
mesh. Blue color represents the triangles which average edge lengths is close to zero.
Areas marked by the ellipses show two different parts of the mesh. Both of them (see
the distribution of colors) contain the triangles with the same average edge lengths.
However, the top set of triangles represents real object part and the bottom ones are
hallucinated. This example demonstrates that it is impossible to find a threshold which
would separate the hallucinated part from the real one in general. We carried out several
experiments on this dataset using maximal edge length, triangle area and maximal radius
of circumscribed sphere of the related tetrahedron, and all of them produced similar
results.

To evaluate the quality of our reconstructions, we present results on data sets from
the standard Strecha’s [77] evaluation database. We show the result for three different
outdoor datasets: Fountain-P11, Castle-P30, Dragon-P114. The first two datasets are
Strecha’s datasets [77] and the last one is the data set of a dragon’s sculpture in Kyoto.
Strecha’s Fountain-P11 data set contains 11 3072 × 2048 images. Strecha’s Castle-P30
data set contains 30 3072 × 2048 images. Dragon data set contains 114 1936 × 1296
images.

Figure 10.4 shows the evaluation on the Strecha’s Fountain-P11 as well as Castle-P30
data sets. See the Strecha’s evaluation page for JAN10 results and their comparison. The
histograms show that our reconstructions are more or less on the same level at 2σ and
3σ as the method [85] which uses an additional mesh refinement step. The cumulative
histograms shows that our method outperforms all other methods in completeness. In
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10. Hallucinations

(a) (b)

Figure 10.7.: Fountain-P11 data set: (a) 3D surface removing hallucinations using
approach proposed in [21], (b) 3D surface after removing hallucinations
using our method.

Figure 10.4 (a) and (b) we are comparing our results with four best methods [85, 66,
74, 21]. For complete results, we refer the reader to the challenge website [73]. This
experiment demonstrates that methods based on the opportunistic approach [52] produce
complete and accurate results and outperforms the other state-of-the-art methods, and
it is therefore important to deal with its negatives which was the goal of this chapter.
We made several experiments to demonstrate that our method produces better results

than the state-of-the-art approach proposed in [21], which solves this problem by remov-
ing large triangles, i.e. they discard the triangles which average edge length is greater
than six times the average edge length of the whole mesh.
Figures 10.1 and 10.5 show the comparison of the results computed using the approach
proposed in [21] with the results computed using our method on Dragon-P114 data set.
Figures 10.6 (a) and (c) show that our method can better deal with larger triangles which
are on the ground and which cover surfaces captured at oblique angles. Figures 10.6, 10.8
and 10.2 show the comparison of the results computed using the approach proposed in
[21] with the results computed using our method on Castle-P30 data set. Figures 10.6 (a)
and (c) show that our method can better preserve large triangles which are in between
the windows where is a lack of the texture but which are not hallucinated. Figure 10.7
shows the comparison of the results computed using the approach proposed in [21] with
the results computed using our method on Fountain-P11 data set. It shows that our
method can avoid discarding important low-textured parts of the scene.
Figure 10.9 shows the detailed view of the dragon’s head before and after removing

hallucinations using our method (untextured and textured). We have used the nearest
camera to texture each triangle without texture color unification.
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10.1. Hallucination-free Multi-View Stereo

(a) (b)

(c) (d)

Figure 10.8.: Castle-P30 data set: (a) 3D surface before removing hallucinations col-
ored by average edge length of the triangle, blue - smallest, red - 10-times
average edge length of the whole mesh and more (using JET color model),
(b) 3D surface after removing hallucinations using approach proposed in
[21], (c) 3D surface before removing hallucinations colored by the perturba-
tion based confidence (blue - smallest confidence, red - largest confidence),
(d) 3D surface after removing hallucinations using our method.
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(a) (b)

(c) (d)

Figure 10.9.: Detailed view of the dragon’s head. (a) 3D surface before removing
hallucinations untextured, (b) 3D surface before removing hallucinations
textured, (c) 3D surface after removing hallucinations using our method
untextured, (d) 3D surface after removing hallucinations using our method
textured
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10.2. Volumetric based hallucination Removal

In Section 10.2.1, we describe an easy approach that removes dust, bubbles and large
triangles. In Sections 10.2.2 and 10.2.3, we describe a more advanced approach that
exploits prior knowledge in datasets from city environments, where input points were
computed from sensors located near the ground plane.

10.2.1. Removing dust, bubbles and large triangles

Our goal is to reconstruct objects that are defined by the full label and typically consist
of thousands of tetrahedra. We segment all full (free) tetrahedra that have a common
face into connected components, which we call full (free) objects. We consider all small
full (free) objects as hallucinations and remove them by relabeling them to free (full).
Full (free) object is small when it consists at most of d (we use d=10 in all of our
experiments) tetrahedra. We say that we remove dust (bubbles). Finally, we use an
easy technique that removes very large triangles from the final mesh. It is the same
approach as the one used in [22]. We compute average edge length over all edges in
the mesh and remove all triangles where the maximal edge is larger than 100-times the
average length.

10.2.2. Finding weakly-supported full tetrahedra

After s-t cut optimization and dust and bubbles removal (isolated small full (free) con-
nected components), we have an initial full-free labeling of tetrahedra. Due to properties
of the proposed method we can be sure that what is labeled as free is free in the real
world. On the other hand what is labeled as full does not have to be full in the real world.
Following this property we can compute a full space support of all tetrahedra labeled as
full in a similar way as the free-space-support is computed. We do it as follows. Given
the initial labeling we consider interface input points of tetrahedralization that are on
the interface defined by the full-free labeling. After the s-t cut optimization, we do the
following steps:

1. We introduce a new weight θin(i) for every tetrahedron i. We call it “full space
support”. Initially, we set it to zero.

2. For each segment of sight (c, p), where p is the interface vertex, we do the following.
We iteratively traverse all crossing tetrahedra Ti one by one from first tetrahedron behind
the surface vertex on the line of sight (c, p) while they are labeled as full. The value
θin(i) of each such tetrahedron Ti is increased by α(p).

This means that the full space support of an full tetrahedron Ti is such a number of
segments of sight (c, p) where (i) interface vertex p occludes (occludes = projects to the
same area as tetrahedron Ti in the sensor c) the tetrahedron Ti in the sensor c and (ii) all
tetrahedra between the surface vertex and the tetrahedron Ti crossing the line of sight
(c, p) are labeled as full.

Now we can relabel all full tetrahedra that are weakly-supported by the full space
support value as free, i.e. when the full space support is smaller than a threshold.
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On the other hand, such relabeling can also destroy small surface tetrahedra which
typically have small full space support. Therefore, it is not sufficient to use only this
thresholding approach. We set t-weights (of the actual graph) of full tetrahedra that are
weakly-supported by the full space support to zero and run optimization again instead.
Therefore, the optimization process will tend to label them as free. Figure 10.10(f)
shows θin(i) ≥ 30 in red. Table 10.1 shows the overall time of θin(i) computation in
tSKY column.

In street view like datasets, however, threshold that would differentiate weakly-supp-
orted sky from the weakly-supported ground plane does not exist in general. The next
section describes how we deal with this problem.

10.2.3. Using sky prior to removing sky hallucinations

In this section we describe a technique that we use to remove sky hallucinations from
results on street view like datasets. Since our goal is to remove sky hallucinations, we
use a sky prior to dividing all tetrahedra into sky tetrahedra and the non-sky tetrahedra.
Our goal is to use full space support only for tetrahedra that are high above the ground
plane, i.e., for the sky tetrahedra to distinguish between weakly-supported ground plane
and weakly-supported sky surface. First we compute the gravity vector from the first
sensor. We assume that the first sensor oriented such that the vertical direction in the
image is also vertical in the world. Based on the gravity vector, we choose the top part
of images that most likely captures sky tetrahedra. The size of the top part can be
controlled by the parameter u (we use u = 0.3 in all of our experiments).

result name to1 to2 tGC tSKY np nc nt nK Tt Tf

Fountain 12 : 27 2 : 44 0 : 44 4.6M 2.7 113.1 39.7 30.0M 60.1M
Street-view 05 : 00 2 : 34 0 : 52 0 : 26 2.9M 2.5 097.5 34.2 19.6M 39.2M
Lausanne 20 : 02 3 : 28 0 : 53 1 : 17 4.9M 2.7 205.3 50.1 32.7M 65.4M

Table 10.1.: Performance data for different results. to1 is the time of the first part
of the proposed algorithm and to2 is the time of the second one. tGC is
the time of solving the minimal s-t cut problem. tSKY is the time of θin(t)
computation. The times are in the format: minutes : seconds. np, nc, nt are
defined in Section 9.2. Tt is the number of tetrahedra and Tf is the number
of faces in the tetrahedralization. The letter M stands for one million, i.e.
106.

For example, for image height with 1000 pixels, we may set the top part to the top
300 rows. This is the sky prior. We call sky vertices all vertices of tetrahedralization
that project to the sky area of an associated image.

We call sky tetrahedra all tetrahedra that have at least one sky vertex associated.
Next, we set t-weights (of the actual graph) of tetrahedra originally labeled as full with
θin(i) < q to zero and run optimization again (we use q = 30 in all of our experiments).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10.10.: Removing sky hallucinations. (e) Input points computed from in-
put images using plane-sweeping method described in [44], (c,f,g,h) plane
manually placed into the scene colored by values of crossing tetrahedra.
(c,d) result of the [52] method (without using sky prior based hallucina-
tion removal), (c,f) plane colored blue (free), red (full), (h) plane colored
by θin(t) blue (0) to red (≥ 30) using JET color map, (g) plane colored by
sky thetrahedra blue (non sky) and red (sky), (i) reconstruction using the
[52] method with using sky prior based hallucination removal (j,k) recon-
struction using the proposed method. The original method (c) does not
reconstruct weakly-supported ground plane, cars, and trees and the sky is
hallucinated. The hallucinated sky is removed (i) using the proposed sky
prior to remove hallucinations. The hallucinated sky is removed and ad-
ditionally weakly-supported ground planes, cars, and trees are preserved
when using the proposed method (j,k).

Figure 10.10 illustrates the hallucination removal process. Figure 10.10(e) shows sky
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tetrahedra colored in red. Figure 10.10(g) shows the reconstruction using method [52]
with using sky prior based hallucination removal. Figure 10.10(h,i) shows the recon-
struction using the proposed method of using sky prior. The method [52] (a,b) does not
reconstruct weakly-supported ground planes, cars, and trees and the sky is hallucinated.
The hallucinated sky is removed using the proposed sky prior to remove hallucinations.
The hallucinated sky is removed and additionally weakly-supported ground plane, cars,
and trees are preserved when using the proposed method Figure 10.10(h,i).

Algorithm 4 Sky-hallucinations free surface reconstruction preserving weakly-support-
ed surfaces

Require: DT - Delaunay Tetrahedralization, a subset of sensors associated to each
vertex of the tetrahedralization

1: function reconstruct(DT, sky)
2: Compute the s-t graph weights ⊲ to1
3: for all (sensor c, vetrex p) do ⊲ to2
4: Compute K(c, p)
5: if K(c, p) == INT then
6: Add the value ǫabscp (kf , kb) to weight of t-edge (v, t) where Lp

c(kbσ) = T (v)
7: end if
8: end for
9: Compute minimal s-t cut ⊲ tGC

10: Remove dust and bubbles
11: if sky == TRUE then
12: Precompute θin(i) (for each tetrahedron Ti) ⊲ tSKY

13: for all tetrahedra Ti do
14: if (Ti is sky tetrahedron)&&(θin(i) < q) then
15: Set weight of t-edge (v, t) where Ti = T (v) to zero
16: end if
17: end for
18: Compute minimal s-t cut
19: Remove dust and bubbles
20: end if
21: Create mesh from the minimal s-t cut
22: Smooth
23: return Mesh
24: end function

Robustness of the method Let us discuss a situation when we mark all tetrahedra as
sky thetrahedra i.e., u = 1.0. In this situation full tetrahedra that have low full-space
support i.e., θin(i) < q should be relabeled as free. However, the value q = 30 is very
conservative and therefore the majority of very strongly-supported surfaces will remain
unchanged in such a situation but all other surfaces will be removed. Figure 10.10 shows
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that the top parts of facades were not removed despite that they were in the sky part.
On the other hand, using more advanced techniques that detect a sky in images can lead
to even better results.
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11 Scalability

In this chapter we describe a new method for the large-scale 3D multi-view reconstruction
problem. The proposed method can be, for instance, used to reconstruction Urban
Environment. The input to our method is a set of calibrated cameras and a cloud of 3D
points, where each point has associated a subset of cameras which it was created from
as was defined in Chapter 7.

Since we are working with huge data, we can’t solve the problem globally using any
of the method proposed in Chapters 7, 9, and 10 that are all based on the same global
volumetric optimization approach described in the Section 7.3. Therefore, we divide 3D
space into parts represented by boxes and we reconstruct each part separately. Each
box should be as large as possible in order to fit input 3D points which lie inside the
box into the memory. This property should guarantee that the reconstruction of a part
will be detailed and complete. The problem which we address in this chapter is that
the 3D reconstruction of the points, which lie inside a single box, may contain artifacts
(hallucinations) when the box is being reconstructed independently from the rest of the
scene. The artifacts are mostly located near the box borders. Therefore, we propose
a method to reconstruct individual boxes as if the complete scene was reconstructed
globally by propagating constraints between neighboring boxes. We show experimentally
that our method works on real datasets.

11.1. Semi-global 3D reconstruction by parts

We follow here the basic approach described in Section 7.3. The motivation is that we
want to obtain the same result on a part (box) which we would obtain if solving the
problem globally using all the input 3D points. Let us denote the global DG of all 3D
points as G. Since we cannot solve the problem globally due to memory limitations,
we take just points which lie inside the box and create a smaller local DG g. The goal
now is to compute all the weights of the local DG g such that they match corresponding
weights of the global DG G but using an out-of-core approach.

First, we compute local DG g weights using all the points inside the box. Next, we
update the weights of the local DG g using all the points outside the box which would
contribute to the weights of the local DG g but without storing them all together in the
memory. We do it as follows.

First, we divide the input 3D point cloud into files. We create one file for each camera.
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Each file contains all points from the input 3D point cloud which are associated with
the related camera. This is done in a preprocessing step.

Next, we take all cameras which are incident to the box and iterate through associated
files. For each file we iterate trough the line segments (the camera centre, a point p)
without adding them into the memory. We update the graph weights for each line
segment which intersects the box and the point p lies outside the box.
Finally, we solve the minimal s-t cut problem for the local DG g and obtain a final

3D reconstruction of the box. This process is fast enough and we never process all input
points at a time but only a small subset.

11.2. Results

Figure 11.1 (a),(c) shows the reconstruction of the points which are inside a box of a
part using the method described in the Section 7.3.

Figures 11.1 (b),(d) show the reconstruction of the part using the proposed method.
One can see that the original approach produces a lot of artifacts and hallucinations
(especially near the part boundaries). On the other hand the proposed method produces
much cleaner result without artifacts.

Figure 11.2 shows the final reconstruction using the proposed method consisting of
joined reconstructions of all parts (boxes). The parts are connected smoothly without
artifacts.
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(a) (b)

(c) (d)

Figure 11.1.: Reconstruction of a part. (a),(c) 3D reconstruction of one part (box)
using original method produces visible artifacts especially on the part bor-
ders. (b), (d) 3D reconstruction of the part using the proposed semi-global
method produces no artifacts.
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(a)

(b)

Figure 11.2.: Reconstruction of all parts. 3D reconstruction of all parts using pro-
posed semi-global method produces results without artifacts and all parts
are joining smoothly.
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12 Results

We have joined all methods proposed in Chapter 9, Section 10.2, and Chapter 11 into
one pipeline as result of our research. We have created the CMPMVS binary1 that is
publicly available for non-commercial purposes.

In this chapter, we provide relevant experimental results of the CMPMVS binary that
were conducted during our PhD. study.

1http://ptak.felk.cvut.cz/sfmservice/websfm.pl?menu=cmpmvs
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(a)

(b)

(c)

Figure 12.1.: Large scale 3D reconstruction. 3D reconstruction from 418 images of
historical building setled in San Sebastian city.

12.1. CMPMVS on large data

Figure 12.1 shows 3D reconstruction from 418 images of historical building settled in
San Sebastian city. Images provided by Pablo Vidaurre. The reconstruction consists of
19 parts and contains 22680890 vertices and 45363514 faces. Figure 12.1 (c) shows the
reconstruction where each part is colored by different random color.
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(a)

(b) (c)

Figure 12.2.: Kinect: images vs depth. (a) one of 50 input RGB-Depth image pairs
(b) Reconstruction from registered Kinect 2D data. (c) Reconstruction
from registered Kinect 3D data.

12.2. CMPMVS and Kincet

Figure 12.2 (a) shows one of 50 input RGB-Depth image pairs that has been acquired and
processed. Figure 12.2 (b) shows the 3D reconstruction from CMPMVS using just images
produced by Kinect. Figure 12.2 (c) shows 3D reconstruction from CMPMVS using just
depth-maps produced by Kinect. The images were registered by a SFM pipeline and
relative position of Kinect depth sensor vs Kinect visual sensor was precalibrated. The
calibration of the Kinect depth sensor was computed from calibration of images with
respect to the known fixed relative transformation. See [70] for more details.
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(a)

(b) (c)

Figure 12.3.: MVS vs Kinect. (a) one of 70 input fixed RGB-Depth-RGB triplets.
The RGB comes from an SLR camera. The depth comes from Kinect. (b)
reconstruction from SLR images. (c) reconstruction from registered kinect
3D data.

Figure 12.3 shows the comparison of 3D reconstruction from high quality images cap-
tured by a SLR camera versus 3D reconstruction from Kinect depth-maps. Both com-
puted by the CMPMVS. See [70] for more details.
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(a)

(b) (c)

Figure 12.4.: MVS vs Laser-Scan. (a) Top row: antena, RC-airship and SLR camera
used for capturing. Property of airshipclub.com. Bottom row: a sample of
input images captured by the airship. (b) 3D reconstruction from images.
Green pyramids represent camera positions. (c) comparison of the 3D
reconstruction from images with a laser-scan.

12.3. CMPMVS vs laser-scan

Figure 12.4 shows the comparison of the 3D reconstruction from CMPMVS of images
captured by an radio controlled airship versus laser-scan made from ground. The recon-
struction was made from 1451 images of 21Mpx resolution. The experiment was made
for ATOM [3] project.
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(a)

Figure 12.5.: Mars terrain reconstruction for autonomous navigation on Mars.
Left: the rover with the tethered balloon carrying a camera. Middle top: a
sample of captured images. Right bottom: the final true ortho-photo map
generated by CMPMVS. Right top: a closeup of the true ortho-photo.

12.4. CMPMVS for Mars surveying

Figure 12.5 shows true ortho-photo map generated by CMPMVS from images captured
by a baloon thethered to ProvisG Mars rover. The balloon captured 1808 images of
resolution 2448×2050. The final reconstruction contained 2621534 vertices and 5242825
faces. The final ortho-photo was of 10000× 24627 resolution and approximately 2 cen-
timeters per pixel. The experiment was made for ProVisG [65] project.
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13 Conclusions

In this thesis, different aspects of the problem of 3D surface reconstruction from images
or other depth sources were studied.

In Chapter 4, we have formulated the seed normal generation for fixed seed posi-
tion as an optimization problem with a criterial function fs based on the similarity of
reprojection of images on a 3D ring. We have demonstrated by experiments that the
criterial function fs is often unimodal in certain area around its global maximum and
all values in this area are greater than the values outside of this area. We have designed
an effective method for finding the global optimum, which provided the correct solution
in 94% of our test data.

We have formulated the seed normal and position detection as an optimization problem
with a criterial function fd based on the similarity of reprojection of images on a 3D
ring. We have described a method starting with initial estimates of seed positions,
improving them, and computing normals with high probability of success. We have
demonstrated its high effectivity 75% on very bad initial estimates of seed position, that
means approximately 2 pixels of reprojection error on the image.

We have shown that there exist nonhomogenous textures which are not discriminative.
Our method is able to detect such situations when it is not possible to detect seed normals
e.g. the texture is not discriminative.

In Chapter 5, we have presented a segmentation based multi-view stereo method.
Our technique can process large scale images in affordable time. We have demonstrated
that the technique achieves acceptable quality of reconstruction. We have demonstrated
that our method can deal with homogeneous planar parts of scene surfaces better than
patch based approaches. The advantage of our method is that it uses minimal amount of
image data needed to build a dense 3D shape. Its shape is scene dependent and can cover
large homogeneous image parts. Therefore, we do not need to verify as many hypotheses
as growing based approaches and we can deal better with homogeneous image areas.

In Chapter 6, we have presented a scalable multi-view stereo. Our technique can
process an unlimited number of images since it loads only a small subset of data in
memory. We have demonstrated that the technique achieves acceptable quality of re-
construction in affordable time and computational effort and that it can process large
sets of real images. In particular, we have demonstrated that our approach is scalable
with growing image size, the number of images, and increasing the redundancy in image
data.

In Chapters 7, 8, and 9, we have presented a new surface reconstruction method
that can reconstruct surfaces strongly supported by input points with the same accu-
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racy as the state-of-the-art methods and moreover it can reconstruct weakly-supported
surfaces (e.g., low-textured walls, windows, cars, ground planes). We have assumed
calibrated sensors and input points augmented with visibility information of sensors on
the input. We have introduced an observation that it is also possible to reconstruct a
surface that does not contain input points and we demonstrate it by an example. We
assume an infinite number of ideal noiseless, outliers-less input points in the example.
We have accumulated free-space-support from visibility information of input points and
we show that nonzero free-space-support is the evidence for free space and the zero
free-space-support is the evidence for full space or hallucination in the example. There-
fore, the nonzero to zero change is the evidence of a surface (interface). Based on this
observation, we have defined and study free-space-support of tetrahedra in tetrahedral-
ization of (real-world) input points that can be noisy, contain huge amount of outliers,
and the number of input points is finite. We have designed an interface classifier based
on the experiments. We have experimentally showed that the number of false positives
(wrongly classified non-interface point as interface) is negligible and that the number
of true positives (especially on weakly-supported surfaces) is considerable. Finally, we
have proposed a new method that extends an existing state-of-the-art (baseline) method
by using an interface classifier, so that the existing state-of-the-art method gains the
ability to reconstruct weakly-supported surfaces. The newly proposed method strongly
follows existing (former) method that introduces the problem of weakly-supported sur-
faces and is able to reconstruct them. However, we have discussed and experimentally
showed that the newly proposed method produces more accurate results and reconstructs
weakly-supported surfaces better.

In Section 10.1, Chapter 10 we have proposed a hallucination-free multi-view stereo
method. We have demonstrated that the quality of our reconstructions is comparable
to the best state-of-the art methods on several benchmark datasets. We have shown
experimentally that our method produces more complete reconstructions while removing
falsely generated surfaces.

In Section 10.2, Chapter 10 we have proposed new fast post-processing method that
can detect and remove particular types of hallucinations that mainly occur in outdoor
scenes that are not observed from above (i.e., sky hallucinations) when using state-of-
the-art methods.

In Chapter 11, we have proposed an effective method for solving multi-view stereo
problem. We have proposed a method which can produce exactly the same reconstruction
of a box as if all related points outside the box were used but without actually storing
them in the memory. We have experimentally showed that our method works on real
data.

In Chapter 12, we have showed different results relevant to this thesis that were
conducted during our PhD. study.
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