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Abstract— Multifractality present in high frequency pupil
diameter measurements, usually connected with irregular scaling
behavior and self-similarity, is modelled with statistical accuracy.
A multifractal spectrum is used to discriminate pupil behavior
measurements from four groups differing in ocular pathology.
Broadness and the spectrum maximum, two measures character-
izing the multifractal spectrum of observations, are proposed as
the distinguishing features among the groups. Analysis based on
descriptive statistics and kernel density estimation is provided to
obtain the statistical description of the inherited mulitfractality.
Model-free classification, together with the model combining
technique, is adapted to build a reasonable classifier.

I. I NTRODUCTION

The discipline of human computer interaction (HCI)
strives to evaluate and improve user performance and interac-
tion with information technologies for many different users in
many different contexts. Many previous investigations have ex-
amined the interactions of users with age-related macular de-
generation (AMD) [Jacko et al,2001], [Jacko et al,2003a],
[Jacko et al,2003b], as it is one of the leading causes of
visual impairment and blindness for individuals 55 years of
age and older [The Schepens Eye Research Institute,2002].
Mental workload has long been recognized as an important
component of human performance during interaction with
complex systems [Gopher & Donchin,1986]. Notably, ex-
treme levels of workload (high and low) have been shown
predictive of performance decrements. Measures of workload
can be performance-based, survey-based, or physiologically
assessed.

Since the majority of information offered by com-
puters is presented visually on a screen, these users are at
a clear disadvantage. Research efforts directed towards the
characterization of computer interaction for users with visual
impairments can provide designers with the knowledge to
better anticipate user needs in the development of informa-
tion technologies. Many previous investigations have exam-
ined the interactions of users with age-related macular de-
generation (AMD) [Jacko et al,2001], [Jacko et al,2003a],
[Jacko et al,2003b], as it is one of the leading causes of visual
impairment and blindness for individuals 55 years of age and
older [The Schepens Eye Research Institute,2002].

AMD affects central, high-resolution vision, which
has a large impact on the individual’s ability to per-
form focus-intensive tasks, such as using a computer

(Center for the Study of Macular Degeneration, 2002).
Researchers have found that users with AMD tend to
perform worse than normally-sighted users, as measured
by performance metrics such as task times and er-
rors, on simple computer-based tasks [Jacko et al,2001],
[Jacko et al,2003a], [Jacko et al,2003b]. However, little
work has been done to examine how these performance decre-
ments are affected by increases in mental workload due to sen-
sory impairments. Mental workload has long been recognized
as an important component of human performance during
interaction with complex systems [Gopher & Donchin,1986].
Notably, extreme levels of workload (high and low) have been
shown predictive of performance decrements. Measures of
workload can be performance-based, survey-based, or phys-
iologically assessed.

Pupil diameter is a well-documented, physiological
measure of mental workload (see [Loewenfeld,1999]
and [Andreassi,2000]). While research has shown
pupillary activity to be related to changes in mental
workload and task difficulty in a number of domains
([Backs,1992];[Kahneman,1973]; [Beatty,1982];
[Marshall et al,2002]), the complex control mechanism
of the pupil has made it difficult to extract the small,
meaningful signals, related to changes in mental workload
from the larger, overall noisy signal of pupillary activity
[Barbur, 2003]. This being said, it is necessary to develop
analytical techniques that can isolate these small changes
in pupillary behavior. A more comprehensive analysis of
the pupil signal may provide a solution to this problem and
provide a unique characterization of interaction for individuals
with AMD.

The development of analytical tools for high fre-
quency data lends strong support to the analysis of
the pupil signal. The high frequency pupil signal shares
many important features with other extensively studied
signals, such as the turbulence[Shi et al,2003], internet
traffic[Abry & Veitch,1998] and high frequency financial time
series[Mandelbrot et al,1997]. This type of data are consid-
ered selfsimilar signals, which are always connected with
fractals. Fractal signals are usually divided into two classes
- the mono-fractal signal and the multifractal signal. Although
a multifractal signal model has been applied in many other
fields, no previous work has been done with pupil signals.
This paper addresses the modeling of pupil signals, which are
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untractable using traditional statistical models. We describe
a multifractal spectra model to fit the pupil signals and
then extract the signal features from this model in order
to discriminate the measurements coming from the different
visual acuity groups.

The dataset is described in Section II. Section III
includes the description of multifractal spectrum model and the
features based on the multifractal spectrum. Discriminate anal-
ysis of the pupil measurements using the multifractal model
is presented in Section IV. Section V provides conclusions.

II. PUPIL-DIAMETER MEASUREMENT

In this section, we briefly describe the datasets and how
the data is preprocessed to fit the further analysis.

A. Datasets description

The equipment used to collect pupillary response data
during this study was the Applied Science Laboratories (ASL)
Model 501 head-mounted optics systems. Pupil size was
recorded, at a rate of 60 Hz, for each participant over 105
trials of a computer-based task using a graphical user interface
(GUI). A camera records the pupil image, which has been illu-
minated by a near-infrared beam that illuminates the interior
of the eye. Pupil size is assessed as the number of pixels
attributed to the pupil’s image, which has been determined by
real-time edge detection processing of the image. Actual pupil
diameter measurements (in millimeters) are then calculated by
multiplying each pixel value by a scaling factor that is based
on the physical distance of the camera from the participant’s
eye.

The dataset is comprised of pupillary response data
streams for 36 individuals, as described in Table I. In this
table,N refers to the number of individuals comprising this
user group. Visual acuity refers to the range of visual acuity
scores (assessed by ETDRS) of the better eye for participants
of each group. AMD? refers to the presence (Yes) or absence
(No) of this ocular disease in individuals within each group.
N umber of data sets refers to the number of 2048-length
data sets that were obtained from the data streams for each
group.For this study, data was collected from four groups of
individuals, classified by visual acuity and the presence or
absence of age-related macular degeneration (AMD). Visual
acuity, an individual’s ability to resolve fine visual detail, was
assessed via the protocol outlined in the Early Treatment of
Diabetic Retinopathy Study (ETDRS) (University of Maryland
School of Medicine, 1980). The experimental protocol from
this study is fully described in studies by Jacko and colleagues
([Jacko et al,2003a]).

TABLE I

GROUP CHARACTERIZATION SUMMARY.

Group N Visual Acuity AMD? Number of Data Sets

Control 19 20/20 - 20/40 No 111
#1 6 20/20 - 20/50 Yes 59
#2 5 20/60 - 20/100 Yes 57
#3 6 20/100 Yes 124

B. Preprocessing

Studies of pupillary response are faced with the prob-
lem of how to remove blink artifacts. A blink generally
lasts about 70-100 msec (producing an artifact spanning 4-
6 observations under 60 Hz sampling) during which time the
camera registers loss and a pupil diameter of zero is recorded.
Thus, it is generally relatively straightforward to detect and
eliminate these contiguous zero observation artifacts from the
record. However, on either side of a blink, one may also
observe highly unusual recordings because the pupil may be
measured inaccurately as the eye lid partially obscures the
pupil. The result may be an impossibly small value for the
pupil’s size.

To insure that the analysis is conducted on pupil
constriction or dilation and not on misleading discontinuities
caused by blinks or partial blinks, one must either remove
the blink observations from the data entirely or replace them
with linearly interpolated values. Blinks (i.e., zero recordings)
have been found to account for approximately 3-4% of all
observations. Partial blinks account for another 1% of the
total number of observations. The blink-removal procedure
removes all observations having zero values (i.e., the blink)
as well as any extreme values that occur within six additional
observations on either side of the zero value (i.e., partial
blinks).

Because of difficulty of collecting the measurements,
especially from individuals with AMD, the original datasets
were cut into equal length pieces to exploit their usage.
Another reason of the segmentation is that the original mea-
surements are not equally long. The segmentation is conducted
after the ’Six Law’ filtering, which was mentioned above. The
dataset contains the sum of 351 segments of measurements
after segmentation and necessary outlier detection and each
have the length of 2048. The distribution of the numbers of
the segments among the four groups(Control, #1, #2 and #3)
is reported in the Table I.

III. M ULTIFRACTALITY FEATURES

In this section, we discuss the concept of multifractality
and the definition of the multifractal spectrum and analyze the
features of the multifractal spectrum from the perspective of
discrimination.

A. Multifractal and multifractal spectrum

Many measurements encountered in nature, industry,
science etc. are characterized by complex scaling behavior,
namely multifractality. Multifractals are signals that, instead of
a single irregularity indexH (usually the worst overall index
of irregularity) typical of monofractality, possess a continuous
range of Hurst exponents. Prime examples of multifractals
are turbulence measurements where the deviation from the
constant scaling, characterized by a Hurst exponent of 1/3
and called the Kolmogorov K41 law c, is explained by
multifractality of such measurements [Mandelbrot,1968]. In
recent years, the multifractal formalism is implemented with
wavelet tools [Arneodo,et al 1998; Reidi, 2002]
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The measure of multifractality is given by multifractal
spectra that describe the “richness” of the signal in terms of
various Holder regularity indices. The term spectra connotates
the spectral decomposition of the signal into components
characterized by their irregularity. Thus, multifractal analysis
is not focused on the irregularity/self-similarity of the data set
as measured by a single parameter, but rather on a measure of
inhomogeneity of such a parameter.

B. Features based on multifractal spectrum

Theoretically, the multifractal spectrum of fBm (a rep-
resentative of mono-fractal) consists of three geometric parts:
the vertical line, the maximum point and the right slope.
The maximum point corresponds to the Hurst exponent and
the vertical line is thought to be an inherent feature, which
distinguishes fBm from the multifractal process. However, it
is rare to obtain such a perfect spectrum in practice. Even for
the simulated fBm, due to error of estimation, its spectrum
may deviate from the theoretical form, as shown in Figure 1.
Even with the lack of precise estimation of the spectrum, the
deviation from the vertical line could be still utilized in the
discrimination between the mono- and multi-fractal processes.
In Figure 1, two type processes are presented in the multifrac-
tal spectra. One is the fBm and the other is the turbulence
measurement, which is widely believed to be a multifractal
process. Comparing with the turbulence measurement, the fBm
is much closer to the vertical line and this closeness may be
quantified by the left slope of the spectra. Another important
difference between these two spectra is the width spread of
the spectra. It is obvious that the width spread of the fBm is
much smaller than the turbulence measurement.
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Fig. 1. Multifractal Spectra for mono- (dash line) and multi-fractal (solid
line) processes (The dotted line indicates the theoretical slope of the spectrum
for monofractal process)

Despite the existence of the estimation error, the spec-
trum can be approximately described by two slopes and one
point without loss of the discriminant information. Alterna-
tively, we can also approximate the spectrum by the left
slope, the maximum point and the width spread. A typical
multifractal spectrum is described as shown in Figure 2.

The left and right slopes can be obtained easily us-
ing the linear regression technique. However, it is not as
straightforward to define the width spread automatically. The
difficulties are related to two aspects - one being how to locate
the start and end points of the width spread, while the other is
what to do with the discreteness of the spectrum. It is easy to
see that the former is difficult conceptually, while the latter is
computationally difficult. There are many ways to define the
width spread. In this paper, we give one definition of width
spread and we name the width spread thebroadnessof the
spectrum.

Definition Suppose thatα1 andα2 are two roots which satisfy
the equationf(α) + 0.2 = 0 andα1 < α2 , the the broadness
of multifractal spectrum is defined asB = α2 − α1, where
f(α) is the spectrum function in terms of Holder regularity
indicesα’s.

This definition is also graphically presented in Figure 2.
The deviation from the mono-fractal could be fairly compared
according to this Broadness measure since it posts a universal
standard on the width spread. It is worth to point out the
threshold value 0.2 used in this definition could be adjusted
empirically in the practice analysis to insure that this measure
is well defined for all analyzed signals.

As mentioned earlier, the discreteness may produce
difficulties in the computation. The problem is that it may
be hard to find the exact roots of the equationf(α)+0.2 = 0
among the discrete values ofα’s. To get around this, we try
to find the minimum value of|f(α) + 0.2| with respect ofα
instead of solving the equation directly.
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Fig. 2. Approximate description of the spectral characteristics

IV. PUPILLARY RESPONSESANALYSIS

As mentioned previously, we attempt to find the in-
herent features which can separate the types of measurements
from each other. The empirical evidence has shown that Pupil-
diameter measurements possess self-similarity and fractality.
Hence, it is natural to apply the multifractal spectra to dis-
criminate these measurements.
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We have discussed the features of multifractal spectra
in section??. The most important feature of the spectra is the
maximum point, which corresponds to the Hurst exponent.
The Hurst exponent is a measure of “roughness”of the self-
similar process.The Hurst exponent coincides with the Holder
regularity index, and signals withH close to 0 look quite
irregular and intermittent while forH close to 1, the signals
look smooth. Such an important property of the Hurst exponent
enables us to explain the dynamics of pupillary behavior. In-
formally speaking, large values of Hurst exponent correspond
to low dynamic in the change of pupil size (“frozen eye”)
while low values of the exponent indicate bursty and frequent
changes. Therefore, the Hurst exponent could discriminate the
measurements. The boxplots of the Hurst exponents for the
four groups are shown in Figure IV. According to this figure,
the second group(#1) have exponents much lower than the
control group, which reflects that the individuals from this
group have more irregular pupillary responses than those from
the control group.
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Fig. 3. Boxplot for the Hurst exponent of multifractality.
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Fig. 4. Boxplot for the Broadness measure of multifractality.

As can be seen in Figure IV(Left), the Hurst exponent
could not completely discriminate the groups. This moti-
vates us to introduce other discriminatory quantities. Another
measure we just defined is the broadness, which is able
to distinguish the deviation from monofractality. Broadness
describes richness in the distribution of the Hurst exponent.
Pupil-diameter measurements with narrow multifractal spectra
are close to monofractals (i.e., the scaling is quite uniform
over all scales). The boxplot of the broadness are given in
Figure IV. It is very hard to tell the difference among the
four groups. However, the last group(#3) significantly differs
in terms of the broadness from other experimental groups(#1,
#2). Group #3 has relatively high large broadness measure,
which indicates that the pupillary responses of the individuals
from this group deviates from monofractal much more than
groups #1 and #2.

Neither the Hurst exponent nor the Broadness measure
are able to achieve the complete discrimination separately.
Thus, we need to increase the analysis into the 2D plane,
analyzing the data with both measures simultaneously. Figure
5 presents the centroid points for the four groups. These four
points look nearly evenly distributed on the plane. From this
figure, we can see that the Hurst exponent from the control
group is relatively large although it is not the largest. There is
only one group (group #2), which has bigger Hurst exponent
than the control group. Comparing these two groups, we can
tell that the Pupil-diameter measurement from the control
group is further from monofractal than group #2 since the
broadness measure of group #2 is the smallest.Therefore, we
can claim that the pupillary responses of individuals from
the control group is very smooth but fractal properties are
relatively inhomogeneous, which implies the causes of the
regularity are quite rich. Group #1 is located on the very left-
bottom side of the plane and hence it represents as measure-
ments with much irregular dynamics and homogeneous fractal
properties (indicates the cause of the irregularity is relatively
simple). Group #3 located on the top, close to the left side
signifies that the measurements are quite irregular and have
inhomogeneous fractal properties(indicates the cause of the
irregularity is not single).

To further address how the Hurst exponent and Broad-
ness could be the discriminating measures, we estimate bi-
variate kernel densities of them for each group. The contours
of these densities are given in the Figure 6. This figure
includes all the information shown in Figure 5. The variability
information of the two measures within each group, however,
provides more discriminating features. It is easy to see that
measures in group #2 are very compact while those in group
#3 are dispersed.

Another important task in the analysis of these mea-
surements is classifier training. Among the many candidates,
the k-nearest-neighbor classifier is chosen because it is model
free. The original datasets are divided into two parts, one of
them is assigned to training set and the other is used to test
the trained classifier. The training set includes 90% randomly
selected sample of each group from the whole datasets and the
rest is taken to be the test setTo choose the nearest neighbor
parameterk, the classifier is built as a learning process. The
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Fig. 5. Centroid points from bivariate measures:Hurst exponent and Broad-
ness

learning curve, which includes the test error and training
error corresponding to different parametersk, is given in
Figure IV. Although, relatively low training error could be
achieved by choosing smallk, the test error is too big for a
practically useful classifier. To overcome these drawbacks, we
adapt the model by combining techniques. Model combining
is a technique of combining the predictions from different
classifiers. The results have shown to be promising. For the
details of this combining technique, the reader is referred to
[Xu et al,1992]. The advantage of using model combining is
due to its ability of overcoming the instability of the single
classifier. In our study, the single k-nearest-neighbor classifier
is not very accurate and robust according to Figure IV. By
applying the model combining technique to these k-nearest-
neighbor classifiers (3 ≤ k ≤ 10), the test errors get much
smaller as we can see from Table II. Although the combining
rules do not make much difference, the result from mean-
combining rule is shown to be optimal among the alternatives.
Up to now, all analysis is done according to two features:
the Hurst exponent and Broadness. To demonstrate how an
additional measure may affect the classifier quality, we add
the left slopes into the feature vectors and the result of
classification design is reported in Table III. It is apparent
that both the test and training errors decrease a lot as the new
feature is added (e.g. the test errors drops down about 6%).

V. CONCLUSIONS

The overreaching goal of this detailed analysis was to
determine if individuals with different visual abilities exhibit
quantifiable differences in their interaction with graphical user
interfaces. These distinctions between classes of users can
enable developers to design improved interfaces for more
efficient and effective human-computer interactions. Pupillary
behavior is an informative, yet complex, means of quantifiably
assessing differences in the interaction behaviors of users.

Measurements of pupil diameter during task perfor-
mance is one way to study the effects of mental workload on
users. However, the inherent complexity of pupillary behavior
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Fig. 6. Joint density of both the Hurst exponent and Broadness

requires that robust and valid measures be developed to extract
the meaningful components of the data stream in order to
characterize those changes in pupillary behavior that distin-
guish changes in mental workload. In this way, the relative
mental workload of users with different visual capabilities can
be examined. These distinctions between user needs can be
used to modify visual interfaces and interaction paradigms in
order to best adapt information technologies for users with
visual impairments.

In this paper, we study how to incorporate characteris-
tics of the multifractal spectrum into the modeling and discrim-
ination of the Pupil-diameter high frequency measurement.
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TABLE II

ERROR RATE AFTER COMBINING THE NEAREST NEIGHBOR CLASSIFIERS

rule mean median max min majority voting

Training mean 0.42 0.43 0.44 0.42 0.46
Errors std. dev. 0.01 0.01 0.02 0.02 0.01
Test mean 0.51 0.53 0.52 0.52 0.55

Errors std. dev. 0.09 0.07 0.08 0.09 0.07

TABLE III

ERROR RATE AFTER COMBINING THE NEAREST NEIGHBOR

CLASSIFIERS(ADDING SLOPE FEATURE)

rule mean median max min majority voting

Training mean 0.407 0.414 0.417 0.401 0.432
Errors std. dev. 0.013 0.012 0.015 0.015 0.013
Test mean 0.446 0.450 0.439 0.459 0.475

Errors std. dev. 0.051 0.045 0.048 0.057 0.050

The multifractal process was validated to be appropriate in the
analysis of the Pupil-diameter measurements. By decomposing
the spectrum into describable parts, the feature extraction
is discussed to do further discrimination. The concept of
the Broadness of a multifractal spectrum is defined. The
analysis based on the Hurst exponent and Broadness measures
gave distinguishable characteristics of the pupillary responses
from the individuals with different visual acuity ranges. The
model-free classification method, k-nearest-neighbor classifier,
is applied with the model combining technique to build a
reasonable classifier.
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