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Abstract
This paper addresses the problem of classifying users with different

visual abilities based on their pupillary response data while perform-
ing computer-based tasks. Multiscale Schur Monotone (MSM) sum-
maries of high frequency pupil diameter measurements are utilized as
feature vectors (or input vectors) in this classification. Various MSM
measures, such as Shannon, Picard, and Emlen entropies, the Gini
coefficient and the Fishlow measure, are investigated to assess their
discriminatory characteristics. A combination of classifiers, motivated
by Bayesian paradigm, is proposed to minimize and stabilize the mis-
classification rate in training and test sets with the goal of improving
classification accuracy. In addition, the issue of wavelet basis selec-
tion for optimal classification performance is discussed. The members
of the Pollen wavelet library are included as competitors. The pro-
posed methodology is validated with extensive simulation and applied
to high-frequency pupil diameter measurements collected from 36 in-
dividuals with varying ocular abilities and pathologies. The expected
misclassification rate of our procedure can be as low as 21% by appro-
priately choosing the Schur Monotone summary and using a properly
selected wavelet basis.
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1 Introduction

The HCI (human-computer interaction) community is interested in under-
standing the the unique interaction needs and behaviors of individuals with
visual impairments who retain visual capabilities, albeit at a below ’nor-
mal’ level [Biglan et al, 1988]. Therefore, there is a need for methods and
procedures that can provide meaningful classification of individuals with
varying visual abilities. In the human visual system, the pupil functions
as a gain control device, which responds to external stimuli, such as lu-
minance changes, color and pattern changes, onset of motion, attention
and social signaling, in a very subtle way. It has been widely accepted
[Backs & Walrath, 1992, Hess & Polt, 1960, Hess & Polt, 1964] that pupil-
lary response (in terms of the dynamic pupil size) is becoming an important
mmeasure of mental workload, which may be useful for classifying users with
different abilities.

However, the pupil has an extremely complex control mechanism, which
is moderated by several variables [Sahraie & Barbur, 1997], as well as various
neural control pathways [Barbur, 2003]. As such, it is very difficult to tease
out the underlying differences in mental workload or information processing
when merely looking at point differences in pupil diameter. The inherent
complexity of pupillary behavior requires that robust and valid measures be
developed to extract the meaningful components from dynamic pupil be-
havior. While smoothing large aberrations in data values, and using global
or local means, may be suitable in helping to highlight even slight changes
in pupil diameter for short, simple tasks this averaging typically does not
work for longer, more complex tasks that will inherently include more nat-
ural fluctuations in pupillary response and a larger number of confounding,
non-cognitive effects. This being said, it is necessary to develop analytical
techniques that can isolate these small changes in pupillary behavior. A more
sensitive tool for the analysis of pupil measurement data may provide a so-
lution to this problem and provide a unique characterization of interaction
for individuals who are aging and/or have visual impairments.

This study examines the dynamic pupillary behavior of four groups of
individuals, in which known performance differences were exhibited, during
a computer-based task. Additionally, this study aims to examine if these
behavioral differences can be sufficiently modeled for purposes of user clas-
sification, proposing the application of low dimensional summaries of high
frequency data. Specifically, a summary measure called the Multiscale Schur
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Monotone (MSM) measure is derived to characterize the disbalance proper-
ties of the data distribution at different frequency scales. The MSM measure
carries information not only about the disbalance characteristics of the data,
but also about its correlation structure. Thus, the MSM summary is more
likely to be more sensitive to the differences in visual functioning between
users than any other single measure, such as correlation and global Schur
Monotone measures. The combination of classifiers is proposed to address
the inhomogeneous discriminatory information in the pupil diameter mea-
surements.

The remainder of this paper presents these MSM measures and their ap-
plication in the classification of individuals with varying visual functioning.
Section 2 derives a meaningful summary for high-frequency measurements
for the purpose of classification, with wavelet transform and Schur Mono-
tone measures briefly reviewed. Additionally, the concept of Schur Monotone
summaries in the multiscale domain (MSM) is introduced and its application
is illustrated via examples using MSM summaries. Section 3 describes the
classifier combining procedure and provides a Bayesian justification. Sec-
tion 4 discusses the high frequency pupil diameter measurements used in
this study. Section 5 illustrates the use of the MSM summaries of the high
frequency pupillary behavior to classify the users. The K-nearest-neighbor
(K-NN) classifier, equipped with combining techniques, is used for the clas-
sification. Finally, Section 6 discusses the factors affecting the classification
performance and the practical implications of the findings for research in
HCI.

2 Schur Monotone Summaries in Wavelet Do-

main

In this section, we first briefly review the wavelet transforms. Next, the
concepts of Schur Monotone ordering and Schur Monotone (SM) measures
are presented. Then, we introduce the Mutliscale Schur Monotone (MSM)
measure as a natural way to combine multiscale representations and Schur
ordering, and give two illustrative examples to demonstrate this new measure.

3



2.1 Discrete Wavelet Transform

Discrete (orthogonal) wavelet transformations (DWT) have become indis-
pensable tools in the analysis of data a with complex stochastic structure. It
turns out to be an appropriate tool to model non-stationary, non-Gaussian
and long memory measurements. DWT is simply a linear transformation.
Let y be a data vector of dimension (size) n. To avoid algorithmic complica-
tions we assume that n is an integer power of 2. The vector d representing a
wavelet transform of vector y can be written as

d = Wy,

where W is an orthogonal matrix of size n× n.
In practice, the choice of the orthogonal matrix W is related to the se-

lection of wavelet basis, and ultimately, to the selection of a wavelet filter
needed to implement the transform. The details on theory and statisti-
cal applications of wavelets can be found in [Vidakovic, 1999]. Due to the
properties of the wavelet functions, W usually admits the factorization in
terms of a series of sparse matrices. A fast algorithm based on filtering to
(equivalently) factorize the matrix W and calculate the wavelet-transformed
vector d was proposed by [Mallat,1989]. This algorithm is easily implemented
and is a part of many standard wavelet packages, such as the WAVELAB
module for MATLAB by the team from Stanford University (http://www-
stat.stanford.edu/∼wavelab/).

2.2 Schur Monotone(SM) Ordering

Schur Monotone ordering is the basis to define the SM measure of a vec-
tor. This is used to order the vectors in terms of the their “disbalancing”
characteristics. The definition of Schur ordering utilizes the inverted order
statistic of two normalized vectors with non-negative components. For a pair
of n-dimensional vectors x and y with non-negative components, the Schur
ordering is defined as

x ≺ y if

{ ∑k
i=1 x[i] <

∑k
i=1 y[i], k = 1, ..., n− 1∑n

i=1 xi =
∑n

i=1 yi
(1)

with x[i] and y[i] being the ith largest components of x and y respectively.
When x ≺ y, then it is said that x is Schur majorized by y.
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2.3 Schur Monotone Measure

The Schur Monotone measure is a scalar value assigned to a vector that
is sensitive to the Schur Monotone order. There are many available Schur
Monotone measures, which have been previously used in economics and bi-
ology. In fact, any function φ such that one of the following two conditions
are satisfied

1. x ≺ y ⇐⇒ φ(x) ≤ φ(y), and φ(ax) = φ(x) for all a > 0 or

2. x ≺ y ⇐⇒ φ(x) ≥ φ(y), and φ(ax) = φ(x) for all a > 0

can be used to measure the disbalance of vector x. If the first condition
is satisfied, function φ(·) is called a Schur convex measure. If the second
condition is true, φ(·) is called a Schur concave measure. In both cases,
φ(·) is a Schur Monotone measure. In this paper, we are interested in a SM
measure defined as

φ2(x) = −∑

i

log
xi

S
,

where S =
∑

i xi. This SM measure is usually called Picard entropy (Picard,
1979), which is different from Shannon entropy (Shannon, 1948) by only re-
moving xi’s in the summation terms. Other SM measures utilized in this
project include Gini’s coefficient (Gini, 1912), Fishlow’s measure (Fishlow,
1973) and Emlen’s modified entropy measure (Emlen, 1973). . There is a
comprehensive theoretical description and comparison for different SM mea-
sures in [Marshall & Olkin, 1979]. The choice of Picard entropy is substan-
tiated by the relatively good performance in discriminations as shown in
Section 5.

2.4 Multiscale Schur Monotone Measures

As previously noted, Schur Monotone (SM) measures have been very popular
in economics and biology for many years. SM summaries usually serve as a
measure of disbalance (or non-uniformity) in an observed vector. Therefore,
this measure is expected to provide good discriminative information if the
analyzed vectors have different uniformity characteristics. Unfortunately, in
some practical examples, the global disbalance (in the time domain) among
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the data vectors are too weak to result in powerful discriminatory infor-
mation. However, if we transform data to the time-scale (wavelet) domain
and compare the disbalance at corresponding frequency scales, the discrim-
inatory power of this measure may increase. This increase in sensitivity is
apparently due to the unmasking of the balance caused by the interplay of
different scale structures and the trends in the data. Through DWT, the
data vector is transformed to several wavelet coefficient vectors at different
frequency scales (also called resolution levels). Therefore, we are able to
define the SM measure at each level, with each measure summarizing the
disbalance information of the data vector within distinguishable scales. This
natural concept is named the Multiscale Schur Monotone (MSM) measure.
The computation of MSM is illustrated in Figure 1.

Data in the time domain

Level j=1

….

Level: j=2

Level: j=3

DWT

Wavelet

Domain

MSM at j=1

MSM at j=2

MSM at j=3

MSM at  ….

Figure 1: Computation Diagram of Multiscale Schur Monotone Measures.

We provide an example to illustrate the case when the Multiscale Schur
Monotone measure is beneficial compared to global, time domain disbalance
measures. Assume that the exemplary datasets are simulated by the following
two functions:

f(t) = Doppler + fGn(H = 0.2);

g(t) = a fixed permutation of f(t)

where doppler is a standard nonstationary testing function commonly used
in nonparametric regression [Donoho & Johnstone, 1994] and fGn(H = 0.2)
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is fractional Gaussian noise with Hurst exponent H = 0.2 [Mandelbrot, et al. 1968].
The time series plots of the typical data simulated from f(t) and g(t) are
presented in Figure 2. Clearly, these two functions do not differ from each
other as far the Schur Monotone measures in the time domain is concerned,
since this measure is invariant with respect to permutation. However, if we
map the data into the wavelet domain and compute the MSM measures, the
different scale levels show difference in their disbalancing measures. The ap-
parent differences are demonstrated by Figure 3, which is obtained by the
analysis of simulated data. We simulated R = 200 sample paths from f(t)
and g(t) respectively, each of length N = 2048. Next, the MSM measures
were computed for each sample path. The disbalance measure employed here
within each scale in MSM is Picard entropy as defined in 2.3, though other
disbalance measures will show similar results. To examine the differences of
the MSM measures between f(t) and g(t), we provide the box plots for the
MSM at each scale, which are included in Figure 3. The ability to distin-
guish f(t) and g(t) using MSM measures can be explained by the disbalancing
property of DWT. The total inequality exhibited in the time domain is al-
located to different frequency scales depending on the correlation structure.
Statistically speaking, f(t) tends to have higher values of MSM measures
in the first three scales than g(t) with larger probability. This pattern is
more pronounced in the finer scales than in the coarser ones because of the
smoothing effect of wavelet filtering.

0 500 1000 1500 2000
−2

−1

0

1

2

f(t
)

0 500 1000 1500 2000
−2

−1

0

1

2

g(
t)

Time Points

Figure 2: Typical time series plot for the data simulated from functions f(t)
and g(t), t = 1, 2, ..., 2048..
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Figure 3: Boxplots of the MSM measures for R = 200 replicates of simulated
sample paths generated from f(t) and g(t), each with t = 1, 2, ..., 2048. The
three panels correspond to the first finest three scales. The righthandside
panel represents the finest scale, while the lefthandside panel corresponds to
the coarsest level.

3 K-Nearest-Neighbor Classifiers and Their

Combinations

The Nearest Neighbor (NN) method is one of the simplest ideas of modeling
the regression (or classification) function between the response and predictor
variables. It can be expressed as

ŷ(xj) =
1

K

∑

xi∈NK(xj)

yi (2)

where ŷ(xj) is the fitted value of the response at xj and NK(xj) is the set
containing the first K nearest points to xj in the predictor variable space.
In our classification problem, the response variable y (user group) is cate-
gorical and takes only discrete values (e.g., Control, Group 1, etc.). The
closeness concept used here is based on Euclidean distance. The Nearest
Neighbor method assumes minimal assumptions on the underlying data and
is very flexible with respect to finding an arbitrary boundary. The crucial
part of K-NN modeling is the tuning of parameter K. It is well known
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[Hastie, et al, 2001] that in classification problems with parameter K = 1,
the misclassification rate is zero for training data set. However, the classifi-
cation boundary resulting from the Nearest Neighbor method depends very
much on the data adequacy of the training set. As a result, the boundary
is often very wiggly and unstable in the test set. In other words, the K-NN
classifiers are often associated with the problem of having a large amount of
variance in the prediction for the independent test data set.

An individual classifier usually performs best for certain types of data.
However, due to the complexity of certain types of datasets and/or those
with a small number of sample paths, the true properties of a population
are not able to be fully understood by single classifier. In another words,
the inhomogeneous property of the dataset makes it difficult to find a single
K-NN classifier that optimally fits the data. Although optimal results are
not produced from individual classifiers, each classifier describes the dataset
by emphasizing certain local aspects of features. It has been observed that
the misclassification of data by different single classifiers does not necessarily
overlap. Thus, each single classifier has its own values for predicting the
classes even if the results are not optimal. The non-overlapped misclassified
measurements suggest that those individual classifiers provide complemen-
tary information for the prediction. Therefore, a scheme using a combination
of the classification results may result in better prediction performance. A di-
agrammatic representation of the classifier combining procedure is presented
in Figure 4. In this paper, the classifiers to be combined are K-NN with
different tuning parameters K. We employed R = 8 and C1, C2, ..., CR are
K-NN classifiers with K = 3, 4, . . . , 10 in our simulation studies afterward.

Classifier 1

Classifier 2

Classifier R

I

N

P

U

T

V

E

C

T

O

R

.

.

.

Output 1

Output R

Output 2

Combining
Rule

Final Output

Figure 4: Diagram of Classifier Combining
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The combined classifier was originally proposed as an ad hoc procedure,
which was then justified by Bayesian decision theory [Kittler et al, 1998].
Consider a classification problem where four classes (y = 0, 1, 2, 3) are to
be distinguished. Suppose that there are R possible classifiers available de-
noted as C1, C2, ..., CR and each input xj is assumed to have prior probability
P [y(xj) = k], with k = 1, 2, ..., 4 to be concluded correctly from class k re-
gardless of the choice of model. According to Bayesian theory, the predicated

class ̂y(xj) of measurement j with feature vector xj, j = 1, 2, ..., N is

̂y(xj) = arg max
k∈{0,1,2,3}

P [y(xj) = k|C1, C2, ..., CR] (3)

Using Bayes theorem, the posteriori probability in (5) could be expressed
as

P [y(xj) = k|C1, C2, ..., CR] =
P [C1, C2, ..., CR|y(xj) = k]P [y(xj) = k]

P [C1, C2, ..., CR]
(4)

=
P [C1, C2, ..., CR|y(xj) = k]P [y(xj) = k]

∑3
m=0 P [C1, C2, ..., CR|y(xj) = m]P [y(xj) = m]

Several combination rules can be derived from (4), based on different as-
sumptions on the model probability distribution P [C1, C2, ..., CR|y(xj) = k]
and the prior probability P [y(xj) = k]. These combining rules are summa-
rized in Table 1. The final decision using combined classifiers is

̂y(xj) = arg max
k∈{0,1,2,3}

G(k) (5)

where the decision criteria function G(k) can be found in Table 1 correspond-
ing to the different combining rules.
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4 High Frequency Pupil Dataset

In this section, we briefly describe the datasets used in this study and how
the data was preprocessed to fit the further analysis.

4.1 Dataset description

The equipment used to collect the pupillary response data during this study
was the Applied Science Laboratories (ASL) Model 501 head-mounted optics
system. Pupil size was recorded, at a rate of 60 Hz, for each participant over
105 trials of a computer-based task using a graphical user interface (GUI). A
camera records the pupil image, which has been brightened by a near-infrared
beam that illuminates the interior of the eye. Pupil size is assessed as the
number of pixels attributed to the pupil’s image, which has been determined
by real-time edge detection processing of the image. Actual pupil diameter
measurements (in millimeters) are then calculated by multiplying each pixel
count by a scaling factor, which is based on the physical distance of the
camera from the participant’s eye.

The dataset is comprised of pupillary response data streams for 36 individ-
uals, as described in Table 4. In this table, N refers to the number of individ-
uals comprising this user group. Visual acuity refers to the range of Snellen
visual acuity scores of the better eye for participants of each group. AMD?
refers to the presence (Yes) or absence (No) of this ocular disease in individ-
uals within each group. Number of data sets refers to the number of 2048-
length data sets that were obtained from the data streams for each group.
For this study, data was collected from four groups of individuals, classified
by visual acuity and the presence or absence of age-related macular degener-
ation (AMD). Visual acuity, an individual’s ability to resolve fine visual de-
tail, was assessed via the protocol outlined in the Early Treatment of Diabetic
Retinopathy Study (ETDRS) [University of Maryland School of Medicine, 2002].
The experimental protocol from this study is fully described in studies by
Jacko and colleagues [?].

4.2 Preprocessing

Studies of pupillary response are faced with the problem of how to remove
blink artifacts. A blink generally lasts about 70-100 msec. (producing an
artifact spanning 4-6 observations under 60 Hz sampling) during which time
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Table 2: Group characterization summary.
Group N Visual Acuity AMD? Number of Data Sets

Control 19 20/20 - 20/40 No 111
#1 6 20/20 - 20/50 Yes 59
#2 5 20/60 - 20/100 Yes 57
#3 6 > 20/100 Yes 124

the camera registers a loss and a pupil diameter of zero is recorded. Thus, it is
generally relatively straightforward to detect and eliminate these contiguous
zero observation artifacts from the record. However, on either side of a
blink, one may also observe highly unusual recordings because the pupil may
be measured inaccurately when the eyelid partially obscures the pupil. The
result may be an impossibly small value for the pupil’s size.

To ensure that the analysis is conducted on pupil constriction or dilation
and not on misleading discontinuities caused by blinks or partial blinks, one
must either remove the blink observations from the data entirely or replace
them with linearly interpolated values. Blinks (i.e., zero recordings) have
been found to account for approximately 3-4% of all observations, with partial
blinks accounting for another 1% of the total number of observations. The
blink-removal procedure removes all observations having zero values (i.e.,
the blink) as well as any extreme values that occur within six additional
observations on either side of the zero value (i.e., partial blinks). Figure 5
presents a preprocessed result of the typical measurements from a healthy
subject (Control Group).

Because of the difficulty in collecting these measurements, especially from
individuals with AMD, the original datasets were cut into equal length pieces
to exploit their usage. Another reason for the segmentation is that the orig-
inal data streams were not equally long among participants. The segmen-
tation is conducted after the ’Six Law’ filtering, as mentioned above. The
overall dataset contains the sum of 351 segments of measurements, after
segmentation and necessary outlier detection, each having a length of 2048
readings. The distribution of the number of the segments among the four
groups (Control, #1, #2 and #3) is reported in Table 4.
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Figure 5: Typical measurements with different resolutions from a heathy
subject (Control Group).
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5.

5 User Classification using Multiscale Schur

Monotone Measures

In this section, we attempt to classify the user groups based on their high
frequency pupil diameter measurements. Due to the high dimensionality of
these measurements, it is necessary to derive low dimensional summaries from
these measurements to characterize these users. The disbalance feature of the
pupil-diameter measurements could be a good summary measure to describe
the eye behaviors during computer-interaction tasks. However, by simply
looking at the statistics of the SM measure in the time domain as shown
in Table 3, no significant differences were found to distinguish these four
groups. To increase the sensitivity of the disbalance measures, we employed
MSM measures. This choice is also motivated by the fact that there are
apparent long range correlations within these measurements as displayed in
Figure 6. MSM measures characterize the measurement by considering both
the disbalance and correlation structure simultaneously, which is not possible
in the time domain. Summary statistics of MSM measures are provided in

15



Table 4. As we can see from this table, the differences among these groups are
reflected by the MSM measures, especially at the finer scales. For example,
at the finest scale, level 1, the mean MSM measures of group #1 and #2 are
much smaller than that of control group. Group #3 tends to have similar
mean disbalance at level 1 as the control group while they apparently have
different medians. These results are interesting, as the MSM measures may
provide evidence of the erratic effect that ocular disease (in the case of Groups
1 and 2), particularly central field deficiencies, have on pupillary response
behavior, as previously discussed. While the distinction between Groups 1
and 2 and the Control group is expected, given the presence of ocular disease
in the experimental groups, the similarity of the Control group and Group
3 is unexpected. As can be seen in Table 2, the Control group and Group 3
are the most diverse with respect to both the presence of AMD and the level
of visual acuity. However, the MSM measures at level 2 provide considerably
more distance between these two groups.

The addressed differences in the MSM measures imply the discrimina-
tory information. To fully integrate this information, we propose to use the
combined K-NN classifiers to develop a statistical classification procedure to
automatically distinguish the MSM measures of the different user groups.

Table 3: Summary statistics of Schur Monotone Measures (104) in the time
domain.

Control #1 #2 #3

Min 1.563 1.5624 1.5625 1.5632
Mean 1.5619 1.5617 1.5618 1.5618

Median 1.5617 1.5617 1.5617 1.5618
Max 1.5616 1.5616 1.5616 1.5616

Std. Dev. 0.0003 0.0002 0.0002 0.0002

A 5-fold cross-validation scheme is used to guarantee the robustness of
our procedure. The datasets described in Section 4 are randomly divided
into two parts: 80% of the measurements are used as training set, which
is used to estimate the classification model; and the remaining 20% of the
measurements are regarded as test set, used to validate the classification
model. The default scheme of combining K-NN classifiers (see Section 3)
is employed to classify the MSM measures computed from pupil diameter
measurements. The cross-validation is repeated twenty times in order to
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Table 4: Group characterization summary in terms of the Schur Monotone
measures in the wavelet domain. Level 1-4 represent the first, second, third
and fourth finest scales respectively.

Statistics Level4 Level3 Level2 Level1

Control Min 583.02 1358.64 5467.64 19404.85
Group Mean 470.32 1100.71 3739.06 15526.69

Median 459.57 1093.07 3629.92 15703.12
Max 390.71 944.39 2861.20 12335.15

Std Dev. 54.45 106.53 578.94 2154.64
Group Min 564.35 1559.91 5169.51 19261.05

#1 Mean 447.78 1073.71 3458.55 13626.51
Median 444.43 1006.24 3282.31 14814.35
Max 389.91 875.12 1954.61 6770.97

Std Dev. 37.34 166.40 1001.68 3610.46
Group Min 516.56 1297.45 4777.68 18714.94

#2 Mean 429.85 1030.24 3423.02 14160.38
Median 431.18 1024.13 3538.62 15387.57
Max 380.67 885.53 2187.12 7871.65

Std Dev. 30.24 79.17 728.43 3287.20
Group Min 733.43 2366.90 9005.10 25460.81

#3 Mean 452.76 1304.61 4738.77 15989.98
Median 432.37 1198.93 4800.60 18413.07
Max 375.40 872.74 1933.66 4266.89

Std. Dev. 58.81 385.70 2215.99 7435.45
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estimate the mean and standard deviation of the misclassification rate. The
classification result is summarized in Table 5. The MSM measures at the
three finest scales are considered here as the input vector in the classification
model and the wavelet basis used to conduct DWT is Daubechies wavelet
with two vanishing moment. The product combining rule, which assumes
independence among the classifiers to be combined, does not work very well
in our study because we combine a family of K-NN classifiers with different
tuning parameters, which are quite likely to depend on each other. Therefore,
the results for the product combining rule are reported here and thereafter.
The rest of the combining rules mentioned in Section 3 work comparably in
terms of the misclassification rate for the test set, although the MAX rule
seems to slightly outperform the others.

Table 5: Error rates after combining the Nearest Neighbor classifiers using
MSM measures at the three finest levels.

rule mean median max min majority voting

Test avg. 0.2566 0.2592 0.2408 0.2592 0.25
Error std. 0.0345 0.0344 0.036 0.0382 0.0462

Training avg. 0.2474 0.2551 0.245 0.2257 0.2489
error std. 0.0098 0.0089 0.0104 0.0166 0.0093

6 Discussions

In this section, we discuss the possibility of improving the classification per-
formance of the default model used in Section 5 by choosing the coarsest
level and wavelet basis in DWT.

6.1 Choice of the Coarsest Level

The number of scales included in MSM measures is a parameter to be de-
cided in our classification model. This is equivalent to choose the coarsest
level in DWT, which affects the size of the input vector and is further re-
lated to the fitting quality of the classifier. More than enough scales of the
coarsest level may result in overfitting, while not enough DWT levels results
in oversmoothing. Table 7 illustrates the fact that if we use MSM measures
from the two finest scales, the performance will be decremented at least 3%,
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which implies an underfitting case. On the other hand, if we include MSM
measures at the first four scales, the performance will still be decremented at
least 2% - a case of overfitting. Therefore, MSM measures at the first three
finest scales are the optimal choice for our pupil diameter classification.

Table 6: Error rates after combining the Nearest Neighbor classifiers using
MSM measures at the finest two levels (underfitting).

rule mean median max min majority voting

test avg. 0.2763 0.2796 0.2875 0.2855 0.2987
error std. 0.0347 0.0316 0.035 0.0334 0.0328

training avg. 0.232 0.236 0.2465 0.232 0.2523
error std. 0.0105 0.0088 0.0112 0.0097 0.0081

Table 7: Error rates after combining the Nearest Neighbor classifiers using
MSM measures at the finest four levels (overfitting).

rule mean median max min majority voting

test avg. 0.2605 0.2664 0.2678 0.2711 0.2704
error std. 0.0463 0.0471 0.043 0.0442 0.0504

training avg. 0.2342 0.2384 0.2391 0.223 0.237
error std. 0.0116 0.0123 0.0134 0.0127 0.0116

6.2 Wavelet Basis Selection

The wavelet basis has substantial influence on the transformed coefficients of
pupil diameter measurements and is, therefore, an important factor in deter-
mining the classifier quality. We formulate an optimization study to search
for the best wavelet basis, which results in the most accurate classification.
The search will be limited to the Pollen wavelets library. Pollen wavelets
are a family of wavelet basis with a continuous mapping from [0, 2π]N−1

to a set of “wavelet solutions” in terms of the quadratic mirror filters of
h = {h0, h1, · · ·, h2N−1}, where N is the number of vanishing moments.
Pollen representation of all wavelet solutions of length 4 (N = 2) and length
6 (N = 3) is given in Tables 8 and 9. The Daubechies wavelet family is
included in the Pollen library as a special case.

There are many measures of classifier performance. Some popular mea-
sures include scatter-matrix and Bayesian risk, among others. Though these
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Table 8: Pollen paramterization for N = 2 (four-tap filters).[s = 2
√

2].
n hn for N = 2
0 (1 + cos(θ)− sin(θ))/s
1 (1 + cos(θ) + sin(θ))/s
2 (1− cos(θ) + sin(θ))/s
3 (1− cos(θ)− sin(θ))/s

Table 9: Pollen paramterization for N = 3 (six-tap filters).[s = 2
√

2].
n hn for N = 3
0 [1 + cos(θ1) + cos(θ2) + sin(θ1)− sin(θ2)− cos(θ1 − θ2)− sin(θ1 − θ2)]/2s
1 [1− cos(θ1) + cos(θ2) + sin(θ1)− sin(θ2)− cos(θ1 − θ2) + sin(θ1 − θ2)]/2s
2 [1 + cos(θ1 − θ2) + sin(θ1 − θ2)]/s
3 [1 + cos(θ1 − θ2)− sin(θ1 − θ2)]/s
4 [1− cos(θ1) + cos(θ2)− sin(θ1) + sin(θ2)− cos(θ1 − θ2)− sin(θ1 − θ2)]/2s
5 [1 + cos(θ1)− cos(θ2)− sin(θ1) + sin(θ2)− cos(θ1 − θ2) + sin(θ1 − θ2)]/2s

separability measures are optimal (or almost optimal) under certain assump-
tions, computational issues like matrix inversion and prior statistical knowl-
edge about the data often make this impractical. For a detailed discussion
of these measures, the readers are directed to [Fukunaga, 1990]. A more
practical and easily implemented measure of the separability is the misclas-
sification rate based on the input vector associated with the wavelet filter
H = (h0, h1, ..., hn).

As a result, our search procedure focuses on minimizing the misclassifica-
tion rate in the test set with respect to the wavelet filters. The first search is
done in the Pollen library with N = 2. The results are presented in Figure 7.
As shown in this figure, the performance varies up to about 9% with different
values of θ and the best performance is achieved around θ = 100◦. The scal-
ing and wavelet functions corresponding to this optimal Pollen wavelet basis
are plotted in Figure 8. To compare the performance of the different pollen
wavelet basis with a different number of vanishing moments, the search is
conducted for Pollen wavelets with N = 3. The results are shown in Figure
9. For N = 3, there is more variability in performance with these differ-
ent parameters than those in the case of N = 2, resulting in worse overall
performance compared with N = 2. This can be attributed to the locality
and smoothness of the wavelet bases. The Pollen wavelet with N = 3 is
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smoother and, hence, tends to smooth the data more than N = 2. It may
be the case that some of the discriminatory information has been smoothed,
which causes the classification performance to become worse.
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Figure 7: Misclassification rates using a Pollen wavelet basis with different
parameter θ ∈ [0, 2π]. The classifiers here are the combined k-NN with MsSC
measure input vectors. The error rates shown in the figure are the average
values for 20 randomly selections of test set from the whole dataset. The
minimum error rate here is 21.32%, which is achieved at θ = 100◦.

7 Conclusions and Future Work

The classification procedure for the user group is developed utilizing the
Multiscale Schur Monotone measures in the wavelet domain and ad hoc
classifier combination schemes. We investigated the performance of differ-
ent Multiscale Schur Monotone measures in this particular user classifica-
tion problem. It turns out that the Picard’s entropy measure works best
among the considered candidates. We also considered the stabilization of
misclassification rates by using combinations of single basic classifiers. This
heuristic procedure implies some approximation of Bayesian model averag-
ing. Our user classification example validates this procedure through the
relatively low misclassification rate, which resulted in the randomly selected
test set. Additionally, we studied the problem of searching for the optimal
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Figure 8: GT wavelet basis (Four-tap Pollen wavelet basis with θ = 100o).
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Figure 9: Misclassification rates using Pollen wavelet basis with different
parameter θ ∈ [0, 2π]2. The classifiers here are the combined k-NN with
MsSC measure input vectors. The error rates shown in the figure are the
average values for 20 randomly selections of test set from the whole dataset.
The error rates here are obviously quite larger than 4-tap Pollen wavelet
filter. The 6 curves correspond to different values of θ1.
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wavelet basis among certain candidate wavelet families. Those families in-
cludes Daubechies and Pollen. In the Pollen wavelet family (limited to four
tap filters), we found that the basis with parameter φ = 100◦ achieves the
best classification performance for the pupil-diameter measurements. Over-
all, the expected misclassification could be at least around 21% by choosing
the appropriate wavelet basis and Multiscale Schur Monotone measure. This
exciting result is of much importance in the HCI community.

The utility of these analytical tools for applied research in HCI has
tremendous potential, as user classification is of primary importance in this
field of research. The use of novel statistical methods, as shown in this pa-
per, shows promise for the ability to use complex physiological data from
users to better understand their unique needs and behaviors. While further
data collection is needed to help increase the amount of data being analyzed,
the initial results suggest that the presence of ocular disease and/or acu-
ity loss does result in dynamic, complex differences in pupil behavior. In
essence, MSM measures can be used to ’tease-out’ differences in the pupil-
lary behavior of individuals with and without ocular disease, possessing a
range of visual acuity. The results not only show the fairly reliable classifica-
tion or distinction of individuals with and without ocular disease (AMD), as
the separation of the Control Group and Group 1 illustrates, but the results
also illustrate finer distinctions amongst groups with a similar ocular disease,
but with varying visual functioning (e.g., visual acuity), as the separation of
Groups 1, 2, and 3 illustrates. This ability to separate these groups, based
on dynamic pupillary behavior, illustrates the usefulness of these analytical
procedures for user classification.

One of the overreaching goals of this study was to examine the use of
high-frequency pupillary behavior as a means of quantifiably assessing dif-
ferences between users during performance of a computer-based task. The
results of this study show great potential toward this goal, as MSM mea-
sures were used to distinguish the user groups. This distinction between user
groups was used to generate a promising predictive model of user classifica-
tion. The future implications of this study include the application of these,
and similar, analytical tools for other high frequency physiological data, such
as eye movement, heart rate and brain signals.
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