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Abstract. Statistical inference in the wavelet domain remains vibrant area of con-
temporary statistical research because desirable properties of wavelet representations
and the need of scientific community to process, explore, and summarize massive data
sets. Prime examples are biomedical, geophysical, and internet related data.

In this paper we develop wavelet shrinkage methodology based on testing multiple
hypotheses in the wavelet domain. The shrinkage/thresholding approach by implicit
or explicit simultaneous testing of many hypotheses had been considered by many
researchers and goes back to the early 1990’s. Even the early proposal, the univer-
sal thresholding, could be interpreted as a test of multiple hypotheses in the wavelet
domain. We propose two new approaches to wavelet shrinkage/thresholding.

(i) In the spirit of Efron and Tibshirani’s recent work on local false discovery rate,
we propose the theoretical counterpart Bayesian Local False Discovery Rate, BLFDR,
where the underlying model assumes unknown variances. This approach to wavelet
shrinkage can also be connected with shrinkage based on Bayes factors.

(ii) The second proposal to wavelet shrinkage explored in this paper is Bayesian False
Discovery Rate, BaFDR. This proposal is based on ordering of posterior probabilities
of hypotheses in Bayesian testing of multiple hypotheses.

We demonstrate that both approaches result in a competitive shrinkage methods by
contrasting them to some popular shrinkage techniques.

KEY WORDS: Shrinkage; Multiple Hypotheses Testing, False Discovery Rate, Bayesian Local
False Discovery Rate.

1 Introduction

In this paper we introduce wavelet-based shrinkage based on two versions of false discovery rate:
local FDR and Bayesian FDR based on selecting dominant posterior probabilities. The developed
methodology is comparable to currently best available wavelet shrinkage methods. Even though
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the two proposed methods may not achieve the minimum of MSE they possess two distinct quali-
ties: (i) they are of thresholding type leading to most parsimonious representations desirable when
dimension reduction is an issue, and (ii) the bias of obtained estimators is small.

Simultaneous testing of multiple hypotheses has always attracted the attention of statisticians
(e.g., Folks, 1984) but traditionally, the number of hypotheses was modest (say,< 20). Nowadays,
thousands of hypotheses need to be tested simultaneously and the traditional methods (such as
Bonferroni, for example) are not sensible because of loss of specificity and power.

To illustrate the loss of specificity, consider a gene expression example. Assume that a chip
contains 10000 genes and not a single gene is differentially expressed. If we test each of 10000
hypotheses separately at levelα = 0.01, we would expect that 10000×0.01 = 100 of the tests
would havep-value less thanα, i.e., 100 of the tests would be falsely significant and the probability
that at least onep-value will be less thanα (family-wise error rate) is around 1. Thus, individual
p-values are no longer valid measures of significant findings.

For controlling the FWER (family-wise error rate, Dudoitet al., 2003), conservative methods
such as Bonferroni correction is widely used, however this method also suffers from the lack of
power when the number of hypotheses is large. For microarray data, for example, the goal is to
focus on several candidate genes for further study. Thus, the low power of FWER-controlling
procedure is unacceptable and it would be better to control the false discovery rate, FDR, a method
that is discussed in some detail in following Sections.

To formally illustrate what happens in a testing problem when the number of hypotheses to be
tested simultaneously increases, we consider paradigmatic problem of testing for the multivariate
normal mean.

Suppose we wish to test

H0 : θ = 0 vs. H1 : θ 6= 0, (1)

whereX ∼ MVN n(θ, In) is observed. A sufficient statistics for the problem is||X||2. If the
alternative is precise,θ = θ1, then theα-level maximum likelihood ratio test has approximate
power

1− Φ

(
z1−α − ||θ1||2/

√
2n√

1 + 2||θ1||2/n

)
≈ 1− Φ

(
z1−α − ||θ1||2/

√
2n

)
. (2)

If ||θ1||2 goes to infinity, the power of the test is expected to tend to 1, however, if||θ1||2 goes
to infinity aso(

√
n), the power tends toα whenn increases. Thus, for high-dimensionalθ, the

discriminatory distance||θ1||2 is shrunk to||θ1||2/
√

2n, and the power tends to the significance
level.

This dissipation of power, while testing multiple hypotheses is discussed by many researchers.
Folks (1984) gives an excellent overview of multiple hypothesis testing, including the Tippet
method which can be viewed as a precursor of FDR method of Benjamini and Hochberg (1995),
and local FDR discussed in Section 2. Another classical repository of methods used in multiple
hypothesis testing is monograph by Miller (1981).

In his spirited paper with applications in genomics, Efron (2004) found that local FDR tends to
overfit the model. He demonstrated that replacing the “theoretical null distribution” by its empir-
ical counterpart often improves the model selection. We connect local FDR approach (Efron and

2



Tibshhirani, 2002; Efron, 2004) to the related model selection procedure based on Bayes factors
in the context of wavelet-smoothing. Consistently with Efron’s findings, the empiricalH0 density
in the local FDR tends to have longer tails, leading to more parsimonious models. An efficient
proposal to replace theoretical null by empirical null based on nonparametric version of Empirical
Bayes estimator is proposed by Datta and Datta (2004).

The paper is organized as follows. Section 2 introduces local false discovery rate in wavelet
domain, Section 3 introduces thresholding by ordering posterior probabilities (BaFDR), Section 4
presents simulational results for four standard signals, Section 4.4 shows application of the LFDR
and BaFDR to an atomic force microscopy signal.

2 Local False Discovery Rate in the Wavelet Domain

Many proposed wavelet shrinkage methods can be interpreted as multiple hypotheses testing in
the wavelet domain. For example theuniversal thresholdingof Donoho and Johnstone (1994),
recursive likelihood ratio testsof Ogden and Parzen (1996),false discovery rateof Abramovich
and Benjamini (1995, 1996) are some early references. Vidakovic (1997) proposes the use of
Bayesian hypothesis testing and Bayes factors in the tasks of wavelet thresholding. Vidakovic and
Ruggeri (2001) develop an adaptive Bayesian model in which the resulting Bayes rule acts as a
shrinker in the wavelet domain. Their method (Bayesian Adaptive Multiscale Shrinkage, or short
BAMS) is now part ofGaussianWaveDenof Antoniadis, Bigot,and Sapatinas (2001) and allows
for incorporation of prior information about the signal. We review the local false discovery rate
and establish the link with Bayes factor shrinkage induced by BAMS model, all in the context of
wavelet shrinkage.

Suppose the observed datay = (y1, . . . , yn) represent the sum of an unknown signalf =
(f1, . . . , fn) and random noiseε = (ε1, . . . , εn). Coordinate-wise,yi = fi +εi, i = 1, . . . , n. In the
wavelet domain (after applying a linear and orthogonal wavelet transformationW to the observed
data), expression (3) becomesdjk = θjk + εjk, i = 1, . . . , n, wheredjk, θjk, andεjk are thej, k-
th coordinates in the traditional scale/shift wavelet-enumeration of vectorsWy, Wf andWε,
respectively. Our assumption is that the coefficientsdjk can be considered independently, since the
wavelet transformations are decorrelating. When modeling in practice, such an assumption prove
to be very reasonable. In the exposition that follows, we omit the double indexjk and work with
a “typical” wavelet coefficient,d. Therefore, our model is

d = θ + ε. (3)

One way to select the parsimonious model is to componentwise test that the signal part of the
coefficient is zero, i.e.,H0 : θ = 0. If the hypothesis is rejected the coefficient is significant and
retained in the model. If theH0 is accepted, thend in the model is replaced by 0. After alln tests
are conducted, the coefficients that survived the tests are back transformed to the domain of the
original data.

Whenn simultaneous null hypotheses are tested, the corresponding test statistics (likely not all
independent) will result inn p-values,p1, p2, . . . , pn. UnderH0 thesep-values represent a sample
from a uniform distribution.

3



It is more convenient to work withz-values,z1, . . . , zn, where

zi = Φ−1(pi). (4)

Under theH0 thezis are theoreticallyN(0, 1), and the standard normal tables could be used.
Define local false discovery rate as the ratio off0(z), theoretical null density forzs andf(z)

observed empirical density forz’s,

lfdr (z) =
f0(z)

f(z)
.

Efron (2004) suggests to keep in the model, asinteresting, all coefficients for whichlfdr (zi) =
f0(zi)
f(zi)

is smaller than some threshold value, sayγ = 0.10. As pointed in the same paper, by drop-
ping p0 which is close to 1 (most of theH0s are true, only a few coefficients are retained in the
model), the probabilityP (Uninteresting|z) = p0f0(z)/f(z) is close tolfdr (z) = f0(z)/f(z) and
represents a link with Bayes factor shrinkage proposed by Vidakovic (1997).

Next we introduce the local false discovery rate for a specific model first discussed in the
wavelet context by Vidakovic and Ruggeri (2000).

Assume that[d|θ, σ2] ∼ N(θ, σ2) and the priorσ2 ∼ E(µ), µ > 0, with densityf(σ2|µ) =
µe−µσ2

. The marginal likelihood (withσ2 integrated out) is

[d|θ] ∼ DE
(

θ,
1√
2µ

)
, with densityf(d|θ) =

1

2

√
2µe−

√
2µ|d−θ|.

If the prior onθ is

[θ] ∼ πoδ0 + π1DE(0, τ), (5)

then the predictive distribution ofd is

[d] ∼ m(d) = π0DE
(

0,
1√
2µ

)
+ π1m1(d),

wherem1(d) is

τe−|d|/τ − 1√
2µ

e−
√

2µ|d|

2τ 2 − 1/µ
,

The Bayes factor in favor of testingH0 : θ = 0 versus the alternativeH1 : θ 6= 0, when wavelet
coefficientd is observed is

B01(d) =
f(d|0)

m1(d)
=

1
2

√
2µe−

√
2µ|d|

τe−|d|/τ− 1√
2µ

e−
√

2µ|d|

2τ2−1/µ

(6)

By straightforward calculation,

f0/m(d) =
B01(d)

π1 + π0B01(d)
(7)
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and lfdr can be estimated bŷB01(d)/(π1 + π0B̂01(d)) whereB̂01 is an empirical counterpart of
Bayes factor.

Using the empirical counterpart of Bayes factor means that we choose the empirical null hy-
pothesis instead of theoretical one. Local false discovery rate, lfdr, computed by using the em-
pirical counterpart of Bayes factor (B̂01) corresponds to the empirical null hypothesis and lfdr
computed by using the exact Bayes factor (B01) corresponds to the theoretical null hypothesis.

In multiple testing problem, Efron (2004) considered the choice of an appropriate density for
the null hypotheses, the point there being that large-scale situations can provide their own “empir-
ical null”, which may differ in important ways from the traditional theoretical null appropriate for
any individual problem. In addition, permutation and bootstrap null density estimates should be
considered as improved versions of theoretical null, rather than empirical nulls.
Remark 1. In the illustrative example of gene expression data (Jung et al., 2005), it is shown that
the frequently used permutation methods can be misleading when the mean of the distribution of
test statistics for most genes(non-differential genes) is not zero because the random permutations
of expression levels across the control and treatment groups make the mean of the distribution
definitely zero. This would yield a bias in the mean estimate and thus result in inaccurate estimation
of FDR.

Jung et al. (2005) proposed the fully Bayesian mixture model-based method in meta-analysis
to estimate the null distribution of test statistics and compared it with the permutation methods
by computing the FDRs given the critical value. The proposed method was applied to four pub-
licly available prostate cancer gene expression data and the results showed that the model-based
approach is superior to the permutation method.

In this example, the mean of test statistics of non-differential genes was estimated 0.177, larger
than zero and the null density from permutation method showed the center around zero, showing
significant difference from the estimated density in the proposed method. Also for example, with
critical value 1.207, the FDR estimated by the mixture model is 0.001, while the FDR estimated
by the permutation method is 0.022.
Remark 2. From the form of Bayes factor in (6), it follows thatB01 < α leads to a thresholding
rule |d| > λ, for someλ = λ(α).

The Bayes factor provides a measure of data support for theH0 and is used to calculate poste-
rior odds ofH0 as

p0

p1

=
π0

π1

B01,

whereπ0

π1
are prior odds.

A coefficient should remain in the model if theB01 < α. Since adaptive Bayesian shrinkage
uses level varying probability of null hypothesis,π0 = π0(j), wherej is the level in the wavelet
decomposition, the local false discovery rate is equivalent to the following rule based on Bayes
factors,

Keep the wavelet coefficient at levelj in the model as interesting if B01 ≤ α(j).

In automatic procedureα(j) is always1, which reflects the fact thatH0 is more readily rejected.
This means that the thresholding is not performed and the coefficient is retained as significant.
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3 FDR Ordering of Posterior Probabilities (BaFDR)

As we hinted in the Introduction, wavelet shrinkage, in form of thresholding of wavelet coefficients,
can be viewed as a multiple testing problem. For each observed wavelet coefficientdi = θi + σεi,
consisting of signal partθi and the errorσεi the hypothesisH0 : θi = 0 is tested against the
alternativeH1 : θi 6= 0. If the hypothesisH0 is rejected, the coefficientdi is retained in the model
as significant. Otherwise, it is discarded.

For example, the universal threshold can be viewed as a critical value of a test with the level

α = P (|di| >
√

2 log n σ |H0 ) ≈ (n
√

π log n)−1.

The power of this test against the alternativeH1 : θi = θ (6= 0) is O
(

1
n
√

log n

)
.

Universal thresholding is equivalent to a Bonferroni-type procedure. In testingn statistical hy-
potheses simultaneously, the Bonferroni procedure guarantees that the overall level of the omnibus
test isα by setting the levels for the individual hypotheses asα

n
. For largen, the individual levels

α
n

become unduly small, leading to loss of “strictness” and dissipation of power. This loss of strict-
ness means that many ofH0 : θ = 0 are accepted, i.e., many observed coefficients are discarded
from the model leading to over-smoothing.

A way to control such dissipation of massive acceptance of null hypotheses could be based on
thefalse discovery rate(FDR) (Abramovich and Benjamini, 1995, 1996; Benjamini and Hochberg,
1995).

Here is a brief description. LetR be the number of wavelet coefficients retained in the model.
If S of them are correctly kept, thenV = R − S are erroneously kept. The random variable
Q = V/R expresses the error in such a procedure. The false discovery rate of coefficients is the
expectation ofQ; that is, the expected proportion of coefficients erroneously kept. One maximizes
the number of coefficients kept, subject to conditionIEQ ≤ α, for α small.

Several Bayesian alternatives to FDR are proposed from the Bayesian stand point, a nice
overview can be found in Tadesseet al. (2005).

Rosner and Vidakovic (2000) propose an FDR procedure in which that is based on the assess-
ment of posterior probabilities of hypotheses. An application is given in Angelini and Vidakovic
(2003). Suppose that in testing ofn hypothesesH0, we obtain a sequence of their posterior prob-
abilities,p1

0, p
2
0, . . . , p

n
0 . Let p(1), p(2), . . . , p(n) be increasingly ordered posterior probabilities, and

q(k) = 1− p(k), k = 1, . . . , n.
When deciding about retaining the wavelet coefficients in the model (“a discovery”, “interest-

ing coefficient”, etc.) by rejecting corresponding null hypothesesH0 : θ = 0, one controls the
number of hypotheses that are erroneously rejected,V . If theR hypotheses with smallest posterior
probabilities are rejected, we require the expectation (with respect to the posterior measure) of
Q = V/R not to exceedα. Note that

IEQ =
1

R

R∑
i=0

iP (AmongR rejected hypotheses, the number of erroneously rejected isi)

=
1

R

R∑
i=0

iPR(i), (8)
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where the probabilitiesPR(i) can be calculated efficiently as the coefficients with powerszi in
generating polynomial

ϕR(z) =
R∏

k=1

(q(k) + p(k)z) =
R∑

i=0

PR(i)zi. (9)

Thus, this Bayesian FDR procedure (BaFDR) can be summarized as follows:

• STEP 1. Find the posterior probabilitiespjk of all hypothesesH0 : θjk =
0 and order them according to their size.
• STEP 2.Fix α small and setR = 1.
• STEP 3. IncreaseR by 1. FindϕR(z) usingp(1), . . . , p(R), and calculate
IEQ.
• STEP 4. If IEQ ≥ α then the maximum posterior probability of rejection
is p(R−1). STOP.
Otherwise, ifIEQ < α, return toSTEP 3.

The introduced BaFDR naturally leads to wavelet thresholding. It turns out that such shrinkage
is also linked with the shrinkage based on Bayes Factors andlfdr discussed in the previous sections.

Note that the posterior probabilityp0 of hypothesisH0 is

p0(d) =
B01(d)

π1

π0
+ B01(d)

(10)

whered is observed wavelet coefficient andπ1

π0
are prior odds in favor ofH1. This is an easy

reformulation of the definition of Bayes Factor which links the prior and posterior odds:

p0

p1

= B01 × π0

π1

.

If the hypothesesH0 is rejected, by (10),

p0(d) ≤ α is equivalent to B01(d) ≤ α

1− α
× π1

π0

.

We provide the simulational results involving the standard test functions and the BaFDR shrink-
age. Because of its global nature the resulting shrinkage is inferior to the state of art local,
neighborhood-dependent shrinkage methods.

4 Simulations and Application

The same setup is used for both BaFDR, and Local Bayesian FDR in wavelet domain. Four stan-
dard test functions (blocks, bumps, doppler and heavisine ) are rescaled so that an
added standard normal noise produces a preassigned signal-to-noise ratio (SNR). The wavelet
bases used are: Symmlet 8 fordoppler andheavisine , Haar forblocks and Daubechies 6
for bumps, as standardly done. Number of levels in wavelet decomposition is 4 for signal length
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of 512, 5 levels for signal length1024 and6 for signal length2048. The in all three cases the
smooth level contains 32 coefficients which are left intact.

One of the key challenges in shrinkage/thresholding methods based on Bayesian model is spec-
ification of hyperparameters. It is desirable to have an automatic and objective procedure amenable
to a range of input signals and noises. Our method is based on Empirical Bayes moment-matching.
In principle it is possible to use more formal Empirical Bayes MLII method, but for practicable
models such avenue leads to a nontrivial extremal problems.

We discuss two cases in specifying the hyperparameters. In the Case 1 the parameters are
specified in a global way, i.e., coefficients in all detail levels have the same model. This case is
compared to two popular global methods: VisuShrink and SureShrink (Donoho and Johnstone,
1994; Donoho, 1995; and Johnstone and Donoho, 1995).

In the Case 2 the model parameters depend on detail level, thus the models are level-dependent.
The level dependent shrinkage is compared to ABWS of Chipman, Kolaczyk, and McCulloch
(1997) and BAMS of Vidakovic and Ruggeri (2001). Both of these methods are implemented by
Antoniadis, Bigot, and Sapatinas (2001). More detailed description of this automatic hyperparam-
eter selection is provided next.

4.1 Tuning the Model Parameters: Case 1

This is global model, i.e., hyperparameters in models for all detail coefficients are the same.

1. µ is the reciprocal of the mean for the prior onσ2, or, equivalently, the square root of the
precision forσ2. We first estimateσ by a robust Tukey’spseudos = (Q1 −Q3)/C, where
Q1 andQ3 are the first and the third quartiles of the finest level of details in the decomposition
and1.3 ≤ C ≤ 1.5. We propose 1

pseudos 2 as a default value forµ; according to the Law

of Large Numbers, this ratio should be close to the “true”µ.

2. π0 is the weight of the point mass at zero in the prior onθ and taken to be independent of
level j.

3. τ is the scale of the “spread part” in the prior (5). In the case of a double exponential prior,
the variance of the signal part is2τ 2. Because of the independence between the error and the
signal parts, we haveσ2

d = 2(1− π0)
2τ 2 + 1/µ, whereσ2

d is the variance of the observations
d. This yields

τ =

√√√√max

{
σ2

d − 1
µ

2(1− π0)2
, 0

}
.

Note whenτ = 0, the prior (also the posterior) put all their mass at 0, which results in
δ(d) = 0.

4.2 Tuning the Model Parameters: Case 2

Models are level-dependent, i.e., some hyperparameters in models for detail coefficients are the
same within a level, and different for different levels.
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1. µ is specified as in the Case 1.

2. π0 is the weight of the point mass at zero in the prior onθ and should depend on levelj.
Depending on our prior information about smoothness,π0 should be close to 1 at the finest
level of detail and close to 0 at the coarsest levels. We propose a hyperbolic decay inj,

π0(j) = 1− 1

(j − coarsest + 1)γ
, coarsest ≤ j ≤ log2 n,

wherecoarsest is the coarsest level subjected to shrinkage.

3. Specification ofτ coincides with that in Case 1 but withπ0 replaced byπ0(j). In this case,
σ2

d = 2(1− π0(j))
2τ 2 + 1/µ, and

τ =

√√√√max

{
σ2

d − 1
µ

2(1− π0(j))2
, 0

}
.

4.3 Results

Table 1 gives the mean-squared error MSE (Variance+Bias2) for VisuShrink, SureShrink, BaFDR
(α = 0.05), and BLFDR-fixed, as procedures with a global shrinkage model and for BAMS,
ABWS, and BLFDR-ld as level dependent shrinkers on standard test signals. The test signals are
rescaled so that the noise varianceσ2 equals 1. Signal-to-noise ratio is 7 and sample size is 1024.

Table 1 gives MSE (Variance+Bias2) for VisuShrink, SureShrink, BaFDR (α = 0.05) and
BLFDR as comparable global methods. In addition to superior MSE, Bayesian hard-thresholding
alternatives have much smaller bias.

To illustrate performance of BLFDR and BaFDR for standard signals and SNR’s we provide
three tables with simulational results. Tables 2 and 3 give global and levelwise BLFDR. For the
global casep0 = 0.95 while in the levelwise case parameters are determined as in the Case 2 with
γ = 2.5. Table 4 gives MSE value for global shrinkage induced by BaFDR withα = 0.05 and
π0 = 0.90.

Figure 1 shows a graphical example of the application of the above concepts. For the sake of
brevity we show only Doppler signal. MATLAB programs producing MSE and figures for other
test signals are available at
http://www.isye.gatech.edu/˜brani/wavelets.html .

Figure 2 shows ordered posterior probabilities (from BaFDR) for Doppler signal. Note that,
as expected, for most of the coefficients the posterior probability is close to 1. On the other hand,
the selection principle is robust with respect to the choice of maximal posterior probability – the
number of coefficients in the model is essentially the same for all value of the posterior probability
smaller than 0.9.

4.4 An Application in AFM

To illustrate features of the BLFDR and BaFDR shrinkage approaches proposed here we used
measurements in atomic force microscopy (AFM).
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blocks bumps
V ISUSHRINK 0.6840 (0.0719 + 0.6122)1.5707 (0.1165 + 1.4543)
SURESHRINK 0.2225 (0.1369 + 0.0856)0.6827 (0.2660 + 0.4167)

BAFDR 0.1460 (0.1137 + 0.0322)0.5768 (0.2880 + 0.2888)
BLFDR-FIXED 0.1244 (0.1129 + 0.0115)0.3796 (0.2584 + 0.1212)

ABWS 0.0995 (0.0874 + 0.0121)0.3495 (0.2228 + 0.1267)
BAMS 0.1107 (0.0965 + 0.0142)0.3404 (0.1976 + 0.1428)

BLFDR-LD 0.1184 (0.1154 + 0.0031)0.3828 (0.2637 + 0.1191)

doppler heavisine
V ISUSHRINK 0.4850 (0.0523 + 0.4327)0.1204 (0.0339 + 0.0864)
SURESHRINK 0.2285 (0.0946 + 0.1340)0.0949 (0.0416 + 0.0534)

BAFDR 0.2489 (0.1049 + 0.1440 0.1098 (0.0463 + 0.0635)
BLFDR-FIXED 0.1817 (0.1272 + 0.0545)0.1010 (0.0689 + 0.0320)

ABWS 0.1646 (0.1006 + 0.0640)0.0874 (0.0442 + 0.0433)
BAMS 0.1482 (0.0899 + 0.0584)0.0815 (0.0511 + 0.0304)

BLFDR-LD 0.1801 (0.1283 + 0.0519)0.1070 (0.0814 + 0.0256)

Table 1: MSE (Variance+Bias2) for VisuShrink, SureShrink, BaFDR (α = 0.05) and BLFDR (as
global methods) and ABWS, BAMS, BLFDR (as level-wise methods). The standard test signals
are rescaled so that the noise varianceσ2 equals 1. SNR is 7, and sample size is 1024.

The AFM is a type of scanned proximity probe microscopy (SPM) that can measure the adhe-
sion strength between two materials at the nanonewton scale (Binnig, Quate and Gerber, 1986). In
AFM, a cantilever beam is adjusted until it bonds with the surface of a sample, and then the force
required to separate the beam and sample is measured from the beam deflection. Beam vibration
can be caused by factors such as thermal energy of the surrounding air or the footsteps of someone
outside the laboratory. The vibration of a beam acts as noise on the deflection signal; in order for
the data to be useful this noise must be removed.

The AFM data from the adhesion measurements between carbohydrate and the cell adhesion
molecule (CAM) E-Selectin was collected by Bryan Marshal from the BME Department at Geor-
gia Institute of Technology. The technical description is provided in Marshall, McEver, and Zhu
(2001).

Figure 3 depicts the original AFM signal (Panel (a)), signal smoothed by BaFDR procedure
(Panel (b)), signal smoothed with global BLFDR procedure withπ0 = 0.999 fixed for all levels
(Panel (c)), and signal smoothed by BLFDR with level-dependentπ0 butγ fixed at5.

5 Conclusion

In this paper we proposed and explored two natural approaches to threshold wavelet coefficients.
The approaches are based on multiple testing of hypotheses in Bayesian fashion. They are linked
with the hard thresholding paradigm and also with local false discovery rate methodology proposed
and explored by Efron and Tibshirani (2002) and Efron (2004). The proposed approaches are
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Function n SNR=3 SNR=5 SNR=7 SNR=10
Blocks 512 0.2434 0.2159 0.1982 0.1810

1024 0.1884 0.1433 0.1244 0.1044
2048 0.1279 0.0904 0.0698 0.0570

Bumps 512 0.5022 0.5733 0.6596 0.7407
1024 0.3356 0.3660 0.3796 0.3946
2048 0.2235 0.2227 0.2261 0.2384

Doppler 512 0.2439 0.2524 0.2676 0.2872
1024 0.1684 0.1692 0.1817 0.1901
2048 0.1180 0.1044 0.1053 0.1079

Heavisine 512 0.1510 0.1593 0.1888 0.2123
1024 0.1120 0.0943 0.1010 0.1185
2048 0.0897 0.0688 0.0698 0.0796

Table 2: Performance of Local False Discovery Rate in Wavelet Domain. The table shows average
MSE for 1000 simulations, with parametersτ andπ0 = 0.95 fixed for all levels.

desirable when dimension reduction is important and they have small bias, as typical for hard-
thresholding estimators.

The methodology leading to BLFDR is quite general and could be developed for a range of
Bayesian models as well. We adhere to the concept of reproducible research. The BLFDR and
BaFDR are implemented inMATLAB , and m-files with examples can be found at
http://www.isye.gatech.edu/˜brani/wavelets.html
under BLFDR and BaFDR.

Acknowledgements:Ilya Lavrik and Brani Vidakovic acknowledge support of NSF Grant 0505490
and DoD-NSA Grant E-24-60R.
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Function n SNR=3 SNR=5 SNR=7 SNR=10
Blocks 512 0.2859 0.2483 0.2073 0.1688

1024 0.1997 0.1472 0.1184 0.0977
2048 0.1101 0.0910 0.0750 0.0595

Bumps 512 0.4876 0.5540 0.6174 0.6702
1024 0.3272 0.3698 0.3828 0.3877
2048 0.1981 0.2210 0.2381 0.2594

Doppler 512 0.2759 0.2916 0.2982 0.3049
1024 0.1625 0.1699 0.1801 0.1912
2048 0.0858 0.0942 0.1081 0.1178

Heavisine 512 0.1981 0.1834 0.1900 0.1966
1024 0.1077 0.1010 0.1070 0.1202
2048 0.0598 0.0566 0.0606 0.0700

Table 3: Performance of Local False Discovery Rate in Wavelet Domain. The table shows average
MSE for 1000 simulations, with level-dependent parametersτ andπ0, γ = 2.5.
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Figure 1: (a) Doppler signal with noise (SNR=7); (b) BLFDR withp0 = 0.95; (c) BLFDR with
levelwisep0; and (d) BaFDR withα = 0.05.
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Figure 2: Ordered posterior probabilities (from BaFDR) for Doppler signal.
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Figure 3: (a) Original AFM signal; (b) Smoothing with BaFDR; (c) Smoothing with BLFDR with
π0 = 0.999 fixed for all levels; and (d) Smoothing with BLFDR with level-dependentπ0 but fixed
γ = 5.
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