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High resolution of NMR spectrocopic data of biosamples are a rich
source of information on the metabolic response to physiological vari-
ation or pathological events. There are many advantages of NMR
techniques such as the sample preparation is fast, simple and non-
invasive. Statistical analysis of NMR spectra usually focuses on differ-
ential expression of large resonance intensity corresponding to abun-
dant metabolites and involves several data preprocessing steps. In
this paper we estimate functional components of spectra and test their
significance using multiscale techniques. We also explore scaling in
NMR spectra and use the systematic variability of scaling descriptors
to predict the level of cysteine, an important precursor of glutathione,
a control antioxidant in human body. This is motivated by high cost
(in time and resources) of traditional methods for assessing cysteine
level by high performance liquid chromatograph (HPLC).

1 Introduction

During the last decade, metabolomics has provided new opportunities to
investigate complex dietary and nutritional questions by applying quanti-
tative methodologies to information-rich profiles of dietary chemicals and
their metabolites [11, 12]. NMR spectroscopy has been utilized in exploring
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physiological variations in macronutrient metabolism and has shown to be
a fast, simple, and non-invasive method for “fingerprinting” of metabolic
compounds. These advantages, however, are offset by complex spectral rep-
resentations. For example, 1H NMR measures proton (hydrogen) signals
from all plasma metabolites. However almost every molecule in plasma con-
tains multiple protons which results in overlapped and complex spectra. For
this reason advanced signal processing techniques are increasingly used to
analyze the NMR spectra.

Statistical analysis of NMR spectra traditionally focuses on differential
expression of large resonance intensity corresponding to abundant metabo-
lites and involves several data preprocessing steps such as baseline correc-
tion, peak alignment and normalization. These preprocessing steps are not
perfect and often lead to ambiguities and information loss. Researchers have
developed statistical methods and multidimensional NMR techniques that
identify important metabolites contributed to toxicological and pathophys-
iological conditions or treatments by comparing the spectra.

A previously unaddressed question is what is the interplay of metabolites
with small “energies” in spectra, how they “communicate”, and what is
the position-lagged correlation of their spectral contents. In contrast to
exploring a few large resonance intensity in the spectra after preprocessing
of spectral curves, our analysis focuses on fractal properties of the output
signals and regularities of their scalings. An advantage of the proposed
method is that it does not require complicated preprocessing steps.

Formally speaking, we treat the spectra as functional data and employ
functional data analysis (FDA) techniques [25, 26] for extracting spectral
functional components characterized by treatments, subject blocking, and
maybe some other factors of underlying experimental design. At the same
time, we employ multiscale analysis that provides the tools for assessing the
scaling of derived functional components which is an intrinsic property of
functional observations and deriving descriptors that can be connected to
energy activity of all metabolites in the spectrum.

Since wavelets and wavelet-based methodology offer domains in which
the variation of a function can be explored at layers of nested scales, with
the possibility of controlling the total energy allocated to each resolution
level [21, 27, 28, 29, 36], we perform the multiscale analysis of spectral
components in the wavelet domain.

Traditional applications of wavelets in NMR spectroscopy are for dimen-
sion and noise reduction. The statistical foundation of these methods is due
to David Donoho and his coauthors. It is interesting that one of the first
template functions to test performance of wavelet methods was a caricature
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of an NMR spectrum, the function bumps, [6, 7]. More recent publications
describe emerging methods in NMR data processing and some novel uses of
wavelets in NMR processing [13, 14, 17, 35].

In the following, we suggest new methods to extract biologically signifi-
cant information about the interactions of metabolites and their relationship
with biological functions that is contained in NMR spectra by using scal-
ing measures computed from wavelet coefficients. The method does not
require preprocessing. As an application, we use the systematic variability
scaling descriptors to predict cysteine concentrations from spectral data in
which cysteine itself cannot be detected because its concentration is below
detection limits. The measurement of plasma cysteine requires special blood
collection techniques, and analysis by HPLC requires the long sample prepa-
ration time before actual HPLC running. On the other hand, NMR does
not require any special blood collection technique or complicated sample
preparation. NMR running time is much shorter than that of HPLC. The
prediction of concentration of cysteine through multiscale analysis thereby
could save the cost and time of analysis compared to other methods.

To focus on the effect of diurnal time on the scaling coefficient, we use
functional repeated measure block design, a statistical design technique in
which the observations are spectra. The influence of subjects on scaling
index is not of interest and they serve as blocks. The scaling is assessed
from the functional ANOVA components corresponding to the treatment
effect of interest.

The paper is organized as follow. In Section 2 we describe the methodol-
ogy of functional data analysis and wavelet-based assessment of scaling. The
application of the methodology to assess the level of cysteine in blood plasma
is provided in Section 3. Remarks and conclusions are given in Section 4.

2 Methodology

In this section we describe data and statistical methodology utilized in the
analysis. Some technical details about the methods are deferred to Ap-
pendix. Our methodology is supported by two statistical techniques – (i)
functional data analysis (FDA) and (ii) scaling assessment. Both techniques
utilize multiresolution tools (wavelets) in their implementation.

2.1 Data

Human plasma samples were collected hourly over a 24 hour period (from
8:30 am to 8:30 am) from nine healthy adults under a protocol approved
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by the Emory University Institution Review Board. Subjects were given
standardized, nutritionally balanced meals to provide caloric intake at esti-
mated basal energy expenditure + 40% (derived from the Harris Benedict
equation) and adequate protein at 15% of total energy intake. Total energy
intake was provided as 15% protein (based on 0.8 gm protein/kg/day), 30%
fat, and 55% carbohydrate. Subjects consumed each meal within 45 minutes
(i.e., breakfast from 9:00–9:45 am, lunch from 1:00–1:45 pm and dinner from
5:00–5:45 pm) and the snack within 15 minutes (9:00–9:15 pm). Meals were
provided as a percentage of total energy intake as breakfast (30%), lunch
(30%), dinner (30%), and an evening snack (10%). Water was provided
ad libitum throughout the admission. Activity (if desired) was confined to
walking in the Emory General Clinical Research Center (GCRC) unit and
only within the following time frames (after the hourly blood draw): 10:00–
10:30 am, 12:00–12:30 pm, 14:00–14:30 pm, 16:00–16:30 pm, 18:00–18:30
pm and 20:00–20:30 pm. Otherwise, patients remained in their room, either
lying in bed or sitting in a chair. Blood samples were collected via a hep-
arinized butterfly needle and syringe. Tubes were spun in a microcentrifuge
at 14,600 g for 30 seconds at room temperature to remove blood cells. The
entire sampling procedure was less than 2 minutes for each hourly sample.
Plasma samples were maintained on ice until convenient for transfer to a
−70◦C freezer.

Plasma samples were thawed and a 600 ml porions are mixed with 66 ml
of deuterium oxide (D2O) containing DSS [3–(trimethylsilyl)–1–propanesulfonic
acid sodium salt (C6H15NaO3SSi, 1% w/w)]. 1H NMR spectra were mea-
sured at 600 MHz on a Varian INOVA600 spectrometer with water presat-
uration at 25◦C. The samples were maintained at 25◦C in the magnet at
least 10 minutes before measurement in order to ensure temperature sta-
bility. NMR spectra were measured with 64 scans into 16,384 data points
over a spectral width of 6600.7 Hz, which resulted in an acquisition time of
2.55s per sample (d1=0, pulse=5ms, presaturation=1s, acquisition=1.5s).
To check the reproducibility of the NMR analysis, spectra were acquired
on identical samples at multiple time points (1.5h, 3h, 4h and 6h). The
correlation coefficients of spectra were 0.96, 0.93, 0.97, 0.97.

Figure 1 shows the 1H FT(Fourier transform)-NMR spectra that measure
physiologic variations in macronutrients in human plasma. The columns
correspond to individuals while the rows represent time of sampling. For
each subgraph the horizontal axis is expressed as ppm (part per million) and
ranges between 10 and 0, while the vertical axis gives an artificial magnitude
adopted for comparison. Although the range of spectra for all patients is
the same, note that the individuals 5,8, and 9 have “richer” spectra which
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can be attributed to varying rates of absorbtion, distribution, metabolism,
and excretion.

The level of cysteine was measured by HPLC with fluorescence detection
of dansyl derivatives, [18]. This method requires two days for processing
and cysteine derivatition. Furthermore, HPLC running time took for 1 hour
to evaluate the cysteine concentration. In this study, we extract the Hurst
exponent from NMR spectrum to predict the level of concentration, although
cysteine concentration of human plasma cannot be directly observed in the
NMR spectrum. The acquisition time for one NMR spectrum is less than
15 minutes per sample. The preparation of sample for NMR is less than
5 minutes. Total time for NMR data collection per sample is less than 20
minutes. Comparing the NMR method to the HLPC method to extract the
level of cysteine, the NMR approach of human plasma is much simpler and
requires much less time than HPLC.

2.2 Assessing the Spectral Components via a Functional De-
sign

Given that our observations are functions (spectra) observed under different
conditions from different individuals, we employ functional data analysis
(FDA) to estimate, separate, and test spectral components corresponding
to different experimental factors.

FDA is a recent statistical methodology [25, 26] which treats functions,
images, n-dimensional continuum objects as observations and performs stan-
dard statistical inference tasks (estimation, testing, classification) on such
functional observations. Unlike the traditional statistical procedures that
treat functional observations as multivariate data, the FDA makes inference
on functions directly. For instance, estimating population mean function
µ(·) or testing that it is equal to 0, based on the sample of functional obser-
vations, are typical inferential tasks in FDA.

The traditional ANOVA statistical technique explores the scalar data
which are obtained under one or more (fixed- or random-level) experimental
treatments. It estimates the population treatment means and tests their
equality. The functional ANOVA (FANOVA) assumes that observations
are functions, in our case NMR spectra and performs equivalent statistical
inference.

It is assumed that the experiment in which the NMR spectra are mea-
sured is performed under p different treatments. Let b represent the number
of subjects observed under the treatment i, where i = 1, 2, . . . , p. The total
sample size is n = pb. It is of interest to estimate and test the functional
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Figure 1: The 1H FT-NMR spectra of human plasma samples of nine pa-
tients for 25 time points. The columns correspond to individuals while
the rows represent time instants. For each subgraph the horizontal axis is
chemical shift expressed as ppm unit and ranges between 10 and 0, while
the vertical axis gives NMR spectral intensity.
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contributions of the treatments to the spectral output. In the FANOVA
jargon, the observed spectra si`(δ) can be represented as superposition of 4
functions, µ(δ) which is a common part, αi(δ) which is the contribution from
the treatment i, β`(δ) which is the contribution of the subject ` (blocking
variable), and the error term εi`(δ). This can be expressed as

si`(δ) = µ(δ) + αi(δ) + βl(δ) + εi`(δ), i = 1, . . . , p, ` = 1, . . . , b. (1)

Here the variable δ represents chemical shift expressed in ppm unit. It is as-
sumed that for each fixed δ, εi`(δ) are independent normal random variables
with mean zero and common variance σ2. A rigorous way to introduce (1)
involves random fields and is provided in the Appendix. In simple terms,
each observed spectra is a sum of the mean spectra, treatment effect compo-
nent, subject effect component, and an error attributed to the measurement
procedure and uncontrollable fluctuations. The validity of this analysis is
contingent on precise alignment of spectra across times and subjects since
the estimators involve averaging the observed functions.

In the context of our data, the repeated measures are calibrated so that
measure 1 corresponds to 8:30 am. The each subsequent measure is 1 hour
apart from the previous one, so that 25th measurement corresponds to 8:30
am of the following day, i.e., p = 25. A total of nine individuals are followed
through all the treatment times. This study is not interested in differences
among the individuals; thus, the subjects are considered as a blocking factor.

Our major interest is the hourly variation of nutritional metabolomics.
We first separate the observed spectra as the sum of the mean spectra µ̂,
time effects α̂i and the subject effects β̂j , j = 1, . . . , 9. The estimates of
the time effects are shown in Figure 2. The mean hourly contributions to
the spectra are estimated as in the Appendix. Note that α̂1 and α̂25 (upper
left and lower right panels numbered as panels 1 and 25 respectively) are
similar in size, as expected. Note also that at some hours there is increased
expression of dominant metabolites compared to the average (panels 9:30
am, 3:30 pm, for example), while for some other times (panels 11:30 pm,
2:30 am, for example) the expression decreases.

The estimators of the block effects, i.e., the mean contributions to the
spectra by each subject, are given in Figure 3. Although these estimators
are not of interest in assessing the treatment means, their inequality is de-
sirable since it shows that our model accounts for the variability among the
subjects contributing to the precision of the assessment of the differences
between the treatment means. This is a universal benefit of blocking in all
experimental designs where blocking is possible. As evident in Figure 3, the
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Figure 2: Estimators of the time effects α̂i for 25 times. The upper left
panel shows α̂1 while the lower right panel shows α̂25.

mean contribution of each subject shows a different pattern. For example,
subjects 5, 8, 9 show increased expression of dominant features compared
to the average and subjects 1, 3, 4, 6, 7 show a decrease in the expression.

The FANOVA tests (details in Appendix) showed that both null hy-
potheses H ′

0 : α1(δ) = α2(δ) = · · · = α25(δ) = 0 and H ′′
0 : β1(δ) = β2(δ) =

· · · = β9(δ) = 0 were rejected with p-values of 0.0001 and 10−6, strongly sug-
gesting that the mean functional contributions to the spectra are non-zero
functions and vary significantly with δ, time and subjects.

Although these results are important, their practicality is limited. Other
relevant but exogenous parameters influence the functional estimators. This
motivated us to summarize the functional components of spectra via scalar
descriptors with realistic physical interpretation, as described in the follow-
ing Section.
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Figure 3: Estimators of the block effects for the 9 individuals.

2.3 Scaling of Spectral Components

Most high frequency biomedical measurements exhibit scaling. The reg-
ular scaling of high frequency data has been used in statistical modeling
tasks involving regression, classification, and experimental design [23, 30].
The scaling is described as regular decay of the energy in signals when
this energy is progressively measured at scales for which the resolution is
increasing. More precisely, the regular scaling is described by a linear rela-
tionship between the log-scale (scale defined as reciprocal of the frequency)
and log-average-energy within the scale. The slope of this linear relation-
ship uniquely determines the Hurst exponent, H, a constant between 0 and
1 that characterizes the scaling. For example, white noise is characterized
by H = 1/2, all turbulent signals have H = 1/3, and “random DNA walk”
corresponding to non-coding parts of human DNA have H ≈ 0.6. Most neu-
ral, ocular, and many other physiological high-frequency measurements scale
and this scaling has been used as a statistical summary of the outputs. The-
oretical details describing the estimation of the Hurst exponent are given in
the Appendix.

Next, we briefly discuss the rationale for use of scaling to summarize
NMR spectra. When trends in data are irrelevant and when smoothing
does not make sense, scaling analysis of row noisy measurements may yield
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useful information. For example, in the study on links between dynamics of
change of pupil diameter and ocular pathologies, Shi et al. [30] argue that
trends in high frequency measurements (> 200 Hz) are irrelevant since they
could be affected by the change of environmental light intensity, clearly not
related to the pathologies. However, the scaling in these measurements as-
sessed by the Hurst exponent carries discriminatory information about the
eye pathologies. Similarly, traditional analysis of 1H NMR spectra of human
plasma can be considered irrelevant to the plasma cysteine concentration be-
cause the dominant spectral measurements are insensitive to directly detect
cysteine.

Another important property of scaling is that it is invariant with respect
to shift/scale of the spectra, and does not require data preprocessing steps
such as baseline correction, peak alignment and normalization, unless per-
formed on one of the FANOVA components. The consequence is that the
estimator of the Hurst exponent is robust with respect to changes in a few
dominant resonance intensities corresponding to expressed metabolites or
marker chemicals.

If the signal has high Hurst exponent, the autocorrelations (correlations
between the signal and its shifts) are strong, signifying considerable internal
regularity. On the other hand, the signals with low Hurst exponent exhibit
intrinsic irregularity and antipersistency. In terms of NMR spectra, spectra
with a larger Hurst exponent would possess more internal regularity and
autocorrelation. This informally means that metabolites communicate more
when the Hurst exponent is higher and that they are more “co-expressed.”

The signature of scaling in the NMR spectral data is visible in a logscale
diagram (Figure 4). The horizontal axis represent diadic scales in which the
largest number (13 in Figure 4) corresponds to the Nyquist frequency i.e.,
the finest discernable scale. Note that the slope of the graph in the logscale
diagram corresponding to scales 10, 11, 12, and 13 differ from the slope
corresponding to scales that are below 10. This is an artifact of preprocessing
of spectra. The low scales of logscale diagram (2-5) are not of interest in
assessing the scaling since their values are affected by global energy of the
spectra and a few energetic peaks. The region with fairly constant slope in
the middle of the diagram is used to calculate the Hurst exponent.

We estimated the Hurst exponent from each of the spectra normalized
by subtracting the mean estimator, µ̂(δ). The rationale is to inspect the
scaling of the functional contributions for time and subject only. From
s∗i`(δ) = si`(δ) − µ̂(δ), i = 1, . . . , 25, ` = 1, . . . , 9, the matrix of Hurst
exponents, {Hi`} is obtained. Assume that each Hi` can be decomposed to
a “grand mean” H ′, effect of time H

′′
i , effect of subject H

′′′
` , and an error
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Figure 4: An average logscale diagram for each of 25 times.

εi` in the form of a block-design model

Hi` = H ′ + H
′′
i + H

′′′
` + εi`, i = 1, . . . , 25, ` = 1, . . . , 9.

A standard analysis of this model yielded that the hypothesis H0 : H
′′
i =

0, i = 1, . . . , 25 was rejected (p-value 0.0013); that is, there is a significant
difference in scaling with respect to times. The hypothesis H0 : H

′′′
` =

0, ` = 1, . . . , 9 was rejected as well (p-value < 0.0001), and a significant
difference in scaling is attributed to subjects. This is expected and justifies
the blocking. We note that if this blocking was omitted, i.e., if Hi`’s are
analyzed by one way ANOVA,

Hi` = H ′ + H
′′
i + εi`, i = 1, . . . , 25, ` = 1, . . . , 9,

the hypothesis H0 : H
′′
i = 0, i = 1, . . . , 25 was not rejected, in fact unac-

counted variabilities among the subjects masked the variability in times.
Figure 5 shows the hourly variations of Hurst exponent, estimated from

the FANOVA components corresponding to the time effects αi, as in Figure
2). Since αis are obtained by manipulating spectra, the alignment is nec-
essary (e.g., common average spectra is subtracted). We argue that even if
the alignment is not perfect and a few big peaks result from a misalignment,
the scaling is not affected if robust measures of average level energies are
used, as proposed in [33].

The left panel shows the average Hurst exponent by the hour, while the
right panel shows a compass-plot of the truncated average Hurst exponent.
It is noticeable that H values tend to be higher in the afternoon/evening and

11



12:30 pm 5:30 pm 10:30 pm 3:30 am 8:30 am
0.75

0.8

0.85

0.9

0.95

1

1.05

M

A/E N

M

  0.05

  0.1

  0.15

          10:30 am

10:30 pm        

           12:30 pm

12:30 am        

2:30 pm   

2:30 am

4:30 pm    

        4:30 am

6:30 pm      

         6:30 am

8:30 pm               8:30 am

Figure 5: Hourly variations of Hurst exponent as bar plot (left) and as
compass plot (right).

tend to be lower in the night to morning. This indicates that the metabolites
have more tendency to be co-expressed in the late afternoon than in the
morning. The three classes of time of day (morning, afternoon/evening,
night) we used are from the previous PCA (Principal Components Analysis)
results of the data [22].

2.4 Assessing the level of Cysteine

Cysteine (Cys) is an amino acid used for protein synthesis as well as many
other metabolic functions. Therefore, metabolic changes could potentially
serve as a biological response indicator of plasma cystaine. This suggests
that scaling measure of NMR spectra of human plasma could be useful to
assess the level of cysteine.

Cysteine is obtained directly from the diet and also from the essential
amino acid, methionine (Met), which is metabolized in individuals by the
transulfuration pathway to form Cys [16]. In addition to use in the pri-
mary sequence of most proteins, both Met and Cys are required for other
metabolic functions. Met is converted to S-adenosylmethionine, which is
used for methylation reactions [4] for structural and functional modifica-
tions of proteins, RNA and DNA, as well as synthesis of phospholipids and
signaling molecules. The carbon skeleton of Met is also used for biosynthe-
sis of polyamines, which are required for cell division and cell growth [37].
Cys is used for biosynthesis of glutathione (GSH), coenzyme A, taurine and
sulfate [32]. GSH functions in redox regulation [18] and detoxification of
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oxidants and reactive electrophiles [19]. Coenzyme A is central to fatty acid
metabolism and the citric acid cycle; taurine is utilized for bile acid synthe-
sis and osmotic regulation [15]; sulfate is used as a structural component of
oligosaccharides [34], transport of steroid hormones [31] and detoxification
of foreign compounds [20]. Both are required for physiologic processes in
addition to maintenance of protein synthesis and nitrogen balance.

Accordingly, Cys could have a central role in controlling metabolism.
Consequently we tested the association of the Hurst exponents of NMR spec-
tra with a quantitative measures of Cys in simultaneously collected samples
to determine whether a useful estimate of plasma Cys could be derived from
the metabolic spectrum.

Figure 6 shows the plot of the hourly variation of the average Cys level
with the average Hurst exponent and the associated scatter plot. The bi-
ological implication of co-behavior pattern of the Cys level and the scaling
measure reveals that we can make predictions of Cys level based on the
Hurst exponents of 1H NMR spectra. This means that, in principle, we can
use 1H NMR spectra for nutritional assessment, i.e., we can assess Cys levels
even though Cys is not directly detected in the sample.

The rationale is the following. When Cys level is high, the major
metabolic pathways producing different metabolites are well regulated. The
links between metabolites are strong in the sense that there is required co-
ordination of metabolism of lipids, carbohydrates, and proteins. On the 1H
NMR spectra, this well regulated link results in a more regular appearance.
Some portion of this regularity is likely to be due to multiple signals arising
from the same chemicals, especially among the metabolites not so distant
in the chemical shift. This regularity is properly sensed and assessed by
wavelet spectra and is measured by Hurst exponent. The higher exponent
corresponds to more regulated spectra which is linked to the increased level
of Cys.

3 Conclusions

NMR spectroscopy of human plasma and urine is attractive because it re-
quires minimal sample preparation, has a short run time and provides quan-
titative spectral information that depends upon intrinsic properties of the
biologic molecules. In this study, we performed FDA and scaling assessment
of NMR spectra and proposed a means to predict Cys concentration using
the scaling in the 1H NMR data.

Such a wavelet-based global spectral analysis can be extended to local
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Figure 6: Hourly variation of cysteine level with Hurst exponent and asso-
ciated scatter plot.

analysis that will identify neighborhoods of metabolites close in chemical
shift sense, responsible for particular changes. This analytic approach may
be useful for single, high-throughput analysis for chemical assessment of
cysteine as well as other key nutrients.
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Technical Appendix

In this Technical Appendix we give some details concerning the functional
ANOVA and wavelet-based assessment of scaling.

The functional ANOVA (FANOVA) model has been utilized by several
authors. For example, Ramsay and his team use the FANOVA to model lip
motion from acoustical data [24] and Fan and Lin apply it to test longitudinal
effects of business advertisement [10], while Abramovich et al [1] apply a
functional block design on the data coming from sport medicine.

In the FANOVA, the observations y are modeled as
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dyi`(t) = (µ(t) + αi(t)) dt + σ dWi`(t),

i = 1, . . . , p; ` = 1, . . . , ni;
p∑

i=1

ni = n, t ∈ T ⊂ Rs,

where σ > 0 is the diffusion coefficient, p and s are finite integers, µ(t) and
αi(t) are (unknown) s-dimensional mean and treatment effect functions and
Wi`(t) are independent s-dimensional standard Wiener processes. To ensure
identifiability of treatment effect functions αi, it is standardly imposed:

∫ ∣∣∣∣∣
∑

i

niαi(t)

∣∣∣∣∣ dt = 0. (2)

It is understood that the observations y are taken at a regular grid in
s-dimensional space tm = (t1,m, . . . , ts,m),

ti,m = m/N, 1 ≤ i ≤ s, 1 ≤ m ≤ N,

and that N is the discretization size.
The standard least square estimators for µ(t) and αi(t)

µ̂(t) = ȳ..(t) =
1
n

∑

i,`

yi`(t),

α̂i(t) = ȳi.(t)− ȳ..(t),

where ȳi.(t) = 1
ni

∑
` yi`(t), are obtained by minimizing the discrete version

of LMSSE ([25], p. 141),

LMSSE =
∑

t

∑

i,`

[yi`(t)− (µ(t) + αi(t))]2,

subject to discretized version of constraint (2), (∀t) ∑
i niαi(t) = 0.

The fundamental ANOVA identity becomes functional identity,

SST(t) = SSTr(t) + SSE(t),

with SST(t) =
∑

i,`[yil(t) − ȳ..(t)]2, SSTr(t) =
∑

i ni[yi.(t) − ȳ..(t)]2, and
SSE(t) =

∑
i,`[yi`(t)− ȳi.(t)]2. If MSE(t) = SSE(t)/(n− p) and MSTr(t) =

SSTr(t)/(p− 1), then for each t, the function

F (t) =
MSTr(t)
MSE(t)
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is distributed as non-central Fp−1,n−p

(P
i niα

2
i (t)

σ2

)
. For more on functional

statistical designs, use of decorrelating transformations (wavelets), and esti-
mation, regularization and testing of design components, see [5, 9, 10, 27, 36].

The self-similarity is an inherent property of many high-frequency func-
tional responses. If the data are self-similar, that is, scale in a regular fash-
ion, then a single descriptor in the form of a Hurst exponent, fully describes
the scaling.

There are many ways to assess the self-similarity and to estimate the
Hurst exponent. We mention the methods based on contrasting estimators
of variability, on various aspects of Fourier and wavelet spectra, methods
based on level-crossings, filtering, etc. The literature on this methodology
is rich and the monograph [8] provides a comprehensive overview.

We utilized the wavelet-based estimation of the Hurst exponent because
of its locality and robustness. A brief description of wavelet spectra follows.

Assume that the signal (1H NMR data) is wavelet-transformed to a range
of scales j0 ≤ j ≤ j1, where the j0 scale contains wavelet coefficients corre-
sponding to the coarsest details while the j1 scale corresponds to the details
in the highest resolution. A complete wavelet transformation contains in ad-
dition the scaling coefficients, but they play no role in determining the Hurst
exponent. The structure of decomposition (details of various scales and scal-
ing exponents) is the embodiment of the multiresolution analysis performed
by wavelets. The Hurst exponent quantifies scaling behavior in the data, and
classifies these intrinsic autocorrelations as persistent (H > 0.5), antiperspi-
rant (0 < H < 0.5), or white noise (H = 0.5). Researchers realized the
practical importance of scaling descriptors and utilized them in the statis-
tical inference tasks, see for instance [30] and references therein. Persistent
signals show more visual regularity while the antiperspirant signals exhibit
irregular, almost a zig-zag appearance.

The magnitudes of the detail coefficients over all scales are second order
descriptors of the process and, in total, constitute a wavelet spectrum of the
signal. Formally, within the scale j, averages of squared wavelet coefficients
(energies) are found. We denote these averages by E(j). The logarithms of
such average energies are proportional to the scale index j and this propor-
tionality is directly linked to the Hurst exponent; that is,

log2 E(j) = aj + C, (3)

where a is the slope, and C is an intercept. The slope a can be expressed in
terms of the Hurst exponent H as a = 2H − 1, which provides a practical
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approach to Hurst exponent estimation. For more information, consult [2,
3, 33].
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