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Abstract. Breast cancer is the second leading cause of death in women
in the United States. Breast Magnetic Resonance Imaging (BMRI) is an
emerging tool in breast cancer diagnostics and research, and it is becom-
ing routine in clinical practice. Recently, the American Cancer Society
(ACS) recommended that women at very high risk of developing breast
cancer have annual BMRI exams, in addition to annual mammograms, to
increase the likelihood of early detection. (Saslow et al. [20]). Many med-
ical images demonstrate a certain degree of self-similarity over a range
of scales. The multifractal spectrum (MFS) summarizes possibly vari-
able degrees of scaling in one dimensional signals and has been widely
used in fractal analysis. In this work, we develop a generalization of MFS
to three dimensions and use dynamics of the scaling as discriminatory
descriptors for the classification of BMRI images to benign and malig-
nant. Methodology we propose was tested using breast MRI images for
four anonymous subjects (two cancer, and two cancer-free cases). The
dataset consists of BMRI scans obtained on a 1.5T GE Signa MR (with
VIBRANT) scanner at Emory University. We demonstrate that mean-
ingful descriptors show potential for classifying inference.

1 Introduction

In the United States, breast cancer is the second leading cause of death in women
(after lung cancer), and is the most common cancer among women. One out of
eight women will develop breast cancer in their lifetime. The American Cancer
Society (ACS) estimated that about 40,460 women would die from the disease
in 2007 (Jemal et al. [10]). Studies have indicated that early detection and treat-
ment improve the chances of survival for breast cancer patients (Curpen et al.

[6], Smart et al. [21]). Breast imaging plays a vital role in screening for and
diagnosis of breast cancer and in monitoring the impact of treatment. In this
study, we target the development of analytical techniques to improve diagnostic
capabilities of BMRI.

While mammography and breast ultrasound are considered “gold standard”
for breast cancer screening, an increasing body of research has shown BMRI to
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be an effective diagnostic and interventional tool. BMRI has been approved by
the U.S. Food and Drug Administration since 1991 for use as a supplemental
tool to mammography for breast cancer diagnostics. It is also useful in breast
cancer staging, in treatment and preoperative planning, and for patient follow-
up after breast cancer treatment. Since 1999, there has been a 40% per year
increase in the number of BMRI examinations in the United States. Recently,
ACS recommended that women at very high risk of developing breast cancer
have annual BMRI exams, in addition to annual mammograms, to increase the
likelihood of early detection (Saslow et al. (2007) [20]).

Based on the principles of nuclear magnetic resonance (NMR), a technique
that is highly sensitive to physical, chemical and biological characteristics of tis-
sues and fluids, BMRI enables a 3-D examination of breast tissue and provides
a noninvasive assessment of the microcirculatory characteristics of tissues, in
addition to traditional anatomical information. The 3-D anatomical structure,
however, is insufficient for distinguishing between benign and malignant tis-
sues, and functional imaging is typically incorporated. In this setting, functional
imaging utilizes contrast agents for MRI, which enables the visualization of func-
tional changes when serial MRI scans are acquired. The typical contrast agent
for BMRI is Gadolinium (GAD) diethylenetriamine penta-acetic acid (DTPA).

Evaluating BMRI accurately and efficiently is essential, but it is very chal-
lenging in practice. BMRI produces massive 4-dimensional (three spatial di-
mensions plus a time dimension) data, posing challenges for analysis and de-
tection. At present, BMRI cannot always distinguish between cancerous and
non-cancerous functional dynamics, prompting the investigation into improved
methods.

Wavelet techniques have become indispensable for image processing, in par-
ticular when dealing with medical images. Mallat’s multiresolution analysis (see
Vidakovic [22]) decomposes an image into a set of approximation coefficients
(low frequency components) and the scale dependent hierarchy of detail co-
efficients (high frequency components). A standard tensor product orthogonal
wavelet transformation of an image results in three sets of generated detail coef-
ficients: diagonal, horizontal and vertical. Numerous references can be found in
the literature in which wavelets are applied to mammogram images. For exam-
ple, in Yoshida et al. [23], a wavelet transform was applied to detect clustered
microcalcifications. In Zheng et al. [24] and Derado et al. [5], a wavelet-based
image-enhancement method is employed to enhance microcalcification clusters
for improved detection. Recently there has been an increase in the use of wavelet-
based methodology in the analysis of BMRI data. Alterson and Plewes (2003)[1]
used a multiresolution non-orthogonal wavelet representation as a measure of
similarity to detect natural biological symmetries in breast MRI scans. Mainardi
et al. (2007) [13] present a nonrigid registration algorithm of dynamic MR breast
images based on a multiresolution motion estimation of the breast using complex
discrete wavelet transform. To the best of our knowledge, however, approaches
using scaling methodology in BMRI data can not be found in the published
literature.



Fractality is a concept pervasive in medical research. Many medical signals
and images demonstrate a certain degree of self-similarity over a range of scales,
lending to the development of algorithms based on fractal analysis of those ob-
jects (see Chen et al. [4] and Kuklinski [12]). For example, fractality was used
to detect breast cancer in Priebe et al. [16], Kestener et al. [11], and Bocchi et

al. [2]. Chen et al. [4] developd a pattern recognition technique based on fea-
tures derived from the fractal description of mammograms. Kuklinski [12] used a
wavelet transform modulus maxima method generalized to the two dimensional
case. They combined this approach with a multifractal analysis, enabling the
detection of tumors as well as microcalcifications. Kestener et al. [11] used long
range correlations and wavelet-based multifractality for tissue classification in
digitized mammograms to support clinical diagnosis. In Moloney et al. [14], the
MFS is used to analyze the pupillary behavior of older adults and to discriminate
between patients with various ocular acuity.

Processes with fractal characteristics that exhibit rich scaling behavior are
often referred to as multifractals. The fractional Brownian motion, a theoreti-
cal model for mono-fractality, is a non-stationary process whose sample paths
exhibit a homogeneous degree of regularity. For many applications, this homo-
geneous regularity may be too restrictive. In particular, one may want models
that account for differing degrees of regularity. Multifractal analysis is concerned
with describing the local singular behavior of functions in a geometrical and sta-
tistical fashion. It was first introduced in the context of turbulence and applied
in many other contexts such as Diffusion Limited Aggregation (DLA) patterns
research, earth quake distribution analysis, signal processing and internet data
traffic modeling. For an introduction to multifractals, see Riedi [18]. Multifrac-
tal models exhibit patterns of locally varying scaling behavior similar to that
encountered in medical and biological data (among others). They usually ex-
hibit a prevalent scaling behavior, but a multitude of other scalings may also
be present although occurring much less frequently. Since multifractal models
are in general non-stationary, standard tools in time series analysis such as the
Fourier transform are not appropriate because the Fourier transform is not lo-
calized in time. Evaluating the varying local properties of multifractal processes
requires analytical methods that are able to localize information in time and fre-
quency. Given that wavelets are local in both frequency/scale (via dilations) and
in time (via translations), the wavelet defined multiscale analysis is convenient
in assessing multitude scalings intrinsic for BMRI scans. For a detailed study of
multifractals, we refer the reader to Riedi [17] and Morales [15].

The multifractal spectrum (MFS) summarizes possibly variable degrees of
scaling in signals. In the case of fractals, scaling refers to the propagation of
energy when the signals or images are inspected at various resolutions. The
dynamics of the scaling can be used as discriminatory descriptors; thus, multi-
fractality provides an additional window through which to look at the data and
renders standard statistical approaches insufficient.

In this work, we generalize the concept of multifractal spectrum as it was
defined in Gonçalves et al. [9] to the three dimensional case and use some of



its low-dimensional descriptors to classify BMRI scans as either benign or ma-
lignant. Although the number of subjects analyzed is small (two cases and two
controls), our findings are consistent with empirical evidence that healthy re-
sponses are characterized by irregularity and that increased regularity may sug-
gest pathologies.

The paper is organized as follows. Section 2 gives a description of the data
to which we apply our proposed method. In Section 3, we provide a brief review
of the theoretical background of wavelets In addition, the three dimensional
multifractal spectrum is defined and some of its properties are illustrated on
the example of 3-D fractional Brownian motion MFS. Section 4 deals with the
application of our proposed methodology to cancer detection via the classifica-
tion of BMRI. In Section 5 we provide conclusions and delineate some possible
directions for future research.

2 Description of the data

The data consist of serial BMRI scans from each of four women: 2 cancer and
2 cancer-free cases. The scan series includes one pre-contrast image and four
post-contrast images acquired at 1, 3, 5, and 7 minutes after the contrast is ad-
ministered. The discriminatory pattern of contrast enhancement, characterized
by rapid accumulation in the malignant mass and rapid wash out, occurs in the
first few minutes following injection. By 7 minutes or later, the contrast uptake
in most breast tissue is enhancing. Each 3-D scan contains 104 such sagittal slices
comprised of an array of 256× 256 pixels and slice thickness of 3mm. The scans
were obtained on a 1.5T GE Signa MR (with VIBRANT) scanner at Emory
University.

Fig. 1. Illustration of the data structure and acquisition



3 Methodology

In this work we present a conceptual description of MFS in three dimension
and demonstrate its utility in the classification of BMRI images. Our approach
consists of two main steps. First, we estimate the multifractal spectra and extract
a number of low dimensional summaries (such as slopes, tangents, broadness and
spectral mode). Then, we use these summaries as discriminatory measures for
BRMI images.

3.1 Background on wavelets

The 3-D wavelet basis functions are constructed via translations and dilations
of a tensor product of univariate wavelets and scaling functions. For technical
reasons, we consider L1-normalization of wavelets instead of standard L2 nor-
malization, of which expression for ψj,k, φj,k is,

φj,k(x) = 23jφ(2jx1 − k1, 2
jx2 − k2, 2

jx3 − k3)

ψi
j,k(x) = 23jψi(2jx1 − k1, 2

jx2 − k2, 2
jx3 − k3)

where i = h, l, v, hl, hv, lv, hlv denote the different directions on a cube (see Fig.
2, left), x = (x1, x2, x3) ∈ R3, and k = (k1, k2, k3) ∈ Z3. Then, any function
f ∈ L2(R

3) can be represented as

f(x) =
∑

k

cj0kφj0,k(x) +
∑

j≥j0

∑

k

∑

i

di
j,kψ

i
j,k(x) (1)

where the wavelet coefficients are given by

di
j,k = 23j

∫
f(x)ψi(2jx − k)dx (2)

The 3-D multifractal wavelet spectra will be defined using the wavelet coefficients
di

j,k, along the scale index j. We assume that the mother wavelet ψ has R van-

ishing moments, that is,
∫
xrψ(x)dx = 0, r = 0, . . . ,R, because the decorrelation

property of wavelet coefficients depends upon this assumption.
Although the wavelet analysis of n-dimensional structures is conceptually

straightforward, it is not routinely implemented in standard wavelet software
and for this project we developed and implemented the three dimensional trans-
formation in MATLAB’s freely available package Wavelab [3].

3.2 3-D Multifractal spectrum

In Gonçalves et al. [9], it is shown how the oscillatory or scaling behavior of a
process carries over into the local scaling properties of its wavelet coefficients di

j,k

in (2), under assumption that the wavelet is more regular than the process. The
following local singularity strength measure in 3-D can be defined using wavelets

αi(t) := lim
k2−j→t

− 1
j
log2 |d

i
j ,k| (3)
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Fig. 2. Seven directions on a cube corresponding to detail level hierarchies in a 3-D
wavelet transforms (left); Summary measured (descriptors) from a schematic multi-
fractal spectrum (right).

where k2−j → t means that t = (t1, t2, t3) ∈ [2−jk1, 2
−j(k1+1))×[2−jk2, 2

−j(k2+
1))×[2−jk3, 2

−j(k3+1)) for k = (k1, k2, k3) and j → ∞. Smaller α(t)corresponds
to larger oscillations in X and thus to more singularity at time t. The index i
in (3) corresponds to one of seven directions in detail spaces of 3-D wavelet
transform, horizontal (h), vertical (v) or diagonal (d) up to horizontal, verti-
cal, diagonal (hvd). Typically, a process will possess many different singularity
strengths. The frequency (in t) of occurrence of a given singularity strength α
is measured by the 3D multifractal spectrum, defined for each direction i as

f i(α) := lim
ǫ→0

lim
j→∞

1
j

log2M
i
j

M i
j := 2−j#{k : 2−j(α+ǫ) ≤ |d i

j ,k| ≤ 2−j(α+ǫ)}.
(4)

For k ∈ {0, . . . , 2j − 1} × {0, . . . , 2j − 1}, f i takes values between −1 and 0.
Smaller f i(α) means that “fewer” points t behave with strength α(t) ≃ α.

The 3-D multifractal spectrum f i defined in (4) is very hard to calculate. A
simpler approach makes use of the theory of large deviations (see Ellis, [8]), where
f i would be interpreted as the rate function of a Large Deviation Principle: f i

measures how frequently (in k) the observed (−1/j) log2 |d
i
j,k| deviate from the

“expected value” α0 in scale j. In our 3-D context, it corresponds to studying
the scaling behavior of the moments of the wavelets coefficients (2). For every
direction i, the partition function is defined,

T i(q) := lim
j→∞

(−1/j) log2 E|di
j,k|

q (5)

It describes limiting behavior of qth moment of a typical wavelet coefficient
di

j,k from the level j and direction i. The multifractal formalism posits that the
multifractal spectrum can be calculated by taking the Legendre transform of the



corresponding log moment generating function (Riedi et al. [19])

f i(α) = f i
L(α) := inf

q
[qα− T i(q)]. (6)

It can be shown that f i
L(α) = qα− T i(q) at αi = T

′i(q) provided T
′′i(q) < 0.

3.3 Wavelet-based estimator

We discuss in this section wavelet-based estimation of the 3-D multifractal spec-
trum (4). Given a realization of the 3-D fBm of size 2J × 2J × 2J , and using the
stationarity of the wavelets coefficients {di

j,(k1,k2,k3)
, i = h, l, v, hl, hv, lv, hlv; j =

J0, . . . , J − 1, k1, k2, k3 = 0, . . . , 2j − 1}, the sample counterpart of E|di
j,k|

q is

Ŝi
j(q) :=

1

23j




2j

−1∑

k1=0

2j
−1∑

k2=0

2j
−1∑

k3=0

|di
j,(k1,k2,k3)|

q



 (7)

for q > −1. The partition function can then be estimated as the power-law expo-
nent of the variation of Ŝi

j(q) versus scale 2−j. By linear regression of log2 Ŝ
i
j(q)

on j between scales j1 and j2 we get

T̂ i(q) :=

j2∑

j=j1

aj log2 Ŝ
i
j(q), (8)

where the regression weights aj must verify the two conditions
∑

j aj = 0 and∑
j jaj = 1 (Delbeke and Abry [7]). Thus, we can estimate f i(α) though a local

slope of T̂ i(q) at values

α̂i(ql) = [T̂ i(ql+1) − T̂ i(ql)]/q0, ql = lq0

as
f̂ i(αi(ql)) = qlα

i(ql) − T̂ i(ql).

Multifractal spectra can be found even for monofractal processes, the spectra
generated from monofractal processes are ramp-like with a dominant (modal)
irregularity corresponding to the theoretical Hurst exponent (see Riedi [17]).

Rather than operating with multifractal spectra as functions (densities), we
summarize them by a small number of meaningful descriptors. Each multifractal
spectrum (in each direction) can be approximately described by 3 canonical
descriptors without loss of the discriminant information, which are (1) Spectral
Mode (Hurst exponent,H), (2) left slope (LS) or left tangent (LT ) and (3) width
spread (Broadness, B) or right slope (LS) or right tangent (RT ). A typical
multifractal spectrum can be quantitatively described as shown in Figure 3.
Understanding the H and LS (or LT ) is straightforward. H represents the apex
of the spectrum or the Hurst exponent, and LS (or LT ) represents the slope
of the distribution produced by the collection of Hurst exponents with smaller



values of the mode (H). However, broadness (B) is a more intricate descriptor
of the multifractal spectrum. Broadness (B) is believed to be more meaningful
than right slope (RS) or right tangent (RT ) because it is a compound measure
representing the overall nature of the multifractal spectra, taking into account
the overall variability among the Hurst exponents. In addition, broadness (B)
partially accounts for right slope (RS) or right tangent (RT ) in calculation, as
the resultant value of B is based on the relative values of RS and LS. Both slopes
(or both tangents) can be obtained easily using the interpolation technique, while
it is not straightforward to define the broadness (B) automatically. The location
of the start and end points of the width spread has been set to the roots α1 and
α2 which satisfy the equation f(α) + 0.2 = 0 as in (Shi et al. 2006). Figure 3
depicts the MFS of a simulated 3-D fBm with H = 0.3 and H = 0.7. Notice
how the maximum of every f i(α) is attained close to α = 0.3 and α = 0.7,
and deviations from the exact values can be attributed to discretization or small
number of dyadic levels.

−1 0 1 2 3 4 5
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

α

f(
α)

−1 0 1 2 3 4 5 6
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

α

f(
α)

Fig. 3. 3D MFS associated to a 3D fBm with H = 0.3 (left) and H = 0.7 (right),
respectively.

4 Application in analysis of BMRI images

In this section, we provide an application of the previously defined 3-D wavelet-
based multifractal spectrum to the classification of BMRI images. We classify
images as benign or malignant, by analyzing the fractal properties of the back-
ground of the image. Each image was divided in non-overlapping subimages,
each of size 256 × 256 × 256. Each 3-D image contains 104 slices of 256 × 256
scans that are boundary mirror extended to obtain “wavelet friendly” dimension
of 256.

Figure 4 displays 256 × 256 BMRI slices (cross-sections) from a cancer case
and from a control (non-cancerous) subject.
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Fig. 4. Examples of case (left) and control (right) BMRI scans, one sagittal slice is
shown.

Figure 5 shows particular multifractal descriptors (see also Fig. 2 and its
caption) in selected directions for the BMRI data containing two cases and two
controls. Fig. 5 (a) displays two selected descriptors, namely H and LS, since
they are easily interpretable and appear to distinguish features of cases and
controls reasonably well. The descriptor H measures the global irregularity of a
scan, while LS describes the deviation from mono-fractality. Images with higher
LS values exhibit greater mono-fractality, and a pure monofractal theoretically
has an infinite LS. The direction hlv, corresponding to the main diagonal, is
selected since the hierarchy of wavelet hlv-subspaces contains genuine details.
That is, coefficients are obtained by applying high-pass filters in all 3 dimensions,
while any other hierarchy utilizes at least one low-pass filter. It is evident that the
controls are placed in the region for which H+LS is small – indicating that both
irregularity and multifractality for controls are high. This is consistent with a
popular belief that increased regularity and monofractality are signs of pathology
for many high frequency biometric responses (electrocardiogram (ECG), ocular
responses, etc).

Fig. 5 (c) shows the longitudinal behavior of the broadness descriptor B for
the cases and controls along the direction hv. The hv direction combines h and
v, which are sampled along directions within slices and between the slices, re-
spectively. The descriptor B is conceptually linked to H,RS and LS. Namely,
spectra with low H and small LS tend to have large B. These typical associa-
tions are consistent with our findings depicted in Fig. 5 (a). Even with a small
sample size, Figure 5 illustrates the discriminatory power of the multifractal
descriptors in BMRI applications. In particular, Fig. 5 (b) shows a non-linear
decision boundary generated by a support vector machine (SVM) classifier with
radial basis kernel of width parameter 0.1. In our application, the SVM classifier
achieved 95% accuracy.
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Fig. 5. Multifractal descriptors and an associated classifier in selected directions for
two cases and two controls. Images (a) and (b) use the main hlv-direction, while the
third image (c) uses the hv-direction.

5 Conclusions

In this work, we have shown that the extended three dimensional concept of
wavelet-based multifractal spectrum can be utilized in classification of BMRI.
This tool, which describes various degrees of irregularity in the measured ob-
jects, has been widely utilized in several fields (e.g. physics, meteorology, and
medicine), where assessing self-similarity and fractality is critical. Our method-
ology has provided promising results that are consistent with past research. For
example, we observed in our data that normal breast tissue tends to be more
irregular (with a smaller Hurst exponent) than tumor affected tissue.



The findings in our study are based upon a small data set, for which the
applicability of formal classification algorithms is limited. In future research, in-
volving more data, we plan to build and apply a weak classifier based on scaling
of BMRI background, which is a novel concept in cancer screening. We applied
the flexible SVM classifier that allows for non-linear classification boundaries,
and we will consider other state-of-the art methods in future research. Classifi-
cation will become more statistically reliable with a large data set that we are
in the process of obtaining.

Extremely high classification precision will be challenging to attain with a
single classifier, given the high degree of noise in MRI measurements and numer-
ical instability of our algorithms due to limited spatial resolution in the images.
However, even moderately accurate classifiers may contribute substantially to
breast cancer screening, and these so-called weak classifiers in our context uti-
lize information (BMRI background) that is currently ignored and may combine
with other weak classifiers (via boosting) to produce clinically useful tools.
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