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A B S T R A C T

This thesis deals with the problem of making construction of relational features more efficient.
Specifically, it focuses on the situations when we know or assume that a good set of features can
be constructed from features having some special restricted form. The thesis introduces novel
algorithms for fast construction of relational features and several other methods and ideas ap-
plicable in relational learning in general. The presented feature-construction algorithms can be
categorized into two groups: algorithms based on a block-wise strategy exploiting monotonicity
of redundancy and reducibility and algorithms based on a new notion of bounded least general
generalization.

The main idea underlying the first type of algorithms is that redundancy and reducibility of fea-
tures can be made monotonous in a certain block-wise feature-construction strategy which enables
a quick pruning of the set of features that need to be constructed. The introduced feature-
construction algorithms RelF, HiFi and Poly are able to construct exhaustive sets of relatively
long non-redundant treelike features. The new algorithms are shown to be able to obtain better
predictive accuracies than state-of-the-art relational learning systems in many domains.

The main idea of the second type of algorithms presented in this thesis is to weaken existing
notions of θ-subsumption, θ-reduction and least general generalization and parametrize them. The
experiments that we performed indicate that the new algorithms are able to achieve state-of-the-
art accuracies using only small sets of very long complex features.

Besides the main contributions which are the feature-construction algorithms, this thesis also
studies so-called polynomial features which are multivariate aggregation features suitable for
learning in hybrid domains. Another smaller contribution presented in this thesis is the introduc-
tion of the concept of a safe reduction of a learning example and the development of methods
for its utilization as a preprocessing technique. Using the idea of safe reduction, we are able to
speed up existing relational learning algorithms by preprocessing their input.

We also describe the use of some of the presented algorithms as components of bioinformatics
methods for solving the problems of the DNA-binding propensity prediction and the antimicro-
bial activity prediction of peptides.
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A B S T R A K T

Tato práce se zabývá otázkou jak zefektivnit proces konstrukce relačních rysů. Konkrétně se za-
měřuje na problémy, kdy víme nebo předpokládáme, že je možné zkonstruovat dobrou množinu
relačních rysů pouze z rysů z nějaké omezené třídy. Práce představuje nové algoritmy pro
rychlou konstrukci relačních rysů a několik dalších metod a myšlenek použitelných v relačním
strojovém učení obecně.

Představené algoritmy lze rozdělit do dvou základních skupin: na algoritmy založené na
strategii skládání stavebních bloků využívající monotónnosti redundance a redukovatelnosti rysů a
na algoritmy založené na nově zavedeném pojmu omezené nejmenší společné zobecnění. Hlavní
myšlenka algoritmů z první skupiny je založena na poznatku, že redundance a redukovatelnost re-
lačních rysů může být v jistém typu strategií založených na skládání stavebních bloků monotónní,
což umožňuje těmto algoritmům rychle prořezávat množinu rysů, které je potřeba zkonstruo-
vat. Představené algoritmy RelF, HiFi a Poly jsou schopné rychle konstruovat neredundantní
množiny poměrně velkých relačních rysů se stromovou strukturou. Tyto algoritmy jsou schopné
dosáhnout vyšších prediktivních přesností než jiné existující systémy relačního strojového učení
v mnoha doménách. Základní myšlenkou, na které jsou založeny algoritmy z druhé skupiny, je
zobecnění a parametrizace existujících pojmů θ-subsumpce, θ-redukce a nejmenšího společného
zobecnění. Experimenty provedené s tímto typem algoritmů ukazují, že jsou tyto algoritmy
schopné dosahovat přesností stejných nebo vyšších než existující algoritmy, a to i jen pomocí
malých množin velkých relačních rysů.

Kromě hlavních výsledků, jimiž jsou představované algoritmy pro konstrukci relačních rysů,
studuje tato práce také tzv. polynomiální relační rysy založené na vícerozměrné relační agregaci,
které jsou vhodné především pro hybridní domény. Dalším menším přínosem této práce je
zavední pojmu bezpečné redukce trénovacích příkladů a metod pro využití bezpečné redukce k
předzpracování trénovacích dat. Pomocí této metody jsme schopni zrychlit existující systémy
relačního učení.

Kromě výše uvedeného uvádíme v této práci také způsoby využití představených algoritmů v
rámci složitějších systémů pro predikování schopnosti proteinů vázat se na DNA a pro predikci
antimikrobiální aktivity peptidů.
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1I N T R O D U C T I O N

Relational machine learning is a subfield of machine learning which specializes on learning
from complex structured data. Relational learning systems should ideally be able to deal with
learning problems involving relations, numerical variables and uncertainty. A common problem
of most relational learning systems is efficiency. One of the basic reasons for efficiency issues of
relational learning systems is the generality and complexity of the problems they solve. In the
most general settings of logic-based relational learning [23], which are detailed in Section 2.1,
the learning problems are undecidable in general. Even decidable versions of relational learning
problems usually have high complexity. Efficiency is thus a key problem that limits applicability
of relational machine learning to real-world problems. In order to cope with the efficiency issues,
many approaches have been devised but there is still a lot of space for further improvement.
Efficiency of relational machine learning can be increased by several rather complementary
strategies. For instance, it is possible to try to devise more efficient learning algorithms for
the relational learning problems in their general form. Another possible strategy is to limit the
problems to be solved. In this thesis, we are interested in this latter strategy.

This thesis deals with the problem of feature construction for relational machine learning. In
the simplest form, relational features are simply first-order-logic formulas. They may be used for
predictive classification as attributes in predictive models. They may also be used on their own
for exploratory data analysis. This work revolves mainly around one basic question: how can we
make construction of relational features more efficient when we assume that a meaningful set
of features can be constructed from features from a limited class? The methods presented in this
thesis, which were developed as a result of our attempts to offer at least a partial answer to this
question, build mainly upon ideas from computational logic and constraint satisfaction [101].
They can be divided into two groups. Methods from the first group try to directly construct fea-
tures only from the given class, for example from the class of all treelike features. These methods
are described in Part ii. Methods from the second group do not necessarily construct features
only from the given classes but they provide guarantees only in the form: if there is a feature
from the given (possibly infinite) set then a possibly different feature at least as good1 will be
constructed. These methods bearing the common name relational learning modulo hypothesis lan-
guages are described in Part iii. The developed feature construction algorithms are relevant for
real-world problems as we demonstrate in experiments with two important biological problems
– the prediction of DNA-binding propensity of proteins and the prediction of antimicrobial ac-
tivity of peptides. We show that our algorithms are able to automatically construct features for
these problems which are better than published features hand-crafted by domain experts.

1.1 problem statement

The statement of the main problem tackled in this thesis is simple: Make construction of relational
features more efficient. However, there are numerous ways to achieve this. One could try to make
feature construction faster by developing faster algorithms for evaluation of constructed features,
for example by speeding-up θ-subsumption (as we did in [68, 70]) which is a procedure often
used as a covering operator for evaluation of relational features. One could also try to speed-up
the construction of features by developing new search strategies which would be able to find
good sets of features using stochastic methods like evolutionary algorithms. In this thesis, we
are interested in neither of these two possibilities. Instead, we are interested in finding ways to
make feature construction faster when we know or assume that a good set of features can be

1 What we mean by good in this context will be explained in Part iii

1



1.2 main contributions 2

constructed from features having some special form (e.g. from acyclic or treelike features). We
are mostly interested in methods with provable theoretical guarantees.

1.2 main contributions

The main contributions of this thesis are novel algorithms for construction of relational features
and several other methods and ideas applicable in relational learning. The novel algorithms can
be divided into two groups: algorithms based on a block-wise strategy exploiting monotonicity
of redundancy and algorithms based on so-called bounded least general generalization. Algorithms
from the first group are RelF [62, 71], HiFi [69] and Poly [63, 65]. These algorithms have been
shown to outperform several state-of-the-art relational learning systems on many learning prob-
lems. An algorithm from the second group presented in this thesis is Bull. The main ideas of
Bull were outlined in [66], however, its full description is presented for the first time in this
thesis in Chapter 7.

Besides the main contributions in the form of new feature-construction algorithms, this the-
sis also studies the notion of multivariate polynomial aggregation. We show that polynomial
aggregation features are useful in the relational context in conjunction with the algorithm Poly
[63, 65] and also outside the relational context [64]. Another smaller contribution presented in
this thesis is the introduction of the concept of a safe reduction of a learning example and the devel-
opment of methods for its utilization as a preprocessing technique. We were able to speed up
existing relational learning algorithms by preprocessing their input [61, 67].

We have also used some of the methods and ideas presented in this thesis as components
of bioinformatics methods for solving the problems of the DNA-binding propensity prediction
[118, 117, 64] and the antimicrobial activity prediction of peptides [119].

1.3 thesis organization

This thesis is organized as follows. We describe the necessary theoretical minimum from logic-
based relational learning and briefly present the most prominent existing relational learning sys-
tems in Chapter 2. Other existing relational learning systems not covered in this are described in
more detail later in the ’related-work’ sections of the subsequent chapters where they are com-
pared to our new algorithms. Then we provide the necessary background on θ-subsumption
and on constraint satisfaction problems and their relation to θ-subsumption in Chapter 3. Since
there is no universal interpretation of what a relational feature is (and different interpretations
may be useful for different problems), we study several types of relational features and discuss
their properties in Chapter 4. The next two parts, Part ii and Part iii, in which our novel algo-
rithms for construction of relational features are presented, constitute the core of the thesis. In
Part ii, we present feature-construction algorithms based on a block-wise strategy for which we
are able to prove monotonicity of redundancy which speeds up the feature construction process
substantially. In this part, we describe two novel fast feature construction algorithms RelF and
HiFi in Chapter 5 and another novel feature construction algorithm Poly intended for domains
with significant amount of numerical information in Chapter 6. In Part iii, we describe a generic
framework for relational learning based on weakening of standard notions of covering, reduc-
tion and generalization. In Chapter 7, we describe a novel bottom-up algorithm for construction
of small sets of long features based on this generic framework. In Chapter 8, we show that the
generic framework can be used for reduction of learning examples without affecting learnability.
In Part iv, we present applications of our methods to important bioinformatics problems – to
the problem of the prediction of DNA-binding propensity of proteins and to the problem of the
prediction of antimicrobial activity of peptides. Finally, Part v concludes the thesis. In addition,
there is a description of the open-source suite of the algorithms developed in this thesis called
TreeLiker.
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2R E L AT I O N A L M A C H I N E L E A R N I N G

In this chapter, we introduce basic concepts of logic-based relational machine learning that
directly relate to the methods presented in this thesis. We also review the most prominent ex-
isting relational learning approaches based on logic. Although there are also relational learning
frameworks which are not based on the formalism of first-order logic, e.g. relational gaussian
processes [18] or probabilistic relational models [37], the most well-known relational learning
systems are based on first-order logic, e.g. Progol [86], Markov logic networks [28], Bayesian
logic programs [55]. We should stress that not all existing methods and systems are covered in
this chapter. Some are described in more detail in the respective ’related work’ sections in the
respective chapters where we can actually better explain their main properties by contrasting
them with our methods.

2.1 logic-based relational machine learning

In this section, we briefly describe basic concepts of logic-based relational machine learning.
We start by defining three learning settings: the classical intensional inductive logic programming
learning setting, learning from entailment and learning from interpretations setting. [22].

Definition 1 (Covering under Intensional ILP). Let H and B be clausal theories and e be a clause.
Then we say that H covers e (w.r.t. B) if and only if H∧B |= e.

Definition 2 (Covering under Learning from Entailment). Let H be a clausal theory and e be a
clause. Then we say that H covers e under entailment (denoted by H �E e) if and only if H |= e.

Definition 3 (Covering under Learning from Interpretations). Let H be a clausal theory and e a
Herbrand interpretation. Then we say that H covers e under interpretations if and only if e is a model for
H.

The basic learning task is to find a clausal theory H which covers all positive examples and no
negative example (under chosen learning setting). In this thesis we will use mainly the learning
from interpretations setting but also the learning from entailment setting (e.g. in Chapters 7 and
8). We included the intensional inductive logic programming setting mainly because it is the
most well-known setting.

Example 1 (Intensional Inductive Logic Programming). Let us have background knowledge

B = {flies(parrot)∧¬flies(hippo)}

and a set of positive examples (containing just one example in this case) E+ = {bird(parrot)}
and a set of negative example E− = {bird(hippo)}. Then a solution to the learning task under
intensional inductive logic programming setting with the given sets of positive and negative
examples is for example

H = ∀X : flies(X)→ bird(X).

We can easily verify that it holds H ∧ B |= bird(parrot) and H ∧ B 6|= bird(hippo). We can
also verify that H ′ = ∀X : bird(X) is not a valid solution because it covers a negative example
(H ′ ∧B |= bird(hippo)).

Example 2 (Learning from Entailment). In the learning from entailment setting, there is no
background knowledge. Let us assume that the sets of positive and negative examples, which
are clauses, are

E+ = {bird(parrot)← flies(parrot)}

4
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and
E− = {bird(hippo)← ¬flies(hippo)}.

The formula H = ∀X : flies(X)→ bird(X) is a valid solution since

(∀X : flies(X)→ bird(X)) |= (bird(parrot)← flies(parrot))

and
(∀X : flies(X)→ bird(X)) 6|= (bird(hippo)← ¬flies(hippo))

(because there are models of H which are not models of bird(hippo)← ¬flies(hippo)).

Example 3 (Learning from Interpretations). We will now consider basically the same toy prob-
lem but this time we will use the learning from interpretations setting. In the learning from
interpretations setting, there is no background knowledge. Let us assume that the sets of posi-
tive and negative examples, which are Herbrand interpretations, are

E+ = {{bird(parrot), flies(parrot)}, {¬bird(hippo),¬flies(hippo)}}

and
E− = {{¬bird(eagle), flies(eagle)}}.

Then, again, the formula H = ∀X : flies(X) → bird(X) is a valid solution since it holds
that {bird(parrot), flies(parrot)} and {¬bird(hippo), ¬flies(hippo)} are models for H and
{¬bird(eagle), flies(eagle)} is not a model for H. Similarly to the case of intensional induc-
tive logic programming, H ′ = ∀X : bird(X) is not a valid solution because then the second
positive example would not be a model for this hypothesis H ′.

We note that, in general, neither the intensional inductive logic programming setting [22] nor
the learning from entailment are reducible to learning from interpretations. The main obstacle is
that, unlike in the case of learning under intensional inductive logic programming, the examples
must be fully specified in the learning under interpretations setting, i.e. the truth value of every
ground atom must be known. On the other hand, in many real-life problems, learning from
interpretations is a fully sufficient learning setting.

Of course, the ILP problem as described above is only an idealized problem which focuses
only on the search aspect of learning. It does not take into account generalization performance
of the learned theories. One approach to control generalization performance of learned theories
which has been applied in practical implementations of logic-based relational machine learning
[86] is to limit the set of allowed hypotheses either by imposing limits on maximum length
of learned theories [86] or by considering only theories from a syntactically limited class - de-
terminate theories, theories consisting of non-recursive definite clauses etc. Another approach
is to apply methods developed within attribute-value statistical machine learning1. For exam-
ple systems presented in [73, 74] exploit the machinery of support vector machines [15]. Other
systems, based on so-called static propositionalization can in principle exploit any method from
attribute-value machine learning. These systems get a relational learning problem on their input
and produce its attribute-value representation. For example, the systems from [25, 131] create
an attribute-value table in which rows correspond to examples and columns correspond to first-
order-logic formulas. There is a true in the entry (i, j) in this table if it holds that the j-th formula
covers the i-th example. This table can be then fed into any classical attribute-value learning al-
gorithm (e.g. SVM, decision tree etc.). Propositionalization is discussed in more detail in Section
2.2.

1 We will use the term attribute-value (statistical) machine learning to denote any machine learning method whose input
and output are (sets of) fixed-dimensional vectors.
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2.2 logic-based relational learning based on propositionalization

The classical ILP settings outlined in Section 2.1, where an ILP system is given a set of positive
examples E+, a set of negative examples E−, possibly a background theory B and a language bias
and its task is to find a theory H which covers all positive examples and no negative examples,
are not very well suited for many practical problems. They do not cope well with uncertainty
which may be caused by noise or by an inherent probabilistic nature of some learning problems.
The formulations also do not take into account performance of the learned theories on unob-
served data. Existing systems which more-or-less follow the classical settings such as Progol
[86] have rather limited means to cope with these issues. For example, it is possible to set a tol-
erance for misclassification rate of the learned theories on training data and to set a maximum
length of clauses in the learned theory in Progol. This can be used to control both noise and
generalization - to some extent. Another possible way is to exploit techniques from attribute-
value machine learning. Propositionalization is a framework, which enables one to exploit results
from attribute value learning for classification learning. The basic idea behind propositionaliza-
tion is to generate many first-order-logic formulas (called features) and to let these formulas
act as attributes for attribute value learners. While the basic concept of propositionalization is
quite straightforward, developing an efficient propositionalization system remains a hard task
because several subproblems, which are encountered in propositionalization, are generally NP-
hard. Propositionalization systems need to perform the following two basic problems: feature
construction and coverage computation.

Let us now briefly review work on propositionalization - both static and dynamic. Several
pattern mining algorithms have been proposed for exhaustive generation of large numbers of
features in limited subsets of first order logic or for more or less similar tasks (static proposi-
tionalization). A well-known algorithm working in the logical setting is the frequent pattern
miner WARMR [25], which greatly exploits monotonicity of frequency to prune uninteresting
patterns. Another algorithm for pattern discovery is the RSD algorithm [131]. RSD does not
prune patterns using the minimum frequency constraint as WARMR does, instead, RSD relies
on its expressive user-definable syntactical bias, which is also somewhat similar to WARMR’s
warmode declarations. A common principle of RSD and WARMR is the level-wise approach to
feature construction, which means that features are built by adding one logical atom at time.

A recent line of research, on so-called dynamic propositionalization, represented by algo-
rithms nFOIL [74], kFOIL [73] and SAYU [21], tries to refrain from explicitly constructing the
set of all interesting features (frequent, non-redundant etc.) by constructing only features that
improve classification accuracy or some related scoring criterion when combined with a propo-
sitional learner such as Naive Bayes or SVM. Both nFOIL and kFOIL are based on FOIL’s [99]
search, although, in principle, any strategy for hypothesis search could be used instead of FOIL.
A potential replacement for FOIL could be e.g. Progol [86] or even some procedure search-
ing over features generated by a propositionalization algorithm. An advantage of systems like
nFOIL and kFOIL is that they can produce relatively accurate models within reasonably short
runtimes.

Frequent graph mining algorithms are also related to propositionalization. They are very well
suited for molecular databases, however, they have limitations in other domains. For example,
the currently fastest graph mining algorithm Gaston [93] is able to mine frequent molecular
structures from large databases, but it cannot easily handle oriented graphs or even hypergraphs
[134]. Another notable system geared towards discovery of patterns in molecular databases is
MolFea [57], which restricts the patterns to linear molecular fragments.

Recently, there has been a growing interest in removing various forms of redundancy from
frequent pattern sets. One form of redundancy was introduced in [77] where it was defined
for propositional data and for constrained Horn clauses, which are equivalent to propositional
representation in their expressive power. There are also other forms of redundancy considered
in literature. For example, a system called Krimp was introduced in [56, 125] which searches
for a representative set of features that would allow for a lossless compression of a given set of
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examples, i.e. it relies on the minimum description length principle. Mining of closed frequent
patterns is another approach that minimizes the number of discovered patterns by considering
only representative candidates from certain equivalence classes.

2.3 statistical relational learning

The classical logic-based relational learning does not handle uncertainty very well. Statistical
relational learning is a field that tries to combine relations (very often first-order-logic) with
probability. This can be achieved, for example, by providing a function which would assign
probabilities to Herbrand interpretations. Markov logic networks [28] and Bayesian logic pro-
grams [55] are instances of this approach.

One of the most important and well-known statistical relational learning systems is Markov
logic [28]. A Markov logic network is given by a set of constants2, a set of predicate symbols
and a set of first-order-logic clauses (features) and their weights. The probability of a Herbrand
interpretation x is then given by the formula

P(X = x) =
1

Z
exp

(∑
i

winFi(x)

)

where nFi(x) is the number of true groundings of Fi in x and wi is the weight of the fea-
ture Fi, Z is a normalization constant known also as partition function and can be expressed as
Z =

∑
x∈X exp (

∑
iwinFi(x)) (here, X is the set of all the possible worlds - interpretations, con-

structed using the declared predicate symbols and constants). A Markov logic network can be
also viewed as a recipe for construction of ordinary Markov networks. A Markov logic network
corresponds to an ordinary Markov network where the set of nodes (random variables) corre-
sponds to the set of all possible groundings of all predicate symbols (using the constants from
the given Markov logic network). The random variables (nodes) are two-valued - having one of
the two possible values true or false which denote whether the given ground fact is true or false
in the Herbrand interpretation. This correspondence with ordinary Markov networks makes
it possible to use inference methods, e.g. Gibbs sampling, developed for the ordinary Markov
networks. It also provides ways to find a set of ground atoms that are needed to answer a (con-
ditional) query. Markov logic networks can be learned from data, typically using optimization
of weighted pseudo-likelihood to select weight for features and some form of structure learn-
ing for the first-order-logic formulas. There are other statistical relational learning systems, for
example: Bayesian logic programs [55], Probabilistic relational models [37], relational depen-
dency networks [91]. Most of these systems can, however, be emulated within the framework of
Markov logic.

There is also an extension of Markov logic networks called Hybrid Markov logic networks
[132] that enables working with continuous variables within Markov logic by extending their
syntax and adding new types of features. However, there is no structure learning algorithm (i.e.
an algorithm for learning the logical formulas) for Hybrid Markov logic which we conjecture to
be a consequence of the very high complexity of this framework. Indeed, experiments reported
in literature for Hybrid Markov logic were performed on rather small problems [132]. There
is also no exact inference method for Hybrid Markov logic. Hybrid Markov logic is not the
only framework capable to model probability distributions over relational structures containing
continuous numerical data. Bayesian logic programs [55] allow rather seamless incorporation
of continuous variables as well. However, again to our best knowledge, there has not been any
specific proposal for a learning strategy that would efficiently deal with continuous random vari-
ables. Recently, continuous distributions have also been incorporated into the Problog system
[42]. Finally, in [18] relational Gaussian processes were introduced which were later extended

2 Markov logic networks define probability over finite interpretations. However, there has also been a theoretical work
[27] which introduced a generalization of Markov logic to infinite domains.
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to the multi-relational setting in [136]. Relational Gaussian processes are able to work with con-
tinuous random variables. Relational Gaussian processes are non-parametric which also means
that no model selection, i.e. structure search, is necessary.

2.4 function-freeness assumption

In this thesis, we assume that clauses do not contain any function symbols other than con-
stants. This is not too strict a restriction as it is possible to use flattening to transform a learning
problem involving clauses with function symbols to a problem without function symbols [92].
At some places in this thesis, we state explicitly that we consider only function-free clauses
when there is a risk of confusion but we use it implicitly at other places unless explicitly stated
otherwise.
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The undecidable entailment relation |= is often replaced in relational learning systems by its
decidable approximation called θ-subsumption which was introduced by Plotkin [97]. Neverthe-
less θ-subsumption is also not easy to decide as it is an NP-complete problem. In this chapter
we describe how θ-subsumption can be solved relatively efficiently using the machinery of con-
straint satisfaction. We also review basic tractability results for constraint satisfaction problems
with bounded treewidth and explain that these results also apply for the θ-subsumption prob-
lem. Nothing in this chapter is new. A tight relationship between θ-subsumption and constraint
satisfaction has been known for a long time [31, 82].

3.1 θ-subsumption and the subsumption theorem

Let us first state some notational conventions. A first-order-logic clause is a universally quanti-
fied disjunction of first-order-logic literals. For convenience, we do not write the universal quan-
tifiers explicitly. We treat clauses as disjunctions of literals and as sets of literals interchangeably.
We will sometimes use a slightly abused notation a(x,y) ⊆ a(w, x)∨ a(x,y) to denote that a set
of literals of one clause is a subset of literals of another clause. The set of variables in a clause A
is written as vars(A) and the set of all terms by terms(A). Terms can be variables or constants.
A substitution θ is a mapping from variables of a clause A to terms of a clause B. A set of clauses
is said to be standardized-apart if no two clauses in the set share a variable.

If A and B are clauses, then we say that the clause A θ-subsumes the clause B, if and only
if there is a substitution θ such that Aθ ⊆ B. If A �θ B and B �θ A, we call A and B θ-
equivalent (written A ≈θ B). The notion of θ-subsumption was introduced by Plotkin [97] as an
incomplete approximation of implication. Let A and B be clauses. If A �θ B then A |= B but the
other direction of the implication does not hold in general. However, it does hold for non-self-
resolving function-free clauses. Another way to look at A �θ B is to view it as homomorphism
between relational structures. Informally, A �θ B holds if and only if there is a homomorphism
A→ B where A and B are treated as relational structures.

If A is a clause and there is another clause R such that A ≈θ R and |R| < |A| then A is said to
be θ-reducible. A minimal such R is called θ-reduction of A. For example, the clause

A = east(T)← hasCar(T ,C)∧ hasLoad(C,L1)∧ hasLoad(C,L2)∧ box(L2)

is θ-reducible because A ≈θ B where

B = east(T)← hasCar(T ,C)∧ hasLoad(C,L)∧ box(L).

In this case, B is also a θ-reduction of A. The concept of θ-reduction of clauses is equivalent
to the concept of cores [4] of relational structures. Core of a relational structure A is a minimal
relational structure homomorphically equivalent to A.

A precise relationship between logical entailment, θ-subsumption and first-order resolution
is given by the so-called subsumption theorem [92]. Before stating this theorem, we need to briefly
describe first-order resolution. Our description follows the description from [92]. We start the
description by introducing some auxiliary concepts which are used in resolution.

Definition 4 (Most general unifier). Let L = {l1, l2, . . . , lk} be a set of literals. A substitution ϑ is
called a unifier of L if and only if l1ϑ = l2ϑ = · · · = lkϑ. A substitution θ is a most general unifier of L
if and only if for any unifier θ ′ of L there is a unifier θ ′′ such that l1θ ′ = l1θθ ′′.

9
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Importantly, one can always select a most general unifier θ which maps variables of all literals
from L to variables which are not present in the literals in L. Such most general unifiers will be
of use in Chapter 8.

Definition 5 (Binary resolvent). Let A = l1 ∨ l2 ∨ · · ·∨ lm and B = m1 ∨m2 ∨ · · ·∨mn be two
standardized-apart clauses. Let θ be a most general unifier of the literals li, ¬mj such that vars(liθ) ∩
vars(A) = vars(liθ)∩ vars(B) = ∅. Next, let

C = (l1 ∨ · · ·∨ li−1 ∨ li+1 ∨ · · ·∨ lm ∨m1 ∨ · · ·∨mj−1 ∨mj+1 ∨ · · ·∨mn)θ

Then C is called a binary resolvent of A and B.

The next definition introduces the notion of a resolvent which is more general than the notion of
a binary resolvent.

Definition 6 (Resolvent). Let A = l1 ∨ l2 ∨ · · ·∨ lm be a clause and let L = {l1, l2, . . . , lk} ⊆ A be a
set of unifiable literals. If θ is a most general unifier of L then the clause obtained as Aθ \ {l2, . . . , lk}θ is
called a factor of A. If B and C are clauses then a resolvent of B and C is a binary resolvent of a factor of
B and a factor of C where the literals resolved upon are the literals unified by the respective factors.

Now, we can define what is meant by deriving a clause by resolution or by SLD-resolution.

Definition 7 (Derivation by resolution). Let S be a set of clauses and A be a clause. A derivation of
the clause A from S by resolution is a finite sequence of clauses R1,R2, . . . ,Rk where Rk = A such that
each Ri is either in S or a resolvent of two clauses in the subsequence R1,R2, . . . ,Ri−1.

Definition 8 (Derivation by SLD-resolution). Let S be a set of Horn clauses and A be a Horn clause.
A derivation of the clause A from S by SLD-resolution is a finite sequence of Horn clauses R1,R2, . . . ,Rk
where Rk = A such that R0 ∈ S and each Ri is a binary resolvent of Ri−1 and a definite clause (i.e. a
Horn clause having exactly one positive literal) Ci ∈ S where the literals resolved upon are the literal in
the head of Ci and a selected negative literal from Ri−1.

Finally, we can state the subsumption theorem for resolution and for SLD-resolution where the
latter ’works’ only for Horn clauses.

Proposition 1 (Subsumption theorem [92]). Let S be a set of clauses and A be a clause which is not a
tautology. Then S |= A if and only if there is a clause B derivable by resolution from S such that B �θ A.

Proposition 2 (Subsumption theorem for SLD-resolution [92]). Let S be a set of Horn clauses and
A be a Horn clause which is not a tautology. Then S |= A if and only if there is a clause B derivable by
SLD resolution from S such that B �θ A.

Subsumption theorems explain the connections between θ-subsumption, resolution and logical
entailment. We will need them in Chapter 8.

3.2 θ-subsumption as a constraint satisfaction problem

Constraint satisfaction [24] with finite domains represents a class of problems closely related to
the θ-subsumption problems and to relational-structure homomorphisms. In fact, as shown by
Feder and Vardi [31], these problems are almost identical although the terminology differs. This
equivalence of CSP and θ-subsumption has been exploited by Maloberti and Sebag [82] who
used off-the-shelf CSP algorithms to develop a fast θ-subsumption algorithm.

Definition 9 (Constraint Satisfaction Problem). A constraint satisfaction problem is a triple (V,D,C),
where V is a set of variables, D = {D1, . . . ,D|V|} is a set of domains of values (for each variable v ∈ V),
and C = {C1, . . . ,C|C|} is a set of constraints. Every constraint is a pair (s,R), where s (scope) is
an n-tuple of variables and R is an n-ary relation. An evaluation of variables θ satisfies a constraint
Ci = (si,Ri) if siθ ∈ Ri. A solution is an evaluation that maps all variables to elements in their domains
and satisfies all constraints.



3.3 tree decompositions and treewidth 11

The CSP representation of the problem of deciding A �θ B has the following form. There is
one CSP variable Xv for every variable v ∈ vars(A). The domain of each of these CSP variables
contains all terms from terms(B). The set of constraints contains one k-ary constraint Cl =
(sl,Rl) for each literal l = predl(t1, . . . , tk) ∈ A. We denote by Ivar = (i1, . . . , im) ⊆ (1, . . . ,k)
the indexes of variables in arguments of l (the other arguments might contain constants). The
scope sl of the constraint Cl is (Xti1 , . . . ,Xtim ) (i.e. the scope contains all CSP variables corre-
sponding to variables in the arguments of literal l). The relation Rl of the constraint Cl is then
constructed in three steps.

1. A set Ll is created which contains all literals l ′ ∈ B such that l �θ l ′ (note that checking
θ-subsumption of two literals is a trivial linear-time operation).

2. Then a relation R∗l is constructed for every literal l ∈ A from the arguments of literals in
the respective set Ll. The relation R∗l contains a tuple of terms (t ′1, . . . , t ′k) if and only if
there is a literal l ′ ∈ Ll with arguments (t ′1, . . . , t ′k).

3. Finally, the relation Rl of the constraint Cl is the projection of R∗l on indexes Ivar (only the
elements of tuples of terms which correspond to variables in l are retained).

If we do not specify otherwise, when we refer to CSP encoding of θ-subsumption problems in
the remainder of this chapter, we will implicitly mean this encoding. Next, we exemplify the
transformation process.

Example 4 (Converting θ-subsumption to CSP). Let us have clauses A and B as follows

A = hasCar(C)∨ hasLoad(C,L)∨ shape(L,box)

B = hasCar(c)∨ hasLoad(c, l1)∨ hasLoad(c, l2)∨ shape(l2,box).

We now show how we can convert the problem of deciding A �θ B to a CSP problem. Let
V = {C,L} be a set of CSP-variables and let D = {DC,DL} be a set of domains of variables from
V such that DC = DL = {c, l1, l2}. Further, let C = {ChasCar(C), ChasLoad(C,L), Cshape(L,box)}

be a set of constraints with scopes (C), (C,L) and (L) and with relations {(c)}, {(c, l1), (c, l2)} and
{(l2)}, respectively. Then the constraint satisfaction problem given by V, D and C represents the
problem of deciding A �θ B as it admits a solution if and only if A �θ B holds.

3.3 tree decompositions and treewidth

The Gaifman (or primal) graph of a clause A is the graph with one vertex for each variable
v ∈ vars(A) and an edge for every pair of variables u, v ∈ vars(A), u 6= v such that u and v
appear in a literal l ∈ A. Similarly, we define Gaifman graphs for CSPs. The Gaifman graph of a
CSP problem P = (V,D,C) is the graph with one vertex for each variable v ∈ V and an edge for
every pair of variables which appear in a scope of some constraint c ∈ C. Gaifman graphs can
be used to define treewidth of clauses or CSPs.

Definition 10 (Tree decomposition of a Graph, Treewidth). A tree decomposition of a graph G =
(V ,E) is a tree T with nodes labelled by sets of vertices such that

• For every vertex v ∈ V , there is a node of T with a label containing v.

• For every edge (v,w) ∈ E, there is a node of T with a label containing v,w.

• For every v ∈ V , the set of nodes of T with labels containing v is a connected subgraph of T .

The width of a tree decomposition T is the maximum cardinality of a label in T minus 1. The treewidth of
a graph G is the smallest number k such that G has a tree decomposition of width k. The treewidth of a
clause is equal to the treewidth of its Gaifman graph. Analogically, the treewidth of a CSP is equal to the
treewidth of its Gaifman graph.
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Clause Gaifman graph Tree decomposition

← atm(A, h)∧
bond(A,B, 1)∧ atm(B, c)∧

bond(B,C, 2)∧ atm(C, o)
A B C

A, B

B, C

← bond(A,B, 1)∧
bond(B,C, 1)∧ bond(C,D, 1)∧

bond(D,E, 1)∧ bond(E,A, 1) A

B C

E D

A, C, E

A, B, CC, D, E

Table 1: An illustration of Gaifman graphs and tree decompositions of clauses.

An illustration of Gaifman graphs of two exemplar clauses and their tree decompositions
is shown in Table 1. Note that tree decompositions are not unique. That is why treewidth is
defined as the maximum cardinality of a label minus 1.

For instance, all trees have treewidth 1, cycles have treewidth 2, rectangular n×n grid-graphs
have treewidth n. Treewidth is usually used to isolate tractable sub-classes of NP-hard problems.
A general result about polynomial-time solubility of some problems on graphs of bounded tree-
width is Courcelle’s proposition [19] which essentially states that every problem definable in
Monadic Second-Order logic can be solved in linear time on graphs of bounded treewidth
(though, the run-time is exponential in the treewidth parameter of the graphs). Constraint sat-
isfaction problems with treewidth bounded by k can be solved in polynomial time by the k-
consistency algorithm1.

Sometimes, it will be convenient to use the following definition of tree decomposition of a clause
which does not directly refer to the concept of a Gaifman graph. The treewidth of a clause given
by this definition and the treewidth given by Definition 10 are equivalent.

Definition 11 (Tree decomposition of a Clause). A tree decomposition of a clause A is a tree T with
nodes labelled by sets of first-order-logic variables such that

• For every variable V ∈ vars(A), there is a node of T with a label containing V .

• For every pair of variables U,V ∈ vars(A) such that U 6= V and U, V are both contained in a
literal l ∈ A, there is a node of T with label containing U,V .

• For every V ∈ vars(A), the set of nodes of T with labels containing V is a connected subgraph of
T .

The width of a tree decomposition T is the maximum cardinality of a label in T minus 1. The treewidth of
a clause A is the smallest number k such that A has a tree decomposition of width k.

Another class of CSPs for which efficient algorithms exist is represented by so-called acyclic
CSPs. In order to define the notion of acyclic CSPs, we need to introduce the concept of primal
hypergraph of a CSP which can be seen as a hypergraph parallel to Gaifman graph. The primal
hypergraph of a CSP problem P = (V,D,C) is the hypergraph with one vertex for every variable
v ∈ V and one hyperedge for every constraint C = (s,R) ∈ C where the hyperedge for a

1 In this chapter we follow the conventions of [4]. In other works, what we call k-consistency is known as strong k+ 1-
consistency [101].
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constraint C contains exactly the vertices corresponding to the variables in its scope s. A CSP
problem is said to be acyclic if its primal hypergraph is acyclic. The class of acyclic CSPs differs
from the class of CSPs with treewidth 1 when the arity of constraints in them is greater than two.
For precise characterization of acyclic hypergraphs, we follow the established definition from
[29]. We also translate the notions into the context of clauses because, similarly as in the case of
bounded-treewidth clauses, if a clause is acyclic then also its CSP encoding is acyclic.

Definition 12 (Acyclic clause, acyclic hypergraph). A clause (hypergraph) C is treelike if the itera-
tion of the following rules on C produces the empty conjunction (hypergraph):

1. Remove a hyperedge contained in another hyperedge (a literal which shares all its variables with
another literal).

2. Remove a vertex (variable) which is contained in at most one hyperedge (literal).

Analogically to the case of bounded treewidth of clauses, if a clause is acyclic then its CSP
encoding is also acyclic. Acyclic CSPs with extensionally represented relations of constraints can
be solved in time polynomial in the size of the problem by the so-called generalized arc-consistency
algorithm [6].



4T H E C O N C E P T O F A R E L AT I O N A L F E AT U R E

In this chapter, we describe four types of relational features and study their properties. Two of
the described types of features are well known, namely Boolean features often used in classical
inductive logic programming and counting features used in Markov logic [28]. The remaining
two types of features are to our best knowledge less common1. These are polynomial features
and generalized multivariate aggregation features. What we would like to make clear in this chapter
is that there is no single universal concept of a relational feature and that different types of
relational features can be useful for different applications.

Two of the four types of features described in this chapter, polynomial features and generalized
multivariate aggregation features, aim mainly at learning in so-called hybrid domains, i.e. in rela-
tional domains which contain substantial part of information in the numeric form. Learning
in hybrid relational domains is an important problem with applications in areas as different
as bioinformatics or finance. So far there have not been many relational learning systems in-
troduced in literature that would be able to model multi-relational domains with numerical
data efficiently. One of the frameworks able to work in such domains is hybrid Markov logic
[132]. Another type of systems suitable for hybrid domains is represented by systems based on
relational aggregation (e.g. [58]). Polynomial features presented in this chapter, are related both
to hybrid Markov logic and to aggregation-based systems as we shall discuss in the respective
sections.

This chapter is organized as follows. We start by describing the minimum necessary nota-
tion in Section 4.1. Then we describe a simple probabilistic framework for learning in relational
domains possibly containing numerical data in Section 4.2 which constitutes theoretical foun-
dations for the subsequent sections. Descriptions of Boolean, counting, polynomial and gener-
alized multivariate aggregation features are given in Sections 4.3, 4.4, 4.5 and 4.6. The chapter
is concluded in Section 4.8. We do not present algorithms for construction of features or for
their evaluation in this chapter. These algorithms are presented in the subsequent chapters. This
chapter mainly serves to introduce the different types of features, to point out their strengths
and weaknesses and to provide basis for the developments in the subsequent chapters.

4.1 notation

Here, we present the minimum notation needed in this chapter. Let n ∈ N. If ~v ∈ Rn then vi
(1 6 i 6 n) denotes the i-th component of ~v. If I ⊆ [1;n] then ~vI = (vi1 , vi2 , . . . vi|I|) where ij ∈ I
(1 6 j 6 |I|). To describe training examples as well as learned models, we use a conventional
first-order logic language L whose alphabet contains a distinguished set of constants {r1, r2,
. . . rn} and variables {R1,R2, . . . Rm} (n,m ∈ N). An r-substitution ϑ is any substitution as long
as it maps variables (other than) Ri only to terms (other than) rj. For the largest k such that
{R1/ri1 ,R2/ri2 , . . . , Rk/rik} ⊆ ϑ we denote I(ϑ) = (i1, i2, . . . ik). A (Herbrand) interpretation is a
set of ground atoms of L. I(H) (I(F)) denotes the naturally ordered set of indexes of all constants
ri found in an interpretation H (L-formula F).

1 For instance, polynomial have never been used in the context in which we use them, i.e. in propositionalization. On
the other hand, somewhat similar ideas have already been used in statistical relational learning, namely in hybrid
Markov logic [132].

14
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4.2 a simple probabilistic framework

Models in our formalism2 are split into two parts: discrete and continuous. Our training exam-
ples have both structure and real parameters. An example may e.g. describe a measurement of
the expression of several genes; here the structure would describe functional relations between
the genes and the parameters would describe their measured expressions. The structure is de-
scribed by an interpretation, in which the constants ri represent uninstantiated real parameters.
The parameter values are determined by a real vector. Formally, an example is a pair (H,~θ)
where H is an interpretation, ~θ ∈ ΩH, and ΩH ⊆ R|I(H)|.

Examples are assumed to be sampled from a distribution with the probability function

P (H,ΩH) =
∫
ΩH

fH

(
~θ|H
)
P (H)d~θ (1)

Here, P(H) is a discrete probability distribution on the countable set of finite Herbrand interpre-
tations of L. If L has functions other than constants, we assume that P(H) is non-zero only for
finite H. fH(~θ|H) are the conditional densities of the parameter values. The advantage of this def-
inition is that it cleanly splits the possible-world probability into the discrete part P(H) which
can be modeled by state-of-the-art approaches such as Markov Logic Networks (MLNs) [28],
and the continuous conditional densities fH(~θ|H). Intuitively, we can imagine this probabilistic
model as defining a procedure for sampling learning examples as follows. First, the structure
H is drawn randomly according to P(H), then the right probability density function fH corre-
sponding to the structure H is found in a given possibly infinite lookup table and a vector ~θ of
numerical parameter is drawn randomly according to fH.

A seemingly more elegant representation of learning examples would be obtained by substi-
tuting the numerical parameters from ~θ for the respective distinguished constants ri in H. Then,
a learning example would be simply represented as H~θ (here ~θ is meant as a substitution), as
opposed to how they are represented in our framework – as pairs (H,~θ). However, this would
not work without serious problems. For instance, if we wanted to draw a random example using
this alternative formalism, we would draw its structure H randomly from the distribution P(H),
then we would select a random sample of values of numeric variables according to fH(~θ|H) and
finally we would substitute the values from ~θ for the distinguished constants in H. The problem
is that the number of numeric parameters might unexpectedly decrease in some singular cases
as the next example illustrates.

Example 5. Let P(H) be a distribution such that P(H1) = 1 and P(Hi) = 0 for any Hi 6= H1
where

H1 = {a(r1),a(r2)}.

Let fH(~θ|H) be a continuous distribution, for instance, a bivariate normal distribution with zero
mean and diagonal covariance matrix. Now, let us assume that we want to draw an example
from the distribution given by P(H) and fH(~θ|H). We get the structure H = H1 and draw a
random vector ~θ from the distribution given by fH(~θ|H). Let us assume that ~θ = (1, 1). We
substitute for r1 and r2 and obtain an example e = {a(1)} (because Herbrand interpretations
are sets and not multi-sets). As we can see, e contains only one number, instead of two which
we would expect according to the dimension of the continuous part of the distribution. This
would be a problem for analyses presented in the subsequent sections (we would have to treat
many singular cases individually). Fortunately, such problems do not occur when we use the
framework which separates the structure H and the real parameters ~θ.

We are not primarily interested in learning the distributions. Instead, we are more interested
in mining various types of local patterns (features) which might be useful for capturing charac-
teristic properties of these distributions. Such local patterns can be used either for discriminative
classification or as building blocks of global models.

2 A rigorous treatment of the probabilistic formalism introduced here is provided in Appendix.
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We need features to be able to somehow extract numerical values from learning examples.
Sample sets are constructs which formalize extraction of numerical parameters from learning
examples.

Definition 13 (Sample set). Given an example e = (H,~θ) and a feature F, the sample set of F and e
is the multi-set S(F, e) = {~θI(ϑ)|H |= Fϑ} where ϑ are r-substitutions grounding all free variables3 in ϕ,
and H |= Fϑ denotes that Fϑ is true under H.

Note that when a feature F contains no distinguished variables then its sample set w.r.t. an ex-
ample e = (H,~θ) contains k copies of the empty vector where k is the number of r-substitutions
ϑ such that H |= Fϑ.

Example 6. Let us have a feature

F = g(G1,R1)∧ g(G2,R2)∧ expr(G1,G2)

and an example e = (H,~θ) describing a group of genes and the functional relations among them
where

H = {g(g1, r1),g(g2, r2),g(g3, r3),g(g4, r4), expr(g1,g2),
expr(g2,g3), expr(g3,g4)}

~θ = (1, 1, 0, 1)

The sample set of the feature F w.r.t. the example e is

S(F, e) = {(1, 1), (1, 1), (0, 1)}.

Sample sets can be used to compute relational counterparts of mean, variance, covariance etc.
Importantly, as we shall see later, there is a well-defined meaning of these statistics when treating
them within the probabilistic framework described in this section.

4.3 boolean features

The term Boolean feature does not relate so much to structure of features but to how we interpret
them. Let F be a feature and let e = (H,~θ) be an example. If F contains no distinguished variables
and no distinguished constants then we say that F covers e if and only if H |= F. If F contains
distinguished variables and ~θ is a vector then we say that (F,~θ) covers e if and only if ~θ ∈ S(F, e).
Similarly, if Ω is a set of vectors then we say that (F,Ω) covers e if and only if Ω ∩ S(F, e) 6= ∅.
Notice that covering of an example by a feature with no distinguished variables or constants is
the covering relation from the learning from interpretations setting of inductive logic programming
[22]. The other two covering relations are exemplified next.

Example 7. Let us have a feature

F = size(X,R1)∧ edge(X, Y)∧ size(Y,R2),

and an example e = (H,~θ)

H = {size(a, r1), size(b, r2), size(c, r3), edge(a,b), edge(b, c)}
~θ = (1, 0, 3)

Let ~θ1 = (1, 0) and ~θ2 = (1, 1) be vectors. Then (F,~θ1) covers the example e because ~θF ∈ S(F, e),
but (F,~θ2) does not cover e. Similarly, let Ω = {(1, 1), (1, 0)} be a set of vectors. Then (F,Ω) covers
the example e because Ω∩ S(F, e) = {(1, 0)} 6= ∅.

3 Note that an interpretation H does not assign domain elements to variables in L. The truth value of a closed formula
(i.e., one where all variables are quantified) under H does not depend on variable assignment. For a general formula
though, it does depend on the assignment to its free (unquantified) variables.
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In more classical relational leaning settings (e.g. in learning from interpretations), the example
e would be described simply as an interpretation

e = {size(a, 1), size(b, 0), size(c, 3), edge(a,b), edge(b, c)}

and what we represent by the pair (F,~θ1) would normally be represented as

F = ∃X, Y : size(X, 1)∧ edge(X, Y)∧ size(Y, 0).

It is easy to check that e |= F (this corresponds to the covering relation under learning from
interpretations). Similarly, (F,Ω) could be represented as

F = ∃X, Y : size(X,R1)∧ edge(X, Y)∧ size(Y,R2)∧ R1 = 1∧ (R2 = 1∨ R2 = 0).

Recall that the main reason why we use the formalism in which structure and real parameters
are kept separately is that it is simpler to work with probabilistic distributions involving both
structure and real parameters when they are separated.

As we are mostly interested in using features as local patterns, we need to explain how they
relate to the introduced probabilistic framework. We start by explaining what we will mean by
probability of a Boolean feature. If a feature F contains no distinguished variables then its probability
is simply the probability that a structure H is drawn from the given distribution P(H) such that
H |= F. Thus, the probability of a feature F without distinguished variables and distinguished
constants can be computed as

PF(F) =
∑

H∈{H ′|H ′|=F}

P(H).

The situation is more complicated when F contains distinguished variables. Then we need
to define probability of a pair (F,Ω) where F is a feature and Ω is a measurable subset of Rn

with n being equal to the number of distinguished variables in F. The probability of such pair is
defined as being equal to the probability that an example e = (H,~θ) is sampled from the given
distribution such that S(F, e)∩Ω 6= ∅. Formally,

PF(F,Ω) =
∑
H

P(H) ·
∫
{~θ|S(F,(H,~θ))∩Ω6=∅}

fH(~θ|H)d~θ

What holds universally for Boolean features is the following simple property: If F and G are
features and F �θ G then PF(F,Ω) > PF(G,Ω) for any Ω.

The Boolean interpretation of features is useful for some types of problems but not so useful
for other types as the next example demonstrates.

Example 8. Let us have a distribution on learning examples given by P(H,Ω) =
∫
Ω fH(

~θ|H)P(H)

d~θ. Let P(H) be given as follows:

P(H) =


0.5 . . . if H = {num(r1)}

0.5 . . . if H = {num(r1),num(r2)}

0 . . . otherwise

and let
fH(~θ|{num(r1)}) = 1 for ~θ ∈ [0; 1]
fH(~θ|{num(r1),num(r2)}) = 1 for ~θ ∈ [0; 1]× [0; 1] .

Next, let us suppose that we have a feature F = num(R1) and a set Ω = [0, 0.5]. We compute the
probability of the pair (F,Ω) conditioned on the structure of the example and get the following
results

PF(F,Ω|H = {num(r1)}) = 0.5
PF(F,Ω|H = {num(r1),num(r2)}) = 0.75.
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We may notice in the above example that the probability of the pair (F,Ω) increased with
the number of true groundings (w.r.t. the given example) of the feature F. In general, this would
also depend on the conditional probability density function associated to the particular learning-
example structure H. However, what is important in this exemplified case is that the probability
grew even though the individual continuous random variables were identically and indepen-
dently distributed.

Whether the properties of Boolean features illustrated above are desirable depends on the
particular application at hand. Boolean features may be useful for those applications where the
property of interest depends on the presence of a certain substructure with the right values of the
corresponding numerical parameters – for instance, if a property of a molecule, e.g. its toxicity,
depends on the presence or absence of certain configuration of atoms. It may be less useful for
applications where, for instance, the property of interest depends on the overall behaviour of
numerical parameters.

4.4 counting features

Counting interpretation of features gives us another way to look at features. When dealing with
counting features, there is no longer a Boolean covers relation. Instead, there is a function which
assigns a number to a pair (F,Ω) and an example e4. This number is called count of (F,Ω) w.r.t.
the example e and is defined as follows. If F is a feature, Ω is a subset of Rn where n is equal to
the number of distinguished variables of F and e = (H,~θ) is an example then the count of (F,Ω)
w.r.t. e is c(F,Ω, e) = |Ω ∩ S(F, e)|. Here Ω ∩ S(F, e) is a multi-set containing all the elements
from S(F, e) (with their multiplicities) which are also contained in Ω. Although this definition of
count works also for features which do not contain any distinguished variables, it is somewhat
cumbersome to always write c(c,Ω, e) whenΩ contains just one empty vector. Therefore, we use
a shorthand notation c(F, e) = c(F, {()}, e) for features without distinguished variables. Similarly,
if Ω = {~θ} , we use a simplified notation c(F,~θ, e) = c(F, {~θ}, e).

Example 9. Let us have a feature

F = size(X,R1)∧ edge(X, Y)∧ size(Y,R2),

and an example e = (H,~θ)

H = {size(a, r1), size(b, r2), size(c, r3), edge(a,b), edge(b, c)}
~θ = (1, 0, 3)

The feature F and the example e are the same as in Example 7. Let Ω = {(1, 1), (1, 0)} be a set of
vectors. Then the count of (F,Ω) w.r.t. the example e is 1 because |Ω∩ S(F, e)| = |{(1, 0)}| = 1.

When using counting features, we are not interested primarily in probability of features as we
were in Section 4.3, but rather in the distribution of their counts. In fact, we may be often satisfied
with moments of these distributions – usually just with mean and variance.

Example 10. Let us have a distribution on learning examples given by P(H,Ω) =
∫
Ω fH(

~θ|H)P(H)

d~θ. Let P(H) be the same as in Example 8. Next, let us suppose that we have a feature F =
num(R1) and a set Ω = [0, 0.1] (notice that we use a different set Ω in this example). We
compute the mean of the pair (F,Ω) conditioned on the structure of the example and get the
following results

E(c(F,Ω, (H,~θ))|H = {num(r1)}) = 0.1
E(c(F,Ω, (H,~θ))|H = {num(r1),num(r2)}) = 0.2.

Here, ~θ is a random variable conditioned on H.

4 This is akin to the generalized covers relation for probabilistic ILP [100].
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We can see in the above example that as in the case of Boolean features, the expected value
of counts may increase with the number of true groundings of a given feature even though the
individual continuous random variables are identically and independently distributed.

Counting features are useful on their own for problems where the property of interest de-
pends on the total number of true groundings. Using the illustration with prediction of prop-
erties of molecules, counting features are useful as local patterns when the properties that we
want to predict are determined by the number of certain substructures. On their own, they are
not so useful for problems where the property of interest that we want to predict is given by
overall behaviour of the numerical parameters. Counting features may be used even for this kind
of problems when used in global models, e.g. in Markov logic networks.

4.5 polynomial features

Polynomial features represent a class of features which are able to capture regularities in the
overall distributions of continuous parameters of learning examples. A polynomial feature may
be any feature with at least one distinguished variable Ri. The adjective ’polynomial’ emphasizes
the fact that the result of evaluating a polynomial feature w.r.t. and example is computed as an
(average) value of some multivariate polynomial. Unlike for the previous two types of features
(Boolean and counting features) we do not define probability of a feature for polynomial features.
Instead, we define a sample distribution of a feature.

Definition 14 (Sample distribution of a feature). Let us have a distribution on learning examples with
the probability function P(H,Ω) and let F be a feature with at least one distinguished variable. The sample
distribution of the feature F is the distribution of random vectors generated by the following process: 1.
Draw a random example e = (H,~θ) from the distribution with the probability function P(H,Ω). 2.
Compute the sample set S(F, e). 3. Draw a vector v randomly and uniformly from S(F, e).

Example 11. Let us again consider the distribution on learning examples with the probability
function P(H,Ω) from Example 8. Let us have a feature

F = num(R1).

Then the sample distribution of F w.r.t. this distribution is given by the probability density
function

fF(~θ) = 1 for ~θ ∈ [0; 1] .

Notice that fF(~θ) does not depend on the structure of sampled examples in this case unlike the
probability of the respective Boolean or counting feature. For instance, if we conditioned the
samples on the structure {num(r1),num(r2)} we would get the same result.

Note that the random process which defines sample distributions of features does not take
into account varying cardinalities of the sample sets. No matter how large a sample set is, only
one sample is taken from it. However, as we will see later, all samples from given sample sets
can be used for estimation of statistics of the distributions of features.

Now, we turn our attention to polynomial features. We start by defining monomial features and
their values which will be used to define polynomial features in turn.

Definition 15 (Monomial feature). A monomial feature M is a pair (F, (d1, . . . ,dk)) where F is a
feature with k distinguished variables and d1, . . . ,dk ∈ N. Degree of M is deg(M) =

∑k
i=1 di. Given

a non-empty sample set S(F, e), we define the value of a monomial feature M = (F, (d1, . . . ,dk)) w.r.t.
example e as

M(e) =
1

|S(F, e)|

∑
~θ∈S(F,e)

~θd11 · ~θ
d2
2 · · · · · ~θ

dk
k

where ~θi is the i-th component of vector ~θ.
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Sometimes, we will also use a more intuitive notation for monomial and polynomial features
motivated by the definition of their value:

(F, (d1, . . . ,dk)) ≡def (F,Rd11 · R
d2
2 · · · · · R

dk
k )

Monomial features can be used to define polynomial features and their values.

Definition 16 (Polynomial feature). A polynomial feature is an expression of the form P = α1M1 +
α2M2 + · · ·+ αkMk whereM1, . . . ,Mk are monomial features and α1, . . . ,αk ∈ R (formally expressed
as a pair of two ordered sets - one of monomials and one of the respective coefficients). Value of a polyno-
mial feature P = α1M1 + · · ·+αkMk w.r.t to an example e is defined as P(e) = α1M1(e)+ α2M2(e)
+ · · ·+ αkMk(e). Degree of a polynomial relational feature P is maximum among the degrees of its
monomials.

One reason why polynomial features are useful is that they allow us to express aggregate
multivariate polynomial functions of the form

f(F, e) =
1

|S(F, e)|

∑
~θ∈S(F,e)

l∑
j=1

αj~θ
dj,1
1 · · · · · ~θdj,kk

where F is an arbitrary feature. It is, for example, possible to have features for computing av-
erage values or covariances for features’ sample distributions. The next proposition provides a
theoretical basis for computation of moments of distributions and similar statistics.

Proposition 3. Let us fix a distribution on examples with probability function P (H,ΩH). Let F be a
feature and fF be the density of its sample distribution. Let q(θ) be a multivariate polynomial. Let Xi be
vectors sampled independently from the distribution with density fF and let Yi = 1

i

∑i
j=1 q(Xj). If Yi

converges in mean to Ŷ for i→∞ then

Ỹi =
1

i

i∑
j=1

Q(ej)

converges in probability to Ŷ for i→∞whereQ is a polynomial relational feature given by the polynomial
q(θ) and the feature F, and ei are independently sampled examples.

Note that the above proposition holds in spite of the fact that the values Q(ei) are computed
from samples (contained in sample sets S(F, ei)) which need not be independent. The importance
of this proposition is that it enables us to estimate higher-order moments of distributions of
relational features.

An alternative way to estimate higher-order moments of features’ distributions would be
to draw randomly just one vector from each sample set and compute the value of the given
polynomial features from the obtained set of vectors. Such an alternative approach would have
lower power than the approach based on Proposition 3 because the information contained in
the unused samples would be simply thrown away (the power would be the same if the sample
sets always contained only multiple copies of the same vector, i.e. if the samples in them were
extremely dependent, which may also happen sometimes).

Example 12. We might be interested in marginal distribution of expression-levels of all pairs of
genes which share a common transcription factor. Thus, we could construct a feature

F1 = e(G1,R1)∧ transcriptionFactorOf(G1,G2)∧ e(G2,R2)

and then a set of polynomial features based on F corresponding to all the moments that we
are interested in. For instance, if we wanted to compute covariance of pairs of genes where one
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gene is a transcription factor of the other gene, we would need the feature F1 and the following
features F2 and F3:

F2 = e(G1,R1)∧ transcriptionFactorOf(G1,G2)
F3 = transcriptionFactorOf(G1,G2)∧ e(G2,R1)

The polynomial features (actually monomial in this case) needed to compute the covariance
would be given as

P1 = (F1,R1 · R2)
P2 = (F2,R1)
P3 = (F3,R1)

Finally, the covariance of the pairs of genes where on gene is a transcription factor of the other
gene would be computed from a set of examples as follows:

c =
1

m

m∑
i=1

(P1(ei) − P2(ei) · P3(ei)) .

Notice that the covariance could not be computed using only one polynomial feature.

A convenient property of polynomial relational features is their decomposability. Here, we
describe two variants of decomposability.

Proposition 4. Every polynomial relational feature of degree d can be expressed using monomial features
containing at most d distinguished variables.

Let us illustrate this decomposability-property on an example.

Example 13. Let us have a feature

F = a(X,R1)∧ e(X, Y)∧ a(Y,R2)∧ e(Y,Z)∧ a(Z,R3)

and a polynomial feature
P =M1 +M2

where M1 = (F,R1 · R2) and M2 = (F,R1 · R3). Then we can express P also as P = M ′1 +M
′
2

where M ′1 = (F1,R1 · R2), M ′2 = (F2,R1 · R2) and

F1 = a(X,R1)∧ e(X, Y)∧ a(Y,R2)∧ e(Y,Z)∧ a(Z,W)

F2 = a(X,R1)∧ e(X, Y)∧ a(Y,W)∧ e(Y,Z)∧ a(Z,R2).

Note that the new features F1, F2 differ from F only in that one of the distinguished variables Ri
was replaced by an ordinary variable W (i.e. by a variable which does not extract any numerical
values).

The decomposability of polynomial features is practical for feature generation because once
we set a maximum degree of the polynomial features that we are interested in, we also know that
we can use this limit for the number of distinguished variables in the generated features. There-
fore it is also sufficient to construct Gaussian features with at most two distinguished variables
because mean, variance and covariance may all be computed by combinations of polynomial
features of degree at most two.

There is also a second form of decomposability for polynomial features and that is decompos-
ability of disconnected features. We say that a formula F is disconnected if it can be rewritten as
F = (J)∧ (K) such that J and K do not have any variable in common (note that the parentheses
ensure that also the logical quantifiers are applied to the formulas J and K separately). We use
the term disconnected also to describe features which are also formulas.
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Proposition 5. Let F = (J)∧ (K) be a disconnected feature such that J and K do not share any variable.
LetM = (F, (d1, . . . ,dk)) be a monomial. Then it is possible to find monomial featuresMJ andMK such
that M(e) =MJ(e) ·MK(e) for all examples e.

As a consequence of Proposition 5, we can focus only on constructing connected monomial
features which also means that we have to search a much smaller space of features. A perhaps
more important consequence of this proposition is that it allows us to develop an algorithm for
evaluating bounded-treewidth polynomial features in time polynomial in the number of their
distinguished variables which is described in Chapter 6.

4.6 generalized multivariate-aggregation features

Polynomial relational features can be generalized straightforwardly. It suffices to replace the
multivariate polynomials by other functions. However, then most properties of polynomial rela-
tional features no longer hold. For example, the decomposability property for disconnected may
no longer be valid. More importantly, the complexity of evaluating generalized multivariate ag-
gregation features may be much higher than the complexity of evaluating polynomial features
even when the features have the same structure and differ only by the used aggregation function.
In Chapter 6, we show that polynomial features can be evaluated in time polynomial in the com-
bined size of the feature, example and the polynomial when the underlying logical formula is
treelike or has bounded treewidth. On the other hand, the problem of evaluating a generalized
multivariate feature may be NP-hard even for very simple formulas with bounded treewidth
and very simple aggregation functions.

Proposition 6. The problem of computing

V =
1

|S(F, e)|

∑
~θ∈S(F,e)

B(~θ1,~θ2, . . . ,~θk)

where B(x1, x2, . . . , xk) is a Boolean formula and F is a feature with treewidth 1, is NP-hard.

One of the reasons why we will be able to show in Chapter 6 that polynomial relational
features can be evaluated in polynomial time for bounded-treewidth features is that the poly-
nomials in them are represented in the expanded form. If they were allowed to be represented
arbitrarily (e.g. x1 · x2 + (x1 − x2)

3) then the problem would be NP-hard too even for bounded-
treewidth features.

Proposition 7. The problem of computing

V =
1

|S(F, e)|

∑
~θ∈S(F,e)

P(~θ1,~θ2, . . . ,~θk)

where P(x1, x2, . . . , xk) is a multivariate polynomial represented as an arbitrary algebraic expression
involving only summation, multiplication and integer-exponentiation, and F is a feature with treewidth
1, is NP-hard.

Multivariate aggregation is therefore possible also with different aggregation functions than
multivariate polynomials but the computational complexity may be much higher than for the
polynomial aggregation functions even if the features are the same and the aggregation func-
tions themselves are efficiently computable (as is the case for Boolean formulas).

4.7 related work

As we have already mentioned, what we term Boolean features is the most common type of
features used in classical inductive logic programming. Counting features are used in relational
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learning less frequently on their own but they are used implicitly in approaches like Markov
logic [28]. Counting features were also used in the system RELAGGS [58] which is based on
univariate relational aggregation. Although we are not aware of any work where polynomial
features would be used, they may be also implicitly used in hybrid Markov logic which is a
generalization of Markov logic to hybrid domains5.

There is, in fact, a tight relationship between hybrid Markov logic [132] and polynomial rela-
tional features. Hybrid Markov logic is an extension of Markov logic to hybrid domains, i.e. to
domains which contain both discrete relational data and numerical data. A hybrid Markov logic
network is a set of pairs (Fi,wi) where Fi is a first-order formula or a numeric term and wi ∈ R.
When one fixes a set of constants C then hybrid Markov logic defines a probability distribution
over possible worlds as follows:

P(X = x) =
1

Z
exp

(∑
i

wisi(x)

)
where si(x) is either the number of true groundings of feature Fi w.r.t x if Fi is not a numeric-
feature, or the sum of values w.r.t. x when Fi is a numeric feature. If one has conditional distri-
butions represented as hybrid Markov logic networks for two classes and the task is to learn
a classifier distinguishing examples from the two classes then the resulting decision boundary
has equation (where + and − superscripts distinguish the weights and features of the models
for the two classes) ∑

i

w+
i s

+
i (x) −

∑
i

w−
i s

−
i (x) = t

which defines a linear hyperplane. This form has already been exploited in the work on max-
margin learning of Markov logic networks [51]. If one used polynomial numeric features in the
hybrid Markov logic network, the resulting classifier would become very similar to what we
obtain with polynomial relational features and a linear classifier, e.g. support vector machine,
the main difference being that si(x) would be an average of values of polynomials applied on
the ground instances of feature Fi whereas it is a sum in the case of hybrid Markov logic. A
convenient property of averages used in polynomial-feature framework is that they are not so
sensitive to the size of the examples (possible worlds). The polynomial relational features can
be used in conjunction with almost any attribute-value classifier, not just the linear ones, thus
possibly offering greater flexibility in discriminative classification.

Polynomial features are also related to aggregation-based approaches to relational learning.
The main difference of features used in these systems, e.g. RELAGGS [58], and the polynomial
features presented here is that polynomial features allow multivariate aggregation whereas all
the existing systems, we are aware of, use only univariate aggregation. A system that could
potentially use multivariate aggregation is the system described in [129]. As it uses complex
aggregates using Prolog and therefore it should not be hard to define multivariate aggregation
in it; however, another question is scalability of such an extension of this system.

4.8 conclusions

In this chapter, we described several types of relational features. Our exposition was directed
towards hybrid domains. We demonstrated the differences between the several types of features
– specifically, what influences their values. We have also briefly touched complexity of evaluat-
ing them. In the subsequent chapters, we present algorithms for construction and evaluation
of these types of features. In Chapter 5, we describe two fast algorithms for exhaustive con-
struction of a class of Boolean features. In Chapter 6, we describe an algorithm for exhaustive
construction of a class of counting and polynomial features. There we also show that polynomial

5 In the end, almost any real-valued function can be used in hybrid Markov logic due to the generality with which
they were defined.
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features with bounded treewidth may be evaluated in polynomial time (recall that in this chap-
ter, we have shown that evaluating generalized multivariate aggregation features with bounded
treewidth is NP-hard). Then, in Chapter 7, we present an algorithm for construction of large
complex Boolean features. In experiments with real-life bioinformatics problems described in
Chapters 9 and 10, we show how counting features can be used for prediction of functions of
biological (macro)molecules. In chapters where we do not deal explicitly with problems involv-
ing real-valued parameters, we do not represent learning examples as pairs (H,~θ). We represent
them either as Herbrand interpretations or, in some other cases, as clauses. This is either stated
explicitly in the respective chapters or follows implicitly from the context.

4.9 proofs

This section contains proofs of propositions that do not rely on the rigorous definition of the
probabilistic framework. The only proposition which requires treatment in the rigorous frame-
work (Proposition 3 is postponed to Appendix).
Proposition 4. Every polynomial relational feature of degree d can be expressed using monomial features
containing at most d distinguished variables.

Proof. Clearly, in order to compute a value of any monomial M of order d we need at most d
distinguished variables because at most d of them can have non-zero exponent in the monomial.
If we replace the distinguished variables with zero di in M by ordinary variables (i.e. those that
do not extract any numerical values) then the new sample-set which we obtain for an example
e and the new feature with fewer distinguished variable will differ from the original sample-
set only in that every vector in it will miss the entries associated to the removed distinguished
variables. These variables are not used in the computation of values of M anyway.

Proposition 5. Let F = (J)∧ (K) be a disconnected feature such that J and K do not share any variable.
LetM = (F, (d1, . . . ,dk)) be a monomial. Then it is possible to find monomial featuresMJ andMK such
that M(e) =MJ(e) ·MK(e) for all examples e.

Proof. It holds S(F, e) = S(J, e)× S(K, e) where × denotes Cartesian product. We can therefore
construct the monomial features as follows. First, we split the set of distinguished variable of F
to two (necessarily disjoint) sets RJ, RK according to the formula in which they appear. We split
also the respective exponents to ordered sets (v1, . . . , vkJ) and (w1, . . . ,wkK).

MJ = (J, (dJ1, . . . ,dJkJ))

MK = (K, (dK1 , . . . ,dKkK)).

The product of these monomial features gives rise to the original feature because

MJ(e) ·MK(e) =
(

1
|S(J,e)|

∑
~θ∈S(J,e)

~θv11 . . .
~θ
vkJ
k

)(
1

|S(K,e)|
∑

~θ∈S(K,e)
~θw11 . . .~θ

wkK
kK

)
=

= 1
|S(J,e)|·|S(K,e)| ·

(∑
~θ∈S(J,e)

~θv11 . . .
~θ
vkJ
kJ

)
·
(∑

~θ∈S(K,e)
~θw11 . . .~θ

wkK
kK

)
= 1

|S(J,e)×S(K,e)|
∑

~θ∈S(J,e)×S(K,e)
~θd11 . . .~θdkk =M(e)

Proposition 6. The problem of computing

V =
1

|S(F, e)|

∑
~θ∈S(F,e)

B(~θ1,~θ2, . . . ,~θk)

where B(x1, x2, . . . , xk) is a Boolean circuit and F is a generalized multivariate aggregation feature with
treewidth 1, is NP-hard.
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Proof. We show NP-hardness of the problem by reduction from the #SAT problem [3]. Let
B(x1, x2, . . . , xk) be a Boolean formula for which we want to compute the number of satisfiable
assignments. Let us construct a feature F and an example e:

F = a(R1)∧ a(R2)∧ · · ·∧ a(Rk)

e = ({a(r1),a(r2)}, (0, 1)) .

Now, F has treewidth 1 and the sample set S(F, e) contains all Boolean vectors of length k.
Therefore

V =
1

|S(F, e)|

∑
~θ∈S(F,e)

B(~θ1,~θ2, . . . ,~θk)

is equal to the fraction of satisfying assignments of B(x1, x2, . . . , xk) and 2k ·V is the total number
of satisfying assignments.

Proposition 7. The problem of computing

V =
1

|S(F, e)|

∑
~θ∈S(F,e)

P(~θ1,~θ2, . . . ,~θk)

where P(x1, x2, . . . , xk) is a multivariate polynomial represented as an arbitrary algebraic expression
involving only summation, multiplication and integer-exponentiation, and F is a feature with treewidth
1, is NP-hard.

Proof. We show NP-hardness of this problem by reduction from the #3SAT problem [3]. Let
B(x1, x2, . . . , xk) be a 3SAT formula for which we want to compute the number of satisfiable
assignments. Any 3SAT formula can be rewritten into a multivariate polynomial in the integer
domain by application of the following rules:

• x1 ∧ x2 → x1 · x2

• x1 ∨ x2 ∨ x3 → x1 + x2 + x3 − x1 · x2 − x2 · x3 − x1 · x3 + x1 · x2 · x3

• ¬x1 → 1− x1

Unless we expand the polynomial, the transformation can be performed in polynomial-time.
Let P(x1, . . . , xk) be a multivariate polynomial constructed from the formula B using the rules
above. Now, let us construct a feature F and an example e (as we did in the proof of Proposition
6)

F = a(R1)∧ a(R2)∧ · · ·∧ a(Rk)

e = ({a(r1),a(r2)}, (0, 1)) .

Now, F has treewidth 1 and the sample set S(F, e) contains all 0-1 vectors of length k. Therefore

V =
1

|S(F, e)|

∑
~θ∈S(F,e)

P(~θ1,~θ2, . . . ,~θk)

is equal to the fraction of satisfying assignments of B(x1, x2, . . . , xk) and 2k ·V is the total number
of satisfying assignments.
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Propositionalization aims at converting structured descriptions of examples into attribute-value
descriptions which can be processed by most established machine learning algorithms. A major
stream of propositionalization approaches [76, 59, 131] proceeds by constructing a set of features
(first-order formulas) which follow some prescribed syntactical constraints and play the role of
Boolean attributes. Here we assume that examples are represented as first-order Herbrand in-
terpretations and features are conjunctions of first-order function-free atoms. Feature F acquires
value true for example I (covers the example) if I |= F, otherwise it has the false value. That is we
work with Boolean features as defined in Chapter 4.

Features may be viewed as patterns taking the form of relational queries. Thus proposition-
alization is similar to the framework of frequent query discovery where one seeks queries that
are frequent in that they hold true for at least a specified minimum number of examples. This
framework is represented e.g. by system WARMR [25]. Indeed, propositionalization systems
such as RSD [131] also adopt a minimum frequency condition that admissible features must
comply with. As well known, the minimum frequency condition is very practical in the popular
level-wise approach to construct conjunctions. In this approach, followed also by the mentioned
systems, each conjunction in level n extends by one atom some conjunction in level n− 1. Fre-
quency is monotone in that if F is not frequent then F∧a is not frequent for any atom a. Thus all
descendants of an infrequent query may be safely pruned, substantially adding to the efficiency
of the level-wise systems.

The problem is that frequency is arguably not the ideal criterion to assess the quality of fea-
tures in the propositionalization framework when employed for classification learning. Here,
rather than frequent features, one naturally prefers features that well discriminate examples
in terms of pre-defined classes. For sakes of pruning, one may want to discard redundant fea-
tures, i.e. those for which another feature providing better discrimination exists. Unfortunately,
redundancy is not monotone in the level-wise approach and thus cannot be translated here
into a pruning mechanism similar to the one based on frequency. Besides redundancy, another
important property of features is reducibility w.r.t. θ-subsumption. Given the assumed relational
representation, two queries may be semantically equivalent despite their difference in syntax.
We have good reason–if only for sakes of interpretability–to discard all reducible features, i.e.
those equivalent to an existing feature that is syntactically simpler. Reducibility is unfortunately
neither monotone in the level-wise approach. For example p(X) is irreducible, p(X)∧ p(Y) is
reducible, and p(X)∧ p(Y)∧ q(X, Y) is again irreducible.

The purpose of the work presented in this chapter is to remove these deficiencies by elab-
orating a novel, block-wise approach to construct a feature set by identifying building blocks
(smaller conjunctions) out of which all features can be composed. The main assumption on
which our algorithm is built is that the features it constructs, when viewed graphically, corre-
spond to hypertrees while blocks correspond to their subtrees. Our feature construction strategy
is bottom-up so that the initial set of blocks corresponds to all leaves of possible features. Blocks
are then progressively combined together with further connecting atoms into larger blocks and
eventually into features.

The main advantage of this approach is that it facilitates monotonicity of the two properties
of interest in that features containing a redundant (reducible) block are themselves redundant
(reducible). Such blocks are thus immediately and safely discarded. As we also show, the as-
sumption of treelike features would not guarantee monotonicity of the two properties in the
more traditional level-wise approach. Thanks to the mentioned assumption, we are able to de-
cide whether a block is reducible in time only quadratic in the size of the block despite the
NP-completeness of the reducibility problem for unconstrained conjunctions. As a last advan-

27
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tage, the block-wise approach also allows us to efficiently compute extensions of features in a
way similar to the well known query pack technique [9]. We describe two algorithms, called RelF
and HiFi, based on the above outlined ideas. In experiments, we show our approach to result in
both very fast feature construction but also in high classification accuracies.

This chapter is organized as follows. In the next section we define the concepts of templates
and features. Templates are used to specify the syntactic bias for features. Section 5.2 shows that
the basic conditions we have imposed on templates and features imply the hypertree structure
of features. In Section 5.3 we introduce blocks and the graft operation through which blocks are
combined. Section 5.4 shows how to detect reducible blocks and establishes that reducibility is
block-wise monotone. An efficient algorithm for checking reducibility is then described in Sec-
tion 5.5. In Section 5.6 we formalize the semantics of features through the concepts of domain
and extension. Using these concepts, Section 5.7 defines redundancy of features and shows how
to detect blocks whose inclusion in any feature will make that feature redundant. In Section 5.8
we synthesize the methodological ingredients into a propositionalization algorithm and show
that it is complete in that it generates all useful features complying with the given template.
Section 11.3 subjects our algorithm to comparative experimental evaluation in 9 relational clas-
sifiaction benchmarks. In Section 5.11 we discuss related work and Section 11.4 concludes the
main part of this chapter. There are two additional sections. The first one (Section 5.13) contains
all proofs of propositions as well as all lemmas. The second one (Section 5.14) presents results
on complexity of construction of features when templates without the conditions imposed in
Section 5.2. There we show that deciding whether at least one feature complying with the given
language specification exists is an NP-complete problem.

5.1 τ-features

We will be working with the language of first-order predicate logic free of functions up to
constants. Learning examples and features will correspond to interpretations and existentially
quantified constant-free atom conjunctions, respectively. We will write first-order logic variables
in upper-cases and constants in lower-cases. As the order of atoms in conjunctions will not be
important, we will use set-notation even for conjunctions. So expressions such as |C |, a ∈ C,
C ⊆ C ′ will be interpreted as if C and C ′ were sets of atoms. A set of conjunctions is said to
be standardized-apart if no two conjunctions in the set share a variable. By vars(C) we denote
the set of all variables found in conjunction C. Given a set A of atoms, we denote args(A) =
{(a , n) |a ∈ A , 1 6 n 6 arity(a)}, i.e. args(A) is the set of all argument places in A. For an
atom a, argi(a) is its i-th argument. Atoms a1 and a2 in conjunction C are connected in C if
a1 shares a term with a2 or with some atom a3 of C that is connected to a2 . Conjunction C is
said to be connected if every two atoms in C are connected in C. Otherwise C is disconnected.

A feature construction algorithm should provide the user with suitable means of constraining
the feature syntax. In commonplace inductive logic programming systems such as Progol [86] or
Aleph, the syntax is specified through mode declarations expressed via dedicated meta-predicates.
Mode declarations define the predicates which can be used to build a clause, and assign a type
and mode to each argument of these predicates. Here we propose the notion of a feature tem-
plate, which is equally expressive to mode declarations, yet formally simpler. Besides simplicity,
another advantage of feature templates is that compliance therewith is verified through the
standard subsumption check. A template will be defined as a set of ground atoms of which all
arguments fall in exactly one of two categories (‘input’ and ‘output’). Templates will be further
subjected to two restrictions needed to guarantee treelikeness of features that are to be derived
from templates.

Definition 17 (Template). A pre-template is a pair τ = (γ , µ) where γ is a finite set of ground atoms
and µ ⊆ args(γ). Elements of µ are called input arguments and elements of args(γ) \ µ are called
output arguments. We say that τ is a template if (i) every atom in γ has at most one input argument
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and (ii) there is a partial irreflexive order ≺ on constants in γ such that c ≺ c ′ if and only if there is an
atom a with c in its input argument and c ′ in its output argument.

A template τ = (γ,µ) is conveniently represented by writing γ with elements of µ (args(γ) \ µ)
marked with + (−) signs, called input (output) modes. We will use the sign ≈ to associate τ with
this kind of template representation as in the following example.

Example 14. Let τ = (γ,µ) where γ = {hasCar(c),hasLoad(c, l),box(l), tri(l), circ(l)} and µ =
{(hasLoad(c, l), 1), (box(l), 1), (tri(l), 1), (circ(l), 1)}. Here, τ is a template since there is an order
c ≺ l complying with Definition 17 and no atom in γ has two input arguments. In the simplified
notation we show τ as

τ ≈ hasCar(−c),hasLoad(+c,−l),box(+l), tri(+l), circ(+l)

On the other hand, τ2 ≈ a(+x,−y),b(+y,−x) is not a template because there is no order that
would comply with Definition 17.

We will now define the type of connected conjunctions that comply with a given template
τ. The compliance will be witnessed by a substitution θ. We shall distinguish certain roles of
variables in such conjunctions; these will be determined by τ and θ.

Definition 18 (τθ-conjunction). Given a template τ = (γ,µ) a τθ-conjunction C is a connected
conjunction where all terms are variables and Cθ ⊆ γ. The occurrence of a variable in the i-th argument
of atom a in C is an τθ-input occurrence in C if the i-th argument of aθ is in µ and it is an τθ-output
otherwise. A variable is:

• τθ-positive in C if it has exactly one τθ-input occurrence and no τθ-output occurrence

• τθ-negative in C if it has exactly one τθ-output occurrence and no τθ-input occurrence

• τθ-neutral in C if it has at least one τθ-input and exactly one τθ-output occurrence

Example 15. Conjunction hasLoad(C,L)∧ box(L) is a τθ-conjunction for τ from Example 14

and θ = {C/c,L/l}. Variable C is τθ-positive and variable L is τθ-neutral in the conjunction.

In what follows, we will abbreviate the phrases ‘τθ-input occurrence’ and ‘τθ-output occur-
rence’ by the respective words ‘input’ and ‘output.’

Through the condition Cθ ⊆ γ, the definition effectively requires that variables in τθ-conjunct-
ion C comply with types specified by γ, specifically that each variable in C maps to exactly one
type. Features, which we define in turn, are τθ-conjunctions which additionally comply to a
condition pertaining to modes.

Definition 19 (τ-Feature). A τθ-conjunction F is a τθ-feature if all its variables are τθ-neutral in F.
We say that F is a τ-feature if there exists a substitution θ such that F is a τθ-feature.

For example, using τ from Example 14, the following conjunction is a τ-feature

hasCar(C)∧ hasLoad(C,L1)∧ hasLoad(C,L2)∧ box(L1)∧ tri(L2)

as it is a τθ-feature for θ = {C/c,L1/l,L2/l}. In general, there can be more than one substitution
θ such that Fθ ⊆ γ, and some of them can make some of the variables non-neutral. For example,
if

τ = atom(−a),bond(+a,−b),bond(−c,+b),atom(+c)

and
F = atom(A),bond(A,B),bond(C,B),atom(C)

then F is a τθ1-feature for θ1 = {A/a,B/b, C/c} but it is not τθ2-feature for θ2 = {A/c,B/b,C/c}.
In any case, F is a τ-feature because of the existence of θ1. It would be easy to avoid the illustrated
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TreelikeCyclic Acyclic

Figure 1: Examples of cyclic, acyclic and treelike hypergraphs that represent first-order conjunctions.

ambiguity of templates, e.g. by requiring that no predicate occurs twice in a template. However,
we do not need this restriction.1

Templates introduced in this section are similar to WARMR’s warmode declarations but not
the same. In a template, every atom can have at most one input argument, unlike warmodes
which do no restrict the number of input or output arguments. We do need the restriction
to guarantee treelike structure of features. Furthermore, variables in our features must have
both an input and an output. This requirement increases the expressiveness of our framework
(the case without the requirement can clearly be emulated by adding dummy atoms). Further
justification for the requirement is given in [76].

5.2 treelike structure of τ-features

The two conditions we imposed on templates in Definition 17 and the neutrality condition
we stipulated on variables in features in Definition 19 guarantee a constrained structure of
features when viewed graphically. For precise characterization, we shall define treelikeness of
conjunctions which is a special case of acyclicity. We follow the established definition from [29]
that relates to hypergraphs. While we translate the notions into the context of conjunctions, the
definition also shows the original hypergraph concepts in parentheses since hypergraphs offer
easier intuitive understanding.

Definition 20 (Treelike conjunction). A conjunction (hypergraph) C is treelike if the iteration of the
following rules on C produces the empty conjunction (hypergraph):

1. Remove an atom (hyperedge) which contains fewer than 2 terms (vertices).

2. Remove a term (vertex) which is contained in at most one atom (hyperedge).

The right-most panel in Figure 1 illustrates the concept of treelikeness. A few remarks are needed
to fully clarify the correspondence between conjunctions and hypergraphs. Vertices correspond
to terms and hyperedges correspond to atoms that contain the terms as arguments. In general,
multiple atoms in a conjunction may contain the same set of terms. Therefore conjunctions
correspond in fact to multi-hypergraphs. This fact is not important when applying the iterative
reduction above and thus for brevity we maintain the shorter term hypergraph. In Definition 38,
removing a term from C means removing all its occurrences from C. That is, the arity of each
atom in C will be decreased by the number of occurrences of the term in the atom.

Obviously, general τθ-conjunctions may be non-treelike. For example,

C = a(A , B) ∧ a(C , B) ∧ a(C ,D) ∧ a(A ,D)

1 In fact, with certain abstraction, this ambiguity is analogical to that present in inductive logic programming systems
where different sequences of refinements may result in the same first-order expression.
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is a τθ-conjunction for τ = (γ , µ), γ = {a(a , b)}, θ = {A/a , B/b , C/a , D/b} and any µ ⊆
args(γ). C is not treelike as may be verified by applying Definition 38 (clearly, none of the two
reduction rules can be applied on C) or by projecting C onto the left-most example in Figure 1.
However, as the following proposition asserts, τ-features are indeed treelike.

Proposition 8. Every τ-feature F is treelike.

A convenient consequence is that the decision problem I |= F can be computed in time poly-
nomial in |F|. In contrast, for a general conjunction C, I |= C corresponds to the NP-complete
θ-subsumption test. Polynomial-time solubility of treelike queries is well known in database lit-
erature [137] and in the field of constraint satisfaction where this problem is efficienctly tackled
by the directional-arc-consistency algorithm [24].

5.3 blocks

Here we first define blocks used to build a feature through the graft operation2. Before we do so
formally, we motivate the concepts through an example. Given a template

τ ≈ hasCar(−c),hasLoad(+c,−l),has2Loads(+c,−l,−l),box(+l), tri(+l)

an exemplary τθ-feature for θ = {C/c,L1/l,L2/l,L3/l}

hasCar(C)∧ (2)
hasLoad(C,L1)∧ box(L1)∧ (3)

has2Loads(C,L2,L3)∧ box(L2)∧ box(L3) (4)

is graphically shown left-most in Fig. 2 as a hypertree containing two subtrees corresponding
to lines 2 and 3 above. The latter subtree is also shown separately in the middle of Fig. 2.
Conjunctions corresponding to such subtrees will be called pos τθ-blocks to abbreviate the fact
that they contain exactly one τθ-positive variable (here C). This is the only variable that the block
shares with the rest of the feature. The share of only one variable has a convenient consequence
towards monotonicity, as we will also formally show: if the block is redundant (reducible), the
containing feature is also redundant (reducible).

The second kind of block we shall define corresponds to what is left of a τθ-feature when a
pos τθ-block is removed. Such a block, called a neg τθ-block contains exactly one τθ-negative
variable. An example of a neg τθ-block is shown right-most in Fig. 2.

Definition 21 (Blocks). Let B be a τθ-conjunction. If there is exactly one τθ-positive (τθ-negative)
variable in B, it will be denoted p(B) (n(B)). B is a pos τθ-block if it has p(B) (n(B)) and all other
variables in B are τθ-neutral. We say that B is a pos (neg) τ-block if there exists a substitution θ such
that B is a pos (neg) τθ-block.

Of course, a pos τθ-block can itself in general contain smaller pos τθ-blocks. To exploit the
above commented monotonicity observed on blocks, our strategy to assemble features will be
bottom-up, starting with the smallest pos τθ-blocks (e.g. tri(L3) in the current example) and safely
discarding those deemed redundant or reducible. Larger pos τθ-blocks result from conjoining a
number of smaller τθ-blocks (e.g. box(L2) and tri(L3)) with further atoms needed to make the
conjunction a pos τθ-block (in this case has2Loads(C,L2,L3)) or a τθ-feature. This operation,
which we call a graft, is formalized below.

Definition 22 (Graft). Let C be a τθ-conjunction, v a variable in C, and φ+ = {B+
i } a standardized-

apart set of pos τ-blocks. We define C⊕v φ+ = C∧i Biθi where θi = {p(B+
i )/v}. In the special case

when C is a neg τ-block, we denote C⊕φ+ = C⊕n(C) φ
+.

2 not to be confused with grafting as introduced in [95]
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Figure 2: A feature, a pos block and a neg block displayed as hypergraphs

In the mentioned special case when C is a neg τ-block, C ⊕ φ+ is a τθ-feature. Otherwise,
for generality, the definition does not require that the graft results in a pos τ-block. Speaking
in terms conventional for inductive logic programming, graft is an operator yielding a com-
mon specialization of its operands. However, in comparison with well known operators such
as Plotkin’s least general generalization [92], graft is defined in a highly constrained context of
treelike function-free conjunctions rather than general first-order clauses.

5.4 reducibility

In this section, we elaborate properties of features and pos blocks regarding their reductions.
Let C and D be conjunctions of atoms and let there be a substitution θ such that Cθ ⊆ D. Then
we say that C subsumes D (written C � D). If C � D and D � C then C and D are said to be
equivalent, written C ≈θ D. We say that C is reducible if there exists a conjunction C ′ such that
C ≈θ C ′ and |C| > |C ′|; C ′ is called a reduction of C. An example of a reducible conjunction
of atoms is hasCar(C)∧ hasLoad(C,L1)∧ hasLoad(C,L2)∧ box(L1) equivalent to the shorter
conjunction hasCar(C)∧ hasLoad(C,L1)∧ box(L1).

In this work we cannot rely directly on the established notion of reducibility as defined
above. This is because a reduction of a τ-feature may not be a τ-feature itself. For exam-
ple, for τ ≈ {car(−c1),hasLoad(+c1,−l),hasLoad(−c2,+l), hasCar(+c2)}, the conjunction
car(C1)∧ hasLoad(C1,L1)∧ hasLoad(C2,L1)∧ car(C2) is a correct τ-feature but its reduction
hasCar(C1) ∧ hasLoad(C1,L1) is not. The fact that reduction does not preserve correctness
of feature syntax may represent a problem because we would like to work only with reduced
features, if only for sakes of improved interpretability. Relying on the treelikeness of features
and the implied treelikeness of pos blocks, we are going to introduce H-subsumption and H-
reduction such that H-reduction of a τθ-feature is always a τθ-feature. The two concepts differ
from their classical counterparts by requiring that substitutions involved in the subsumption
relations preserve variable depths. We define the notion of depth in turn.

Definition 23 (Depth). Let C be a τθ-feature or a pos τ-block and a its atom. If a contains no inputs
or if it contains the variable p(C) then its depth in C, denoted dC(a) is 1. Otherwise dC(a) = n

such that a1,a2, . . . ,an is the shortest sequence of atoms such that dC(a1) = 1, an = a and for each
1 6 i < n, there is a variable having an output in ai and an input in ai+1. The depth of variable v in
C is dC(v) = min{dC(a)|a contains v}.

Definition 24 (H-subsumption). We say that τθ1-feature (pos τ-block, respectively) F H-subsumes
τθ2-feature (pos τ-block, respectively) G (written F �H G) if and only if there is a substitution ϑ such
that Fϑ ⊆ G and for every atom a ∈ F it holds dF(a) = dG(aϑ); such a ϑ is called a H-substitution.
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Definition 25 (H-reduction). If F �H G and G �H F, we call F and G H-equivalent (written
F ≈H G). We say that τθ1-feature (pos τ-block, respectively) F is H-reducible if there is a τθ2-feature
(pos τ-block, respectively) F ′ such that F ≈H F ′ and |F| > |F ′|. A τθ-feature (pos τ-block) F ′ is said to
be an H-reduction of F if F ≈H F ′ and F ′ is not H-reducible. A τ-feature F is said to be H-reducible if
there is a substitution θ such that F is an H-reducible τθ-feature.

Example 16. Continuing with τ from Example 14, the τ-feature

F1 = hasCar(C)∧ hasLoad(C,L1)∧ box(L1)∧ hasLoad(C,L2)∧ box(L2)∧ tri(L2)

is H-reducible because there is feature F2 = hasCar(C)∧ hasLoad(C,L)∧ box(L)∧ tri(L) for
which it holds F1 ≈H F2, as F1θ1 ⊆ F2 and F2θ2 ⊆ F1 for substitutions θ1 = {C/C,L1/L,L2/L},
θ2 = {C/C,L/L2}, which map variables in depth d in one feature to variables in the same depth
in the other feature, and it holds |F2| < |F1|.
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Figure 3: The feature F from Example 16 (left) and its H-reduction (right); arrows indicate the substitution
θ1.

Since H-reducibility is the only concept of reducibility we will work with, we will occasionaly
afford to omit the H− prefix. The next proposition provides a way to detect reducibility of pos
blocks and also asserts that reducibility is monotone.

Proposition 9. Let B be a pos τ-block and let B− be a neg τ-block. Then the following holds: (i) B
is H-reducible if and only if B contains pos τ-blocks B1,B2 such that B1 6= B2, p(B1) = p(B2) and
B1 �H B2. (ii) If B is H-reducible, then B− ⊕ ({B}∪ S) is also H-reducible for any set of pos τ-blocks S.

Monotonicity of reducibility is an important property enabling pruning during feature con-
struction. It is essential to realize that this property does not simply follow from the treelike
structure of features. Indeed, if we constructed treelike features in the usual level-wise manner as
e.g. the systems WARMR or RSD would proceed, it would not be possible to prune on reducibil-
ity. For example, extending hasCar(C)∧hasLoad(C,L)∧box(L) by atom hasLoad(C,L2) yields
a reducible conjunction. If we however pruned it along with all of its descendants, we would also
prune the irreducible feature hasCar(C)∧ hasLoad(C,L)∧ box(L)∧ hasLoad(C,L2)∧ tri(L2).

Lastly, thanks to the reducibility concept, we can state the following proposition which is
important since we aim at constructing complete feature sets.

Proposition 10. Let τ be a template. There is only a finite number of τ-features, which are not H-
reducible.

This holds despite that there is an infinite number of τ-features for a sufficiently rich template
τ.
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Example 17. Let us work again with τ from Example 14. There is an infinite number of τ-features
but there are only 19 irreducible τ-features. An example of a reducible τ-feature is

Fr = hasCar(C)∧ hasLoad(C,L)∧ box(L)∧ hasLoad(C,L2)∧ box(L2)∧ circ(L2)

This τ-feature is indeed reducible, which according to Proposition 9 follows from the presence
of the two pos blocks below in it.

hasLoad(C,L)∧ box(L) �H hasLoad(C,L2)∧ box(L2)∧ circ(L2)

As may be routinely checked, there are exactly eighteen further irreducible τ-features.

5.5 a fast algorithm for H-reduction

We now describe an algorithm for checking H-reducibility of features (Algorithm 1) that runs
in time quadratic in the number of atoms in the tested feature. We need to introduce some
additional notation which will be constrained to this section. Let F be a τθ-feature or a pos
τθ-block and PF, IF, JF, functions defined as follows. If two atoms a,b ∈ F share a variable,
which has an output in the i-th argument of a and an input in the j-th argument of b we define
PF(b) = a, IF(b) = i, JF(b) = j. Lastly, for an atom b in F we define CF(b) = {a ∈ F|PF(a) = b}.
That is, PF(a) denotes the ‘parent’ atom of a, which, due to the treelike structure of features and
pos blocks, is unique if it exists. Inversely, CF(b) is the set of all ‘children’ atoms of b. Functions
IF and JF index the arguments in the respective literals where the ‘connecting variable’ occurs.

The algorithm is based on Proposition 9, namely on the fact that a τθ-feature F is H-reducible
if and only if it contains two pos τ-blocks B1 and B2 such that p(B1) = p(B2) and B1 �H B2.
The main idea exploited by the algorithm is to maintain an array called Subsumed indexed by
pairs (ai,aj) in which we store the number of child-blocks (i.e. pos τ-blocks) of the atom ai,
which H-subsume some child-blocks of the atom aj such that IF(ai) = IF(aj). If this number
equals the number of children of ai and if ai and aj share a common parent, then the tested
τ-feature F is H-reducible. It is easiest to see how this algorithm works through an example.

Example 18. Consider template τ ≈ a(−x),b(+x,−y), c(+y),d(+y) and the following feature

F = a(A)∧ b(A,B)∧ c(B)∧ d(B)∧ b(A,C), c(C)

Let us go through the steps Algorithm 1 performs to detect that F is H-reducible. It starts
by filling the Open list: Open ← {(c(B), c(C)), (c(C), c(B))}. In the next step, the first pair
(c(B), c(C)) is extracted from the list and we check whether PF(c(B)) = PF(c(C)). As the answer
is negative, the algorithm continues by incrementing Subsumed(b(A,B),b(A,C)), i.e. we have
Subsumed(b(A,B), b(A,C)) = 1. However, Subsumed(b(A,B),b(A,C)) 6= |CF(b(A,B))| = 2, so
we continue with the next iteration. We extract (c(C), c(B)) from the list Open. Again PF(c(B)) 6=
PF(c(C)), therefore we increment Subsumed(b(A,C),b(A,B)). We have Subsumed(b(A,C),
b(A,B)) = |CF(b(A,C))| = 1, therefore we add (b(A,C),b(A,B)) to the Open list. In the next iter-
ation, we extract (b(A,C),b(A,B)) from the list Open and check that PF(b(A,C)) = PF(b(A,B)).
From this, we may conclude that F is H-reducible.

Proposition 11. Algorithm 1 correctly decides whether a τθ-feature (pos τ-block) F is H-reducible in
time O(|F|2).

Algorithm 1, which only decides whether a τ-feature F is H-reducible, can be easily converted
to an algorithm that also computes the H-reduction3 of F. It suffices to replace line 10 in Algo-
rithm 1 by ’Remove pos τ-block with root ai’.

3 The basic principles of the algorithm can be also used to easily obtain an O(|F| · |G|) algorithm for deciding F �H G.
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Algorithm 1 H-Reducibility(F)

1: Input: τθ-feature (pos τ-block) F;

2: Subsumed← a two-dimensional array indexed by atoms. All elements are initialized to 0. /*
Subsumed(A,B) is the number of child-blocks of A, which have been found to H-subsume
some child-blocks of B */

3: Open← {} /* A stack data-structure */
4: for d = 1 . . . dF do
5: Open ← Open ∪ {(ai,aj)} where ai,aj (ai 6= aj) are literals in depth d with no outputs

and such that predicate(ai) = predicate(aj) and IF(ai) = IF(aj)
6: end for
7: while Open 6= ∅ do
8: (ai,aj)← Pop(Open)
9: if PF(ai) = PF(aj) then

10: return H-Reducible
11: else
12: Subsumed(PF(ai),PF(aj)) = Subsumed(PF(ai),PF(aj)) + 1
13: if Subsumed(PF(ai),PF(aj)) = |CF(PF(ai))| and predicate(PF(ai)) =

predicate(PF(aj)) and IF(PF(ai)) = IF(PF(aj)) and JF(PF(ai)) = JF(PF(aj)) then
14: Open← Open∪ {(PF(ai),PF(aj))}
15: end if
16: end if
17: end while
18: return Not H-Reducible

5.6 extensions and domains

So far we have been only concerned with the syntax of τ-features. Now we will also establish
their semantics. We do this through the concepts of domain and extension. Extension of a τ-
feature is simply the set of examples covered by the τ-feature. Domain is defined in a finer
manner for both τ-features and pos τ-blocks, with respect to a single example. The method for
computing domains and extensions will be based on a combination of a well-known algorithm
for conjunctive acyclic query answering [137] and a variation of the query-pack method [9],
integrated into our block-wise feature construction procedure.

Definition 26 (Domain, Extension). Let I be an interpretation, i.e. a set of ground atoms, and τ a
template. For a pos τ-block B, domain domI(B) contains all terms t such that I |= Bθ, where θ =
{p(B)/t}. For a τ-feature F, domI(F) = {yes} if I |= F and domI(F) = ∅ otherwise. For a set E of
interpretations, the extension of a τ-feature F on E is defined as extE(F) = {I ∈ E I |= F}.

Domain, as defined in Definition 26, assigns to each pos τ-block B a set of terms {ti}, for which
there is a substitution θ of B such that p(Bθ) = ti and Bθ is true in I. Note that template τ is
not indicated in the subscript of either dom or ext as both of them are independent of τ. This
is instantly clear for features. For a pos τ-block B, we must recall from Section 5.1 that p(B) is
identified uniquely as it is the only variable with a single occurrence in B. The domain of B may
be computed by Algorithm 2 which runs in time polynomial in the size of B. This algorithm
is not novel, it corresponds to the algorithm known as conjunctive acyclic query answering
algorithm in database theory [137] and also to directed-arc-consistency algorithm in the field of
CSP [24].

Example 19. Consider feature F and interpretation I

F = hasCar(C)∧ hasLoad(C,L)∧ tri(L)∧ box(L),

I = {hasCar(c),hasLoad(c, l1),hasLoad(c, l2), tri(l1),
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Algorithm 2 domI(B)

1: Input: Pos τ-block B, Interpretation I;
2: atomsDom← {a ∈ I|pred(a) = pred(root(B))∧ (I |= a)}
3: for ∀ output variables outi of B’s root do
4: Children ← all pos blocks B such that outi = p(B) (i.e. children of B’s root hanging on

its i-th output)
5: argDomi ← ∩c∈Children domI(c)
6: atomsDom← atomsDom∩ {a ∈ I|argi(a) ∈ argDomi}
7: end for
8: return {t|t is term at input of an atom a and a ∈ atomsDom}

circ(l1), tri(l2),box(l2),hasLoad(c, l3),box(l4)}.

We may proceed as follows: (i) We compute domains of pos τ-block box(L) and tri(L), i.e.
domI(box(L)) = {l2, l4}, domI(tri(L)) = {l1, l2}. (ii) Then we compute domain of pos τ-block
with root hasLoad(C,L), i.e. domI(hasLoad(C,L) ∧ tri(L) ∧ box(L)) = {l1, l2, l3} ∩ {l2, l4} ∩
{l1, l2} = {l2}. The first set in the intersection comes from the fact that the predicate symbol
is hasLoad/2. The second set is due to pos τ-block box(L) and the third set is due to pos τ-
block tri(L). (iii) Since no domain is empty so far, we proceed further and compute domain of
the feature with root hasCar(C), which becomes {yes}. So, we see that I |= F.

The example makes it clear that computation of domains can be combined with the earlier
described block grafting in a way resembling query packs [9]. When a pos block is constructed
grafting an already constructed block c, the domain previously computed for c is reused as
domI(c) in line 5 of Algorithm 2. This principle is further illustrated in Fig. 4. To prevent ex-
cessive memory demands possibly resulting from the storing of domains, our implementation
uses a Java mechanism enabling it to automatically discard computed domains when a memory
limit is reached.
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Figure 4: Left: The set of all four non-H-reducible τ-features for τ ≈ hasCar(−c),hasLoad(+c,−l),
box(+l), tri(+l). Right: the structure of domain reusing when computing domains of these
features. The arrows indicate the flow of domain information. If domains are reused, only 9
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5.7 redundancy

We shall now define when a feature is redundant. We do so in the spirit of [77] where redun-
dancy was termed irrelevancy. Redundancy of a feature will be defined with respect to a feature
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set F and two sets of examples (interpretations) E+ and E− although, for brevity, we will not
explicitly say ‘with respect to F, E+ and E−’ when speaking of redundancy concepts. Adopting
these concepts, our approach becomes limited to binary classification problems, including of
course the case where a single target class is to be discriminated from a number of other classes.

Definition 27 (Redundancy). Let F be a set of τ-features for some template τ. Let E+ and E− be
two sets of interpretations (the positive and negative examples, respectively). F is E+-redundant (E−-
redundant) if there is F ′ ∈ F, F 6= F ′ such that extE+(F) ⊆ extE+(F ′) and extE−(F ′) ⊆ extE−(F)
(extE−(F) ⊆ extE−(F ′) and extE+(F ′) ⊆ extE+(F). If one of the inclusions, for at least one example,
is strict, F is said to be strictly E+-redundant (E−-redundant). F is called redundant if it is both
E+-redundant and E−-redundant. It is called strictly redundant if it is (i) redundant, and (ii) strictly
E+-redundant or strictly E−-redundant.

F1 F2 F3 F4 F5 Class

Example 1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Example 2 ⊕ ⊕ 	 	 ⊕ ⊕
Example 3 	 ⊕ ⊕ 	 	 	
Example 4 ⊕ 	 ⊕ ⊕ ⊕ 	

Table 2: An example set with five features used to illustrate the concept of redundancy in Example 20.

Example 20. Consider the set of examples and features as displayed in Table 2. F4 is strictly E+-
redundant because it covers the same negative examples as F1 but the set of positive examples
covered by it is a strict subset of the set of positive examples covered by F1. Feature F4 is also
E−-redundant because it covers the same set of positive examples as F3 but the set of negative
examples covered by F4 is a strict subset of those covered by F3. Therefore F4 is also strictly
redundant. F1 and F5 are non-strictly redundant because they cover the same set of examples.

In [77], redundancy was introduced for attribute-value learning and for learning of con-
strained Horn clauses, which are equivalent in their expressive power to attribute-value rep-
resentations. Applied to our setting, it is obvious that when features are constructed, they can
be filtered in a post-processing step, i.e. strictly redundant features can be discarded and from
each non-strictly redundant set of features with equal extensions, one feature can be preserved
discarding the rest. What is however less obvious is that a form of redundancy can be detected
already for pos blocks and that it implies redundancy of features that contain them. This is
formalized in turn.

Proposition 12. Let E+ (E−) be a set of positive (negative) examples. Let F be a set of pos τ-blocks with
equal types of input arguments and let B = {Bi}

n
i=1 ⊆ F. Let domI(B1) ⊆ ∩ni=2 domI(Bi) for all

I ∈ E+ (I ∈ E−) and let ∩ni=2 domI(Bi) ⊆ domI(B1) be true for all I ∈ E− (I ∈ E+). Then for any neg
τ-block B−: B− ⊕ ({B1}∪ S) is E+-redundant (E−-redundant), where S ⊆ F.

During the generation of features, we will discard pos τ-blocks such as B1 characterized
by the above proposition, i.e. those pos τ-blocks giving rise to redundant features. Let us use
the adjective redundant also for such pos τ-blocks. We use the term monotonicity of redundancy
to denote that once a pos block B is redundant, any block or feature constructed using B is
redundant as well. Again, this kind of pruning is enabled by our block-wise strategy and there
is no direct analogue to it in the traditional level-wise approach, as was illustrated in Section 5.4
in the context of reducibility.

Example 21. Let us continue with Example 16, considering a set of two positive examples E+

and a set of two negative examples E−.

E+ = {{hasCar(c1),hasLoad(c1, l1), circ(l1),box(l1),hasLoad(c1, l2), tri(l2)},



5.7 redundancy 38

+ +

- -
I 3

I 1 I 2

I 4

c 1 c 2

c 3 c 4

B 3B 1

B 2
+ +

- -
I 3

I 1 I 2

I 4

l 1
l 3

l 4 l 5

b o x ( L )

A ) B )

l 2

t r i ( L )

c i r c ( L )

Figure 5: Domains of pos blocks from Example 21. Ovals marked by I1, I2 correspond to the positive
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B3 = hasLoad(C,L), tri(L).

{hasCar(c2),hasLoad(c2, l3),box(l3), tri(l3)}}

E− = {{hasCar(c3),hasLoad(c3, l4),box(l4), circ(l4)},

{hasCar(c4),hasLoad(c4, l5), tri(l5), circ(l5)}}

We will construct the E+-non-redundant τ-features by block grafting. First, we generate and
filter the following three pos τ-blocks: box(L), tri(L), circ(L). We may check that circ(L) is
E+-redundant (due to box(L)), so we may safely discard it. The next pos τ-blocks created by
composing box(L) and tri(L) with hasLoad(C ′,L ′) are pos τ-blocks B1 = hasLoad(C,L) ∧
box(L), B2 = hasLoad(C,L)∧ box(L)∧ tri(L) and B3 = hasLoad(C,L)∧ tri(L). Notice that if
we had not removed circ(L), there would have been seven such pos τ-blocks. We can now filter
also B1,B2,B3 in exactly the same manner as we filtered box(L), tri(L), circ(L). In this case, B2
is E+-redundant because

domI1(B2) = ∅ ⊆ domI1(B1)∩ domI1(B3) = {c1},

domI2(B2) = {c2} ⊆ domI2(B1)∩ domI2(B3) = {c2},

domI3(B1)∩ domI3(B3) = ∅ ⊆ domI3(B2) = ∅,

domI4(B1)∩ domI4(B3) = ∅ ⊆ domI4(B2) = ∅.

Finally, we may compose these pos τ-blocks with car(C ′) to obtain the resulting set of neutral
features.

In principle, it could happen that by removing some redundant pos τ-blocks from F, another
redundant pos τ-block could become irredundant. While it indeed happens for non-strictly re-
dundant blocks (if we have only two blocks with equal domains and we remove one of them, the
second one will become irredundant), it does not happen if we filter the non-strictly redundant
blocks before we start the process of discarding the strictly redundant ones. This is expressed
more formally by the next proposition.

Proposition 13. Let F = {Bi}
n
i=1 be a set of pos τ-blocks with equal types of input arguments such

that no two pos τ-blocks in the set F have equal domains for all examples. Let F ′ be a set of pos τ-blocks
obtained from F by repeatedly removing redundant pos τ-blocks. Set F ′ is unique.



5.8 feature construction algorithm relf 39

Algorithm 3 RelF: Given a template and a set of examples, RelF computes the propositionalized
table.

1: Input: template τ, examples E;

2: PosBlocks← {}

3: OrderedAtoms ← topologically ordered (w.r.t. ≺ from Def. 17) predicate definitions com-
puted from τ

4: for ∀Atom ∈ OrderedAtoms do
5: NewPosBlocks ← Combine(Atom,PosBlocks,E) // See procedure Combine in Algo-

rithm 4

6: Filter pos τ-blocks with equal domains for all examples from (keep the short ones and if
they have equal sizes, select them arbitrarily) NewPosBlocks

7: Filter redundant pos τ-blocks from NewPosBlocks

8: Add NewPosBlocks to PosBlocks
9: end for

10: Save all correct features from PosBlocks

5.8 feature construction algorithm relf

In this section, we combine the ideas from the previous sections and present a description of
the algorithm RelF4 (Algorithm 3). The described algorithm constructs features using the graft
operator and it filters reducible and redundant features using the rules presented in previous
sections. The next proposition asserts the completeness of the algorithm. In the subsequent
comments, we address some details of the algorithm and also provide the intuition as to why
the completeness property holds.

Proposition 14. Let τ = (γ,µ) be a template and let E = E+ ∪E− be the set of examples. Further, let Fτ
be the set of all non-H-reducible τ-features and let FRelF be the set of conjunction of atoms constructed
by RelF. Then FRelF ⊆ Fτ and for every τ-feature Fτ ∈ Fτ, which is not strictly redundant, there is a
feature FRelF such that extE(FRelF) = extE(Fτ).

Let τ = (γ,µ) be a template. Let us tackle a simplified task first and let us construct all non-
H-reducible τ-features.The algorithm takes pos blocks and grafts them with atoms and other
pos blocks in order to produce bigger blocks and continues with this process until it produces
the whole set of features. We have not explained yet how the order of atoms from τ should
be determined. It is obvious that we could always start with the atoms that are declared in τ
without output arguments (e.g. box(+l) or tri(+l)). Next, we would like to graft these one-atom
blocks with other atoms from τ. At any point of the feature construction process, only the atoms
with types of output arguments equal to the types of positive variables of the already generated
blocks are usable. The question is whether we can expect that such atoms always exist. The
answer is that if the set of features is non-empty and if it has not been constructed yet then such
atoms must always exist, which is a consequence of the partial order ≺ on constants (i.e. types)
given in Definition 17.

Example 22. Consider the template

τ ≈ a(−a),a(+b),a(+c),bond(+a,−b,−t),bond(+b,−c,−t), single(+t),double(+t).

RelF starts by building blocks corresponding to a(+b), a(+c), single(+t) or double(+t). As-
sume it has already built blocks corresponding to all these four atoms. Next, the only pos-

4 The original implementation of RelF used for the experiments in the paper [62] is publicly available at
http://ida.felk.cvut.cz/RELF. A newer version is available as a part of the TreeLiker suite of relational learning
algorithms, described in Appendix, at http://ida.felk.cvut.cz/treeliker/.
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Algorithm 4 Combine: Given a set of already generated pos τ-blocks, an atom A ∈ γ and a set
of examples, this procedure generates τ-features or pos τ-blocks with their roots built upon the
predicate symbol of A.

1: Input: Atom A ∈ γ, Set of pos τ-blocks PosBlocks, Set of examples Examples = E+ ∪ E−;

2: Generated0 ← {a}, where a is an atom built upon the predicate symbol of A
3: for i = 1, . . . , arity(A) do
4: if i-th argument of A is an output then
5: Generatedi ← {}

6: /* Procedure BuildCombinations(PosBlocks, Type,Examples) constructs the set of
all legal combinations of pos blocks with the type of positive variables equal to Type */

7: Combinations ← BuildCombinations(PosBlocks, Type,Examples), where Type is
the term appearing as i-th argument of A

8: for ∀B− ∈ Generatedi−1 do
9: Let V be the i-th argument of a

10: for ∀S ∈ Combinations such that ∃I ∈ E+ : domI(B− ⊕V S) 6= ∅ do
11: /* S is a set of pos blocks */
12: F← B− ⊕V S

13: Generatedi ← Generatedi ∪ {F}
14: end for
15: end for
16: Filter E+-redundant pos τ-blocks from Generatedi
17: else
18: Generatedi ← Generatedi−1
19: end if
20: end for
21: return Generatedi

sibility is to take the atom bond(+b,−c,−t) because if bond(+a,−b,−t) were taken before
bond(+b,−c,−t), it would not be possible to construct all features. For example

a(A),bond(A,B, T1),bond(B,C, T2),a(C), single(T1),double(T2)

could not be constructed as can be easily seen. So it must take bond(+b,−c,−t) and only
after that it can take bond(+a,−b,−t). In the end it can build features by grafting the already
generated blocks with a(−a).

When we have a procedure capable of constructing the whole set of non-H-reducible features,
we will be able to enrich it by detection of redundant blocks. Due to monotonicity of redun-
dancy we will still be able to obtain one feature for each set of irredundant features with equal
extensions.

Consider now the step in which blocks are composed to yield bigger blocks. It is quite straight-
forward to construct the set of all pos blocks with an atom a as root when we already have the
set of all legal combinations of the pos τ-blocks that were already generated (cf. Algorithm 4).
Legal combinations of pos τ-blocks are those combinations where all pos blocks Bi have equal
type of the variable p(Bi) (if τ is ambiguous and if we denote by p̂(Bi) the set of all possible types
of the positive variable of Bi then we require the intersection ∩ip̂(Bi) to be non-empty) and for
i 6= j, we require Bi 6�H Bj (i.e. we require that no combination gives rise to H-reducible blocks).
Finding the legal combinations is a rather straightforward task, which can be also combined
with redundancy filtering.
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5.9 feature construction algorithm hifi

The feature construction algorithm RelF needs its input in the form of labelled learning ex-
amples because filtering based on the notion of strict redundancy would not work without
class-labels. On the other hand, class-labels would not be necessary if we wanted to use only
filtering based on non-strict redundancy. Recall that two features are mutually non-strictly re-
dundant if they have equal domains w.r.t. all training examples. The algorithm presented in
this section, called HiFi

5, is very similar to RelF. Unlike RelF, it uses only filtering based on
non-strict redundancy and its language bias allows setting maximum size of features. HiFi does
not require labelled learning examples therefore it can be used also for unsupervised learning
tasks, e.g. for clustering.

The algorithm HiFi is almost identical to RelF. There are just two differences described in the
next paragraphs. First, where RelF performs filtering of redundant pos blocks, HiFi filters only
non-strictly redundant pos blocks, i.e. it removes all but one pos block for every set of pos blocks
with the same domains. Second, HiFi is also able to detect that a pos block or a combination of
pos blocks cannot be extended to a feature that would have smaller or equal number of literals
than a given size limit. This is used in HiFi to filter candidate pos blocks when they are created
by grafting and candidate combinations of pos blocks when they are created (which corresponds
to line 7 in Algorithm 4 - algorithm Combine). How HiFi actually checks which blocks can be
extended to features satisfying given maximum-size constraints is explained next.

Despite the fact that checking whether a pos block can be extended to feature satisfying the
given maximum-size limit may seem as a trivial problem, it is not trivial, and, in fact, it is NP-
hard if we allow slightly more general type of (non-treelike) features. In Section 5.14, we show
formally that for general features, bounding features’ size is one of the factors that makes it NP-
hard even to decide whether at least one feature exists. This problem is no longer NP-hard if we
constrain ourselves to treelike features as noted in [130]. However, it is important to stress that
the obvious approach, which would discard pos blocks with size greater than the limit, would
not be very efficient even for treelike features because it could often leave many pos blocks
unfiltered. Here, we describe a simple and efficient method for checking whether a pos τ-block
may be extended to a treelike τ-feature with size not greater than some limit.

In what follows, we will speak of declared predicates from template τ. If τ = (γ,µ) is a template,
the term declared predicate will refer to a ground atom l ∈ γ together with the respective argument
places µl ⊆ µ, e.g. hasLoad(+c,−l) will be a declared predicate. Let m denote the number of
predicates declared in a template τ and let a denote maximum arity of the predicates. We now
show how, for all types t, we can find sizes of the smallest pos blocks Bmin such that Bmin
has t as input type of its root in time O(m2 +m · a). We start by finding a topological order
of the graph induced by the given template. As this graph surely has less than m2 edges, it
is possible to find its topological ordering in time O(m2). When the topological ordering is
found, we can take the declared predicates starting with input-only predicates and for every
such predicate, we can compute size of the corresponding smallest pos block. To accomplish
this, we sum sizes of smallest pos blocks whose roots have input types equal to output types of
the respective processed predicate declaration. These sizes must have been already computed
due to the topological order assumed. Since this is done for all m declared predicates, it follows
that computing sizes of the desired smallest pos blocks takes time O(m2 +m · a).

Since pos blocks are composed into bigger pos blocks (and eventually features) from smaller
blocks, what we really need to be able to determine efficiently is the size of the smallest feature
containing a given pos block. Let m denote the number of predicates declared in a template τ
and let a denote maximum arity of the predicates. Then, for all predicates p, we can find sizes
of the smallest treelike features Fpmin containing p in time O(m2 +m · a). Using the result from
the previous paragraph, we can translate this problem to a problem of finding shortest paths in
an acyclic graph G as follows. Let V be a set of vertices of G and let each vertex correspond to a

5 HiFi stands for hierarchical feature construction which is a term that we originally used in [69] for what is termed
block-wise in this thesis.
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predicate declared in τ. Let there be an oriented edge e between predicates p1 and p2 if and only
if type t of the input argument of p2 is equal to the type of some of the output arguments of p1.
Further, let the weight of each edge be defined according to Eq. 5, where MinSize(t) refers to
minimum size of a feature with input-type of its root equal to t.

w(p2,p1) = 1−MinSize(Input(p2)) +
∑

t∈Outputs(p1)

MinSize(t) (5)

The size of the smallest feature, which contains p, is then given as the length of the shortest
path from p to the only vertex with no inputs plus the size of the smallest pos block having p
as its root. The number of edges of G is bounded by m2 and the graph is acyclic, therefore we
can compute all the shortest paths in time O(m2). Thus, we see that it is possible to compute
smallest sizes of features containing some declared predicate in time O(m2 +m · a).

Thus, we are able to decide whether a pos block B can be extended to a correct treelike
feature with size less than some n. This is because the minimum possible size of a treelike
feature containing B can be computed as the size of the smallest feature containing root of B,
from which we subtract the size of the smallest pos block having the same root as B and to
which we add the size of B.

c a r(-c )

h a s 1L o a d (+ c ,- l ) h a s 2L o a d s (+ c ,- l ,- l )

b o x (+ l ) tria n g le(+ l )

2

2

1

1 1

1

Figure 6: An example graph corresponding to template used in Example 23. Edge labels are computed
from Eq. refeq:eq1.

Example 23. Let us compute sizes of the smallest features, which contain some declared predi-
cate, which are defined by the following template.

← car(−c),has1Load(+c,−l),has2Loads(+c,−l,−l),

box(+l), triangle(+l)

First we find the topological ordering on types, which is (L,C). Then we can compute sizes of
smallest pos blocks with given roots:

box(+l)→ 1, triangle(+l)→ 1,has1Load(+c,−l)→ 2,

has2Loads(+c,−l,−l)→ 3, car(−c)→ 3
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Now, we need to compute sizes of treelike features which contain given declared predicates. In
order to do so, we build the corresponding graph (Fig. 6) and compute shortest paths. It follows
that e.g. the smallest feature containing predicate has2Loads(+c,−l,−l) has size 1+ 3 = 4 (1 is
the length of the path from has2loads to car and 3 is the size of the smallest subfeature having
has2loTad as root) and e.g. the smallest feature containing predicate box(+l) has size 2+ 1 = 3.

Being able to decide whether a pos block B can be extended to a correct feature F with size
smaller than n is an important factor contributing to efficiency of HiFi. In Section 5.14.2, we
show that HiFi can construct the complete set of valid τ-features for a given template τ in
output-polynomial time (Proposition 16).

5.10 experiments

In this section we evaluate the speed of RelF and the accuracy of classifiers constructed with
RelF’s features. Our first intention is to compare the runtimes of feature construction conducted
by RelF to those achieved by the existing propositionalization system RSD. In [59] RSD has been
shown to be competitive w.r.t. predictive accuracy with propositionalization system SINUS [59]
and RELAGGS [58] in typical ILP tasks such as predicting mutagenicity or learning legal posi-
tions of chess-end-games, therefore we chose RSD for comparison with RelF. Our second goal is
to assess the classification accuracies obtained with RelF’s features in nine relational classifica-
tion benchmarks. Nine different methods for classification combined from propositionalization
and learning algorithms (RelF, RSD, Support Vector Machines, Logistic Regression, One Rule,
kFoil, nFoil and a RelF’s variation entitled nRelF) are tested in this study. Lastly, we aim at
tracing the effects of reducibility and redundancy based pruning on RelF’s performance.

In the experiments described in this section we use l2-regularized logistic regression from
LIBLINEAR package [30] and support vector machines [126] with RBF kernel from WEKA [133]
for all datasets except for the NCI dataset where we use linear SVM from LIBLINEAR package
which is a faster alternative to the RBF kernel SVM. We follow suggestions given in [107] to
obtain an unbiased estimate of quality of learned classifiers. All accuracies presented in this
section are estimates obtained by 10-fold cross-validation except the accuracies for the NCI 786

dataset for which a train-test split was used. For each fold, the parameters (maximum depth of
features for RelF, maximum feature length for RSD and the cost parameter for SVM and logistic
regression) are optimized by 3-fold cross-validation on the remaining nine training folds. We
perform experiments both with RSD having the same feature declaration bias as RelF and with
RSD allowing cyclic features.

5.10.1 Datasets

We performed experiments with four molecular datasets and two datasets related to engineering
problems. The first experiment was done with the regression-friendly part of the well-known
Mutagenesis dataset [43], which consists of 188 organic molecules marked according to their
mutagenicity. The next set of experiments was done with data from the Predictive Toxicology
Challenge [46] which consists of more than three hundreds of organic molecules marked accord-
ing to their carcinogenicity on male and female mice and rats. We also performed experiments
with a dataset that we created by merging the Carcinogenesis dataset [113], the PTC dataset and
the Mutagenesis dataset. The task in this slightly artificial learning problem was to distinguish
the generally toxic compounds from the remaining control compounds. The largest of the four
molecular datasets that we use in this chapter is the NCI 786 [115] dataset which contains 3506

molecules labeled according to their ability to inhibit growth of renal tumors. In all of these four
experiments, we used only atom-bond descriptions and only the crude resolution with atom
types like carbon, hydrogen and not the finer resolution with atom types like aliphatic hydrogen or
aromatic hydrogen.
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Dataset Classes Examples Facts Acc. of Majority Class

Mutagenesis 2 188 21024 66.5 %
CAD 2 96 16674 57.2 %
Mesh 13 278 2387 26.4 %
CPM 2 830 67309 52.9 %
P-FM 2 349 27762 59.0 %
P-MM 2 336 25482 61.6 %
P-FR 2 351 27762 65.5 %
P-MR 2 344 26986 55.8 %
NCI 786 2 3506 254380 52.3 %

Table 3: Properties of Mutagenesis dataset (Muta), Predictive Toxicology Challenge dataset (PTC), CAD
dataset (CAD), Mesh dataset (Mesh) and Carcinogenesis + PTC + Mutagenesis dataset (CPM))

Next, we performed experiments in a domain describing CAD documents (product struc-
tures) [139]. The CAD dataset is interesting in that relatively long features are needed to obtain
reasonable classification accuracy. An example of a feature from this dataset is

F = cadFile(A)∧ hasCADEntity(A,B)∧ hasBody(B,C)∧ hasFeature(C,D)∧

∧hasSecondLimit(D,E)∧ limitType(E,offset)∧next(D, F)∧ . . . 18 more atoms.

Finally, we performed experiments with the well-known Mesh dataset [26]. The task in this
problem is to predict, for each edge of a geometrical model, the best number of finite elements
that should be placed on the edge in order to introduce small approximation errors to finite ele-
ment modeling while keeping the complexity of the model as low as possible. The examples in
the Mesh dataset are not in the form of isolated interpretations, but they form several intercon-
nected networks corresponding to particular finite element models. The current implementation
of RelF copes with this problem by reading the networks and converting them to single inter-
pretations according to a given template τ. The conversion process accepts a network N together
with classification of the nodes and a template τ = (γ,µ) where the declared predicates with no
input arguments are supposed to refer to nodes in the network. An interpretation correspond-
ing to a node n ∈ N is then In = ∪A,θAθ where A ranges over all connected subsets of γ which
contain a declared predicate with no input arguments and θ ranges over all substitutions such
that Aθ ⊆ N. The interpretations can be computed efficiently e.g. using breadth-first-search,
essentially resembling the way bottom clauses are computed in Progol [86].

5.10.2 Feature Construction

Here we present feature construction runtimes of RelF and RSD on the six datasets. Since
RelF does not restrict size of features, we performed experiments using templates with varying
complexity (depth). For RSD we used templates corresponding to the most complex templates
used by RelF but we limited their maximum size. Figure 7 displays runtimes of RelF and RSD.
For the molecular datasets, we report the number of bond-atoms in the longest features since
this is a more intuitive measure of their complexity than the number of logical atoms. For the
remaining two datasets, we report numbers of logical atoms in the longest features.

In all of the experiments, RelF was able to construct significantly larger features than RSD.
The longest features discovered by RelF for the molecular datasets contained more than twenty
bond atoms. This contrasts with results obtained by RSD, which was able to find features with at
most four bond atoms. Only, in the experiment with the NCI 786 dataset using the most complex
template, we also needed to set minimum frequency of RelF’s features to 1%. A consequence
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of this was that even if we had not restricted RSD’s bias to treelike features, RSD did not
find any cyclic features (only, it took longer to generate the treelike ones). For the remaining
two datasets, CAD and Mesh, RelF was again able to construct far larger features than RSD
but in the case of the CAD data, RSD was also able to construct cyclic features. However, the
predictive accuracy for the cyclic features was lower than for the acyclic case. We also meaured
memory consumption of RelF. Since our current implementation of RelF exploits properties
of Java garbage collection mechanism, maximum memory consumption measured with a loose
memory limit can be higher than memory consumption measured with some lower memory
limit. Therefore we used RelF with maximum memory set to 128MB, 256MB etc. and we report
the minimum memory that enabled RelF to finish its execution. RelF needed 256MB for all four
PTC datasets and for Mutagenesis. It needed 768MB for the CPM dataset. On the CAD dataset,
RelF was able to run with maximum memory set to just 64MB and with 128MB on the Mesh
dataset. For the NCI 786 dataset, RelF needed 4GB of memory on a 64-bit machine.

We also performed several experiments in order to assess the effect of the pruning methods
implemented in RelF on its performance. First, we disabled filtering of redundant features. A
result of this was that RelF was only able to construct features corresponding to the templates
with lowest complexity (cf. Fig. 7) on molecular datasets. With turned off filtering of redun-
dant features, RelF was unable to construct features on the CAD dataset. This clearly illustrates
that filtering of redundant features is an essential part of RelF. To evaluate the effect of filter-
ing of H-reducible blocks, we turned off explicit tests for H-subsumption in the phase where
combinations are built. This resulted in about 40% slow-down on CAD dataset and negligible
slow-downs on the rest of the datasets. When judging the impact of H-subsumption filtering
integrated in RelF, it is important to appreciate that this method serves not only to perform
these explicit tests but also to make RelF able to consider only combinations of blocks without
repetitions.

The systems kFOIL and nFOIL do not resort to exhaustive search, instead, they are based
on beam search. This means that by setting beam size and maximum size of searched clauses
sufficiently low, these algorithms can find reasonably accurate classifiers in a short time. In order
to test kFOIL and nFOIL, we set these parameters so that their running times would be in the
same orders as the running time of RelF and then compare the obtained predictive accuracies.
nFOIL was used with maximum clause length set to 20 for all datasets and with beam size set
to 100 for Mutagenesis, 30 for CAD and PTC, 10 for Mesh and NCI 786 dataset and 20 for CPM.
Parameter settings for kFOIL were as follows. Beam size was set to 100 for CAD, to 200 for
Mutagenesis, to 10 for PTC and CPM and to 7 for NCI 786. Maximum clause length was set to
30 for Mutagenesis and CAD datasets, to 5 for P-MR P-FM, P-MM, P-FR, CPM and NCI 786.
It is interesting to note that kFOIL’s runtime varied significantly even for very similar datasets.
For example, while it took kFOIL just several minutes to finish on the P-FM dataset, it needed
tens of hours to finish on the P-MR dataset.

5.10.3 Classification

Here we present classification accuracies obtained using RelF’s or RSD’s output in conjunction
with propositional learners and accuracies obtained by kFOIL and nFOIL. Table 4 displays pre-
dictive 10-fold cross-validated accuracies obtained using one best rule, support vector machines
and l2-regularized logistic regression acting on features constructed by RelF and RSD. An ex-
ception was the NCI 786 dataset for which accuracy was assessed using a train-test split. RelF
obtained highest accuracy on six out of nine datasets. RelF in conjunction with SVM or logistic
regression also obtained higher predictive accuracy than nFOIL and kFOIL.

The higher accuracies achieved by RelF could have been attributed to the fact that RelF
creates classifiers using several thousands of features whereas kFOIL and nFOIL try to build
classifiers using only a small set of informative features. Thus, in the experiments with SVM
and logistic regression, we were essentially trading interpretability for predictive accuracy. In
order to assess whether RelF’s ability to construct large features is beneficial also for the task
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Figure 7: Runtimes of RelF and RSD on Mutagenesis (top left), PTC-MR (top right), CAD (middle left)
Mesh (middle right), CPM (bottom left) and NCI 786 (bottom right). The syntactical bias of
RSD allows to specify the maximum allowed length of features. RelF only allows to specify
a template and, implicitly, also the maximum depth of the features. Therefore RSD is used
with template corresponding to the template of RelF with the greatest complexity and limited
maximum length and RelF is used with several templates with increasing complexity.
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RelF RSD

SVM LR OneR SVM LR OneR

Muta 87.4± 6.9 81.1± 8.9 70.3± 4.8 79.9± 4.6 82.6± 6.8 72.3± 4.8
CAD 96.8± 5.2 96.8± 5.2 85.5± 8.6 94.9± 7.2 95.1± 9.7 81.4± 9.3
Mesh 62.6± 6.9 60.7± 10.3 40.9± 5.4 61.4± 7.3 58.9± 6.2 40.7± 4.2
CPM 73.6± 4.5 71.2± 4.5 56.9± 5.2 71.3± 3.7 68.7± 3.9 56.5± 1.7
P-FM 62.2± 5.7 57.9± 6.3 64.4± 6.0 59.3± 6.9 58.7± 5.3 64.5± 3.6
P-MM 59.9± 8.3 63.4± 10.5 64.9± 5.8 62.2± 4.9 59.1± 6.8 61.3± 9.6
P-FR 66.4± 3.0 65.5± 4.5 68.6± 3.4 65.3± 6.0 67.3± 6.0 68.7± 4.1
P-MR 62.0± 6.9 66.0± 5.6 57.8± 5.3 65.1± 6.1 69.2± 6.0 56.2± 5.8
N 786 68.3 69.6 56.0 69.3 69.3 55.2

Table 4: Accuracies of RelF and RSD on Mutagenesis dataset (Muta), Predictive Toxicology Challenge
datasets (P-FM, P-MM, P-FR, P-MR), CAD dataset (CAD), Mesh dataset (Mesh), Carcinogenesis
+ PTC + Mutagenesis dataset (CPM) and NCI 786 dataset (N 786))

nRelF nFOIL kFOIL

Muta 80.6± 9.8 (9.7) 76.6± 9.6 (4.6) 76.0± 5.6 (7.1)
CAD 94.1± 6.7 (3) 92.7± 6.9 (3.6) 89.8± 10.6 (2)
Mesh 59.4± 4.2 (16.2) 57.9± 11.6 (18.5) n.a.
CPM 65.1± 2.8 (65.3) 58.3± 5.8 (9) 62.2± 4.7 (16.9)
P-FM 61.5± 9.3 (22.5) 60.2± 8.7 (5) 57.3± 5.6 (3.1)
P-MM 61.0± 6.9 (26.6) 63.1± 8.8 (6.8) 62.2± 7.4 (4.6)
P-FR 70.7± 5.6 (21.9) 67.0± 6.5 (9.1) 63.4± 8.3 (6.7)
P-MR 53.9± 10.0 (28.6) 57.3± 7.1 (6.7) 59.3± 7.0 (7.2)
N 786 64.4 (41) 63.7 (16) 63.1 (5)

Table 5: Accuracies of RelF, kFOIL and nFOIL on Mutagenesis dataset (Muta), Predictive Toxicology
Challenge datasets (P-FM, P-MM, P-FR, P-MR), CAD dataset (CAD), Mesh dataset (Mesh), Car-
cinogenesis + PTC + Mutagenesis dataset (CPM) and NCI 786 dataset (N 786). The numbers in
parentheses denote average number of features in the respective classifiers.

of finding interpretable classifiers we performed an additional experiment. We followed the
approach introduced in SAYU [21] with features generated by RelF. We started with an empty
set of features and we greedily added features that improved accuracy of a naive Bayes classifier6.
This method, marked as nRelF in Table 5, obtained higher predictive accuracy than kFOIL and
nFOIL on seven out of nine datasets which shows that RelF’s ability to construct large features
is beneficial also for the task of finding small interpretable classifiers.

5.11 related work

The primary aim of the algorithm RelF presented in this chapter is to enable exhaustive genera-
tion of large numbers of features in a limited subset of first order logic. Several pattern mining
algorithms have been proposed for this task or for more or less similar tasks. A well-known al-

6 This was implemented using WEKA [133] using its AttributeSelectedClassifier with feature selection method Classifier-
SubsetEval and with search procedure GreedyStepwise. Since this turned out to be very time-consuming, we used only
the features from the NCI 786 dataset that had frequency higher than 1%.
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gorithm working in the logical setting is the frequent pattern miner WARMR [25], which greatly
exploits monotonicity of frequency to prune uninteresting patterns. Monotonicity of frequency
can be easily exploited also in our algorithm by discarding infrequent pos blocks7. If a mini-
mum frequency threshold is set in RelF, however, one has to refine the statement about RelF’s
completeness as only the irredundant features with frequency above the specified threshold
are guaranteed to be found. Another algorithm for pattern discovery is the RSD algorithm [131].
RSD does not prune patterns using the minimum frequency constraint as WARMR does, instead,
RSD relies on its expressive user-definable syntactical bias, which is also somewhat similar to
WARMR’s warmode declarations. RSD’s language bias is also used by RelF which puts further
requirements on syntax of correct features ensuring their treelike structure. A common princi-
ple of RSD and WARMR is the level-wise approach to feature construction, which means that
features are built by adding one logical atom at time. Unlike the block-wise approach presented
in this chapter, the level-wise approach to feature construction cannot be easily combined with
filtering of reducible and redundant features, which we have already discussed in the respective
sections about redundancy and relevancy.

A recent line of research, represented by algorithms nFOIL [74], kFOIL [73] and SAYU [21],
tries to refrain from explicitly constructing the set of all interesting features (frequent, non-
redundant etc.) by constructing only features that improve classification accuracy or some re-
lated scoring criterion when combined with a propositional learner such as Naive Bayes or
SVM. Both nFOIL and kFOIL used in experiments in this chapter are based on FOIL’s [99]
search, although, in principle, any strategy for hypothesis search could be used instead of FOIL.
A potential replacement for FOIL could be e.g. Progol [86] or even some procedure search-
ing over features generated by a propositionalization algorithm. An advantage of systems like
nFOIL and kFOIL is that they can produce relatively accurate models within reasonably short
runtimes. On the other hand, in our experiments, giving these algorithms more time did not in-
crease their predictive accuracy sufficiently to enable them to outperform classifiers constructed
from the whole set of RelF’s features.

Frequent graph mining algorithms are also related to RelF. They are very well suited for
molecular databases, however, they have limitations in other domains. For example, the cur-
rently fastest graph mining algorithm Gaston [93] is able to mine frequent molecular structures
from larger databases than RelF, but it cannot easily handle oriented graphs or even hyper-
graphs [134]. The covering relation adopted by graph mining algorithms, which corresponds
to subgraph isomorphism, differs significantly from the one used by RelF and other related
algorithms such as nFOIL or kFOIL, whose covering relation corresponds to hypergraph homo-
morphism. As a consequence, number of frequent patterns in the respective frameworks may
differ significantly as, for example, some patterns are expressible only with homomorphism.
Conversely, there are tree patterns that can be represented with the graph mining approach but
cannot be represented by treelike features with their covering relation. Another notable system
geared towards discovery of patterns in molecular databases is MolFea [57], which restricts the
patterns to linear molecular fragments.

Recently, there has been a growing interest in removing various forms of redundancy from
frequent pattern sets. The form of redundancy exploited by RelF was introduced in [77] where
it was defined for propositional data and for constrained Horn clauses, which are equivalent to
propositional representation in their expressive power. RelF extends this framework to treelike
features by establishing monotonicity of redundancy w.r.t. grafting. There are also other forms
of redundancy considered in literature. For example, a system called Krimp was introduced
in [56, 125] which searches for a representative set of features that would allow for a lossless
compression of a given set of examples, i.e. it relies on the minimum description length principle.
Mining of closed frequent patterns is another approach that minimizes the number of discovered
patterns by considering only representative candidates from certain equivalence classes. Finally,
in [12], it has been shown that simple patterns (e.g. linear fragments) work well when employed

7 It is possible to set minimum frequency in the current implementation of RelF.
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in classification of chemical compounds, which is directly related to our work as we also use
only treelike patterns.

5.12 conclusions

In this chapter, we have introduced RelF, an algorithm for construction of treelike relational
features. We have shown that block-wise construction of treelike features enables RelF to re-
move H-reducible and redundant pos blocks. In experiments, we have shown that RelF is able
to construct relevant features with sizes far beyond the reach of state-of-the-art propositionaliza-
tion systems. Of importance, we have also shown that, for nine relational learning benchmarks,
restriction to treelike features was not detrimental with respect to predictive accuracy. In fact,
the results obtained with treelike features were, in most cases, higher than predictive accuracies
of state-of-the-art systems nFOIL and kFOIL. Importantly, the features constructed by the other
tested algorithms were often also treelike. Although there are definitely datasets where cyclic
features could provide better predictive accuracies, one can always merge results from different
propositionalization algorithms and feed the propositional learners with such merged proposi-
tionalized tables. An algorithm for construction of a limited class of features such as RelF would
be useful also in such cases.

5.13 proofs

For sakes of the following proofs we first need to define a few concepts we did not need in the
main text.

Definition 28 (pos-neg τθ-block). Let B be a τθ-conjunction. If there is exactly one τθ-positive variable
(p(B)) and exactly one τθ-negative variable (n(B)), we say that B is a pos-neg τθ-block.

Definition 29 (Descendant, Induced pos τ-block). Let F be a (γ,µ)θ-feature or a pos τ-block and let
a ∈ F be an atom. We say that an atom b ∈ F is a descendant of a (denoted by a ≺d b) if there is a
sequence of atoms a1, . . . ,an such that a1 = a, an = b and every two consecutive atoms ai, ai+1 share
a variable which has an output in aiθ and an input in ai+1θ. Then InducedF(a) = {a} ∪ {b|a ≺d b}
is called a pos τ-block induced in F by a.

Definition 30 (Parent, Child). Let F be a (γ,µ)θ-feature or a pos τ-block. If two atoms a,b ∈ F share
a variable V , which has an output in aθ and an input in bθ, we call a parent of b (denoted by PF(a))
and b child of a (denoted by CF(a)).

Notation Meaning Note

b ∈ CF(a) b is a child of a a and b are atoms
b = PF(a) b is a parent of a a and b are atoms
a ≺d b a is a descendant of b a and b are atoms
B = InducedF(a) B is an induced pos block of a in F a is an atom,

B, F are blocks/features

Table 6: Summary of notation introduced in Definitions 29, 30

Lemma 1. Let F ′ be the result of the reduction from Def. 38 applied on a τ-feature F. Then the number of
atoms in F ′ is the same as the number of variables in F ′. Futhermore, each atom in F ′ contains an output
and exactly one input.

Proof. Denote A (V) the number of atoms (variables) in F ′. Every variable in F ′ must have at
least two occurrences (otherwise it would have been removed by rule 2) and one of them must
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be input as each variable has at most one output in F (due to the neutrality requirement) and
thus also in F ′. Each atom in F, and thus in F ′, contains at most one input due to condition (i)
in Def. 17, so A > V . Furthermore, each atom in F ′ contains more than one term (otherwise it
would have been removed by rule 1) and, as we have seen already, contains at most one input.
So each atom in F ′ contains an output. Again realize there is at most one output per variable in
F ′, therefore V > A. We have seen that A > V , so indeed A = V as the lemma says. We have also
seen that each atom contains an output which was to be shown. Lastly, we have seen that each
of the A = V atoms contains at most one input and each of the A = V variables must have one
input in F ′ so each atom has exactly one input.

Proposition 8 Every τ-feature F is treelike.

Proof. Since F is a τ-feature, τ = (γ,µ), there must be a substitution θ such that Fθ ⊆ γ. By Def.
17 there is a partial order ≺ on {viθ vi ∈ vars(F)} such that vjθ ≺ vkθ whenever vj (vk) has an
input (output) in an atom a ∈ F. Let F ′ be the result of the reduction from Def. 38 applied on F.
Denote ≺ ′ the suborder of ≺ on vars(F ′) ⊆ vars(F). Since ≺ ′ is also a partial order, we can sort
variables in F ′ topologically as v1, v2 . . . vn (n = |vars(F ′)|) such that

vjθ ≺ ′ vkθ⇒ j < k (6)

According to Lemma 1 there are exactly n atoms in F ′ each containing exactly one input. Assume
for contradition that F is not treelike and thus n > 0. We sort atoms in F ′ by their single inputs, i.e.
atom ai has vi as input. Atom an that has vn as input must, by Lemma 1, have another variable
vm (1 6 m 6 n) as output. Since vn (vm) has an input (output) in atom an, it must be that
vn ≺ ′ vm. This however contradicts implication 6 above as m 6 n. Therefore F is treelike.

Lemma 2. Let A,B be (γ,µ)θ-features or pos (γ,µ)-blocks, let ϑ be an H-substitution such that Aϑ ⊆ B
(i.e. A �H B). If b 6∈ Aϑ and b ′ ∈ InducedB(b), then b ′ 6∈ Aϑ.

Proof. Since an application of a substitution on A preserves its connectedness, there are two
possible cases: (i) Aϑ ⊆ B \ InducedB(b) or (ii) Aϑ ⊆ InducedB(b) \ {b}. The latter case is not
possible because in the definition of H-subsumption, the substitutions were required to respect
depth of variables and every variable contained in InducedB(b) \ {b} has depth w.r.t. B greater
than 1. Therefore the only possibility is Aϑ ⊆ B \ InducedB(b).

Lemma 3. Let A,B be (γ,µ)θ-features or pos (γ,µ)-blocks and let ϑ be an H-substitution such that
Aϑ ⊆ B. Then if for some a ∈ A, b ∈ B it holds aϑ = b then InducedA(a)ϑ ⊆ InducedB(b).

Proof. Suppose for contradiction that there is some a ′ ∈ InducedA(a) such that a ′ϑ 6∈ InducedB
(b). There is then some longest sequence of atoms a1, . . . ,a, . . . ,a ′ (ai ∈ A) such that every two
consecutive atoms share a variable, which is an output in the first one and an input in the second
one. It follows from definition of depth and from definition ofH-subsumption that ϑmaps atoms
from this sequence to atoms from sequence b1, . . . ,b, . . . ,b ′, where every two consecutive atoms
share a variable, which is an input in the first one and an output in the second one, and b ′ is
an atom in the same depth as a ′. One such sequence must obviously exist. If there were more
such sequences then B would not be treelike. This is a contradiction with the assumption that
a ′ϑ 6∈ InducedB(b) because b ′ ∈ InducedB(b).

Lemma 4. Let F be a τθ-feature or a pos τ-block. If there is an H-substitution ϑ such that Fϑ ⊆ F and
there are atoms a,b ∈ F and their respective induced pos τ-blocks A,B ⊆ F such that Aϑ ⊆ B then either
p(A) = p(B) or there are pos τ blocks A ′,B ′ ⊆ F such that A ( A ′ and B ( B ′ and A ′ϑ ⊆ B ′.

Proof. If Aϑ ⊆ B then P(b) ∈ Fϑ by application of Lemma 2, from which P(a)ϑ = P(b). If
p(P(a)) = p(P(b)), we are done. Otherwise, since Fϑ ⊆ F we have
InducedF(P(a))ϑ ⊆ F therefore InducedF(P(a))ϑ ⊆ InducedF(P(b)) by application of Lemma
3 because P(a)ϑ = P(b).
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Proposition 9 Let B be a pos τ-block and let B− be a neg τ-block. Then the following holds: (i) B is
H-reducible if and only if B contains pos τ-blocks B1,B2 such that B1 6= B2, p(B1) = p(B2) and
B1 �H B2. (ii) If B is H-reducible, then B− ⊕ (S∪ {B}) is also H-reducible for any set of pos blocks S.

Proof. (i⇒) Let Br be H-reduction of B and let θ1, θ2 be H-substitutions such that Brθ1 ⊆ B and
Bθ2 ⊆ Br. Substitution θ3 = θ2θ1 is a mapping θ3 : vars(B)→ vars(B). Since Bθ2 ⊆ Br, |Bθ2| 6
|Br| and consequently |Bθ3| 6 |Br| < |B|, because applying a substitution to a τ-conjunction
cannot increase its size. Therefore there is an atom a ∈ B \ Bθ3 and, by Lemma 2, also a whole
pos τ-block B1 ⊆ B \ Bθ3. Thus, there is a pos τ-block B2 (B2 6= B1) such that B1θ3 ⊆ B2. It
remains to show that for some such B1,B2, p(B1) = p(B2). If p(B1) 6= p(B2), then there must be
pos τ-blocks G1,G2 such that B1 ( G1, B2 ( G2 and G1θ3 ⊆ G2 (by Lemma 4). For such G1,G2
with maximum size, p(G1) = p(G2). (i⇐) Let θ be a H-substitution such that F+\Bθ = B1, then
Bθ ≈H B and |Bθ| = |B|− |B1| < |B|. (ii) This follows directly from (i).

Lemma 5. Let F be a (γ,µ)-feature. Then dF 6 |γ|.

Proof. Assume dF > |γ|. Let θ be a substitution such that Fθ ⊆ γ and a1, . . . ,adF be a sequence
of F’s atoms such that for 1 6 i < dF, ai contains variable vi as output and ai+1 contains vi
as input. By transitivity of the partial order ≺ assumed by Def. 17, it must hold viθ ≺ vjθ for
1 6 i < j 6 dF. Since dF > |γ|, the sequence must contain two atoms ak and al, such that k < l,
akθ = alθ and thus vkθ = vlθ. Since k < l, vkθ ≺ vlθ. But given that vkθ = vlθ, this contradicts
the assumption of irreflexivity of the order ≺.

Proposition 10 Let τ = (γ,µ) be a template. Then there is only a finite number of τ-features, which are
not H-reducible.

Proof. First, we show that for any template, the set Pd of pos blocks with depth at most d is
finite. (i) For d = 1, there is at most |γ| pos τ-blocks because any pos τ-block with depth 1 is just
a single atom. Therefore P1 is finite. (ii) Let us suppose that we have proved the proposition for
maximum depth at most d. We need to show that then it holds also for d+ 1. We can take all
atoms a ∈ γ and for each of them create the set of τ-conjunctions

Pad+1 = {aθa ∧
arity(a)
i=1 Ciθi|Ci ∈ 2Pd}∪ Pd,

where θa is only meant as variabilization of a (i.e. as substitution that replaces constants by
suitable variables) and θi maps p(S) of every pos τ-block S ∈ Ci to i-th output argument of aθa.
Not all elements of sets Pad+1 are correct pos τ-blocks, but it is easy to check that all pos τ-blocks
with depth at most d+ 1 are contained in ∪a∈γPad+1. To see this, it is important to notice that
it suffices to create combinations of pos τ-blocks without repetition since any combination with
repetitions would necessarily lead to H-reducible pos τ-blocks (Proposition 9). Now, validity
of the proposition follows from the fact that Pd = ∪a∈γPad is finite for any d and that for any
template there is a maximum depth of τ-features (Proposition 5).

Proposition 11 Algorithm 1 correctly decides whether a τθ-feature (pos τ-block) F is H-reducible in time
O(|F|2).

Proof. First, we show, using an induction argument, that (ai,aj) gets to the list Open if and only
if InducedF(ai) �H InducedF(aj). (i) This is trivial for pos blocks with depth 1. (ii) We suppose
that the claim holds for depth d. The induction argument implies that Subsumed(PF(ad+1i ),
PF(a

d+1
j )) = |CF(l

d+1
i )| if and only if every child c of ad+1i can be mapped by H-substitution

to some child c ′ of ad+1j while preserving IF(c) = IF(c
′). Validity of the induction step then

follows from this together with predicate(ad+1i ) = predicate(ad+1j ). Now, from Proposition 9

we know that existence of two pos τ-blocks B1, B2 with p(B1) = p(B2) contained in a feature F
such that B1 �H B2 is equivalent to H-reducibility of F, which finishes the proof of correctness
of the algorithm.
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Clearly, each pair of atoms can be added only once to the list Open because it happens
only once that Subsumed(PF(ai),PF(aj)) = |CF(ai)| (because Subsumed(PF(ai), PF(aj)) is only
incremented and never decremented and |CF(ai)| is a constant). It follows that the repeat-until-
loop will run for at most |F|2 steps. Since all the other operations can be performed in O(1) time
(in the unit-cost RAM model), we have the bound O(|F|2).

Lemma 6. Let I be an interpretation, τ a template and let S1 = {B1, . . . ,Bm} and S2 = {C1, . . . ,Cn} be
standardized-apart sets of pos τ-blocks such that

∩mi=1 domI(Bi) ⊆ ∩ni=1 domI(Ci),

then for any pos-neg τθ-block or neg τθ-block B−

domI(B− ⊕ S1) ⊆ domI(B− ⊕ S2).

Proof. Let us first consider the case when dB−(n(B−)) = 1. The only place, where domains
of Bi ∈ S1 (Ci ∈ S2 respectively) are used, is line 5 in Algorithm 2. Clearly argDomS1 =
∩mi=1 domI(Bi) ⊆ argDomS2 = ∩ni=1 domI(Ci) and consequently also atomsDomS1 ⊆
atomsDomS2 and therefore also domI(B− ⊕ S1) ⊆ domI(B− ⊕ S2). The general case of lemma
may be proved by induction on depth of n(F−). (i) The case for depth 1 has been already proved.
(ii) Let us suppose that the lemma holds for depth d. Now, we may take the pos-neg τθ-block T ⊆
B− which contains n(B−) such that (B− \ T)⊕ {T } = B− and dT (n(B−)) = 1, and graft it with S1
(S2, respectively). We have domI(T ⊕S1) ⊆ domI(T ⊕S2) and by induction argument finally also
domI(B− ⊕ S1) = domI((B−\T)⊕ {T ⊕ S1}) ⊆ domI((B−\T)⊕ {T ⊕ S2}) = domI(B− ⊕ S2).

Proposition 12 Let E+ (E−) be a set of positive (negative) examples. Let F be a set of pos τ-blocks with
equal types of input arguments and let B = {Bi}

n
i=1 ⊆ F. Let domI(B1) ⊆ ∩ni=2 domI(Bi) for all

I ∈ E+ (I ∈ E−) and let ∩ni=2 domI(Bi) ⊆ domI(B1) be true for all I ∈ E− (I ∈ E+). Then for any neg
τ-block B−: B− ⊕ ({B1}∪ S) is E+-redundant (E−-redundant), where S ⊆ F.

Proof. We will prove only the case for E+-redundancy because the proof for E−-redundancy is
analogous. Let us first ignore the set S. Let B− be a neg τ-block. By application of Lemma 6, if
domI(B1) ⊆ ∩ni=2 domI(Bi) for all I ∈ E+, then domI(F− ⊕ {B1}) ⊆ domI(F− ⊕ {B2, . . . ,Bn})
for all I ∈ E+. Similarly, if ∩ni=2 domI(Bi) ⊆ domI(B1) for all I ∈ E−, then domI(B− ⊕
{B2, . . . ,Bn}) ⊆ domI(B− ⊕ {B1}) for all I ∈ E−. Therefore if I |= F− ⊕ {B1}, then I |= F− ⊕
{B2, . . . ,Bn} for all I ∈ E+ and similarly if I |= B− ⊕ {B2, . . . ,Bn}, then I |= B− ⊕ {B1} for
all I ∈ E−. This means that B− ⊕ {B1} must be E+-redundant. Now, we consider also the set
S = {H1, . . . ,Ho}. Notice that domI(B1) ∩oi=1 domI(Hi) ⊆ ∩ni=2 domI(Bi) ∩oi=1 domI(Hi) must
hold for all positive examples and ∩ni=2 domI(Bi) ∩oi=1 domI(Hi) ⊆ domI(B1) ∩oi=1 domI(Hi)
must hold for all negative examples. The rest of the proof is obvious; it is an analogy of the
argument used to prove the first part of the proposition.

Proposition 13 Let F = {Bi}
n
i=1 be a set of pos τ-blocks with equal types of input arguments such that

no two pos τ-blocks in the set F have equal domains for all examples. Let F ′ be a set of pos τ-blocks
obtained from F by repeatedly removing redundant pos τ-blocks. Set F ′ is unique.

Proof. Let ≺R be a relation defined as follows: B ≺R C if and only if domI(B) ⊆ ∩k∈A domI(Bk)
∩domI(C) for all I ∈ E+ and ∩k∈A domI(B) ∩ domI(C) ⊆ domI(B) for all I ∈ E− and B 6= C

and ∀i : B 6= Bi. It is not hard to check that ≺R is a partial order (also due to the fact that no two
elements of F have identical domains). Set F ′ contains all maximum elements w.r.t. ≺R and is
therefore unique.

Proposition 14 Let τ = (γ,µ) be a template and let E = E+ ∪ E− be the set of examples. Further, let Fτ
be the set of all non-H-reducible τ-features and let FRelF be the set of conjunction of atoms constructed
by RelF. Then FRelF ⊆ Fτ and for every τ-feature Fτ ∈ Fτ, which is not strictly redundant, there is a
feature FRelF such that extE(FRelF) = extE(Fτ).
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Proof. (Sketch) It is not hard to see that FRelF ⊆ Fτ. For each conjunction of atoms F ∈ FRelF,
we just construct a substitution θ such that θ maps each atom a ∈ F to an atom from γ that
was used when a was created in line 2 in Algorithm 4. Then it is not hard to show that such a
substitution is consistent (i.e. there are no two conflicting substitutions of one variable) and that
Fθ ⊆ γ and that also the conditions on input and output arguments stated in Definition 19 are
satisfied.

In order to justify the proposition, we need to show that if RelF did not remove redundant
pos τ-blocks or pos τ-blocks that do not cover any positive example, it would construct all τ-
features contained in Fτ. The case with filtering of redundant pos τ-blocks will follow from
Propositions 9 and 12. First, recall that from earlier propositions we know that all features are
treelike and |Fτ| is finite. For contradiction, let us assume that there is a substitution θ and a
non-H-reducible τθ-feature F ∈ Fτ such that F 6∈ FRelF. Let B be a shortest pos τθ-block such
that F = B− ⊕ {B} and such that B was not constructed by RelF (i.e. the shortest block which
caused that F could not be constructed). If no such block exists, let us set B = F. Further, let
a ∈ γ be an atom that corresponds to B’s root. By a brief analysis of the algorithm RelF, we may
conclude that if all pos τθ-blocks, which can be composed with a using the graft operator, had
been generated, then procedure Combine(Atom,PosBlocks,E) would have also generated B on
line 5 of Algorithm 4. Since the necessary blocks must be generated at some point in the feature
construction process (because otherwise we would have a contradiction with the minimality of
B), the only possibility is that they were generated only after the atom a had been processed.
This possibility is, however, ruled out by the requirement on the partial irreflexive order on
constants in γ given in Definition 17 (recall that Fθ ⊆ γ) and by the fact that RelF sorts the
atoms from γ according to this order before it starts the feature construction process. Thus we
see that B and consequently also F had to be constructed by RelF, which finishes the proof.

5.14 notes on complexity of template-based feature construction

In this section, we elaborate the complexity of constructing all syntactically correct features. We
will be interested in the complexity of construction of treelike and non-treelike features con-
strained using the template-bias mechanism presented in this Chapter. We will ignore extension
computations and the fact that it is possible to prune some features, which do not cover any
example, i.e. we will focus solely on the generation of features constrained by templates. We
believe it is useful to elaborate complexity of this problem because the setting with syntactical
constraints given by templates seems to be very useful for setting a language bias for real-life
problems.

We will use unary representation of numbers used to bound sizes of features. This is because
a number n can be represented by O(logn) bits, which could allow existence of features with
size exponential in the input size (in the combined size of the template and of the binary repre-
sentation of n). By choosing to use the unary representation of numerical parameters, we will
be dealing with the so called strong NP-completeness [110].

5.14.1 Negative Results

We start with a negative result which indicates that constructing non-treelike features con-
strained by the template-based language bias and with size bounded by a given number is
a computationally hard problem.

Lemma 7. Let τ = (γ,µ) be a template and n ∈ N be a number represented in unary notation (i.e.
number n is represented by a string 111 . . . 1 with n ones). The problem of deciding, whether there is at
least one feature correct w.r.t. τ and n, is in NP.

Proof. (Sketch) It suffices to show how to construct a polynomial-sized certificate and a polynom-
ial-time verifier. The certificate will be a pair (F, θ), where F is a conjunction of literals such that
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|F| 6 n and θ is a substitution. Clearly, the certificate has size polynomial in |τ| and in the unary
representation of n.

Now, it remains to show how we can verify correctness of the solution in polynomial time,
but this is easy. First, we check that |F| 6 n and that lits(Fθ) ⊆ γ. Then we check whether every
variable appears both as an input and as an output and whether every variable appears only
once as an output, which is easy because θ uniquely determines, which variable appearance is
an input and which is an output. If none of these checks fails, we may output yes and accept the
feature.

Lemma 8. Let τ = (γ,µ) be a template and n ∈ N be a number represented in unary notation (i.e.
number n is represented by a string 111 . . . 1 with n ones). The problem of deciding, whether there is at
least one feature correct w.r.t. τ and n, is NP-hard.

Proof. (Sketch) We will prove this proposition by reduction from the graph coloring problem.
Let G = (V ,E) be the graph to be colored and let the set of colors be {red,green,blue}. First, we
make the edges oriented such that an edge between two vertices vi, vj will be pointing from vi
to vj if i < j. The template τ will be constructed as follows. The first declared predicate will be

graph(−e1,−e2, . . . ,−e|E|,−v1, . . . ,−v|V |)

where each ei will correspond to one edge e ∈ E (n = |E|). We add the six following declared
predicates (called edge predicates)

edgerb(+routek ,+ek,−binek), edgebr(+boutek ,+ek,−rinek),

edgerg(+routek ,+ek,−ginek), edgegr(+goutek ,+ek,−rinek),

edgebg(+boutek ,+ek,−ginek), edgegb(+goutek ,+ek,−binek)

for each edge ek ∈ E pointing from vi to vj. Next, for each vertex vi we add three declared
predicates (called vertex predicates)

redi(+vi,+rinei1 , . . . ,+rinein ,−routej1 , . . . ,−routejm )

greeni(+vi,+ginei1 , . . . ,+ginein ,−goutej1 , . . . ,−goutejm )

bluei(+vi,+binei1 , . . . ,+binein ,−boutej1 , . . . ,−boutejm ),

where each of the above declared predicates corresponds to a vertex vi and vi1 , . . . , vin corre-
spond to vertices from which an edge points to vi and vertices vj1 , . . . , vjm correspond to vertices
to which an edge points from vi. Finally, we set the maximum feature size n = 1+ |V |+ |E|.

It is trivial to check that the above construction is polynomial-time in the size of G. Now, it
remains to show that a feature F, |F| 6 1+ |V |+ |E| exists, which complies to the above constructed
template, if and only if a 3-coloring of G exists.

(⇒) First, notice that there must be exactly one edge predicate for each e ∈ E and exactly one
vertex predicate for each v ∈ V in a correct feature F. Otherwise, there would be an unsatisfied
output vi or ei. Therefore each vertex has exactly one color represented by a vertex predicate.
Furthermore, colors of two adjacent vertices must be different due to types of input and output
arguments of the respective vertex predicates. So, the coloring given by the vertex predicates
represents a correct coloring of G.

(⇐) If we have a coloring of G = (V ,E), we may construct a correct feature with size bounded
|F| = 1+ |V |+ |E|. We add one literal graph(−e1, −e2, . . . , −e|E|, −v1, . . . , −v|V |). Next, we add
one vertex literal for each v ∈ V (choosing the particular predicate according to the coloring of
the given vertex). Finally, we add one edge literal for each e ∈ G (again, we choose the particular
predicate according to the coloring of the vertices connected by this edge). It is easy to check
that this corresponds to a correct feature.

Proposition 15. Let τ = (γ,µ) be a template and n ∈ N be a number represented in unary notation (i.e.
number n is represented by a string 111 . . . 1 with n ones). The problem of deciding, whether there is at
least one feature correct w.r.t. τ and n (called feature existence problem), is NP-complete.

Proof. Follows directly from Lemmas 7 and 8.
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5.14.2 Positive Results

The negative results presented in the previous section show that generating non-treelike features
smaller than a given size limit and constrained by the template-based language bias mechanism
is a computationally hard problem. On the other hand, we have seen in Section 5.9 where the
algorithm HiFi was presented that there is no such problem when one works only with treelike
features. However, nothing was said about the runtime complexity of HiFi or RelF. Here we
show that when one considers only the task of generating all syntactically correct features then
HiFi works in output-polynomial time.

Proposition 16. Let τ(n) = (γ(n),µ(n)) be a template such that |γ(n)| = O(nc) for some c > 1,
then the feature construction part of HiFi without extension computation and redundancy filtering can
construct all correct treelike features w.r.t. τ and n in output-polynomial time.

Proof. Any pos block, which is stored in the set PosBlocks, and any combination of pos blocks,
which is generated by procedure BuildCombinations(PosBlocks, Type,Examples), is used at
least once in the resulting set of generated features, which is guaranteed by the fact that we can
check whether there is at least one correct sufficiently small feature containing a given pos block
(see discussion in Section 5.9). Thus at any time, we can bound the number of pos blocks in
both of these sets by n · P(n), where P(n) is number of correct features, because no feature can
contain more than n pos blocks (recall that we say that a pos block B is contained in a feature if
and only if B ⊂ F and F\B is a neg block).

Brief combinatorial reasoning implies that generating pos blocks with root equal to a given
predicate p using already generated pos blocks takes time polynomial in the number of pos
blocks just being generated. In more detail: combinations of already generated pos blocks are
created iteratively. At each step the new combinations of pos blocks are combined with single
pos blocks from the set PosBlocks; each such step takes time at most quadratic in the size of
the already generated combinations and, always, every generated combination of pos blocks ap-
pears at least in one correct feature. Thus generation of combinations of pos blocks is polynomial
in the total number of features correct w.r.t. τ and n. An analogical reasoning can be applied
also to generation of pos blocks with a given predicate of their root from these combinations.

As there are only O(nc) declared predicates, time complexity of HiFi is polynomial in P(n).

It is also important to understand what Proposition 16 does not say. It does not say that
HiFi runs in output-polynomial time when given a set of learning examples and a template
τ. It only says that it runs in output-polynomial time for the task of generating the set of all
syntactically correct non-H-reducible features. Nevertheless, to our best knowledge, there have
been only results about output-polynomiality of algorithms which generate all frequent patterns
(of various sorts, e.g. graph patterns) in the literature but no results about output-polynomiality
for the problem of finding complete sets of non-redundant features because the latter is actually
a much more difficult problem.
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The algorithms RelF and HiFi, presented in the previous chapter, are not able to work efficiently
when the input data contains a large amount of information in numerical form. Here, we de-
scribe another new algorithm for construction of treelike polynomial features called Poly which
is suitable for such domains. The algorithm Poly is based on the feature-construction algorithm
HiFi from which it differs mainly in the way it filters redundant building blocks of features and
in the way features are evaluated.

This chapter is organized as follows. We start by presenting a new fast algorithm for evalu-
ation of treelike polynomial features in Section 6.1. Then, in Section 6.2, we describe a similar
fast algorithm for bounded-treewidth generalized multivariate aggregation features with a fixed
number of distinguished constants. Since the problem of evaluating bounded-treewidth gener-
alized multivariate aggregation features is NP-hard as we showed in Chapter 4, the restriction
on the fixed number of distinguished variables is unavoidable in this algorithm as long as it
should be polynomial-time (and as long as P 6= NP). In Section 6.3, we explain how redundant
pos τθ-blocks of polynomial features can be detected and, in Section 6.4, we describe a method
for the same problem for generalized multivariate aggregation features. In Section 6.5 we briefly
outline how the pieces of the puzzle presented in Sections 6.1 and 6.3 can be assembled and com-
bined with the algorithm HiFi, which gives us the algorithm Poly as a result. We evaluate the
algorithm Poly experimentally in Section 6.6. Finally, Section 6.7 concludes the chapter. Proofs
of propositions are located in Section 6.8.

Note that in this chapter we continue using the formalism of τ-features introduced in the
previous chapter. Therefore we assume in this chapter that the reader is familiar with the notions
like template, pos block, neg block and domain.

6.1 evaluation of polynomial features

An important property of polynomial features is that their value can be computed quite ef-
ficiently. The problem is NP-hard for polynomial features in general, which can be shown by
reduction from θ-subsumption hardness, but there are tractable subclasses which may be solved
efficiently. Here, we present an algorithm for evaluation of bounded-treewidth polynomial fea-
tures which runs in polynomial time (first, we describe the algorithm only for treelike features
and then outline how it can be extended for bounded-treewidth features). The basic ideas of the
algorithm can be summarized as follows. Let us have a treelike feature F with k distinguished
variables, a monomial feature

M = (F, (d1, . . . ,dk))

and an example
e = (H,~θ).

For simplicity, we assume that any literal l ∈ F may contain at most one distinguished variable1.
We want to compute the valueM(e). We start by picking a literal l ∈ F containing a distinguished
variable R1 and ground all its variables using a substitution ϑ : vars(l) → constants(c) so that
e |= Fϑ. We then create a new auxiliary monomial

Mϑ = (Fϑ, (d1, . . . ,dk)).

1 This is without loss of generality because any representation with demanding more than one distinguished variable
per literal can be rewritten into a representation where there is always only one distinguished variable per literal.
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Algorithm 5 An algorithm for computing value M(e) of a monomial feature M =
(F, (d1, . . . ,dk)) for a treelike τθ-feature (or a treelike pos τθ-block) F and an example e = (H,~θ)

Procedure: Eval(M, e)
1: SP ← [] /* An associative array of sample parameters */
2: atomsDom← {a ∈ H|pred(a) = pred(root(F))∧ (H |= a)}
3: /* First, we fill in the array SP with sample parameters of individual atoms that could be

substituted for the root. */
4: for ∀a ∈ atomsDom do
5: ri1 , ri2 , . . . , ril ← distinguished constants contained in root(F) (indexed by indexes of the

corresponding distinguished variables from root(F))

6: SP[a]←
(
a, r

di1
i1
· rdi2i2 . . . r

dil
i1

, 1
)

7: end for
8: for ∀ output variables outi in root(F) do
9: Children← all pos τθ-blocks Child such that outi = p(Child)

10: for ∀Child ∈ Children do
11: SPChild ← [] /* An associative array of sample parameters */
12: /* We just store the sample parameters of Child into the associative array SPChild. */
13: for (x, v,n) ∈ Eval((Child, (d1, . . . ,dk)), e) do
14: SPChild[x]← (x, v,n)
15: end for
16: for ∀a ∈ atomsDom do
17: if SP contains key a then
18: if SPChild contains key argi(a) then
19: SP[a]← SP[a]⊗ SPChild[argi(a)]
20: else
21: Remove the key-value pair with key a from SP

22: end if
23: end if
24: end for
25: end for
26: end for
27: return

⊕
F{sp|sp is contained in the array SP}

The problem of computing Mϑ(e) can be decomposed as

Mϑ(e) = (~θI(ϑ))
d1 ·
∏
i

Mi(e) (7)

whereM1, . . . ,Mm are connected sub-features of Fϑwhich arise when we remove literal lϑ from
Fϑ and ~θI(ϑ) is the value of the distinguished variable R1 contained in l corresponding to the
substitution ϑ. This follows from Proposition 5.

The value M(e) can be then computed as

M(e) =
1∑

ϑ∈Θ αϑ

∑
ϑ∈Θ

αϑMϑ(e) (8)

where Θ = {ϑ : vars(l) → constants(c)|e |= Fϑ} is the set of all true groundings of literal l and
αϑ are the numbers of true groundings of Fϑ.

Now, we describe the algorithm in more detail. The basic elements of the algorithm are opera-
tions on so-called sample-parameters. By sample parameters we mean a 3-tuple (x, v,n). Here x can
be either an empty set, a literal or a term, v is a real number and n is a natural number. Next,
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we define a multiplication operation for combining sample parameters. Let A = (x, v,nA) and
B = (y,w,nB) be sample parameters. Then we define A⊗B as

A⊗B = (x, v ·w,nA ·nB) .

Let F be a pos τθ-block. Let A = (x, v,nA) and B = (y,w,nB) be sample parameters where
x ∈ F and y ∈ F are first-order-logic literals such that p(x) = p(y) (here, p(x) and p(y) are input
variables of the literals x and y in the pos τθ-block F). Then we define A⊕F B as

A⊕F B =

(
p(x),

1

nA +nB
(nA · v+nB ·w),nA +nB

)
.

If F is a τθ-feature then we define

A⊕F B =

(
∅, 1

nA +nB
(nA · v+nB ·w),nA +nB

)
.

Let F be a pos τθ-block. Let

X = {(x1, v1,n1), . . . , (xk, vk,nk)}.

Next, let X [t] denote the set of all sample parameters (x, . . . ) ∈ X for which p(x) = t (where
p(x) is the input variable of the literal x in the pos τθ-block F). Then

⊕
FX is defined as follows.⊕

F

X = {(y1,w1,nw1), . . . , (ym,wm,nym)}

where (yi,wi,nyi) = x1 ⊕F x2 ⊕F · · · ⊕F xp ⊕F (∅, 0, 0) for {x1, . . . , xp} = X [yi].
The pseudocode of the algorithm is shown in Algorithm 5. Its correctness follows from the

discussion in the beginning of this section. The procedure Eval computes the resulting value
of the polynomial feature M using Eq. 8 from the values computed and saved in the associa-
tive array SP. This associative array SP contains values of monomials Mϑ = (Fϑ, (d1, . . . ,dk))
indexed by root(F)ϑ (where ϑ is a substitution affecting only the variables in root(F)). It is not
too difficult to see that the procedure Eval computes these values exactly according to Eq. 7.

The time-complexity of the algorithm is O(|F| · |e| · k) where k is the number of distinguished
variables. The procedure Eval can be imagined as proceeding from leaves to root of the feature.
At each step, at most |e| literals must be processed in the loop on line 4 and the complexity
of each iteration of this loop is O(k) where k is the number of distinguished variables. The⊕
F operation can be performed in time O(|e| · k). The for-loop on line 8 contains nested loops.

However, the nested loop on line 10 is executed at most once for each literal l ∈ F (because any
pos block has at most one parent) and the inner-most loops are always executed O(|e|)-times for
every l ∈ F. So the overall complexity of the algorithm is indeed O(|F| · |e| · k). Note that, here, we
assume that we have associative arrays (hash-tables) with O(1)-time operations for insert, delete
and get.

The outlined algorithm for computing values M(e) of treelike features can be used to effi-
ciently compute values of monomial features which are not treelike but have bounded tree-
width. This can be done by computing a tree decomposition [101] of width k of the feature and
then by applying the algorithm for treelike features on the tree decomposition where only one
occurrence of each distinguished variable is retained.

6.2 evaluation of generalized multivariate aggregation features

For completeness, in this section we also describe an efficient algorithm for a constrained class
of generalized multivariate aggregation features. The rather well-known fact that the number
of true groundings of a bounded-treewidth conjunctive-query can be computed in polynomial
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time [101] may be used to construct an efficient algorithm for computing values of general-
ized multivariate aggregation features under the assumption that the number of distinguished
variables is fixed (and small). The algorithm works as follows.

Given a multivariate aggregation feature

M = (F, f(R1, . . . ,Rk))

(where f(R1, . . . ,Rk) is an aggregation function) and an example

e = (H,~θ),

it creates a set of all k-tuples of distinguished constants occurring in H. The number of these
tuples grows polynomially with the size of e (exponentially with k, but k is fixed). Then it sub-
stitutes the values of every tuple to the distinguished variables in M and counts (in polynomial
time) the number of true groundings of the new restricted F w.r.t. e. Each tuple θ = (r1, . . . , rk)
gives us a vector of real numbers vθ = (s1, . . . , sk). Then the algorithm can compute the value
f(s1, . . . , sl) for each of these tuples. Finally, M(e) can be computed as the weighted average
of these values where the weights are the numbers of true groundings of Fθ obtained for the
respective tuples θ.

Example 24. We illustrate evaluation of multivariate aggregation features on the example of a
monomial feature (for which we could also use the more efficient algorithm presented in Section
6.1). Let

F = a(X,R1)∧ e(X, Y)∧ a(Y,R2)

be a feature and

e = ({a(a, r1), e(a,b), e(b,a),a(b, r2), e(b, c),a(c, r3)}, (2, 2, 3))

be an example. Next, let
M = R1 · R22

be a monomial feature. There are the following 9 2-tuples of distinguished constants in e:

{(r1, r1), (r1, r2), (r1, r3), (r2, r1), (r2, r2), (r2, r3), (r3, r1), (r3, r2), (r3, r3)}.

Only the tuples (r1, r2), (r2, r1) and (r2, r3) correspond to non-empty sets of groundings. The
value of M(e) can then be computed as

M(e) =
1

3

(
1 · 2 · 22 + 1 · 2 · 22 + 1 · 2 · 32

)
=
34

3
.

As we have explained in Section 4.6, the problem of evaluation of multivariate aggregation
features is NP-hard even for features with treewidth 1. The algorithm presented here shows that
a polynomial time algorithm exists for bounded-treewidth features which have a fixed number of
distinguished variables.

6.3 redundancy of polynomial features

In this section, we extend the methods for efficient filtering of redundant features during feature
construction for the case of polynomial features.

Definition 31 (Redundancy of polynomial features). Let E be a set of examples and F be a set of
polynomial features. We say that MF = (F, (d1, . . . ,dk)) ∈ F is redundant w.r.t. E if there is another
feature MG = (G, (e1, . . . , el)) ∈ F such that for all examples e ∈ E, it holds MF(e) = c ·MG(e).
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This is a reasonable definition of redundancy. It is quite natural that features which give rise to
linearly dependent attributes are considered redundant.

Definition 31 tells us when a feature is redundant but it gives us no hints how to recognize
that a pos block will remain redundant no matter with what the feature construction algorithm
will combine it. The next proposition provides means for detecting redundant pos blocks. It is
analogical to Proposition 12.

Proposition 17. Let B1 and B2 be pos τθ-blocks such that vars(B1) ∩ vars(B2) = ∅ and let M1 =
(B1, (c1, . . . , ck)) andM2 = (B1, (d1, . . . ,dl)). If, for all examples e = (H,~θ) ∈ E, it holds Eval(M1, e) =
Eval(M2, e) then N1 = (B− ⊕B1, (c1, . . . , ck)) and N2 = (B− ⊕B2, (d1, . . . ,dl)) are redundant (rel-
atively to each other) for any neg τθ-block B−.

The above proposition can be used in the feature-construction algorithm to detect which pos
blocks will always give rise to redundant polynomial features no matter with what the feature-
construction algorithm combines them. This is a generalization of results on monotonicity of re-
dundancy from Chapter 5 to settings with polynomial relational aggregation. As a consequence
of this, the search space of features can be drastically reduced.

6.4 redundancy of generalized multivariate aggregation features

Redundant blocks can be detected also for generalized multivariate aggregation features. The
only problem is that this seems to be computationally harder than for polynomial features.

Definition 32 (Redundancy of multivariate aggregation features). Let E be a set of examples and F

be a set of multivariate aggregation features. We say that MF = (F, f) ∈ F is redundant w.r.t. E if there
is another feature MG = (G,g) ∈ F such that for all examples e ∈ E, it holds MF(e) = c ·MG(e).

It is not difficult to see that if MF = (F, f) ∈ F is a feature and there is another feature MG =
(G,g) ∈ F such that S(F, e) = S(G, e) for all e ∈ E then MF is redundant.

Now we show how we can detect that a pos τθ-block will remain redundant no matter with
what the feature construction algorithm would combine it. The next proposition provides means
for detecting such redundant pos blocks.

Proposition 18. Let B1 and B2 be pos τθ-blocks such that vars(B1)∩ vars(B2) = ∅. Let F1 = B−⊕B1
and F2 = B−⊕B2 be features. If, for all examples e = (H,~θ) in a given dataset E, it holds domH(B1) =
domH(B2) and if there is a real number c such that S(B1θ1,t, e) = S(B2θ2,t, e) for all examples e ∈ E

and all substitutions θ1,t = {p(B1)/t} and θ2,t = {p(B2)/t} where t ∈ domH(B1) = domH(B2) then
MF1 = (F1, f) and MF2 = (F2, f) are redundant for any function f.

The main problem of the filtering of redundant pos blocks based on Proposition 18 is that
it requires comparing sample sets whose size scales as O(|e|k) where k is the number of dis-
tinguished variables. In the case of polynomial features, it is possible to filter individual mono-
mial features (B, (d1, . . . ,dk)) where B is a pos τθ-block efficiently. Naturally, a problem is that
if we want to construct monomial features exhaustively, there might be up-to O((k + d)k−1)
non-redundant monomial features. Although the term (k + d)k−1 may seem scary, k and d

are typically very small which makes the filtering approach for polynomial features based on
Proposition 17 better in practice.

6.5 construction of features

Since the previous sections introduced a way redundancy can be used to prune polynomial
features, it is now quite easy to extend the algorithm HiFi described in Section 5.9 to be able
to construct polynomial features. The new algorithm is called Poly. The main difference of Poly
and HiFi is that where HiFi uses domains, Poly uses sets of sample parameters computed by
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Algorithm 5. Otherwise the two algorithms are almost identical. The only other difference is
filtering of reducible features.

The algorithm HiFi uses filtering of reducible features based on H-reducibility (Section 5.4)
but this is not suitable for construction of polynomial (or multivariate aggregation features in
general) as the next example indicates.

Example 25. Let us have a feature

F = regulates(A,B)∧ regulates(A,C)∧ gene(B,R1)∧ gene(C,R2).

This feature could e.g. be used to estimate moments of distributions of expression-levels of pairs
of genes regulated by one common transcription factor. It is true that F is not perfect for this
task as it also assumes pairs containing one gene twice but, still, the feature F can provide us
valuable information and it can also serve well in a classification setting. Despite that, systems
which prune θ-reducible features would throw this feature away.

It is possible to remedy the problems caused by θ-reduction while keeping the benefits of it by
using a refined definition which we call r-reduction. We say that a feature F is r-reducible if
there exists a feature G ⊆ F and a substitution ϑ such that Fϑ ⊆ G, |F| < |F| and Riϑ 6= Rjϑ for
any i 6= j where Ri and Rj are distinguished variables. Poly uses a modification of H-reduction
compatible with the definition of r-reduction. R-reducible polynomial features do not have to be
redundant but it still seems better to discard them.

6.6 experiments

We assessed performance of the algorithm Poly and indirectly also the usefulness of polynomial
features in general in two sets of experiments. In the first set of experiments described in Section
6.6.1, we employed polynomial features in the framework of propositionalization. In the second
set of experiments described in Section 6.6.2, we used Poly for construction of novel definitions
of gene sets for set-level classification of microarray data. In both sets of experiments, Poly was
able to obtain good results using only a limited amount of information.

6.6.1 Polynomial Features for Propositionalization

We evaluated performance of the polynomial-feature-based method in three relational learning
domains. We compared it with Tilde [8] and with results from literature. We performed exper-
iments with treelike polynomial relational features with degree one, two and three in order to
evaluate impact of degree of monomials on predictive accuracy. For each dataset, we used two
types of relational descriptions with different complexity. We used random forest classifiers with
100, 500 and 1000 trees (see Table 20).

Our first set of experiments was done on the well-known Mutagenesis dataset [112], which
consists of 188 organic molecules marked according to their mutagenicity. We performed two
experiments in this domain. In the first experiment, we used only information about bonds
and their types (single, double, triple, resonant) and information about charge of atoms, but not
about their types. In the second experiment, we also added information about atom types. The
accuracies obtained by our method (Table 20) are consistently higher than the best accuracy 86%
achieved by Tilde in [8]. The best results are obtained for monomial features of degree 3.

Our second set of experiments was performed on the NCI 786 dataset which contains 3506

molecules labelled according to their ability to inhibit growth of renal tumors. Again we per-
formed two experiments in this domain. In the first experiment, we used only information about
bonds and their types and information about charge of atoms and in the second experiment we
also added information about atom types. Monomials of degree 3 turned out to be best for the
first representation whereas monomials of degree 2 performed best for the second representa-
tion. Tilde did not perform well on this dataset, so at least, we compared our results with results
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Degree 1 Degree 2 Degree 3

100/500/1000 100/500/1000 100/500/1000

Muta - Charge 88.8/88.3/88.3 88.8/88.8/88.3 89.9/89.9/89.4

Muta - Atoms + Charge 87.8/88.3/88.3 88.3/88.8/88.8 89.9/89.9/89.9

NCI 786 - Charge 61.0/61.0/61.0 66.5/66.5/66.8 67.2/68.0/68.0

NCI 786 - Atoms + Charge 70.3/70.1/69.9 70.5 /70.8/70.8 70.6/70.2/70.4

PD138/NB110 - Charge 84.7/82.3/82.3 81.0/79.5/81.0 81.0/79.8/79.8

PD138/NB110 - Propensities 82.7/84.7/84.3 83.9/84.7/84.3 85.1/85.5/85.5

Table 7: Accuracies estimated by 10-fold cross-validation using transformation-based learning with mono-
mial features and random forests for degrees of monomial features: 1, 2 and 3.

reported in Chapter 5 for kFOIL (63.1), nFOIL (63.7) and RelF (69.6). The accuracies obtained
with monomial features for the atoms + charge representation were consistently higher than these
results.

Our third set of experiments dealt with prediction of DNA-binding propensity of proteins.
Several computational approaches have been proposed for the prediction of DNA-binding func-
tion from protein structure. It has been shown that electrostatic properties of proteins are good
features for predictive classification. A recent approach in this direction is the method of Szilágyi
and Skolnick [120] who created a logistic regression classifier based on 10 features also includ-
ing electrostatic properties. Our first model for predicting whether a protein binds to DNA used
only distributions of charged amino acids in fixed-size windows and the secondary structure of
the proteins. In our second model, we added also information about average propensity of amino
acids in the fixed-size windows to bind to DNA which had been measured by Sathyapriya et
al. [106]. The accuracies obtained by our method on the second model were consistently higher
than 81.4% accuracy obtained by Szilágyi and Skolnick with logistic regression or 82.2% that we
obtained using random forest on Szilágyi’s and Skolnick’s features. The best results were ob-
tained for monomials of degree 3. Surprisingly, for the experiments using only electric charge,
the highest accuracies were obtained by monomials of degree 1. Nevertheless, results obtained
for all degrees of monomials were higher than 75.8% accuracy obtained by Tilde.

6.6.2 Polynomial Features for Construction of Gene Sets

Now we describe another application of the algorithm Poly. We show how to use it to search
for novel definitions of gene sets with high discriminative ability. This is useful in set-level clas-
sification methods for prediction from gene-expression data [48]. Set-level methods are based
on aggregating values of gene expressions contained in pre-defined gene sets and then using
these aggregated values as features for classification. Here, we, first, describe the problem and
available data and then we explain how we can construct meaningful novel gene sets using Poly.

The datasets contain class-labeled gene-samples corresponding to measurements of activities
of thousands of genes. Typically, the datasets contain only tens of measured samples. In addition
to this raw measured data, we also have relational descriptions of some biological pathways
from publicly available2 database KEGG [54]. Each KEGG pathway is a description of some
biological process (a metabolic reaction, a signalling process etc.). It contains a set of genes
annotated by relational description which contains relations among genes such as compound,
phosphorylation, activation, expression, repression etc. The relations do not necessarily refer to the

2 The KEGG database is no longer available for free. However, it was still available in 2011 when these experiments
were performed.
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processes involving the genes per se but they may refer to relations among the products of these
genes. For example, the relation phosphorylation between two genes A, B is used to indicate that
a protein coded by the gene A adds phosphate group(s) to a protein coded by the gene B.

We constructed examples (HS,~θS) from the gene-expression samples and KEGG pathways
as follows. For each gene gi, we introduced a logical atom g(gi, ri) to capture its expres-
sion level. Then we added all relations extracted from KEGG as logical atoms relation(gi, gj,
relationType). We also added a numerical indicator of class-label to each example as a logi-
cal atom label(±1) where +1 indicates a positive example and −1 a negative example. Finally,
for each gene-expression sample S we constructed the vector of the gene-expression levels ~θS.
Using the feature construction algorithm outlined in Section 6.5 we constructed a large set of
tree-like features3 involving exactly one atom label(L), at least one atom g(Gi,Ri) and relations
expression, repression, activation, inhibition, phosphorylation, dephosphorylation, state and binding/as-
sociation. After that we had to select a subset of these features. Clearly, the aggregated values of
meaningful gene sets should correlate with the class-label. An often used aggregation method
in set-level classification methods is the average. Therefore what we need to do is to select fea-
tures based on the correlation of the average expression of the genes assumed by the feature
and the class-label but this is easy since we can get the estimate of features’ covariance matri-
ces ΣF using polynomial features and then compute the correlation of the average expression
of the assumed genes and the class-label. The absolute values of correlations give us means to
heuristically order the features. Based on this ordering we found a collection of gene sets given
by the features (ignoring gene sets which contained only genes contained in a union of already
constructed gene sets).

Dataset Gaussian logic FCF

Collitis [14] 80.0 89.4
Pleural Mesothieloma [41] 94.4 92.6
Parkinson 1 [108] 52.7 54.5
Parkinson 2 [108] 66.7 63.9
Parkinson 3 [108] 62.7 77.1
Pheochromocytoma [20] 64.0 56.0
Prostate cancer [7] 85.0 80.0
Squamus cell carcinoma [60] 95.5 88.6
Testicular seminoma [40] 58.3 61.1

Wins 5 4

Table 8: Accuracies of set-level-based classifiers with Gaussian-logic features and FCF-based features,
estimated by leave-one-out cross-validation.

We constructed the features using a gene-expression dataset from [34] which we did not
use in the subsequent predictive classification experiments. A feature defining gene sets which
exhibited one of the strongest correlations with the class-label is shown here:

F = label(R1)∧ g(A,R2)∧ relation(A,B,phosphorylation)∧
g(B,R3)∧ relation(A,C,phosphorylation)∧ g(C,R4)

We compared gene sets constructed by the outlined procedure with gene sets based on so-
called fully-coupled fluxes (FCFs) which are biologically-motivated gene sets used previously in
the context of set-level classification [48]. We constructed the same number of gene sets for our

3 We have used a subset of 50 pathways from KEGG to keep the memory consumption of the feature-construction
algorithm under 1GB.
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features as was the number of FCFs. The accuracies of an SVM classifier (estimated by leave-
one-out cross-validation) are shown in Table 8. We can notice that the gene sets constructed
using our novel method performed equally well as the gene sets based on fully-coupled fluxes.
Interestingly, our gene sets contained about half the number of genes as compared to FCFs and
despite that, they were able to perform equally well.

6.7 conclusions

In this chapter, we presented an algorithm for construction of polynomial features called Poly.
This algorithm is based on the algorithm HiFi from which it differs mainly in the way it filters
reducible and redundant features. Poly is able to construct polynomial relational features for
propositionalization which made it possible to achieve high predictive accuracies using only
a limited amount of information. We also showed that it can be used for other tasks, e.g. for
construction of gene sets for set-level classification.

6.8 proofs

Proposition 17. Let B1 and B2 be pos τθ-blocks such that vars(B1) ∩ vars(B2) = ∅ and let M1 =
(B1, (c1, . . . , ck)) andM2 = (B1, (d1, . . . ,dl)). If, for all examples e = (H,~θ) ∈ E, it holds Eval(M1, e) =
Eval(M2, e) then N1 = (B− ⊕B1, (c1, . . . , ck)) and N2 = (B− ⊕B2, (d1, . . . ,dl)) are redundant (rel-
atively to each other) for any neg τθ-block B−.

Proof. This follows easily from a brief inspection of Algorithm 5. A pos τθ-block contributes to
computation of the result only through its sample parameters computed by the function Eval
on line 11 of Algorithm 5. If the sample parameters of M1 and M2 are equal then the result of
computing Eval((B− ⊕ B1, (c1, . . . , ck)), e) must be equal to Eval((B− ⊕ B2, (d1, . . . ,dl)), e) for
any neg τθ-block B−.

Proposition 18. Let B1 and B2 be pos τθ-blocks such that vars(B1)∩ vars(B2) = ∅. Let F1 = B−⊕B1
and F2 = B−⊕B2 be features. If, for all examples e = (H,~θ) in a given dataset E, it holds domH(B1) =
domH(B2) and if there is a real number c such that S(B1θ1,t, e) = S(B2θ2,t, e) for all examples e ∈ E

and all substitutions θ1,t = {p(B1)/t} and θ2,t = {p(B2)/t} where t ∈ domH(B1) = domH(B2) then
MF1 = (F1, f) and MF2 = (F2, f) are redundant for any function f.

Proof. First, we can apply an observation from the proof of Proposition 5, which gives us:

S(F1θ1,t, e) = S(B−θt, e)× S(B1θ1,t, e)

where θt = {n(B−)/t}. The reason why we can do this is that F1θ1,t is disconnected and can be
decomposed as (B−θt)∧ (B1θ1,t). Next, we can get completely analogically the following:

S(F2θt, e) = S(B−θt, e)× S(B2θ2,t, e) =

= S(B−θt, e)× S(B1θ1,t, e) =

= S(F1θ1,t, e)

This, together with the fact that we can get the sample sets S(F1, e) and S(F2, e) by computing
the unions of the above sample sets over all t ∈ terms(e), shows that MF1 and MF2 are indeed
redundant because their sample sets are identical and they are based on the same function f.
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Methods for construction of hypotheses in relational learning can be broadly classified into
two large groups: methods based on specialization, so-called top-down methods, and meth-
ods based on generalization, so-called bottom-up methods. The algorithms RelF, HiFi and Poly
described in Chapters 5 and 6 are examples of top-down methods. Bottom-up methods have
received increased attention recently as they have been identified useful for learning in domains
which require discovery of long complex rules [88, 105]. Many bottom-up relational learning
algorithms are based on Plotkin’s least general generalization operator [97] which is an operator
able to construct a least general clause which θ-subsumes a given set of clauses where least gen-
eral is meant w.r.t. θ-subsumption order. In this chapter we describe a new generic bottom-up
learning method. The key idea underlying this new algorithm is to generalize Plotkin’s least
general generalization operator.

The main motivation for the work presented in this chapter was to develop methods for
bottom-up relational learning that would be able to exploit structural-tractability language bi-
ases. Exploitation of structural tractability is relatively easy for top-down learning approaches
but not for bottom-up ones. In top-down approaches, candidate hypotheses are usually modified
by adding new literals or by unifying variables. Structural-tractability classes of clauses usually
posses the so-called hereditary property, i.e. if a clause is from a class then any clause composed
of a subset of its literals should belong to this class as well. Therefore, when searching for hy-
potheses from a given structural-tractability class (e.g. for treelike clauses), it suffices to discard
all clauses which do not belong to it or to avoid their generation by some other means. On the
other hand, in bottom-up learning approaches, one typically starts with a clause representing
a learning example and tries to generalize it. Unless one restricts the possible form of learning
examples, the initial clause is typically not from the given structural-tractability class and there-
fore it is a question how to exploit structural tractability in such bottom-up approaches. In this
chapter, we introduce a generic framework able to exploit structural tractability for bottom-up
learning. The framework is based on generalizing θ-subsumption, θ-reduction and least general
generalization. The generalized variants of these standard operators are parametrized by sets of
clauses for which these generalized operators should coincide with their standard counterparts.
One of the main results presented here is a generic algorithm which is able to exploit structural
tractability in bottom-up learning and which guarantees to always find a clause at least as good
as any clause from the given class.

This chapter is organized as follows. We review necessary material regarding θ-subsump-
tion, θ-reduction, least general generalization, constraint satisfaction, tree decompositions, tree-
width and acyclicity in Section 7.1. Then we introduce a generalization of θ-subsumption in
Section 7.2 and a generalization of θ-reduction in Section 7.3. Using the generalized versions
of θ-subsumption and θ-reduction, we introduce so-called bounded least general generalization
which is a generalized version of conventional least general generalization in Section 7.4. Then,
we present a generic bottom-up learning algorithm in Section 7.5. We present several practically
relevant instantiations of the introduced framework in Section 7.6 where we show that the
framework can be used, for instance, with bounded-treewidth clauses, with acyclic clauses or
with clauses given implicitly by constraint satisfaction local-consistency techniques. We subject
the bottom-up learning method to experimental evaluation in Section 11.3. We discuss related
work in Section 7.8 and conclude the chapter in Section 11.4. All proofs (with the exception of
two short proofs in Section 7.1) are located in Section 7.10. In addition, we present a study of
computational complexity regarding the novel concepts introduced in this chapter in Section
7.11.
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7.1 preliminaries : lgg , k-consistency, generalized arc consistency

An important tool exploited in this chapter, which can be used for learning clausal theories, is
Plotkin’s least general generalization (LGG) of clauses.

Definition 33. A clause C is said to be a least general generalization of clauses A and B (denoted by
C = LGG(A,B)) if and only if C �θ A, C �θ B and for every clause D such that D �θ A and D �θ B
it holds D �θ C.

A least general generalization of two clauses C, D can be computed in time O(|C| · |D|). Least
general generalization can be used as an operator in the process of searching for hypotheses [87,
50]. Basically, the search can be performed by iteratively applying LGG operation on examples
or on already generated LGGs. A problem of approaches based on least general generalization
is that the size of a LGG of a set of examples can grow exponentially in the number of examples.
In order to keep the LGGs reasonably small θ-reduction is typically applied after a new LGG
of some clauses is constructed [50]. Application of θ-reduction cannot guarantee that the size of
LGG would grow polynomially in the worst case, however, it is able to reduce the size of the
clauses (and therefore also runtime and memory consumption) significantly in non-pathological
cases.

Constraint satisfaction [24] with finite domains, which was briefly reviewed in Chapter 3, can
be used for solving θ-subsumption problems. A standard representation of the θ-subsumption
problem in the constraint satisfaction framework was reviewed in Chapter 3. Here, we will use
this representation. We have already noted that constraint satisfaction problems with treewidth
bounded by k can be solved in polynomial time by the k-consistency algorithm1. We now briefly
describe the k-consistency algorithm and review some of its properties which are important for
the presentation in this chapter. The description is based on the presentation by Atserias et al.
[4]. Let us have a CSP P = (V,D,C) where V is the set of variables, D is the set of domains of
the variables and C is the set of constraints. A partial solution ϑ is an evaluation of variables
from V ′ ⊆ V which is a solution of the sub-problem P ′ = (V ′,D,C). If ϑ and ϕ are partial
solutions, we say that ϕ extends ϑ (denoted by ϑ ⊆ ϕ) if Supp(ϑ) ⊆ Supp(ϕ) and Vϑ = Vϕ for
all V ∈ Supp(ϑ), where Supp(ϑ) and Supp(ϕ) denote the sets of variables which are affected by
the respective evaluations ϑ and ϕ. The k-consistency algorithm then works as follows:

k-consistency algorithm:

1. Given a constraint satisfaction problem P = (V,D,C) and a positive integer k.

2. Let H be the collection of all partial solutions ϑ with |Supp(ϑ)| < k+ 1.

3. For every ϑ ∈ H with |Supp(ϑ)| 6 k and every V ∈ V, if there is no ϕ ∈ H such that ϑ ⊆ ϕ
and V ∈ Supp(ϕ), remove ϑ and all its extensions from H.

4. Repeat step 3 until H is unchanged.

5. If H is empty return false, else return true.

If the k-consistency algorithm returns true and P has treewidth bounded by k then P is guar-
anteed to have a solution [35]. For constraint satisfaction problems with generally unbounded
treewidth, k-consistency is only a necessary but not a sufficient condition to have a solution. If
the k-consistency algorithm returns false for a CSP problem P then P is guaranteed to have no
solutions. If it returns true then the problem may or may not have some solutions. So, equiv-
alently, if the problem is soluble then k-consistency always returns true. This can be seen as
follows. If the problem has solution then there must be a collection of partial solutions which
cannot be removed by the k-consistency algorithm. This is because, for every variable V and

1 In this chapter we follow the conventions of [4]. In other works, what we call k-consistency is known as strong k+ 1-
consistency [101].
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every partial solution which is a subset of a complete solution of the problem, we can find an-
other partial solution which is a superset of the partial solution and contains the variable V -
simply by selecting an appropriate subset of the complete solution. Therefore the set of partial
solutions reduced by the k-consistency algorithm will not become empty and the k-consistency
algorithm will return true.

A basic property of k-consistency that we will also need is the following. If the k-consistency
algorithm returns true for a CSP problem then it will also return true for any problem created
from the original problem by removing some variables and some constraints, i.e. with a subprob-
lem. This can be seen by noticing that if the k-consistency algorithm starts with a set H of partial
solutions and returns true then it must also return true if it starts with a superset of this set. The
set of partial solutions of the subproblem must necessarily be a superset of the set of partial so-
lutions of the original problem projected on the variables of the subproblem (from monotonicity
of constraints).

It is easy to check that if a clause A has treewidth bounded by k then also the CSP representa-
tion of the problem of deciding A �θ B has treewidth bounded by k for any clause B. It is known
that due to this and due to the equivalence of CSPs and θ-subsumption, the problem of deciding
θ-subsumption A �θ B can be solved in polynomial time when clause A has bounded treewidth
(which has been known for long time by the above mentioned widely known correspondence
between θ-subsumption and CSP problems).

Proposition 19. We say that a clause A is k-consistent w.r.t. a clause B (denoted by ACk B) if and only
if the k-consistency algorithm executed on the CSP representation of the problem of deciding A �θ B
returns true. If A has treewidth at most k and ACk B then A �θ B.

Proof. Follows directly from the solubility of CSPs with bounded treewidth by the k-consistency
algorithm [4] and from the equivalence of CSPs and θ-subsumption shown earlier in this section.

Another class of CSPs for which efficient algorithms exist is represented by so-called acyclic
CSPs. Analogically to the case of bounded treewidth of clauses, if a clause is acyclic then its CSP
encoding is also acyclic. Acyclic CSPs with extensionally represented relations of constraints can
be solved in time polynomial in the size of the problem by the so-called generalized arc-consistency
algorithm [6].

Generalized arc-consistency algorithm:

1. Given a constraint satisfaction problem P = (V,D,C) and a positive integer k.

2. Let H1 be the collection of all partial solutions ϑ with |Supp(ϑ)| = 1.

3. Let H2 be the collection of all partial solutions ϑ such that Supp(ϑ) = s where s is a scope
of some constraint C = (s,R) ∈ C.

4. Let H = H1 ∪H2

5. For every ϑ ∈ H with Supp(ϑ) = {U} and every V ∈ V such that {U,V} ∈ s for some
constraint C = (s,R) ∈ C, if there is no ϕ ∈ H such that ϑ ⊆ ϕ and V ∈ Supp(ϕ), remove ϑ
and all its extensions from H.

6. Repeat step 3 until H is unchanged.

7. If H is empty return false, else return true.

Note that the above pseudocode only depicts the simplest version of the algorithm, which
demonstrates the main properties of generalized arc-consistency and highlights the similarities
with the k-consistency algorithm. Generalized arc-consistency can be checked in time polyno-
mial in the number of variables and constraints and in the maximum cardinality of relations
of the constraints. This polynomial-time bound is useful for θ-subsumption problems A �θ B
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because the number of variables in the CSP problem is equal to the number of first-order-logic
variables in the clause A, the number of constraints is equal to the number of literals in A and
the maximum cardinality of relations of the constraints is bounded by the number of literals in
the clause B. Therefore, generalized arc-consistency can be checked for the CSP encoding of a
θ-subsumption problem in time which is polynomial in the size of the two clauses for which
θ-subsumption is tested.

Importantly, generalized arc-consistency enjoys very similar useful properties as k-consistency.
If the generalized arc-consistency algorithm returns false for a CSP problem then the problem
is guaranteed to have no solutions. If it returns true then the problem may or may not be solv-
able. So similarly as for k-consistency, solubility of a CSP problem implies that the generalized
arc-consistency will return true. If the generalized arc-consistency algorithm returns true for
a problem then it must return true also for any of its subproblems. The justification of these
useful properties would go along the same lines as the justification of the respective properties
of k-consistency.

If the generalized arc-consistency algorithm returns true and the CSP problem is acyclic then
the problem is also guaranteed to have a solution. So, for an acyclic clause A, the θ-subsumption
problemA �θ B can be solved in time polynomial in the sizes of the clausesA and B by applying
the generalized arc consistency algorithm on the CSP encoding of the θ-subsumption problem.

Proposition 20. We say that a clause A is generalized arc-consistent w.r.t. a clause B (denoted by
ACGAC B) if and only if the generalized arc-consistency algorithm executed on the CSP representation
of the problem of deciding A �θ B returns true. If A is acyclic and ACGAC B then A �θ B.

Proof. Follows directly from the solubility of acyclic CSPs by the generalized arc-consistency
algorithm and from the equivalence of CSPs and θ-subsumption shown earlier in this section.

7.2 bounded subsumption

In this section, we introduce bounded versions of θ-subsumption and develop methods for work-
ing with them. We start by defining x-subsumption and x-equivalence which are weaker versions
of θ-subsumption and θ-equivalence. The notions of x-subsumption and x-equivalence will be
central tools used in this chapter.

Definition 34 (x-subsumption, x-equivalence). Let X be a possibly infinite set of clauses. Let A ,B be
clauses not necessarily from X. We say that A x-subsumes B w.r.t. X (denoted by A �X B) if and only
if (C �θ A) ⇒ (C �θ B) for every clause C ∈ X. If A �X B and B �X A then A and B are called
x-equivalent w.r.t. X (denoted by A ≈X B). For a given set X, the relation �X is called x-subsumption
w.r.t. X and the relation ≈X is called x-equivalence w.r.t. X.

When it is clear from the context, we omit the phrase w.r.t. X from A x-subsumes B w.r.t. X.
To illustrate the concept, we start with a really simple instance of x-subsumption – an x-

subsumption w.r.t. a finite set of clauses.

Example 26. Let X = {D} be the set containing just the clause

D = e(V ,W)∨ e(W,X)∨ e(X, Y).

Let us have clauses
A = e(A,B)
B = e(A,B)∨ e(B,C),

and
C = e(V ,W)∨ e(W,X)∨ e(X, Y)∨ e(Y,Z).

We can check relatively easily that A ≈X B, A �X C, B �X C, C 6�X A and C 6�X B w.r.t. the set
X.
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It is apparent that x-subsumptions w.r.t. a set X containing just one clause are of little practical
interest. However, the set X can also be infinite and consist, for instance, of clauses having
treewidth bounded by k or having hypertreewidth bounded by l or having at most m variables
etc. Such x-subsumptions are of great practical utility as we shall see in the later sections of this
chapter.

Example 27. Let us have the following two clauses:

C = e(A,B)∨ e(B,C)∨ e(C,A)
D = e(A,B)∨ e(B,C)∨ e(C,D)∨ e(D,A).

For these clauses, it holds C �X D and D �X C w.r.t. the set of clauses with treewidth at
most 1 which can be checked easily using techniques presented in Section 7.6.1. On the other
hand, C 6�X D, D 6�X C for sets of clauses with treewidth at most k where k > 1. This can
be checked easily because C and D have treewidth 2 and therefore checking x-subsumption
C �X D or D �X C w.r.t. the set of clauses with treewidth k > 1 is equivalent to checking
ordinary θ-subsumption (and clearly, C 6�θ D and D 6�θ C).

Conventional θ-subsumption is a special case of x-subsumption. It is x-subsumption w.r.t. the
set of all clauses. In order to provide more insight, we prove this formally.

Proposition 21. θ-subsumption is x-subsumption w.r.t. the set X of all clauses.

The next proposition states basic properties of x-subsumption and x-equivalence.

Proposition 22. Let X be a set of clauses. Then x-subsumption w.r.t. X is a transitive and reflexive
relation on clauses and x-equivalence w.r.t. X is an equivalence relation on clauses.

Definition 34 provides no efficient way to decide x-subsumption between two clauses as it de-
mands θ-subsumption of an infinite number of clauses to be tested in some cases. However, for
many practically relevant sets of clauses X, there is a relation called x-presubsumption which im-
plies x-subsumption and has other useful properties as we shall see later (for example, it allows
quick finding of reduced versions of clauses etc.).

Definition 35 (x-presubsumption). Let X be a set of clauses. If �X is the x-subsumption w.r.t. X and
CX is a relation such that:

1. If A ∈ X and ACX B then A �θ B.

2. If A �θ B then ACX B.

3. If A ∈ X, ACX B and BCX C then ACX C.

then we say that CX is an x-presubsumption w.r.t. the set X.

When searching for an efficient procedure for checking x-presubsumption w.r.t. a given set X we
should be looking for a procedure which is able to decide θ-subsumption problems of the type
A �θ B where A ∈ X efficiently. For example, if X is the set of all acyclic clauses and if we want
a polynomial-time decidable x-presubsumption then we should look for a procedure that is able
to efficiently decide θ-subsumption problems where A is acyclic. It turns out that generalized
arc-consistency is such a procedure (as we show in Section 7.6.2).

The next proposition shows that if X is a set of clauses and CX is an x-presubsumption w.r.t.
X then CX provides a sufficient condition for x-subsumption w.r.t. X.

Proposition 23. Let X be a set of clauses. If�X is x-subsumption w.r.t. X and CX is an x-presubsumption
w.r.t. X then (ACX B)⇒ (A �X B) for any two clauses A, B (not necessarily from X).
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Note that the validity of Proposition 23 already follows from the conditions 1 and 3. The con-
dition 2 will come into play in the next sections. Without the third condition, we could not
establish bounds on the reduction procedure presented in Section 7.3.

We will use Proposition 23 in the next section where we deal with bounded reduction of
clauses. We will use it for showing that certain procedures which transform clauses always
produce clauses which are x-equivalent w.r.t. a given set X. We will also use it for showing
that x-presubsumptions can be used for directing hypothesis search in our bottom-up learning
algorithm presented in Section 7.5.

Using Definition 35 and Proposition 23, we can see that a necessary condition for a relation
CX to be an x-presubsumption w.r.t. X is that the following holds for any clauses A and B:
(A �θ B) ⇒ (A CX B) and (A CX B) ⇒ (A �X B). The next proposition shows that this is
actually not only a necessary but also a sufficient condition.

Proposition 24. Let X be a set of clauses. Let CX be a relation such that for any two clauses A and B:
(A �θ B)⇒ (ACX B) and (ACX B)⇒ (A �X B). Then CX is an x-presubsumption w.r.t. the set X.

7.3 bounded reduction

Proposition 23 can be used to search for clauses which are smaller than the original clause but
are still x-equivalent to it. This process, which we term x-reduction, will be an essential tool in
the bottom-up relational learning algorithm presented in Section 7.5.

Definition 36 (x-reduction). Let X be a set of clauses. We say that a clause Â is an x-reduction of clause
A if and only if Â �θ A and A �X Â and if this does not hold for any B ( Â (i.e. if there is no B ( Â

such that B �θ A and A �X B).

For a given clause, there may be even smaller x-equivalent clauses than its x-reductions. There
may also be multiple x-reductions differing by their lengths for a single clause. These two prop-
erties of x-reduction are demonstrated in the next two examples.

Example 28. Let X = {C} be the set containing just the clause

C = e(V ,W)∨ e(W,X)∨ e(X, Y)∨ e(Y,Z).

Let us have another clause
A = e(A,B)∨ e(B,C)∨ e(C,A)

for which we want to compute its x-reduction w.r.t. the set X. We can check relatively easily
(e.g. by enumerating all subsets of literals from A) that the only x-reduction of A is A itself (up
to renaming of variables). However, there is also a smaller clause x-equivalent to A and that is
A ′ = e(X,X). The x-equivalence of A and A ′ follows from the fact that C �θ A and C �θ A ′
and there is no other clause other than C in the set X. It might seem that the clauses A and A ′

are x-equivalent only because the set X used in this example is rather pathological but, in fact,
the two clauses are also x-equivalent w.r.t. the set of all clauses with treewidth at most 1.

Considering the above example, one could wonder why we did not define x-reduction of a
clause as the smallest clause x-equivalent to it. As we will see later in Section 7.4, x-reduction
defined in this way would be of no use in the bottom-up learning system.

The next example demonstrates the fact that some clauses may have multiple x-reductions
differing in lengths.

Example 29. Let X = {C} be the set containing just the clause

C = e(V ,W)∨ e(W,X)∨ e(X, Y)∨ e(Y,Z).

It is the same set as in the previous example. Let us have another clause

A = e(A,B)∨ e(B,C)∨ e(C,A)∨ e(B,H)∨ e(H, I)∨ e(I,A)
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for which we want to compute its x-reduction w.r.t. the set X. Graphically, the clause A can be
imagined as a graph with two oriented cycles (with length 3 and 4) which share one edge. There
are two x-reductions of clause A w.r.t. the set X (up to renaming of variables)

A ≈X e(A,B)∨ e(B,C)∨ e(C,A)

and
A ≈X e(B,H)∨ e(H, I)∨ e(I,A)∨ e(A,B).

Similarly as in the previous example, the two x-reductions would be x-reductions also w.r.t. the
set of clauses with treewidth at most 1.

In order to be able to compute x-reductions, we would need to be able to decide x-subsumption.
However, we very often have only an efficient x-presubsumption. Importantly, if there is an x-
presubsumption CX w.r.t. a set X decidable in polynomial time then there is a polynomial-time
algorithm for computing possibly larger clauses with the same properties as x-reductions. We
call this algorithm literal-elimination algorithm. It works as shown in the pseudo-code below.

Literal-elimination algorithm:

1. Given a clause A which should be reduced.

2. Set A ′ := A.

3. Select a literal L from A ′ such that A ′ CX A ′ \ {L}. If there is no such literal, return A ′ and
finish.

4. Set A ′ := A ′ \ {L}

5. Go to step 3.

The next proposition states formally the properties of the literal-elimination algorithm. It also
gives a bound on the size of the reduced clause which is output of the literal-elimination algo-
rithm. This bound is given in terms of lengths of conventional θ-reductions.

Proposition 25. Let us have a set X and a polynomial-time decision procedure for checking CX which is
an x-presubsumption w.r.t. the set X. Then, given a clause A on input, the literal-elimination algorithm
finishes in polynomial time and outputs a clause Â satisfying the following conditions:

1. Â �θ A and A �X Â where �X is the x-subsumption w.r.t. the set X.

2. |Â| 6 |Âθ| where Âθ is θ-reduction of a subset of A’s literals with maximum length.

So, the output Â of the literal-elimination algorithm has the same properties as x-reduction
(Â �θ A and A �X Â) with one difference and that is that it may be non-minimal in some
cases. In fact, as we show in Section 7.11, the complexity of finding a maximally reduced clause
depends on the set X, or more precisely on the available x-presubsumption. The problem may
be NP-hard even if there is a polynomial-time decidable x-presubsumption.

Importantly, if we have a clause A and its θ-reduction Â is contained in the set X then no
matter what x-presubsumption w.r.t. X we use, the output of the literal-elimination algorithm
must be a clause A ′ satisfying A ′ ≈θ Â and |A ′| = |Â| (i.e. a clause isomorphic to Â). Note that
A does not have to be from the set X. This is formalized in the next proposition.

Proposition 26. Let X be a set of clauses and A be a clause. If Aθ ∈ X is a θ-reduction of A then
litelimX(A) ≈θ Aθ and |litelimX(A)| = |Aθ| no matter which x-presubsumption CX w.r.t. X is used by
the literal-elimination algorithm.
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One can come up with different versions of the literal-elimination algorithm which provide
different guarantees and also run in polynomial time. Nevertheless, we use the basic version
described here in the experiments because, as it turns out, it is very fast in practice and reduces
clauses as much as θ-reduction in most cases. One possible modification of the literal-elimination
algorithm is to try to remove not individual literals, but individual variables (and all literals con-
taining them). Such a modification of the literal-elimination algorithm has similar performance
guarantees as the basic literal-elimination algorithm. It guarantees to find a clause which is at
most as big as a maximum-size θ-reduction of a clause containing a subset of the variables of
the original clause.

Sometimes, we may have efficient tests for x-presubsumptions w.r.t. some sets X and Y and we
might like to reduce a given clause w.r.t. the set X∩ Y. The next proposition shows how reduced
clauses w.r.t. X∩ Y can be computed using literal-elimination algorithms w.r.t. the sets X and Y.

Proposition 27. Let X and Y be sets of clauses. Then, given a clause A, the clause computed as Â =
litelimX(litelimY(A)) satisfies the following conditions:

1. Â �θ A, A �X∩Y Â where �X∩Y is x-subsumption w.r.t. the set X∩ Y.

2. |Â| 6 |Âθ| where Âθ is θ-reduction of a subset of A’s literals with maximum length.

7.4 bounded least general generalization

In this section, we show how x-reductions in general, and the literal-elimination algorithm in
particular, can be used in bottom-up approaches to relational learning. We introduce a novel
concept which we term bounded least general generalization. This new concept generalizes Plotkin’s
least general generalization of clauses [97].

Definition 37 (Bounded Least General Generalization). Let X be a set of clauses. A clause B is
said to be a bounded least general generalization w.r.t. the set X of clauses A1, A2, . . . , An (denoted by
B = LGGX(A1,A2, . . . ,An)) if and only if B �θ Ai for all i ∈ {1, 2, . . . ,n} and if for every other clause
C ∈ X such that C �θ Ai for all i ∈ {1, 2, . . . ,n}, it holds C �θ B.

Note that neither the clauses A1, A2, . . . An nor the resulting bounded least general general-
ization have to be from the set X. The set X serves only to specify the clauses which, if they
θ-subsume the clauses A1, A2, . . . An, must be more general than the resulting bounded least
general generalization.

The set of all bounded least general generalizations of clauses A1, A2, . . . An w.r.t. a set X
is a superset of the set of conventional least general generalizations of these clauses. This set
of all bounded least general generalizations of clauses A1, A2, . . . An is also a subset of the
set of all clauses which θ-subsume all A1, A2, . . . An. The relationship between bounded and
conventional least general generalization is depicted in Fig. 8. There are two main advantages
of bounded least general generalization over the conventional least general generalization. The
first main advantage is that the reduced form of bounded least general generalization can be
computed in polynomial time for many practically interesting sets X as we shall see later in this
chapter. The second main advantage is that this reduced form can actually be smaller than the
reduced form of conventional least general generalization.

The next example shows a simple illustration of bounded least general generalization.

Example 30. Let X be the set of all clauses that can be created using only literals based on
predicate a/2. Let us have two clauses A and B for which we want to compute their bounded
least general generalization w.r.t. the set X:

A = a(A,B)∨ b(B,A)
B = a(A,B)∨ b(B,C)∨ a(C,D)∨ b(D,A).
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Figure 8: The relationship between the conventional least general generalization and the bounded least
general generalization w.r.t. a set X.

A least general generalization of these two clauses is

LGG(A,B) = B = a(A,B)∨ b(B,C)∨ a(C,D)∨ b(D,A)

This clause is the smallest among all least general generalizations of A and B (it is equal to its
own θ-reduction). A bounded least general generalization w.r.t. the set X is

LGGX(A,B) = a(A,B).

It is instructive to see why we defined bounded least general generalization in this particular
way and not in some other, seemingly more meaningful, way. Recall that our main motivation in
this chapter is to be able to learn clauses more efficiently when we know (or assume) that there
exist solutions to the learning problem (clauses) from some fixed potentially infinite set. Having
this motivation in mind, one could argue that, for example, a more meaningful definition of
bounded least general generalization should require the resulting clause to be from the set X.
However, least general generalization would not exist in many cases if defined in this way, which
is demonstrated in the next example.

Example 31. Let X = {C1,C2, . . . } be a set of clauses of the following form:

C1 = e(A1,A2)
C2 = e(A1,A2)∨ e(A2,A3)
C3 = e(A1,A2)∨ e(A2,A3)∨ e(A3,A4)

. . .

Let us also have the following two clauses:

A = e(A,B)∨ e(B,A)
B = e(A,B)∨ e(B,C)∨ e(C,A)
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We would like to find a clause from X which would be their least general generalization but this
is impossible for the following reason. Any clause from X θ-subsumes both A and B but none of
them is least general because for any Ci ∈ Xwe have Ci+1 6�θ Ci, Ci+1 �θ A and Ci+1 �θ B. On
the other hand, bounded least general generalization, as actually defined, always exists which
follows trivially from the fact that the conventional least general generalization as computed by
Plotkin’s algorithm is also a bounded least general generalization.

Note that, as in most of the examples presented throughout this chapter, we would have to
face the same problems even if X consisted of more general clauses, for example, if X consisted
of clauses of treewidth bounded by some k or of acyclic clauses etc, so they are not caused by
some specificities of the rather artificial set X.

We have already mentioned that reduced forms of bounded least general generalizations can
often be computed in polynomial time using the literal-elimination algorithm. The method to
accomplish this is based on application of x-reductions. This is formalized in the next proposi-
tion.

Proposition 28. Let X be a set of clauses and let CX be an x-presubsumption w.r.t. the set X then the
clause

Bn = litelimX(LGG(An, litelimX(LGG(An−1, litelimX(LGG(An−2, . . . )))))

is a bounded least general generalization of clauses A1, A2, . . . , An w.r.t. the set X (here, litelimX(. . . )
denotes calls of the literal-elimination algorithm using CX).

Here, we can also finally see why we could not define x-reduction of a clause C as the minimal
clause x-equivalent to it. If we defined it that way, it would no longer have to be true

litelimX(LGG(An, litelimX(LGG(An−1, litelimX(LGG(An−2, . . . ))))) �θ Ai

for all i ∈ {1, 2, . . . ,n} as the next example demonstrates.

Example 32. Let X be the set containing only the clause

C = e(A,B)∨ e(B,C)∨ e(C,D)

Next, let us have the following two clauses

A1 = e(A,B)∨ e(B,A)
A2 = e(A,B)∨ e(B,C)∨ e(C,A)

Least general generalization of A1 and A2 is

B = e(A,B)∨ e(B,C)∨ e(C,D)∨ e(D,E)∨ e(E, F)∨ e(F,A)

The smallest clause x-equivalent to B w.r.t. X is

D = e(A,A)

but D does not θ-subsume the original generalized clauses A1 and A2. So we see that taking
a clause x-equivalent to LGG of clauses is of no use in trying to generalize them because the
result may even be a clause more specific as the original clauses. Indeed, in this case, we had
D 6�θ A1, D 6�θ A2 but A1 �θ D and A2 �θ D.

On the other hand, all bounded least general generalizations w.r.t. the set X satisfy the condi-
tions on generalizations, for instance,

E = C = e(A,B)∨ e(B,C)∨ e(C,D)

is a bounded least general generalization and it θ-subsumes both of the clauses A1 and A2 and
for any clause Y from the set X which also covers them it holds Y �θ E (here, it is actually
because there is just one clause in X which is equal to E).
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7.5 learning with bounded least general generalization

Conventional least general generalization can be used as an operator in searching for hypothe-
ses [87, 50]. Basically, the search can be performed by iteratively applying LGG operation on
examples or on already generated reduced LGGs. Application of reduction procedures, which
compute smaller but equivalent least general generalizations, is usually necessary for keeping
sizes of clauses constructed by LGG operator reasonably small. θ-reduction cannot guarantee
that the sizes of least general generalizations would not grow exponentially in the worst case, but
it is able to reduce the sizes of the clauses (and therefore also runtime and memory consump-
tion) significantly in non-pathological cases. A problem of approaches based on conventional
least general generalization is that computing θ-reduction is an NP-hard problem, which is es-
pecially problematic when the size of least general generalizations is large. In general, bounded
reduction also cannot guarantee that the size of the constructed clauses will not be too large (in
the end, θ-reduction is a special type of bounded reduction). Nevertheless, if we have a set of
clauses X w.r.t. which there exists a polynomial-time literal-elimination algorithm then, at least
time complexity of the reduction algorithms is not an issue. For these reasons, bounded least
general generalization seems to be a suitable method for bottom-up learning.

In the simplest setting of learning single-clause theories, conventional least general general-
ization can be used to find a clause, if it exists, which separates positive and negative examples
as:

H = reduceθ(LGG(E+n , reduceθ(LGG(E+n−1, reduceθ(LGG(E+n−2, . . . )))))

where E+i are the positive examples and reduceθ(. . . ) denotes calls to the θ-reduction algorithm.
One does not need negative examples in this simple case. If some clause H∗ which correctly
splits the given sets of positive and negative examples exists then Hmust also split them because
it θ-subsumes all positive examples (by definition of LGG) and, if it θ-subsumed a negative
example then H∗ would also have to θ-subsume this example (again by definition of LGG)
which would be a contradiction with H∗ splitting the positive and negative examples correctly.

Importantly, one can proceed similarly when learning with bounded least general generaliza-
tion. If we want to find a clause H separating positive and negative examples, we can try to
construct it as:

H = litelimX(LGG(E+n , litelimX(LGG(E+n−1, litelimX(LGG(E+n−2, . . . )))))

In this case the conditions under which the method is guaranteed to find a solution are little
different. It no longer suffices that there is some clause which correctly splits the positive and
negative examples. If X is the set of clauses w.r.t. which the bounded least general generalization
is computed and if there is some clause H∗ ∈ X which splits the positive and negative examples
correctly then H is guaranteed to split these examples correctly. So, for example, if we believe
that there exists a solution, which is an acyclic clause, then we can use bounded least general
generalization w.r.t. the set of all acyclic2 clauses to find a solution. If our belief is not justified
since there is no solution which is an acyclic clause, then the clause H still may but also may not
be a solution of the problem. The next proposition formalizes this.

Proposition 29. Let X be a set of clauses. Let A and B be sets of clauses. If there is a clause H∗ ∈ X
which θ-subsumes all clauses from A and no clauses from B then it is possible to find a clause H which
also splits the two sets of clauses as:

H = litelimX(LGG(An, litelimX(LGG(An−1, litelimX(LGG(An−2, . . . )))))

(here, litelimX(. . . ) denotes calls of the literal-elimination algorithm w.r.t. the set X).

It is interesting to note that neither the clauses which are reduced by the literal-elimination
algorithm during learning nor the final constructed clause must be from the set X. It merely

2 See Section 7.6.2 for a description of fast x-presubsumption algorithms w.r.t. the set of acyclic clauses.
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suffices that some clause from the set Xwhich solves the learning problem exists for the outlined
method to work correctly. For example, if X is the set of all acyclic clauses, then the final learned
clause can be cyclic etc.

Proposition 29 shows that if we have two sets A and B of clauses which can be separated
by a clause H∗ from a given set X then these sets can be also split by bounded least general
generalization of clauses from one of these sets. So, for instance, if we wanted to find a single
clause which correctly splits given sets of positive and negative examples under the assumption
that they can be split by some clause from the set X, we could use algorithms for computing
bounded least general generalizations and find the desired clause using them.

There is only a minority of problems which can be solved by finding a single clause cleanly
splitting positive and negative examples. More often, it is the case that we need to find a set
of clauses which together cover as many positive examples and as few negative examples as
possible (which is typically expressed through maximization of a scoring function). The existing
systems such as Progol [86] or ProGolem [88] usually tackle this task by an iterative covering
approach in which a single clause obtaining good score is found in each iteration and the
positive examples covered by it are removed from the dataset so that the clauses found in the
subsequent iterations would cover the other, not yet covered, positive examples. In this section
we describe an iterative covering approach using bounded least general generalization called
BULL and prove its most important properties. For example, we show that the single-clause
learning component always finds a clause which is at least as good as any clause from the set X.

We start by describing the single-clause learning component of the main algorithm called
S-BULL3 (Algorithm 6). The algorithm is based on best-first search [103] in which each new can-
didate clause is constructed by computing bounded least general generalization of an already
constructed clause with an example not yet x-subsumed by it. This way, the algorithm would be
exactly the best-first search algorithm where the used scoring function is the difference of the
number of covered positive and negative examples. However, unlike straightforward implemen-
tation of the best-first-search algorithm, S-BULL contains also a step in which bounded least
general generalization of the newly constructed clause and the positive examples covered by it
w.r.t. the x-presubsumption relation CX is computed (the inner-most repeat-until loop starting
on line 15). This step ensures that the positive examples covered by a constructed hypothesis
w.r.t. the x-presubsumption CX will be covered by it also w.r.t. the ordinary θ-subsumption. This
step is also essential for proving the following proposition which states that the clause found by
S-BULL will always be at least as good as any clause from the set X (w.r.t. the scoring function
|PositiveExamplesCovered|− |NegativeExamplesCovered|).

Proposition 30. Let X be a set of clauses and let E+ and E− be sets of positive and negative examples,
respectively. Next, let the procedure CandidateExmaples(H,E+) (used by the algorithm S-BULL)
always return the set E+. If there is a clause H ∈ X which covers p > 1 positive examples and n negative
examples then the algorithm S-BULL always finds a clause which covers p ′ positive examples and n ′

negative examples and it holds p ′ −n ′ > p−n.

One could wonder whether a similar strategy, searching through clauses not necessarily from
the set X but using only an x-presubsumption w.r.t. the set X, could also work in a top-down
approach. At least a straightforward application of this approach would not work for the fol-
lowing reason. Let us assume that the algorithm would start with the empty clause. It would
extend clauses by application of refinement steps in which new literals would be added and
perhaps some variables would be unified. Let us assume that the algorithm would only use the
x-presubsumption relation for computing quality of the generated clauses according to which it
would select the best clauses. Then it would have to face the problem how to check that the pos-
itive examples which are covered w.r.t. the x-presubsumption relation are also covered w.r.t. the
ordinary θ-subsumption. This is done in the S-BULL algorithm by always replacing a candidate
clause by a bounded least general generalization w.r.t. X of the clauses covered by the candidate

3 Single-Clause Bottom-Up Learner (L)
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Algorithm 6 S-BULL: the clause-learning component of the main algorithm

1: Input: Set of positive examples E+, set of negative examples E−, seed example S.

2: Open := () /* Open is a list with elements sorted by score. */
3: Closed := {} /* Closed is a set. */
4: PosExCovBySeed := {E ∈ E+|SCX E}
5: NegExCovBySeed := {E ∈ E−|SCX E}
6: BestScore := |PosExCovBySeed|− |NegExCovBySeed|

7: BestClause := Seed
8: Store the triple (S,PosExCovBySeed,NegExCovBySeed) in the list Open.
9: Store the pair (PosExCovBySeed,NegExCovBySeed) in the set Closed.

10: while Open 6= ∅ do
11: (H, {E+i1 ,E

+
i2

, . . . ,E+in}, {E
−
j1

,E−j2 , . . . ,E
−
jm

}) := get the item with the highest score from Open

and remove it from Open.
12: for all E∗ ∈ CandidateExamples(H,E+) do
13: H∗ := LGGX(H,E∗)
14: PosCovered := {E+i1 ,E

+
i2

, . . . ,E+in}∪ {E
+}

15: repeat
16: NewPosCovered := {E ∈ (E+ \ PosCovered)|H∗ CX E}
17: PosCovered := PosCovered∪NewPosCovered
18: H∗ := LGGX(H∗,A1, . . . ,Ak) where Ai ∈ NewPosCovered
19: until NewPosCovered = ∅
20: NewNegCovered := {E ∈ (E− \ {E−j1 , . . . ,E

−
jm

})|H∗ CX E}

21: NegCovered := NewNegCovered∪ {E−j1 , . . . ,E
−
jm

}

22: if (PosCovered,NegCovered∪NewNegCovered) 6∈ Closed then
23: Store the triple (S,PosCovered,NegCovered) in the list Open.
24: Store the pair (PosCovered,NegCovered) in the set Closed.
25: Score := |PosCovered|− |NegCovered|

26: if Score > BestScore then
27: BestClause := H∗

28: BestScore := Score
29: end if
30: end if
31: end for
32: end while
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clause w.r.t. the x-presubsumption relation. However, it seems impossible to achieve this within
a top-down approach (that would not use any form of least general generalizations). Such a
top-down approach might often end up with clauses not covering many positive examples.

Importantly, if S-BULL is used with a polynomial-time x-presubsumption, its runtime can
be upper-bounded by a singly-exponential function whereas the worst-case complexity of sim-
ilar bottom-up learning algorithms based on LGG and θ-subsumption can be upper-bounded
only by a doubly-exponential function. In general, the worst-case time-complexity of S-BULL
is O(2n

+ · (n+ + n−) · f(mn+
)) where n+ is the number of positive learning examples, n− is

the number of negative learning examples, m is the number of literals in the biggest learning
example and f is an upper-bound on the runtime of the x-presubsumption. The term 2n

+
is due

to the fact that bounded LGGs of all subsets of positive examples might need to be searched and
the term (n+ + n−) · f(mn+

) represents evaluation of LGGs on the dataset. If f is a polynomial
then the bound is only singly-exponential. On the other hand, if an algorithm searches for a
clause maximizing a given scoring function using conventional LGG and scores the intermedi-
ate clauses using standard θ-subsumption algorithms [82], then its worst-case time complexity
can be upper-bounded only by O(2n

+ · (n+ + n−) ·mmn+

). This is because LGG of n clauses
can have as many literals as the product of the numbers of literals in these clauses and because
deciding θ-subsumption problems of the type A �θ B using standard algorithms takes time
|B||A|.

The S-BULL procedure is used as a part of the iterative covering algorithm BULL which works
similarly as Golem [87] or the iterative variant of ProGolem [88]. The covering algorithm starts
with the full set of positive examples. It randomly picks a positive example and uses the S-BULL
procedure with the randomly picked example as a seed example to find a hypothesis (a clause)
maximizing the difference of covered positive and negative examples. Then it stores the found
clause in a list of already found clauses and removes the set of examples covered by the found
clause from the set of examples. It then repeats this process using the remaining set of positive
examples until all positive examples are removed. The result is a set of clauses.

7.6 instantiations of the framework

In this section, we describe four practically relevant instantiations of the framework. We show
that bounded least general generalizations can be computed efficiently w.r.t. classes of clauses
with bounded treewidth, w.r.t. acyclic clauses, w.r.t. treelike clauses and w.r.t. to clauses com-
plying with a simple language bias. Finally, we also show that many CSP filtering procedures,
such as path-consistency, singleton-arc-consistency etc. can be used to define other practically
relevant x-presubsumptions although the explicit nature of the sets X does not have to be known
in these cases.

7.6.1 Clauses of Bounded Treewidth

One of the classes of clauses w.r.t. which the reduced forms of bounded LGGs can be computed
efficiently is the class of clauses with bounded treewidth. The notion of treewidth of clauses
was explained in Section 7.1. What we need to show in order to demonstrate that the framework
described in this chapter can be efficiently applied in the case of bounded-treewidth clauses is
that there is a polynomial-time decidable x-presubsumption relation. In the next proposition,
we show that k-consistency algorithm [4] can be used to obtain such an x-presubsumption.

Proposition 31. Let k ∈ N and let Ck be a relation on clauses defined as follows: ACk B if and only
if the k-consistency algorithm run on the CSP-encoding (described in Section 7.1) of the θ-subsumption
problem A �θ B returns true. The relation Ck is an x-presubsumption w.r.t. the set Xk of all clauses
with treewidth at most k.
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Figure 9: Illustration of θ-reduction, reduction by literal-elimination algorithm and reduction by literal-
substitution algorithm.

Example 33. Let us have the following four clauses which are all mutually x-equivalent.

A = e(A,B)∨ e(B,C)∨ e(C,E)∨ e(D,B)∨ e(D,E)∨ e(E, F)∨ e(F,D)

B = e(B,C)∨ e(C,E)∨ e(D,B)∨ e(D,E)∨ e(E, F)∨ e(F,D)

C = e(B,C)∨ e(C,E)∨ e(D,B)∨ e(D,E)
D = e(D,E)∨ e(E, F)∨ e(F,D)

These clauses are depicted graphically as graphs in Figure 9 together with the θ-subsumption
relations among them. The clause B is a θ-reduction of the clause A. The clauses C and D are
x-reductions of A (and consequently also of B).

Low-treewidth clauses can lead to highly accurate classifiers. In our previous studies partially
described in Chapter 5 and in the papers [71, 62], we observed that all clauses learned by the
ILP systems Progol, nFOIL [74] and kFOIL [73] in all the conducted experiments had treewidth
1 (after the removal of the variable formally identifying the learning example) although this
had not been stipulated by the language bias. In a similar spirit, Horváth and Ramon [49] note
that more than 99.9 percent of molecules in the NCI repository4 have treewidth lower than four.
The classical ILP systems produce low-treewidth clauses mostly because their top-down search
strategy does not allow them to reach long clauses of higher treewidth. Learning that produces
clauses as good as those with treewidth bounded by some number is therefore of considerable
practical importance.

7.6.2 Acyclic and Treelike Clauses

Another class of clauses for which the framework of bounded least general generalization can
be used is the class of acyclic clauses. In this case, the generalized-arc-consistency plays the
role of x-presubsumption w.r.t. the set of all acyclic clauses which is justified by the following

4 http://cactus.nci.nih.gov
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proposition which has a proof almost identical to the proof of the proposition stating that k-
consistency is an x-presubsumption w.r.t. the set of all clauses of treewidth at most k.

Proposition 32. Let CGAC be a relation on clauses defined as follows:ACGAC B if and only if the gener-
alized arc-consistency algorithm run on the CSP-encoding (described in Section 7.1) of the θ-subsumption
problem A �θ B returns true. The relation CGAC is an x-presubsumption w.r.t. the set XA of all acyclic
clauses.

A more restricted property than acyclicity is treelikeness. For precise characterization, we define
treelikeness of hypergraphs and clauses in a manner analogical to how we defined acyclicity
(Definition 12).

Definition 38 (Treelike clause). A hypergraph (clause) C is treelike if the iteration of the following
rules on C produces the empty hypergraph (conjunction):

1. Remove a hyperedge (literal) which contains fewer than 2 vertices (variables).

2. Remove a vertex (variable) which is contained in at most one hyperedge (literal).

Since every treelike clause is acyclic, generalized arc-consistency can be used as an x-presub-
sumption w.r.t. the set of treelike clauses. One could therefore wonder why we mention treelike
clauses at all if their tractability is already established by the fact that they are acyclic. There
are two reasons. First, treelike clauses were successfully used in several predictive experiments
achieving favourable predictive accuracies when compared to hypotheses induced by standard
relational learning algorithms [62] so it is worth to mention that the same class of clauses can be
searched also using the framework of bounded least general generalizations. Second, and more
important, another x-presubsumption w.r.t. the set of treelike clauses can be obtained using
a different CSP encoding with only binary constraints. As a consequence, x-presubsumption
w.r.t. treelike clauses can be implemented more easily and the practical implementation may
actually be faster than a similar implementation of x-presubsumption for acyclic clauses based
on generalized arc-consistency.

The CSP encoding of the θ-subsumption problem which can be used to obtain an x-presub-
sumption w.r.t. the set of treelike clauses can be constructed as follows. Let us have a θ-subsump-
tion problem A �θ B. We create a CSP variable Vl for every literal l ∈ A and a CSP variable
VV for every first-order-logic variable V ∈ vars(A). If Vl is a variable corresponding to a literal
l, we set its domain to contain exactly the literals l ′ ∈ B such that l �θ l ′ (which is checkable
in linear time). If VV is a variable corresponding to a first-order-logic variable V , then we set its
domain to contain all terms in terms(B). The set of constraints C contains one constraint Cl,i for
every appearance of a variable in an i-th argument of a literal l. The scope of the constraint Cl,i
is set to (Vl,VVl,i) where Vl,i is the first-order-logic variable contained in the i-th argument of
the literal l. The relation of the constraint Cl,i contains all tuples (l ′, t) where l ′ ∈ B is a literal
and t is the term in the i-th argument of l ′.

Example 34. Let us have clauses A and B as follows

A = hasCar(C)∨ hasLoad(C,L)∨ shape(L,box)
B = hasCar(c)∨ hasLoad(c, l1)∨ hasLoad(c, l2)∨ shape(l2,box)

We now show how we can convert the problem of deciding A �θ B to a CSP problem using the
alternative CSP encoding. Let

V = {VC,VL,VhasCar(C),VhasLoad(C,L),Vshape(L,box)}

be a set of CSP-variables. Next, let

D = {DC,DL,DhasCar(C),DhasLoad(C,L),Dshape(L,box)}
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be a set of domains of variables from V such that

DC = {c, l1, l2}
DL = {c, l1, l2}
DhasCar(C) = {hasCar(c)}

DhasLoad(C,L) = {hasLoad(c, l1),hasLoad(c, l2)}
Dshape(L,box) = {shape(l2,box)}

Next, let

C = {ChasCar(C),1,ChasLoad(C,L),1,ChasLoad(C,L),2,Cshape(L,box),1}

be a set of constraints with the following scopes (VhasCar(C),VC), (VhasLoad(C,L), VC),
(VhasLoad(C,L), VL) and (Vshape(L,box),VL) and with the relations {(hasCar(c), c)},
{(hasLoad(c, l1), c), (hasLoad(c, l2), c)}, {(hasLoad(c, l1), l1), (hasLoad(c, l2), l2)} and
{(shape(l2,box), l2)}, respectively. Then the constraint satisfaction problem given by V, D and C

represents the problem of deciding A �θ B as it admits a solution if and only if A �θ B holds.

The encoding has the convenient property that it contains only binary constraints and node-
consistency and ordinary (not generalized) arc-consistency applied on this encoding can be used
as an x-presubsumption w.r.t. the set of treelike clauses. Running the combination of node-
consistency and arc-consistency on problems with binary constraints is known to be equivalent
to the 1-consistency algorithm.

Proposition 33. Let C1 be a relation on clauses defined as follows:AC1B if and only if the k-consistency
algorithm with k = 1 run on the alternative CSP-encoding of the θ-subsumption problemA �θ B returns
true. The relation C1 is an x-presubsumption w.r.t. the set XT of all treelike clauses.

7.6.3 Clauses Given Implicitly by a Filtering Algorithm

All of the x-presubsumptions described in the previous sections, the x-presubsumption w.r.t.
the set of treewidth-k clauses, the x-presubsumption w.r.t. the set of acyclic clauses and the
x-presubsumption w.r.t. the set of treelike clauses, are based on local consistency techniques
from constraint satisfaction. There are also other local consistency techniques in CSP which
might be candidates for being x-presubsumptions w.r.t. some sets of clauses, for instance, path-
consistency, singleton arc-consistency or singleton path-consistency to name at least a few of
them [101]. It can be shown that these procedures can be used to obtain x-presubsumptions
w.r.t. some sets although these sets may be given only implicitly by a specific local consistency
techniques.

Example 35. Let us show, as an illustration, that singleton generalized arc-consistency [98] is an
x-presubsumption w.r.t. some superset of the set of all acyclic clauses. What we need to know
about singleton generalized src-consistency is that if a CSP problem is singleton arc-consistent
then it is also arc-consistent and that if a CSP problem is soluble then it is also singleton general-
ized arc-consistent. It follows that singleton generalized arc-consistency is an x-presubsumption
w.r.t. the set of all acyclic clauses as it satisfies all three conditions stated in the definition of x-
presubsumption (Definition 35) which follows from the fact that the generalized arc-consistency
satisfies them (Proposition 32). Singleton generalized arc-consistency is stronger than general-
ized arc-consistency [98] and therefore the set X w.r.t. which it is an x-presubsumption may be
larger than the set of acyclic clauses.

7.6.4 Clauses Constrained by a User-definable Language Bias

The sets of clauses described in the previous sections w.r.t. which we found efficient x-presub-
sumption tests were so far given exclusively by picking clauses for which θ-subsumption is
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tractable. In machine learning, we often need to introduce a bias corresponding to apriori knowl-
edge which we have about a problem domain at hand. In this section, we introduce a simple
language bias that can be combined with the framework of bounded least general generaliza-
tion.

Definition 39 (Constant Language Bias). Constant language bias is a set LB = {(pi/arityi, {ai1 ,
. . . , aik})} where pi are predicate symbols, ai ∈ N and {ai1 , . . . ,aik} ⊆ {1, . . . ,arityi}. A literal
l = pi(t1, . . . , tk) is said to comply with language bias LB if it contains constants in all arguments
ai1 , . . . ,aik . A clause C is said to comply with language bias LB if all its literals comply with it.

Informally, the constant language bias requires certain arguments of some literals to contain con-
stants and not variables. We will use a simpler notation for constant language bias inspired
by mode declarations known from Progol [86]. So, for example, we will write atom(x, #),
bond(x, x, #) for a constant language bias {(atom/2, {2}), (bond/3), {3}} which specifies clauses
describing molecules where we require that if there is an atom in a learned hypothesis we want
to know its type and, similarly, if there is a bond we also want to know whether it is a single
bond, a double bond etc. For instance, the clause

atom(X, c)∨ bond(X, Y,double)∨ atom(Y,h)

complies with this language bias whereas the clause

atom(X, c)∨ bond(X, Y,Z)∨ atom(Y,h)

does not comply with it because of the variable Z in the argument where a constant should
appear.

Proposition 34. Let LB be a language bias and let XLB be the set of all clauses complying with LB. Let
A be a clause. If ALB ⊆ A is a clause composed of exactly the literals from A complying with LB then
ALB �θ A and A �X ALB w.r.t. the set XLB.

The language bias can be used to define a set of clauses w.r.t. which bounded least general
generalizations can be computed. This is a simple corollary of Proposition 34 because any clause
CLB obtained by dropping literals which do not comply with the given language bias has the
same properties as an x-reduction except that it might be non-minimal.

Proposition 35. Let LB be a language bias and let XLB be the set of all clauses complying with LB. Let
A1, A2, . . . , An be clauses and let B = LGG(A1,A2, . . . ,An). If BLB is a clause obtained by removing
from B all literals which do not comply with LB then BLB is a bounded LGG w.r.t. the set XLB. If, in
addition, X is a set of clauses then litelimX(BLB) is a bounded LGG w.r.t. the set X∩XLB.

The next example demonstrates the use of the above proposition.

Example 36. Let us have a language bias LB ≈ e(x, x, #) and two clauses

A = e(a,b, 1)∨ e(b,a, 2)
B = e(c,d, 1)∨ e(d, e, 1)∨ e(e, c, 1)

The ordinary LGG of these clauses is

LGG(A,B) = e(A,B, 1)∨ e(B,C,X)∨ e(C,D, 1)∨ e(D,E,X)∨ e(E, F, 1)∨ e(F,A,X)

The bounded LGG w.r.t. the set XLB is much smaller

LGGXLB
(A,B) = e(A,B, 1)
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7.7 experiments

We performed experiments with several relational datasets in order to evaluate the practical
potential of the novel concept of bounded least general generalization. We describe these ex-
periments in this section. We start by describing the implementation details of the algorithm in
Section 7.7.1. Then we describe the used datasets in Section 7.7.2. We present results of experi-
ments comparing ordinary θ-reduction and x-reduction in Section 7.7.3. We measure both the
runtime of the algorithms as well as to what extent their outputs differ. Finally, we compare
BULL with relational learning systems Aleph [111], nFOIL [74] and ProGolem [88] in Section
7.7.5.

7.7.1 Implementation

We implemented a basic version of the BULL algorithm as described in Section 7.5, using x-
presubsumption w.r.t. the intersection of the set of all treelike clauses (described in Section
7.6.2) and the set of clauses restricted by the user-definable language bias (described in Sec-
tion 7.6.4). We used the AC-3 arc-consistency algorithm [81] for checking x-presubsumption.
We implemented the version of the literal-elimination algorithm presented in Section 7.3 with
the following improvement. If a clause consists of several independent components5 then the
algorithm first compares the components in a pairwise manner using the x-presubsumption
and if some component x-subsumes another component then the algorithm removes it. Before
reducing the components, the algorithm sorts them by their lengths. Another difference of the
implemented algorithm as compared to the algorithm described in Section 7.5 is that if the num-
ber of literals of a component encountered during the reduction is greater than a given limit
(set to infinity for the experiments reported in Section 7.7.3 and to 1000 literals in the experi-
ments reported in Section 7.7.5) then the component is replaced by a a clause composed of a
randomly selected subset of its literals. The implemented algorithm also allows the user to set
the maximum number of hypotheses expanded in a single run of the S-BULL procedure and the
number of examples that should be sampled as candidates for being used for generalizing the
current hypothesis in the S-BULL component of the algorithm. In addition, it is possible to set
the maximum number of negative examples covered by a learned clause. Since we are mainly
interested in the practical potential of the bounded least general generalization operation and
not in the performance of heuristic strategies how to select the best theory from a set of clauses,
the implemented version of BULL uses only the basic iterative covering strategy described in
Section 7.5 which is repeated for the given number of times (set to 3 in all the experiments).

7.7.2 Datasets

We used several datasets from various problem domains including toxicity prediction of small
molecules, estimation of therapeutic potential of antimicrobial peptides and estimation of their
adverse effects or searching for characterization of CAD documents. The basic numerical prop-
erties of these datasets are listed in Table 9.

The first dataset BEE contains descriptions of 85 peptides labelled according to their haemolytic
activity which is a proxy-value characterizing the ability of peptides to lyse mammal cells. The
ability to lyse mammal cells is undesirable for peptides designated for therapeutic use. The pep-
tides in this dataset were compiled from [128] by Szabóová et al. [119]. The sizes of the peptides
in this dataset vary from 9 to 18 amino acids.

The second dataset, called CAD, contains 96 class-labelled examples of CAD documents de-
scribing product structures [139]. The CAD dataset is interesting in that relatively long features
are needed to obtain reasonable classification accuracy.

5 We say that a clause C consists of more than one connected component if it can be rewritten as C = C1 ∨C2 where
C1 6= ∅, C2 6= ∅ and vars(C1)∩ vars(C2) = ∅.
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Dataset Examples Acc. of Majority Class

BEE 55 52.7 %
CAD 96 57.2 %
CAMEL 101 50.5 %
MUTA 188 66.5 %
PTC-FM 349 59.0 %
PTC-FR 351 65.5 %
PTC-MM 336 61.6 %
PTC-MR 344 55.8 %
RANDOM 200 50.0 %

Table 9: Datasets used in the experiments.

The third dataset, called CAMEL [16], contains spatial structures of 101 peptides, which are
short sequences of amino acids, labelled according to their antimicrobial activity. Peptides in
the dataset CAMEL are relatively short; each peptide is a chain of 15 amino acids. The peptide
structures are described using pair-wise distances among amino acids. Each amino acid also
has its type. Prediction of antimicrobial activity of peptides has potentially important applica-
tions because antimicrobial peptides are considered to be viable replacements for conventional
antibiotics against which many microorganisms have already acquired resistance.

The dataset MUTA is the regression-friendly part of the well-known Mutagenesis dataset [43],
which consists of 188 organic molecules marked according to their mutagenicity.

The next set of datasets originates from the Predictive Toxicology Challenge [46] which con-
sists of more than three hundreds of organic molecules marked according to their carcinogenic-
ity for male and female mice and rats.

The dataset RANDOM contains spatial structures of 200 peptides synthesizes by Fjell et al.
[32] labelled according to their antimicrobial activity. Peptides in the dataset RANDOM are
chains of 9 amino acids and, thus, are smaller than peptides in the dataset CAMEL.

7.7.3 Bounded Reductions

The first question that we addressed was how much x-reductions of clauses (w.r.t. the set of
all treelike clauses) differ from the respective θ-reductions and how much faster they can be
computed as compared to θ-reductions. We addressed this question in experiments presented
here. We implemented a θ-reduction algorithm using the CSP representation of θ-subsumption
problems. The underlying CSP solver was based on backtracking search using maintaining-arc-
consistency and the min-domain heuristic [101]. The θ-reduction algorithm was implemented
with the same level of sophistication as the literal-elimination algorithm. Similarly as the literal-
elimination algorithm, it performed elimination of connected components first and only after
that it performed elimination of individual literals. We compared this θ-reduction algorithm
with the literal-elimination algorithm w.r.t. the set of all treelike clauses. We performed exper-
iments with clauses from the datasets BEE, CAD, CAMEL, MUTA, PTC-MR and RANDOM
(we omitted the remaining PTC datasets as they mostly overlap with the PTC-MR dataset). The
clauses for reduction were created by sampling 1000 pairs of clauses from each dataset and
then computing LGGs of these pairs of clauses w.r.t. the same language bias as used in Section
7.7.5. We measured the runtime for reduction, sizes of reduced clauses and also for each clause
whether its θ-reduction and the output of the literal-elimination algorithm were isomorphic. The
results are displayed in Table 10.
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Literal-elimination θ-reduction

Dataset Runtime Average size Runtime Average size Isomorphic

BEE 5.2 80.5 48.7 80.5 100 %
CAD 53.0 230.3 2114.7 230.3 100 %
CAMEL 11.9 162.7 406.0 162.7 100 %
MUTA 47.3 41.3 283.0 41.3 100 %
PTC-MR 60.8 13.5 171.1 13.5 100 %
RANDOM 4.0 52.17 27.6 52.18 99.7 %

Table 10: Runtime in milliseconds and average sizes, measured as number of literals, of reduced clauses
for the literal-elimination and the θ-reduction algorithm.

As can be seen from the results, the literal-elimination algorithm is not only substantially
faster in most cases than the θ-reduction algorithm, but it also outputs clauses which are iso-
morphic (i.e. identical up to renaming of variables) to θ-reductions in majority of cases. Natu-
rally, there are examples where the literal-elimination must return a clause non-isomorphic to
the respective θ-reduction (for example when the input clause is a description of two directed
circles of relatively prime lengths and the set X is the set of all treelike clauses) but it is still inter-
esting that isomorphic clauses were returned in most cases by the literal-elimination algorithm
and the θ-reduction algorithm for the six real-life datasets used in this experiment. Interestingly,
when we disabled the initial stage in which components are reduced in pairwise manner, the
literal-elimination algorithm started to return clauses smaller than θ-reductions (and thus non-
isomorphic to it) more often which might be attributed partly to sorting of components by their
sizes before their pairwise reduction.

7.7.4 Comparison with a Baseline Bottom-up Learning Algorithm

The results presented in the previous section indicate that the literal-elimination algorithm w.r.t.
the set of treelike clauses can compute reductions of clauses significantly faster than the ordinary
θ-reduction algorithm and that the sizes of the reduced clauses are usually equal or even smaller
than those of the respective θ-reductions. These results do not answer another question and that
is how much faster bottom-up relational learning can be and how much of its accuracy is lost
when bounded least general generalization is used instead of the ordinary least general general-
ization. In order to answer this question, we compared BULL using the x-presubsumption w.r.t.
the set of treelike clauses (T-BULL) and BULL using θ-subsumption as the x-presubsumption
w.r.t. the set of all clauses (θ-BULL). In θ-BULL, we disabled the loop which ensures that all
clauses covered w.r.t. a chosen x-presubsumption will be covered also w.r.t. θ-subsumption (be-
cause it is unnecessary when the x-presubsumption is θ-subsumption). We used T-BULL and
θ-BULL with the following settings for all datasets. We set the maximum number of expanded
hypotheses to 30 and the maximum number of covered negative examples to 0. The results of
10-fold cross-validation are shown in Table 11. It can be seen from the results that the accuracies
are almost identical but that T-BULL is substantially faster than θ-BULL – for instance, more
than two orders of magnitude for the PTC-FR dataset and even more for the PTC-MR dataset
where we had to stop cross-validation for θ-BULL after a month of running.

7.7.5 Comparison with Existing Relational Learning Algorithms

What is very important for judging the practical utility of bounded least general generalization
is whether algorithms based on it can be competitive with existing relational learners in terms
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T-BULL θ-BULL

Dataset Runtime [s] Accuracy [%] Runtime [s] Accuracy [%]

BEE 47 57.0± 17.5 101 57.0± 17.5
CAD 1493 88.6± 10.3 9923 88.6± 10.3
CAMEL 462 86.2± 8.3 9078 86.2± 8.3
MUTA 1095 77.1± 7.6 7654 75.9± 8.2
PTC-FM 685 60.8± 5.1 2087 61.3± 4.8
PTC-FR 805 69.0± 6.1 107636 67.3± 6.8
PTC-MM 597 63.1± 2.9 2393 62.8± 4.8
PTC-MR 1194 57.3± 6.3 DNF DNF
RANDOM 179 88.0± 10.1 335 88.0± 10.1

Table 11: Runtime in seconds and accuracy estimated by 10-fold cross-validation for BULL using x-
presubsumption w.r.t. the set of treelike clauses (T-BULL) and for BULL using θ-subsumption
(θ-BULL).

of predictive accuracy. For this reason, we performed predictive-classification experiments with
the datasets described in Section 7.7.2, in which we measured predictive accuracy (estimated by
10-fold cross-validation) of BULL and relational learning systems Aleph, nFOIL and ProGolem.

We set parameters of all four systems so that their runtime would be in the same orders of
magnitude (tens of minutes per fold at most). We used BULL with the following settings for
all the datasets. We set the maximum number of expanded hypotheses to 30 and the maximum
number of covered negative examples to 0. For Aleph, we set the number of searched nodes to
50000, the noise parameter to 5 % and the maximum clause length to 100. nFOIL was used with
maximum clause length set to 20 for all datasets and with beam size set to 100 for BEE, CAMEL,
MUTA, RANDOM and CAD and 30 for the four PTC datasets. For ProGolem, we used most
of the parameters with their default values, except the clause-evaluation function, which we set
to use the Subsumer algorithm [104], and the maximum number of covered negative examples.
We used two different settings of the lastly mentioned parameter, giving rise to two columns in
Table 12: ProGolem1 and ProGolem2. ProGolem1 refers to ProGolem with the default setting for
the maximum number of covered negative examples, whereas ProGolem2 refers to ProGolem
with the maximum number of covered negative examples set to 0.

Results estimated by 10-fold cross-validation are shown in Table 12. Pairwise comparison of
the four relational learning systems is shown in Table 13. The results shown in Tables 12 and
13 indicate that BULL is very competitive to existing relational learning systems, including two
recent ones: nFOIL and ProGolem. It is interesting that Aleph performed comparably to nFOIL
in terms of wins against the other systems although it has been shown to perform worse in [74].
However, a closer examination of the results in Table 12 shows that most of the wins of Aleph
over nFOIL were obtained on the PTC datasets where overfitting seems to be one of the main
concerns. Thus, the apparent competitiveness of Aleph to nFOIL is given mostly by the fact that
the datasets used in our experiments involve several datasets where predictive accuracy of most
systems is not too far from the accuracy of the classifier voting for the majority-class.

7.8 related work

The first method that used least general generalization for clause learning was Golem [87].
Golem was restricted to ij-determinate clauses in order to cope with the possibly exponen-
tial growth of LGGs. However, most practical relational learning problems are highly non-
deteminate (e.g. problems involving molecules). A different approach was taken by Muggleton
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Dataset T-BULL Aleph ProGolem1 ProGolem2 nFOIL

BEE 57.0± 17.5 53.8± 16.5 56.8± 16.3 57.5± 20.8 47.7± 18.7
CAD 88.6± 10.3 85.7± 10.7 86.3± 7.2 87.5± 8.4 96.9± 5.2
CAMEL 86.2± 8.3 72.4± 14.5 80.5± 13.1 78.3± 10.1 83.3± 11.3
MUTA 77.1± 7.6 60.8± 8.9 66.5± 4.5 83.2± 7.0 76.6± 9.6
PTC-FM 60.8± 5.1 62.0± 3.3 59.1± 7.1 61.9± 6.9 60.2± 8.7
PTC-FR 69.0± 6.1 68.7± 3.9 65.0± 8.3 65.8± 4.7 67.0± 6.5
PTC-MM 63.1± 2.9 59.8± 5.0 60.7± 8.2 59.5± 3.6 63.1± 8.8
PTC-MR 57.3± 6.3 59.3± 4.5 54.9± 5.4 56.7± 7.4 57.3± 7.1
RANDOM 88.0± 10.1 86.0± 6.1 88.0± 6.3 81.0± 9.4 83.0± 5.9

Table 12: Accuracy estimated by 10-fold cross-validation for the following systems: T-BULL, Aleph, Pro-
Golem with default maximum number of covered negative examples (ProGolem1), ProGolem
with zero maximum number of covered negative examples and nFOIL.

Aleph ProGolem1 ProGolem2 nFOIL

T-BULL 7/2/0 8/0/1 6/3/0 6/1/2

Aleph - 3/6/0 5/4/0 5/4/0

ProGolem1 - - 3/6/0 2/7/0

ProGolem2 - - - 3/6/0

Table 13: Wins/losses/ties for the following systems: BULL, Aleph, ProGolem with default maximum
number of covered negative examples (ProGolem1), ProGolem with zero maximum number of
covered negative examples and nFOIL.

et al. [88] who introduced an algorithm called ProGolem. ProGolem is based on so-called asym-
metric relative minimal generalizations (ARMGs) of clauses relative to a bottom clause. Size of
ARMGs is bounded by the size of bottom clause so there is no exponential growth of the sizes
of clauses. However, ARMGs are not unique and are not least-general.

Recently, an approach related to ours has been introduced [78] in which arc-consistency was
used for structuring the space of graphs. There, arc-consistency was used as a covering oper-
ator called AC-projection. In contrast, we do not use the weaker versions of θ-subsumption
(x-subsumptions) as covering operators in this chapter but we use them only for reduction of
clauses and for guiding the search which allows us to guarantee that, for instance, if a solution
of standard learning problems with bounded-treewidth exists, our method is able to solve the
learning problem. Thus, our approach provides theoretical guarantees which relate directly to
learning problems with standard notions of covering (i.e. θ-subsumption), whereas the other
approach can provide guarantees only w.r.t to the weaker (and less intuitive) AC-projection cov-
ering relation. Our framework is also more general in that it allows various different classes of
clauses w.r.t. which it can work.

Example 37. Let X be the set of clauses with treewidth 1. Let us have the following set of positive
examples:

P1 = l(a)∨ e(a,b)∨ e(b, c)∨ e(c,a)
P2 = l(a)∨ e(a,b)∨ e(b, c)∨ e(c,d)∨ l(d)∨ e(d, e)∨ e(e, f)∨ (f,a)
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and the following set of negative examples:

N1 = l(a)∨ e(a,b)∨ e(b, c)∨ e(c,d)∨ l(d)
N2 = l(a)∨ e(a,b)∨ e(b,a)
N3 = l(a)∨ e(a,b)∨ e(b, c)∨ l(c)∨ e(c,d)∨ (d,a)

A solution that would be found by the S-BULL algorithm w.r.t. the set X is

H = l(A)∨ e(A,B)∨ e(B,C)∨ e(C,D)∨ l(D)∨ e(D,E)∨ e(E, F)∨ (F,A)

It is easy to verify that H correctly splits the positive and the negative clauses. On the other
hand, the method based on arc-consistency projection might return the following clause as a
solution6.

H ′ = l(A)∨ e(A,B)∨ e(B,C)∨ e(C,A)

We may notice that H ′ would not be a correct solution of the learning problem w.r.t. the ordinary
θ-subsumption because it does not θ-subsume the positive example P2 (the clause H ′ covers the
positive example P2 only w.r.t. the arc-consistency projection).

Another approach related to ours is the work of Horváth et al. [50] which is also based on
application of least general generalization. Their approach relies on the fact that least general
generalization of treelike clauses is again a treelike clause. Since treelike clauses can be reduced
in polynomial time and since θ-subsumption problems A �θ B where A is treelike can be
decided in polynomial time as well, it is possible to search for hypotheses in a manner similar
to ours using only polynomial-time reduction and θ-subsumption. As in our approach, the
size of the clauses constructed as least general generalizations may grow exponentially with
the number of learning examples. However, unlike our approach, the approach of Horváth et
al. requires learning examples to be treelike. Our approach is therefore more general even if
we consider just bounded least general generalization w.r.t. the set of treelike clauses. If the
learning examples are all treelike then our method is equivalent to the method of Horváth et
al. However, if the examples are not treelike, their method cannot be used at all whereas our
method still guarantees to find a hypothesis at least as good as the best treelike hypothesis while
using only polynomial-time x-subsumption and x-reduction.

In a similar spirit, Schietgat et al. [109] introduced a new method based on computing max-
imum common subgraphs of outerplanar graphs under so-called block-and-bridge-preserving iso-
morphism which can be done in polynomial time. This method was demonstrated to be highly
competitive to all-inclusive strategies based on enumeration of all frequent graphs while using
much lower number of maximum common subgraphs. Since it requires learning examples to be
outerplanar graphs, it could not be applied to some of our datasets (e.g. the CAD dataset or the
datasets of antimicrobial peptides CAMEL, BEE and RANDOM). Aside this, another difference
to our method is that it is based on a restricted form of subgraph isomorphism whereas our
method is based on θ-subsumption, i.e. on homomorphism.

The work presented in this chapter also relates closely to some studies of graph homomor-
phisms. Specifically, it was shown by Hell et al. [45] that if k-consistency check succeeds for a
pair of graphs G and H then any graph with treewidth at most k which is homomorphic to
G must be also homomorphic to H. This corresponds to Proposition 31 in which we showed
that k-consistency is an x-presubsumption w.r.t. the set of clauses with treewidth at most k. On
the other hand, we are not aware of any work that would demonstrate the similar property for
acyclic clauses, as we did in Proposition 32, or other types of clauses that we considered in this
chapter. Moreover, as their motivation was different from ours, Hell et al. also did not ponder
the implications of this result for machine learning.

6 The solution as well as the learning examples would be represented as labelled directed graphs equivalent to the
clauses used here.
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7.9 conclusions

In this chapter, we introduced the first bottom-up relational learning algorithm based on least
general generalization which can exploit structural tractability bias while not restricting the
form of learning examples. The algorithm is generic and can be used w.r.t. various sets X, rep-
resenting the language bias. It is guaranteed to find a clause which is at least as good as any
clause from the given set X. The returned clause itself does not have to be from the set X. If the
set X contains only clauses for which θ-subsumption can be decided in polynomial time and
if there is a suitable polynomial-time decidable x-presubsumption then the algorithm can use
polynomial-time procedures for computing reduced forms of least general generalizations of
clauses and for computing their coverage. Although even then it may run for an exponentially
long time, its worst-case time complexity is only singly-exponential in the size of input whereas
the time complexity of the respective algorithm based on conventional least general generaliza-
tion is doubly-exponential. Prior to this work, the only way structural tractability bias could be
exploited in bottom-up learning systems was to restrict the learning examples to be from a set
for which θ-subsumption could be decided efficiently and which would be closed under forma-
tion of least general generalizations. Such an approach was pursued e.g. by Horváth et al. [50]
for treelike clauses. Importantly, when subjected to comparative experimental evaluation, the
new algorithm turned out to be very competitive to state-of-the-art relational learning systems.

7.10 propositions and proofs

This section provides proofs of propositions stated in the main text.
Proposition 21. θ-subsumption is the x-subsumption w.r.t. the set X of all clauses.

Proof. Let X be the set of all clauses. We need to show that for any clauses A, B it holds (A �X
B) ⇔ (A �θ B) w.r.t. the set X. (i) We start by showing that (A �X B) ⇒ (A �θ B) holds. If
(A 6�X B) then the implication is vacuously true, so we assume that A �X B. The definition
of x-subsumption tells us that if A �X B then (C �θ A) ⇒ (C �θ B) for any C ∈ X. If we
set C := A in this implication (recall that A ∈ X) we get (A �θ A) ⇒ (A �θ B) from which
A �θ B follows. (ii) It remains to show validity of the other direction of the implication, i.e.
(A �X B) ⇐ (A �θ B). Again, we can assume (A �θ B) because the implication is otherwise
vacuously true. We need to show that for any clause C ∈ X it holds (C �θ A) ⇒ (C �θ B) but
this already follows from A �θ B and from transitivity of θ-subsumption.

Proposition 22. Let X be a set of clauses. Then x-subsumption w.r.t. X is a transitive and reflexive
relation on clauses and x-equivalence w.r.t. X is an equivalence relation on clauses.

Proof. These properties of x-subsumption and x-equivalence can be shown very easily.

1. Transitivity of x-subsumption: Let A �X B and B �X C. We need to show that then
necessarily also A �X C, i.e. that for any clause D ∈ X such that D �θ A it also holds
D �θ C. This is straightforward because if D �θ A then D �θ B (from A �X B) and also
D �θ C (from B �X C).

2. Reflexivity of x-subsumption: obvious.

3. x-equivalence is an equivalence relation: Reflexivity and transitivity of x-equivalence fol-
low from reflexivity and transitivity of x-subsumption. It remains to show that x-equivalence
is also symmetric but that follows immediately from (A ≈X B)⇔ (A �X B∧B �X A).

Proposition 23. Let X be a set of clauses. If�X is x-subsumption w.r.t. X and CX is an x-presubsumption
w.r.t. X then (ACX B)⇒ (A �X B) for any two clauses A, B (not necessarily from X).
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Proof. We need to show that if ACx B then (C �θ A)⇒ (C �θ B) for all clauses C ∈ X. First, if
ACx B and C 6�θ A then the proposition holds trivially. So we assume C �θ A which implies
CCX A (using the condition 1 from Definition 35). Since C ∈ X and ACX B, we also get CCX B
(using the condition 3 from Definition 35) and consequently also C �θ B (using the condition 1

from Definition 35).

Proposition 24. Let X be a set of clauses. Let CX be a relation such that for any two clauses A and B:
(A �θ B)⇒ (ACX B) and (ACX B)⇒ (A �X B). Then CX is an x-presubsumption w.r.t. the set X.

Proof. We show that any relation satisfying the conditions from the proposition must also satisfy
all conditions from the definition of x-presubsumption (Definition 35).

1. If A ∈ X and ACX B then A �θ B: If A ∈ X then A �θ B is equivalent to A �X B. Therefore
this condition follows from (ACX B)⇒ (A �X B).

2. If A �θ B then ACX B: Obvious.

3. If A ∈ X, ACX B and BCX C then ACX C: We assume that A ∈ X, ACX B and BCX C
(because otherwise the condition would be trivially satisfied). First,ACXB impliesA �X B.
Since A ∈ X, we get also A �θ B. Next, BCX C gives us B �X C. Finally, A ∈ X, A �θ B
and B �X C gives us A �θ C using definition of x-presubsumption which implies ACX C.

Proposition 25. Let us have a set X and a polynomial-time decision procedure for checking
CX which is an x-presubsumption w.r.t. the set X. Then, given a clause A on input, the literal-
elimination algorithm finishes in polynomial time and outputs a clause Â satisfying the follow-
ing conditions:

1. Â �θ A and A �X Â where �X is an x-subsumption w.r.t. the set X.

2. |Â| 6 |Âθ| where Âθ is θ-reduction of a subset of A’s literals with maximum length.

Proof. We start by proving Â �θ A and A �X Â. This can be shown as follows. First, A �X A ′
holds in any step of the algorithm which follows from (A ′ CX A ′ \ {L}) ⇒ (A ′ �X A ′ \ {L}) and
from transitivity of x-subsumption. Consequently we also have A �X Â because Â = A ′ in the
last step of the algorithm. Second, Â �θ A because Â ⊆ A. Now, we prove the second part of the
proposition. What remains to be shown is that the resulting clause Â will not be bigger than Âθ.
Since Â ⊆ A, it suffices to show that Â cannot be θ-reducible. Let us assume, for contradiction,
that it is θ-reducible. If Â was θ-reducible, there would have to be a literal L ∈ Â such that
Â �θ Â \ {L}. The relation CX satisfies (A �θ B) ⇒ (A CX B) therefore it would also have
to hold A ′ CX A ′ \ {L}. However, then L should have been removed by the literal-elimination
algorithm which is a contradiction with Â being output of it. The fact that the literal-elimination
algorithm finishes in polynomial time follows from the fact that, for a given clause A, it calls the
polynomial-time procedure for checking the relation CX at most |A|2 times (the other operations
of the literal-elimination algorithm can be performed in polynomial time as well).

Proposition 26. Let X be a set of clauses and A be a clause. If Aθ ∈ X is a θ-reduction of A
then litelimX(A) ≈θ Aθ and |litelimX(A)| = |Aθ| no matter which x-presubsumption CX w.r.t. X
is used by the literal-elimination algorithm.

Proof. SinceAθ is a θ-reduction ofA, there is a substitution ϑ such thatAθϑ ⊆ A. In what follows,
we assume without loss of generality that Aθ ⊆ A. First, we show that for all intermediate
clauses A ′ which occur during the processing of the literal-elimination algorithm, it must always
hold A ′ �θ Aθ. We have Aθ �θ A from Aθ ⊆ A. Then we can use transitivity of x-subsumption
to obtain Aθ �X A ′ from Aθ �X A and A �X A ′ (this always holds for any A ′ in the literal-
elimination algorithm). The fact Aθ �X A ′ together with Aθ ∈ X can be used to infer Aθ �θ A ′.
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In addition, we have A ′ ⊆ A and A �θ Aθ from which we obtain A ′ �θ Aθ. Since the last A ′

occurring in the literal-elimination algorithm is also its output, we can combine these results to
get the first part of the proposition, i.e. that litelimX(A) ≈θ Aθ. Now, we show the second part of
the proposition. It suffices to show that litelimX(A) is not θ-reducible because if it is θ-equivalent
to a θ-reduction of A (as we have shown) and if it is not θ-reducible, it must necessarily be
a θ-reduction of A and therefore |litelimX(A)| = |Aθ|. We can show this by contradiction in a
similar way to how we proceeded in the proof of Proposition 25. We denote Â = litelimX(A).
Let us assume, for contradiction, that Â is θ-reducible. If it was θ-reducible, there would have
to be a literal L ∈ Â such that Â �θ Â \ {L}. The relation CX satisfies (A �θ B) ⇒ (ACX B)
therefore it would also have to hold ÂCX Â \ {L}. However, then L should have been removed
by the literal-elimination algorithm which is a contradiction with Â being output of it.

Proposition 27. Let X and Y be sets of clauses. Then, given a clause A, the clause computed as Â =
litelimX(litelimY(A)) satisfies the following conditions:

1. Â �θ A, A �X∩Y Â where �X∩Y is x-subsumption w.r.t. the set X∩ Y.

2. |Â| 6 |Âθ| where Âθ is θ-reduction of a subset of A’s literals with maximum length.

Proof. We denote B = litelimY(A). It holds B �θ A and A �Y B by Proposition 25 and therefore
also A �X∩Y B (because X ∩ Y ⊆ Y). When the literal-elimination algorithm litelimX(. . . ) is
applied on B, giving Â = litelimX(B), it must hold Â �θ Bwhich implies Â �θ A (by transitivity).
Furthermore, it must also hold B �X Â which implies B �X∩Y Â (again because X∩ Y ⊆ X). So,
we have A �X∩Y B and B �X∩Y Â which gives us A �X∩Y Â. It remains to show |Â| 6 |Âθ| but
this already follows from the fact that |B| 6 |Âθ| and by the fact that the literal-elimination never
increases sizes of clauses.

Proposition 28. Let X be a set of clauses and let CX be an x-presubsumption w.r.t. the set X then the
clause

Bn = litelimX(LGG(An, litelimX(LGG(An−1, litelimX(LGG(An−2, . . . )))))

is a bounded least general generalization of clauses A1, A2, . . . , An w.r.t. the set X (here, litelimX(. . . )
denotes calls of the literal-elimination algorithm using CX).

Proof. First, we show that B �θ Ai for all i ∈ {1, 2, . . . ,n} using induction on n. The base case
n = 1 is obvious since then B1 = A1 and therefore B1 �θ A1. Now, we assume that the claim
holds for n− 1 and we will show that then it must also hold for n. First, Bn = LGG(An,Bn−1)
θ-subsumes the clauses A1, . . . ,An which can be checked by recalling the induction hypothe-
sis and definition of LGG. Second, litelimk(LGG(An,Bn−1)) must also θ-subsume the clauses
A1, . . . ,An because litelimk(LGG(An,Bn−1)) ⊆ LGG(An,Bn−1).

Again using induction, we now show that C �θ Bn for any C ∈ X which θ-subsumes all Ai
where i ∈ {1, . . . ,n}. The base case n = 1 is obvious since then B1 = A1 and therefore every C
which θ-subsumes A1 must also θ-subsume B1. Now, we assume that the claim holds for n− 1
and we prove that it must also hold for n. That is we assume that

C ′ �θ Bn−1 = litelimX(LGG(An−1, litelimX(LGG(An−2, litelimX(LGG(An−3, . . . )))))

for any C ′ ∈ X which θ-subsumes the clauses A1, A2, . . . , An−1. We show that then it must
also hold C �θ Bn = litelimX(LGG(An,Bn−1)) for any C ∈ X which θ-subsumes the clauses
A1, A2, . . . , An. We have C �θ LGG(An,Bn−1) because C �θ Bn−1 which follows from the
induction hypothesis and because any clause which θ-subsumes both An and Bn−1 must also
θ-subsume LGG(An,Bn−1) (from the definition of LGG). It remains to show that C also θ-
subsumes litelimX(LGG(An,Bn−1)). This follows from

LGG(An,Bn−1) �X litelimX(LGG(An,Bn−1))
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(which is a consequence of Proposition 25) because if

LGG(An,Bn−1) �X litelimX(LGG(An,Bn−1))

then
(C �θ LGG(An,Bn−1))⇒ (C �θ litelimX(LGG(An,Bn−1)))

for any clause C ∈ X (this is essentially the definition of x-subsumption).

Proposition 29. Let X be a set of clauses. Let A and B be sets of clauses. If there is a clauseH∗ ∈ X which
θ-subsumes all clauses from A and no clauses from B (i.e. ∀A ∈ A : H∗ �θ A and ∀B ∈ B : H∗ 6�θ B)
then it is possible to find a clause H which splits the two sets of clauses in the same way as:

H = litelimX(LGG(An, litelimX(LGG(An−1, litelimX(LGG(An−2, . . . )))))

(here, litelimX(. . . ) denotes calls of the literal-elimination algorithm w.r.t. the set X).

Proof. First, we recall from Proposition 29 that H is a bounded least general generalization of
all clauses from A w.r.t. X. Now, we assume (for contradiction) that there is a clause H∗ ∈ X
which θ-subsumes all clauses from A and no clauses from B and that, at the same time, there
is either a clause A ∈ A not θ-subsumed by H or a clause B ∈ B θ-subsumed by H. Neither of
these possibilities can happen. Since H is a bounded least general generalization of all clauses
from A, it must θ-subsume all of these clauses, so the first possibility cannot happen. The other
possibility can be ruled out as follows. If there is a clause B ∈ B such that H �θ B then also
H∗ �θ B because H∗ ∈ X and for any C ∈ X which θ-subsumes all clauses from A it must hold
C �θ H (from definition of bounded least general generalization), therefore H∗ �θ H would
also have to be true, which would imply H∗ �θ B. This is again a contradiction with H∗ not
subsuming any clause from B.

Proposition 30. Let X be a set of clauses and let E+ and E− be sets of positive and negative examples,
respectively. Next, let the procedure CandidateExmaples(H,E+) (used by the algorithm S-BULL)
always return the set E+. If there is a clause H ∈ X which covers p > 1 positive examples and n negative
examples then the algorithm S-BULL always finds a clause which covers p ′ positive examples and n ′

negative examples and it holds p ′ −n ′ > p−n.

Proof. Let E+
H be the set of positive examples covered by H. Since H ∈ X, we can infer using

Proposition 29 that any clause obtained as a bounded least general generalization w.r.t. the set
X of the clauses in E+

H must necessarily θ-subsume exactly the positive examples covered by H
(i.e. all E ∈ E+

H), no other positive examples and a subset of negative examples covered by H.
Now, we show that bounded least general generalization w.r.t. X of the clauses contained in the
set E+

H must be computed and added to the list Open by S-BULL at some point. This is not as
obvious as one might think because of the inner-most loop of the algorithm S-BULL in which
bounded least general generalization of the examples covered by the current hypothesis w.r.t.
the relation CX is computed. This loop is, however, essential for guaranteeing that the positive
examples covered w.r.t. the x-presubsumption relation CX will also be covered w.r.t. the ordinary
θ-subsumption. We will prove that the bounded least general generalization of the set E+

H will
be computed at some point by the S-BULL algorithm. Let us assume, for contradiction, that the
bounded least general generalization of the set E+

H is never actually computed and let A ⊆ E+
H

be the maximal set of clauses for which LGGX was computed and added to the list Open. Let
us now take a clause E ∈ (E+

H \ A). It must be the case that S-BULL computes LGGX of clauses
in A and the clause E which we denote as HA∪{E} (this is obvious from quick inspection of
the pseudocode in Algorithm 6). Since A is the maximal subset of E+

H for which LGGX was
computed and added to the list Open, it must also be the case that HA∪{E} is replaced (in the
inner-most loop of S-BULL) by LGGX of all positive examples covered w.r.t. the relation CX by
HA∪{E} and this set must contain at least one clause not contained in E+

H (from maximality of
A). However, this is not possible for the following reason. If LGGX of the set A ∪ {E} covered,
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w.r.t. the relation CX, a set B which is not a subset of E+
H then it would also x-subsume the

examples in this set. This would mean that any clause from the set X which would θ-subsume
all clauses from A ∪ {E} would also have to θ-subsume all clauses from the set B, therefore the
clause H would also have to θ-subsume all clauses from B but this would be a contradiction
with the assumption that the clause H θ-subsumes only the clauses from the set E+

H. So far we
have managed to show that the bounded least general generalization of the positive examples
covered by H must be computed at some point by the S-BULL algorithm. It remains to be shown
that either this bounded least general generalization or a clause with score at least as high as
the clause H will be returned by S-BULL. In other words, what we need to show is that it does
not matter that S-BULL computes its score, which is used to compare candidate clauses, using
the x-presubsumption relation CX.

First, notice that when Score is computed on line 25 of Algorithm 6, the set PosCovered
is equal to the set of positive examples θ-subsumed by the current candidate hypothesis H∗.
This is ensured by the fact that H∗ is an LGGX of all the positive examples it covers w.r.t.
the x-presubsumption relation (due to the inner-most loop on line 16 of the algorithm). Fur-
thermore, the set NegCovered is a superset of the θ-subsumed negative examples (because
x-presubsumption is always implied by θ-subsumption). The number Score computed by the
algorithm using x-presubsumption CX of the examples in E+

H is therefore bounded from above
by the “true” score that would be computed using θ-subsumption. Moreover, the score of a
clause H ′ constructed as LGGX of the positive examples θ-subsumed by H is bounded from
below by p− n because H ′ covers the same set of positive examples as H and a subset of the
negative examples θ-subsumed by H as was already discussed above. So when the clause H ′

is compared with another clause H ′′ and the other clause H ′′ has higher score computed using
the x-presubsumption relation then this other clause H ′′ must be also better than H according
to the “true” score computed using θ-subsumption (because its true score is higher than its
score computed by x-presubsumption. More formally, if we denote by scoreCX(X) the score of
a clause X computed using the x-presubsumption relation CX and by score�θ(X) the score of a
clause X computed using θ-subsumption then we have:

score�θ(H
′′) > scoreCX(H

′′) > scoreCX(H
′) > scoreCX(H) = score�θ(H).

This finishes the proof because we have already shown that a LGGX of the positive examples
covered by H must be computed at some point and that if it is not selected as the best candidate
clause (BestClause) then the selected clause must be actually at least as good.

The next lemma giving a sufficient condition for a relation to be an x-presubsumption will be
useful for proving that certain procedures are x-presubsumptions.

Lemma 9. Let X be a set of clauses and CX be a relation satisfying the following conditions:

1. If ACX B and C ⊆ A then CCX B.

2. If A ∈ X, ϑ is a substitution and AϑCx B then A �θ B.

3. If A �θ B then ACX B.

Then CX is an x-presubsumption w.r.t. the set X.

Proof. We show that any relation CX satisfying the conditions of the proposition also satisfies
the conditions on x-presubsumption stated in Definition 35.

1. If A ∈ X and ACX B then A �θ B: This follows from the condition 2 where we set ϑ to be
an identity substitution.

2. If A �θ B then ACX B: This follows (in fact, it is equivalent) to the condition 3.
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3. If A ∈ X, ACX B and BCX C then ACX C: We assume that A ∈ X, ACX B and BCX C
because the implication is otherwise vacuously true. Then A �θ B (using the condition 2

because A ∈ X) therefore there is a substitution ϑ such that Aϑ ⊆ B. We can infer AϑCX C
from it using the condition 1. Finally, we get A �θ C from it using the condition 2.

Proposition 31. Let k ∈ N and let Ck be a relation on clauses defined as follows: ACk B if and only
if the k-consistency algorithm run on the CSP-encoding (described in Section 7.1) of the θ-subsumption
problem A �θ B returns true. The relation Ck is an x-presubsumption w.r.t. the set Xk of all clauses
with treewidth at most k.

Proof. We need to verify that Ck satisfies the conditions stated in Lemma 9

1. If ACk B and C ⊆ A then CCk B. This holds because if the k-consistency algorithm returns
true for a problem then it must also return true for any of its subproblems (recall the
discussion in Section 7.1). It is easy to check that if C ⊆ A are clauses then the CSP problem
encoding the θ-subsumption problem C �θ B is a subproblem of the CSP encoding of the
θ-subsumption problem A �θ B. Therefore this condition holds.

2. If A ∈ X, ϑ is a substitution and AϑCk B then A �θ B. The CSP encoding of the problem
A �θ B is a subproblem of the problem encoding Aϑ �θ B, in which there are additional
constraints enforcing consistency with the substitution ϑ (because the set of constraints
of the former is a subset of the constraints of the latter). Therefore if AϑCk B then also
ACk B and, since A ∈ X, it also holds A �θ B.

3. If A �θ B then ACk B. This is a property of k-consistency (recall the discussion in Section
7.1).

The next proof is only a slight variant of the proof of the previous proposition since the
properties of k-consistency and generalized arc-consistency are analogical to each other. What
differs is mostly the set Xw.r.t. which k-consistency and generalized arc-consistency can be used
as x-presubsumptions.

Proposition 32. Let CGAC be a relation on clauses defined as follows: A CGAC B if and only if
the generalized arc-consistency algorithm run on the CSP-encoding (described in Section 7.1) of the
θ-subsumption problem A �θ B returns true. The relation CGAC is an x-presubsumption w.r.t. the set
XA of all acyclic clauses.

Proof. We need to verify that CGAC satisfies the conditions stated in Lemma 9.

1. If ACGAC B and C ⊆ A then CCk B. This holds because if the generalized arc-consistency
algorithm returns true for a problem then it must also return true for any of its subproblems
(recall the discussion in Section 7.1). It is easy to check that if C ⊆ A are clauses then the
CSP problem encoding the θ-subsumption problem C �θ B is a subproblem of the CSP
encoding of the θ-subsumption problem A �θ B. Therefore this condition holds.

2. If A ∈ X, ϑ is a substitution and AϑCGAC B then A �θ B. The CSP encoding of the problem
A �θ B is a subproblem of the problem encoding Aϑ �θ B, in which there are additional
constraints enforcing consistency with the substitution ϑ (because the set of constraints of
the former is a subset of the constraints of the latter). Therefore if AϑCGAC B then also
ACGAC B and, since A ∈ X, it also holds A �θ B.

3. If A �θ B then A CGAC B. This is a property of generalized arc-consistency (recall the
discussion in Section 7.1).
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In the proof of Proposition 33, we will need the following simple lemma stating the intuitively
obvious fact that every treelike hypergraph with hyperedges of arity 2 is a forest.

Lemma 10. If a treelike hypergraph G has only hyperedges of arity 2 and no loops then it is a forest.

Proof. Hypergraphs with hyperedges of arity 2 are graphs, so we can use graph-theoretic con-
cepts in this proof. First, if G is treelike then there must be a sequence S = S1,S2, . . . ,Sk of
the reduction steps from Definition 38 which reduces G to the empty graph. We will now use
induction on length of the sequence S to show that G must be a forest. The base case is obvious.
If |S| = 1 then G must consist of a single vertex (such a graph is a forest). We will now assume
the induction hypothesis that every graph which can be reduced to the empty graph using a
sequence of at most n reduction steps is a forest and we will show that then every graph which
can be reduced to the empty graph by a sequence of n+ 1 steps must be a forest as well. Let G
be reducible to the empty graph using a sequence of n+ 1 steps. Let us apply the first rule S1
of this sequence. The resulting graph may be slightly deficient as it may have an edge with only
one vertex incident to it (which is not an edge in the graph-theoretic sense but which is an edge
in the hypergaph-theoretic sense) – we can immediately remove such an edge by the application
of the reduction rule which removes an edge which contains fewer than two vertices. In any
case, as a result, we get a graph which can be reduced to the empty graph in at most n steps
for which we already know that it is a forest. It remains to be shown that the original graph
then must have been a forest as well. We may notice that S1 must be an application of the rule
which removes a vertex which is contained in at most one edge (this edge is not a loop) because
the hypergraphs, either the input hypergraph or the intermediate hypergraphs appearing in the
inductive steps, are graphs which is also ensured by the fact that we always remove the edges
containing just one vertex - therefore S1 cannot be an application of the rule which removes an
edge with at most one vertex. The rule which removes a vertex can be used only if the vertex is
contained in at most one edge, therefore we know that there is at most one edge which connects
that vertex to the rest of the graph about which we know that it is a forest. Therefore also this
bigger graph must be a forest. This establishes the inductive step.

The proof of the next proposition might be considered to be too long given that it establishes
a property which is intuitively clear. The most space is spent by proving that the alternative
CSP representation introduced in Section 7.6.2 is treelike for treelike clauses. This proof might
actually be shorter if we decided to define treelike clauses in a different way, however, that might
make the presentation in the main text less coherent. We preferred the coherence of the main
text over the length of this particular proof.

Proposition 33. Let C1 be a relation on clauses defined as follows: A C1 B if and only if the k-
consistency algorithm with k = 1, i.e. the 1-consistency algorithm, run on the alternative CSP-encoding
(described in Section 7.6.2) of the θ-subsumption problem A �θ B returns true. The relation C1 is an
x-presubsumption w.r.t. the set XT of all treelike clauses.

Proof. It suffices to show that if a clause A is treelike then the alternative CSP encoding of any
problem A �θ B has treewidth 1 and then use the same reasoning that was used in the proof of
Proposition 31 limited to k = 1.

Let us have a θ-subsumption problem A �θ B, let P be its alternative CSP encoding and let G
be the Gaifman graph of P (note that Gaifman graphs never contain loops). Let S = S1,S2, . . . ,Sn
be a sequence of steps of the iteration procedure from Definition 38 which produces the empty
clause from A. We will show how to find another sequence S ′ of steps which produces the empty
graph from G (which will show that it is treelike). We go through the sequence of steps Si ∈ S

and perform the following steps. If Si is a step which removes a literal l with arity smaller or
equal to 1 from A then we find the respective vertex corresponding to the CSP variable Vl and
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remove it and all its incident edges from G. If Si is a step which removes a variable V from A

which is contained in at most one literal then we remove the vertex corresponding to the CSP
variable VV from G and all the edges incident to it. We need to show two things now: (i) that the
result of the procedure is the empty graph and (ii) that the operations performed in the given
order can be used at the given times according to rules from Definition 38, i.e. that if a vertex
and all its incident edges are removed from the graph G then that vertex has actually only one
incident edge (which is then also removed).

We start by proving (i), i.e. that the result of the application of the rules in the sequence S ′ on
the graph G produces the empty graph. This is obvious since the vertices in G can be divided
into two disjoint sets such that there is a one-to-one correspondence between the vertices in the
first set and the variables in vars(A) and between the vertices in the second step and the literals
in A. Since all the literals and variables of A are removed in the end and since, always, when
a literal or a variable is removed from A, a vertex corresponding to that variable or literal is
removed from G, it follows that G must be empty in the end as well.

Now, we will prove (ii), i.e. that the steps from sequence S ′ can be applied on the graph G.
We will use induction on the length of the sequence S. We start with the base case |S| = 1. In
this case there must be just one literal in A and it must have arity 0 (there cannot be a variable
without a literal). So, the corresponding graph G must contain just one vertex and no edge and
this vertex can be therefore removed in accordance with the rules from Definition 38. Now, we
prove the induction step assuming the induction hypothesis that all rules in any sequence S ′

of length n, which produces the empty graph from G, can be applied in the given order while
satisfying the conditions from Definition 38. Let us have a clause A which is treelike and which
can be converted to the empty clause by n+ 1 iterative applications of rules from a sequence
Sn+1, complying with Definition 38. We take the first step S1 from the sequence Sn+1 and apply
it on A (which gives us a clause which can be reduced to the empty clause in n steps). If S1
removes a variable V ∈ vars(A) contained in at most one literal then the operation that we
perform on G is that we find the respective vertex in G corresponding to the CSP-variable VV
and remove it and all its incident edges from G. The question is whether we can do that. We
can because the removed vertex must be incident to only one edge (which connects it to the
vertex representing the CSP-variable corresponding to the literal in which the variable V was
contained). The incident edge can also be removed because, after the removal of the vertex, it
contains only one vertex (and therefore can be removed). Similarly, if S1 removes a literal l
which contains fewer than 2 variables, the operation applied on G is the removal of the vertex
corresponding to the CSP-variable Vl and of all its incident edges. This can be done because
the vertex corresponding to the CSP-variable Vl can be connected only to one other vertex by
an edge because the literal l has arity at most one and therefore there is at most one constraint
in P involving Vl which connects it to the CSP-variable representing the only variable in the
arguments of l. It follows that we can always apply the first rule in S ′ on G which gives us a
smaller problem with hypergraph that can be converted to the empty hypergraph by a sequence
of length n by the induction hypothesis. Therefore if a clause A is treelike then the Gaifman
graph of the alternative CSP encoding of any θ-subsumption problem of the type A �θ B must
also be treelike.

Once we know that the graph G is treelike (when treated as a hypergraph with at most binary
hyperedges), we can invoke Lemma 10 which states that every treelike hypergraph with at most
binary hyperedges is a tree or a forest. Since trees and forests have treewidth 1, we can follow the
exact reasoning in the proof of Proposition 31 to show that 1-consistency is an x-presubsumption
w.r.t. the set of all treelike clauses.

Proposition 34. Let LB be a language bias and let XLB be the set of all clauses complying with LB. Let
A be a clause. If ALB ⊆ A is a clause composed of exactly the literals from A complying with LB then
ALB �θ A and A �X ALB w.r.t. the set XLB.

Proof. The first part of the proposition is obvious. If ALB ⊆ A then ALB �θ A. We show the
validity of the second part by contradiction. We assume that A 6�X ALB. This means that there
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is a clause C ∈ XLB such that C �θ A and C 6�θ ALB. Let ϑ be a substitution such that Cϑ ⊆ A.
The substitution ϑ can map only literals complying with LB to literals also complying with LB

(because constants cannot be mapped to variables) so Cϑ ⊆ ALB which also means C �θ ALB.
This is a contradiction with C 6�θ ALB.

Proposition 35. Let LB be a language bias and let XLB be the set of all clauses complying with LB. Let
A1, A2, . . . , An be clauses and let B = LGG(A1,A2, . . . ,An). If BLB is a clause obtained by removing
from B all literals which do not comply with LB then BLB is a bounded LGG w.r.t. the set XLB. If, in
addition, X is a set of clauses then litelimX(BLB) is a bounded LGG w.r.t. the set X∩XLB.

Proof. Follows easily from Proposition 27 and Proposition 34.

7.11 complexity of bounded subsumptions and reductions

In this section, we briefly discuss complexity of computing x-subsumptions and x-reductions.
The main result presented in this section is that finding a maximally reduced clause w.r.t. a
set X may be NP-hard even if a polynomial-time procedure for deciding x-presubsumption is
available w.r.t. X.

We start with the questions regarding complexity of x-subsumptions and x-reductions w.r.t.
finite sets. What determines complexity in this case is whether the set X is part of the input or
is fixed.

Proposition 36. Let X be a fixed finite set. The problem A �X B (i.e. deciding x-subsumption w.r.t. X)
can be solved in time polynomial in |A| and |B|.

Proof. The x-subsumption problem can be decided by checking x-subsumption straightforwardly
according to the definition (Definition 34). First, we find the subset of all clauses C ∈ X which
θ-subsumeA (i.e. clauses C ∈ X such that C �θ A). This can be achieved using some exponential-
time θ-subsumption algorithm in time O(|X| ·maxC∈X |A||C|), which is polynomial in |A|. Sim-
ilarly, we can check whether all these clauses also θ-subsume the clause B in time which is
polynomial in |B|. If they all θ-subsume B then we output true, otherwise we output false. So, the
algorithm runs in time polynomial in |A| and |B| and decides x-subsumption correctly.

Thus, deciding x-subsumption A �X Bw.r.t. a fixed finite set can be solved in time polynomial
in the sizes of the clauses A and B. However, the algorithm is far from being practical as the
hidden multiplicative constant may be quite large as it depends exponentially on the size of the
largest clause in the set X.

If the set X is not fixed but is finite and part of the input then the problem of deciding
x-subsumption w.r.t. X becomes NP-hard.

Proposition 37. The problem of deciding x-subsumption A �X B w.r.t. a finite set X, where A, B and X
are part of the input, is NP-hard.

Proof. We show this by a simple reduction from the NP-hard θ-subsumption problem. If we
have a θ-subsumption problem A �θ B then we can convert it to an x-subsumption problem
with finite X as follows. We set X = {A} and construct an x-subsumption problem A �X B. From
definition of x-subsumption it must hold: (A �X B) ⇔ (∀C ∈ X : (C �θ A) ⇒ (C �θ B)) which
is equivalent to (A �X B) ⇔ ((A �θ A) ⇒ (A �θ B)) (because C = {A}) which can be further
simplified as (A �X B) ⇔ (A �θ B). Thus, we are able to convert the NP-hard θ-subsumption
problem to the x-subsumption problem with a finite set X which must be therefore NP-hard as
well.

We now turn our attention to x-reductions w.r.t. finite sets of clauses where, as we shall see,
the situation is analogous to the case of x-subsumption w.r.t. finite sets. When the set X is finite
and fixed, x-reduction can be computed in time which is polynomial in the size of the clause to
be reduced. If X is finite but not fixed, i.e. part of input, then the problem becomes NP-hard.
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Proposition 38. Let X be a fixed finite set. An x-reduction of a clause A w.r.t. the set X can be computed
in time polynomial in |A|.

Proof. Let us assume, without loss of generality, that the clauses in X are standardized apart (i.e.
that for any two clauses C1,C2 ∈ X, C1 6= C2 it holds vars(C1) ∩ vars(C2) = ∅). Let X+ be the
set of all Ci ∈ X s.t. Ci �θ A. This set can be constructed in time which is polynomial in the size
of A (though, exponential in the sizes of the clauses in Ci which are nevertheless fixed and there
is only a finite number of them). Let ϑ be a substitution such that Ciϑ ⊆ A for all Ci ∈ X+ and
|
⋃
Ci∈X+ Ciϑ| is minimal. The substitution ϑ can be found in time polynomial in the size of A by

enumeration of possible substitutions which map literals appearing in clauses contained in X+

to literals in A because the number of such substitutions is bounded by |A|
∑
Ci∈Xi

|Ci| (which is
polynomial in |A|). Moreover

⋃
Ci∈X+ Ciϑ is an x-reduction of A which can be seen from the fact

that
⋃
Ci∈X+ Ciϑ ⊆ A and A �X

⋃
Ci∈X+ Ciϑ because every clause Ci ∈ X which θ-subsumes A

must also, by construction, θ-subsume the clause
⋃
Ci∈X+ Ciϑ.

Again, despite being polynomial, the algorithm outlined in the proof of the above proposition is
hardly practical. It serves mainly to point out that the problem is not NP-hard when X is finite
and fixed rather than showing that it is practically tractable.

Likewise in the case of x-subsumption, when the set X is not fixed but is part of the input, the
problem of finding an x-reduction becomes NP-hard.

Proposition 39. The problem of deciding whether a clause A is x-reducible w.r.t. a finite set X, where A
and X are part of the input, is NP-hard.

Proof. We show this by finding a reduction from the NP-hard θ-reducibility problem. Let us
have a clause A for which we would like to check whether it is θ-reducible. We now construct
an x-reducibility problem equivalent to the θ-reducibility problem. We set X = {A} and check
whether A is x-reducible w.r.t. the set X. What we need to show is that A will be x-reducible
w.r.t. the set X if and only if A is θ-reducible. If A is θ-reducible then it is also x-reducible w.r.t.
X because θ-subsumption always implies x-subsumption. It remains to show also the opposite.
If A is x-reducible, there must be a smaller clause A ′ ⊆ A such that A �X A ′. Therefore, from
definition of x-subsumption, it must also hold ∀C ∈ X : (C �θ A) ⇒ (C �θ A ′) which is
equivalent to (A �θ A) ⇒ (A �θ A ′) (because X = {A}) and therefore A �θ A ′. Since A ′ is a
subset of A and A ′ is smaller then A, A must be θ-reducible. We have therefore shown also the
other direction of the implication. It follows that checking x-reducibility of a clause is NP-hard
when the set X is part of the input.

Since the decision version of the problem of finding x-reductions, i.e. checking x-reducibility of
clauses, is NP-hard when the set X is part of the input, so also the optimization version of the
problem must be NP-hard, i.e. finding an x-reduction (rather than just checking x-reducibility).

Now, we turn our attention to the case when the set X is infinite. When X is infinite, we often
have only an efficiently computable x-presubsumption, but not the x-subsumption. Therefore,
for practical reasons, we are more concerned with the question how hard it is to find a max-
imally reduced clause using x-presubsumptions, rather than with the analogous question about
hardness of finding full x-reductions. We show that finding the maximally reduced clause w.r.t.
x-presubsumption may be NP-hard even if the x-presubsumption can be checked in polynomial
time. We do this in several steps by finding a reduction from the problem known as minimum
equivalent digraph, which is NP-hard [5].

First, we need to define the problem of finding a maximally reduced clause w.r.t. an x-presubsumption
and the problem of finding a minimum equivalent digraph.

Definition 40. Let A be a clause and CX be an x-presubsumption w.r.t. some set X. A clause Â is said
to be maximally reduced w.r.t. the x-presubsumption CX if and only if Â �θ A, ACX Â and |Â| is
minimal.
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Definition 41 (Minimum equivalent digraph problem). The minimum equivalent digraph prob-
lem is the following optimization problem: Find a maximum-cardinality subset of edges E ′ ⊆ E of a
digraph G = (V ,E) such that there is a directed path from vertex v to vertex w in the new graph
G ′ = (V ,E ′) if and only if there is a directed path from v to w in the original graph G.

We distinguish paths, which contain no repeated edges, and walks, which may contain repeated
edges.

Next, we define the set X∗ which will consist of so-called walk-clauses and will be used for
showing that computing maximally reduced clauses w.r.t. an x-presubsumption may be NP-hard
even if the x-presubsumption itself is checkable in polynomial time. Walk-clauses are clauses of
the form

Cvw1 = edge(v,w)∨ edge(v, v)∨ edge(w,w)∨ s(Y1)∨ c(Y1, Y2)∨ e(Y2)
Cvw2 = edge(v,A1)∨ edge(v, v)∨ edge(A1,A1)∨ edge(A1,w)∨ edge(w,w)∨

∨s(Y1)∨ c(Y1, Y2)∨ c(Y2, Y3)∨ e(Y3)
. . .

Cvwn = edge(v,A1)∨ edge(v, v)∨ edge(A1,A1)∨ edge(A1,A2)∨ edge(A2,A2)∨
∨edge(An−1,w)∨ edge(w,w)∨ · · ·∨ s(Y1)∨ c(Y1, Y2)∨ · · ·∨ c(Yn, Yn+1)∨
∨e(Yn+1)

The literals edge(A,B) will be used for representing edges in a directed walk. The literals s(. . . ),
c(. . . ) and e(. . . ) will be used to distinguish walks of different lengths from each other. The set
X∗ is the set of all such walk-clauses.

Now, we describe an x-presubsumption C∗ w.r.t. X∗ suitable for showing NP-hardness of the
problem of finding a maximally reduced clause w.r.t. to C∗.

Algorithm C∗:

1. Given clauses A and B.

2. Create two copies A ′ and A ′′ of A, two copies B ′ and B ′′ of B and standardize them apart.

3. Remove all literals other than those based on predicate edge/2 from A ′ and B ′ and replace
A ′ and B ′ by the respective newly created clauses.

4. Remove all literals other than those based on predicates c/2, s/1 and e/1 from A ′′ and B ′′

and replace A ′′ and B ′′ by the respective newly created clauses.

5. Use the x-presubsumption C1 from Section 7.6.1 (i.e. the x-presubsumption based on 1-
consistency) to check A ′′ C1 B ′′. If the result is false, return false, otherwise continue to the
next step.

6. Construct a graph GA = (VA,EA) from A ′ and a graph GB = (VB,EB) from B ′ as follows.
Introduce one vertex for every term t in A (B, respectively). If t is a constant, label the
corresponding vertex by the constant. Add a directed edge e = (vt1 , vt2) for every two
vertices vt1 , vt2 corresponding to terms t1, t2 for which there is a literal e(t1, t2) in A (B,
respectively).

7. Remove from GA and GB all vertices which do not have loops incident to them (a loop is
a directed edge with the same start-vertex and end-vertex).

8. For all i ∈ {|A ′′|− 2, |A ′′|− 1, . . . , max{|VA|, |VB|}+ 1}, find a set LiA of all pairs of labels of
vertices of the graph GA which are connected by a directed walk of length i.

9. Similarly, for all i ∈ {|A ′′|− 2, |A ′′|− 1, . . . , max{|VA|, |VB|}+ 1}, find a set LiB of all pairs of
labels of vertices of the graph GB which are connected by a directed walk of length i.
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10. If LiA ⊆ LiB for all i ∈ {|A ′′| − 2, |A ′′| − 1, . . . , max{|VA|, |VB|} + 1}, return true, otherwise
return false.

In what follows, if A or B or C are clauses then A ′, B ′, C ′ or A ′′, B ′′ or C ′′ will denote the
respective clauses constructed in Algorithm C∗.

What we need to show now is that the above algorithm, indeed, represents an x-presubsumption
w.r.t. the set X∗ and that it runs in polynomial time. This is shown formally in Lemma 13.

Lemma 11. If A = Cvwn ∈ X∗, B is a clause, and the graph GB associated to the clause B contains an
oriented walk of length n from v to w then A ′ �θ B ′.

Proof. If GB contains an oriented walk of length n from v to w then there must be a set of literals
in B ′ of at least one of the following types:

1. edge(v,w)∨ edge(v, v)∨ edge(w,w)

2. edge(v, t1)∨ edge(t1, t1)∨ edge(t1, t2)∨ · · ·∨ edge(tm,w)∨ edge(w,w)

Here, m 6 n and any ti may be either a variable or a constant. It follows rather easily that
A ′ �θ B ′.

Lemma 12. Let A be a clause and let GA be the respective graph constructed by the algorithm for
checking the x-presubsumption C∗. If GA contains an oriented walk of length n from v to w then for any
m > n there is a walk from v to w of length m.

Proof. This follows from the fact that every vertex in GA has a loop incident to it.

Lemma 13. The relation given by pairs of clauses, for which Algorithm C∗ returns true, is an x-
presubsumption w.r.t. the set X∗. The algorithm runs in time polynomial in the size of the clauses A
and B.

Proof. We need to verify that Algorithm C∗ satisfies the conditions from Definition 35.

1. If A ∈ X∗ and AC∗ B then A �θ B: Let us assume that A = Cvwn ∈ X∗ and AC∗ B because
the implication is otherwise vacuously true. It must hold A ′′ �θ B because A ′′ C1 B and
C1 is an x-presubsumption w.r.t. the set of clauses with treewidth 1 and A ′′ has treewidth
1. It remains to show that also A ′ �θ B (recall that vars(A ′) ∩ vars(A ′′) = ∅). Obviously,
there must be a walk in GA from v to w of length n. There must be also a walk from v

to w of the same length in GB, because AC∗ B, and therefore A ′ �θ B’ (using Lemma 11)
and consequently also A �θ B (recalling that A ′′ �θ B).

2. If A �θ B then A C∗ B: If A �θ B then the value false cannot be returned on line 5 of
the algorithm because the x-presubsumption C1, which is used there, also satisfies (A �θ
B) ⇒ (AC1 B). So we need to rule out only the possibility that false will be returned on
line 10 of the algorithm. This can be shown as follows. If A �θ B then there must be a
substitution θ such that Aθ ⊆ B. Therefore the graph GA must be homomorphic to the
graph GB (even if we consider the removal of loop-free vertices, which is actually easy to
check). It follows that any walk in GA can be mapped on a walk of the same length in GB
(the number of repeated edges may differ). Therefore, it must also hold LiA ⊆ LiB for all
relevant i’s (i.e. for every i ∈ {|A ′′|− 2, |A ′′|− 1, . . . , max{|VA|, |VB|}+ 1}) (recall Lemma 12)
and the value returned by the algorithm must be true.

3. If A ∈ X∗, AC∗ B and BC∗ C then AC∗ C: We assume that A = Cvwn ∈ X∗, AC∗ B and
BC∗ C and show that then, necessarily, the algorithm C∗ checking AC∗ C must return
true. It certainly will not return false on line 5 because C1 satisfies this condition w.r.t.
the set of all clauses with treewidth 1 and because A ′′ has treewidth 1. So, we need only
to show that true will be returned on line 10, i.e. to show that LiA ⊆ LiC for every i ∈
{1, 2, . . . , max{|VA|, |VC|}+ 1}. Furthermore, LiA = ∅ for all i < n and LiA = {(v,w)} for all
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i > n. Since AC∗ B, it must hold (v,w) ∈ LiB for all i > n (using Lemma 12 for showing
this for i > max{|VA|, |VB|}+ 1}). Similarly, we can use the fact BC∗ C to show (v,w) ∈ LiC
for all i > n. Thus, the value true must be returned on line 10 because LiA ⊆ LiC for all
i ∈ {|A ′′|− 2, |A ′′|− 1, . . . , max{|VA|, |VC|}+ 1}.

We also need to show that the algorithm C∗ runs in polynomial time but that is easy. The only
part which might need a more detailed discussion is the computation of all pairs of vertices
connected by an oriented walk. Computing this can be done in polynomial time by breadth-first
search.

Now, we need to show that the minimum equivalent digraph problem can be reduced to
finding a maximally reduced clause w.r.t. the x-presubsumption C∗. The reduction procedure
accomplishing this is given next.

Algorithm ClGrRed:

1. Given a directed graph G = (V ,E).

2. Construct a clause C ′ such that:

a) There is a literal edge(v,w), where v and w are constants, for every (v,w) ∈ E.

b) There is a literal edge(v, v), where v is a constant, for every vertex v ∈ V .

3. Construct a clause C ′′ = s(Y1)∨ c(Y1, Y2)∨ · · ·∨ c(Yn, Yn+1), e(Yn+1) where n = |V |.

4. Set C := C ′ ∪C ′′.

5. Find a maximally reduced clause Cred for C w.r.t. the x-presubsumption C∗.

6. Create a graph G ′ = (V ,E ′) where for any v,w ∈ V , (v,w) ∈ E ′ if and only (v,w) ∈ E and
Cred contains a literal edge(v,w).

7. Return G ′.

Lemma 14. Let G be a directed graph and let G ′ be a graph computed from G by Algorithm ClGrRed.
Then G ′ is a minimum directed graph equivalent to G.

Proof. In order to demonstrate validity of this lemma, we need to show first that if CG is a
clause constructed in Algorithm ClGrRed for the graph G then for any graph H = (V ,E ′) and
the respective associated clause CH where E ′ ⊆ E, it holds CG C∗ CH if and only if for any pair
of vertices v, w connected by a directed walk from v to w in G there is also a directed walk from
v to w in H.

(⇒) For all vertices v and w, if CG C∗ CH and if there is a directed walk from v to w in the graph
G then there is also a directed walk from v to w in H: This can be shown easily by inspecting the
condition on line 10 of Algorithm C∗ and from the fact that all vertices in the graph constructed
in Algorithm ClGrRed have loops (and therefore if there is a walk of length n connecting given
vertices then there is also a walk between these vertices of length m for any m > n).

(⇐) If there is a directed walk in the graph H for any pair of vertices v and w connected by a directed
walk in the graph G then CG C∗ CH: This follows almost immediately from inspection of line 10

of Algorithm C∗. The only thing that might need further justification is that it does not matter
that walks of not all lengths are checked there. Only walks of lengths equal to the number of
vertices in G and H minus 1 (i.e. |V |− 1 because both CG and CH contain |V |− 1 literals based
on the predicate symbol c/2). But clearly, if there is a directed walk between two vertices in a
graph then there must be a walk between these vertices of length at most equal to the number
of vertices in that graph. Moreover, since all vertices in the graph constructed in Algorithm
ClGrRed have loops, if there is a walk in the graph of length m where m < |V | then there must
also be a directed walk of length |V |.
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We are almost done. The reduced clause must contain all the constants contained in the
original clause (if we removed a constant then there would no longer be any oriented walk from
the vertex corresponding to the removed constant to itself). Moreover it must hold CC∗ Cred
and therefore the graph corresponding to Cred must contain directed walks between pairs of
vertices which are also connected in the original graph, as we have shown above.

It remains to show that the set of edges of the resulting graph has minimum cardinality.
However, this follows easily from minimality of the clause Cred. The only literals which can be
removed are the edge/2 literals which do not correspond to loops, therefore the resulting graph
must have minimum number of edges among the graphs equivalent to G.

Proposition 40. A polynomial time decidable x-presubsumption exists w.r.t. which finding a maximally
reduced clause is NP-hard.

Proof. Follows from the fact that the procedure for converting the minimum equivalent digraph
problem to the problem of finding a maximally reduced clause (used in Algorithm ClGrRed)
can be performed in polynomial time, next from Lemma 13 and from Lemma 14.
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Reducing the complexity of input data is often beneficial for learning. In attribute-value learning,
a wide range of feature selection methods is available [80]. These methods try to select a strict
subset of the original example features (attributes) while maintaining or even improving the
performance of the model learned from it with respect to that learned from the original feature
set. For binary classification tasks with Boolean features, the REDUCE [77] algorithm has been
proposed that removes so called irrelevant features. For any model learned with the original
feature set, a model with same or better fit on the learning examples may be expressed without
the irrelevant features. In the later work [2], the REFER algorithm extended REDUCE to the
multiple-class learning setting.

In relational learning, examples are not expressed as tuples of feature values but rather take
the form of logical constructs such as first-order clauses. Feature-selection methods are thus
not applicable to simplify such learning examples. Here we are interested to see whether also
first-order clausal examples can somehow be reduced while guaranteeing that the set of logical
formulas which can be induced from such reductions would not be affected.

An obvious approach would be to look for θ-reductions [97] of the input clauses. A θ-
reduction of a clause is a smaller, but subsumption-equivalent (and thus also logically equiv-
alent) clause. We have explored an approach based on θ-subsumption before in [61], achieving
learning speed-up factors up to 2.63. However, the main problem of θ-reduction is that finding
it is an NP-hard problem, rendering the approach practically infeasible in domains with large
examples such as those describing protein structures [90].

Here we follow the key idea that the complexity curse can be avoided by sacrificing part of the
generality of θ-reduction. In particular, we will look for reductions which may not be equivalent
to the original example in the logical sense, but which are equivalent given the language bias of the
learning algorithm. In other words, if the learning algorithm is not able to produce a hypothesis
covering the original example but not covering its reduction (or vice versa), the latter two may
be deemed equivalent. For instance, consider the clausal example ← atom(a1)∧ carbon(a1)∧
bond(a1, a2)∧ . . ., whose entire structure is shown in the left of Figure 10. Assume that all terms
in hypotheses are variables and hypotheses must have treewidth at most 1 or be acyclic. Then the
learning example is equivalent to the simpler one shown in the right of the figure. Here, we
connect the framework of bounded subsumptions and reductions introduced in the previous
chapter with reduction of learning examples.

This chapter is structured as follows. We first explain how learning examples can be reduced
when hypotheses are guaranteed to be sets of mutually non-resolving clauses in Section 8.1.
Then we show that these methods can be used also when the clauses in hypotheses can be
mutually resolving in Section 8.2. We evaluate the method experimentally in Section 8.3. Finally,
we conclude this chapter in Section 8.4.

8.1 safe reduction of learning examples for mutually non-resolving clausal

theories

The learning task that we consider in this chapter is fairly standard. We are given labelled
learning examples encoded as first-order-logic clauses and we would like to find a classifier
predicting the class labels of examples as precisely as possible. This task could be solved by
numerous relational-learning systems. We aim at finding a reduction procedure that would
allow us to reduce the number of literals in the examples while guaranteeing that the coverage
of any hypothesis from a pre-fixed hypothesis language L would not be changed.

104
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Figure 10: A learning example and its reduction.

There are several settings for logic-based relational learning. We will work within the learning
from entailment setting [22] which was discussed in Chapter 3. In the learning from entailment,
we say that a hypothesis H (a clausal theory) covers an example e (a clause) if and only if H |= e.
The basic learning task is to find a clausal theory H that covers all positive examples and no
negative examples and contains as few clauses as possible.

Definition 42 (Safe Equivalence and Safe Reduction under Entailment). Let e and ê be two clauses
and let L be a language specifying all possible hypotheses. Then ê is said to be safely equivalent to e if
and only if ∀H ∈ L : (H |= e)⇔ (H |= ê). If e and ê are safely equivalent and |ê| < |e| then ê is called
safe reduction of e.

Clearly, if we have a hypothesis H ∈ L which splits the examples to two sets X and Y then this
hypothesis H will also split the respective set of safely reduced examples to the sets X̂, Ŷ con-
taining the safely reduced examples from the sets X and Y, respectively. Also, when predicting
classes of test-set examples, any deterministic classifier that bases its decisions on the queries
using the covering relation |= will return the same classification even if we replace some of the
examples by their safe reductions. The same is also true for propositionalization approaches
that use the |= relation to construct boolean vectors which are then processed by attribute-value-
learners.

In this chapter, we focus on two types of hypothesis languages: mutually non-resolving clausal
theories and clausal theories in general. We start with the former type. Recall that we do not
put any restrictions on the learning examples. The only restrictions are those put on hypotheses.
A mutually non-resolving clausal theory is a set of clauses such that no predicate symbol which
appears in the head of a clause appears also in the body of any clause. The main reason why we
start with non-resolving clausal theories is that logical entailment H |= A, for a non-resolving
clausal theory H and a clause A, can be checked using θ-subsumption. If there is a clause H ∈ H

such that H �θ A then H |= A, otherwise H 6|= A.
Bounded equivalence (denoted by ≈X) introduced in Chapter 7 can be used to check if two

learning examples e and ê are equivalent w.r.t. hypotheses from a fixed hypothesis language.
It can be therefore used to search for safe reductions of learning examples. This is formalized
in the next proposition. Note that this proposition does not say that e and ê are equivalent. It
merely says that they are equivalent when being used as learning examples in the learning from
entailment setting with hypotheses drawn from a fixed set.

Proposition 41. Let L be a hypothesis language containing only non-resolving clausal theories composed
of clauses from a set X and let CX be an x-presubsumption w.r.t. the set X. If e and ê are learning examples
(not necessarily from X), eCX ê and êCX e then for any H ∈ L it holds (H |= e)⇔ (H |= ê). Moreover,
if |ê| < |e| then ê is a safe reduction of e under entailment.
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We now describe several simple safe-reduction transformation methods. For the first transfor-
mation method, we assume to have a fixed hypothesis language LU consisting of non-resolving
clausal theories which contain only constants from a given set U. The transformation then gets
a clause A on its input and produces a new clause Ã by variabilizing constants in A which are
not contained in U. It is easy to check that for any such A and Ã it must hold A ≈X Ã w.r.t. the
set of clauses containing only constants from U. Therefore A and Ã are safely equivalent w.r.t.
L. We can think of the constants not used in a hypothesis language L as identifiers of objects
whose exact identity is not interesting for us. Such constants can appear e.g. when we describe
molecules and we want to give names to atoms in the molecules with no actual meaning.

Another simple transformation which produces safely equivalent clauses is based on θ-reducti-
on. In this case the set of clauses X can be arbitrary. The transformation gets a clause A on its
input and returns its θ-reduction. The x-equivalence of the clause A and its θ-reduction follows
from the fact that θ-subsumption is the x-subsumption w.r.t. the set of all clauses.

Example 38. Let us have an example

e = edge(a,b, 1)∨ edge(b,a, 2)∨ edge(b, c, 2)∨ edge(c,d, 1)∨ edge(d,a, 2)

and a hypothesis language L containing arbitrary non-resolving clausal theories with the set of
allowed constants U = {1, 2}. We variabilize e and obtain a clause

ẽ = edge(A,B, 1)∨ edge(B,A, 2)∨ edge(B,C, 2)∨ edge(C,D, 1)∨ edge(D,A, 2).

Now, e and ẽ are safely equivalent w.r.t. to hypotheses from L. Next, we obtain a safe reduction
of e by computing θ-reduction of ẽ which is ê = edge(A,B, 1) ∨ edge(B,A, 2).

Similarly to the example above, if the hypothesis language consists of clausal theories com-
posed of clauses with treewidth at most k then we can reduce the learning examples by the
polynomial-time literal-elimination algorithm with the x-presubsumption based on k-consistency.
Importantly, transformations which produce x-equivalent clauses w.r.t. a set X can be also
chained due to transitivity of x-subsumption. So, for example, if we have a hypothesis language
consisting of non-resolving clausal theories which contain only constants from a pre-fixed set U
and we want to safely reduce a clause A then we can first variabilize it and then reduce it using
θ-reduction. Moreover, if we know that the clauses in the hypotheses are not only bound to
contain just constants from the set U but we also know that they have treewidth at most k then
we can use the literal-elimination algorithm based on k-consistency to reduce the given clause.

8.2 safe reduction of learning examples for mutually resolving clauses

In this section, we generalize the methods for reduction of learning examples to hypothesis
languages in the form of clausal theories without the restriction that they have to be mutually
non-resolving. We start by generalizing the result about variabilization of learning examples, i.e.
that by replacing constants which do not appear in the given hypothesis language L we always
obtain an example safely equivalent to the original example w.r.t. L.

The next proposition shows that we can first variabilize constants forbidden by the hypothesis
language L and then reduce the resulting clause using θ-reduction in order to obtain a safe
reduction.

Proposition 42. Let L be a hypothesis language and let e be a clause. Let ẽ be a clause obtained from e by
variabilizing the constants which are not contained in the hypothesis language. Then (H |= e)⇔ (H |= ẽ)
for any H ∈ L. If ê is a θ-reduction of ẽ and |ê| < |e| then ê is also a safe reduction of e.

Note that the above proposition holds for the conventional entailment relation |=. For instance,
it would not hold if we used negation as failure (because then we could create a nonequal(X, Y)
relation without ever having to use any constant).
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We can also generalize the method based on x-subsumption. This is not as easy as in the case
of mutually non-resolving clauses because there are sets of clauses X w.r.t. which x-reduction
could not be used for reduction of learning examples if mutually resolving clausal theories were
allowed. Nevertheless, the next proposition gives us a hint how to pick the right sets X for which
this is possible.

Proposition 43. Let X be a set of clauses and let L ⊆ 2X be a hypothesis language. Let A and B be
clauses. Let A ≈X B w.r.t. the set X and let the following be true for any H ∈ L and any clause C: if
H |= C and C is not a tautology then there is a clause D ∈ X such that H |= D and D �θ C. Then for
any H ∈ L, it holds (H |= A)⇔ (H |= B).

A trivial example of a hypothesis class which satisfies the conditions from this proposition is
the class of mutually non-resolving clausal theories composed from clauses from a given set X.
Another trivial example is the class of all hypotheses composed from unrestricted clauses. A
disadvantage of the first class is that it is not very rich and a disadvantage of the second class
is that it is too rich (and therefore one has to use the NP-hard θ-reduction for safe reduction of
examples w.r.t. this class).

Ideally, we would like to find a set of clauses X such that if L = 2X then it is possible to safely
reduce any example by x-reduction w.r.t. the set X. The question is how to find such a set. The
next proposition gives one possible way for finding such sets. It is based on the subsumption
theorem [92] which was briefly reviewed in Chapter 3.

Proposition 44. Let X be a set of clauses (Horn clauses, respectively) such that any clause which can
be derived from a clausal theory H ∈ 2X using resolution (SLD resolution, respectively) is contained
in X. If e and ê are two clauses (Horn clauses, respectively) such that e ≈X ê then for any H ∈ 2X:
(H |= e)⇔ (H |= ê).

Next, we show that the conditions from Proposition 44 are satisfied by the important case of
Horn clauses with bounded treewidth.

Proposition 45. Let Xk be the set of all function-free Horn clauses with treewidth at most k. Then for
any clause C derivable by SLD resolution from a clausal theory H ∈ 2Xk it holds C ∈ Xk.

Thus, the most important result in this section can be phrased as follows: The safe reduction
method based on the x-reduction w.r.t. the set of bounded-treewidth clauses can be used also
when considering theories composed of possibly mutually resolving bounded-treewidth Horn
clauses. When learning clausal theories consisting of mutually resolving bounded-treewidth
clauses, it is possible to start by reducing learning examples by the literal-elimination algorithm
with the polynomial-time x-presubsumption based on the k-consistency algorithm.

8.3 experimental evaluation of safe reduction

We experimentally evaluate usefulness of the safe reduction of learning examples with real-world
datasets and two relational learning systems – the popular system Aleph and the state-of-the-art
system nFOIL [74]. We implemented literal-elimination and literal-substitution algorithms for tree-
width 1, i.e. for treelike clausal theories. We used the efficient algorithm AC-3 [81] for checking
1-consistency1. We forced nFOIL and Aleph to construct only clauses with treewidth 1 using
their mode declaration mechanisms. We used three datasets in the experiments: predictive toxicol-
ogy challenge [46], CAD [139] and hexose-binding proteins [90]. The PTC dataset contains descrip-
tions of 344 molecules classified according to their toxicity for male rats. The molecules are
described using only atom and bond information. The CAD dataset contains descriptions of 96

class-labelled product-structure designs. Finally, the hexose-binding dataset contains 80 hexose-
binding and 80 non-hexose-binding protein domains. Following [90] we represent the protein

1 Note again the terminology used in this chapter following [4]. In CSP-literature, it is often common to call 2-
consistency what we call 1-consistency.
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Figure 11: Left: Compression rates achieved by literal-substitution algorithm on four datasets (for tree-
width 1). Right: Time for computing reductions of learning examples on four datasets (for
treewidth 1).
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Figure 12: Left: Runtime of nFOIL on reduced (blue) and non-reduced (red) datasets. Right: Predictive
accuracies of nFOIL on four datasets estimated by 10-fold cross-validation.

domains by atom-types and atom-names (each atom in an amino acid has a unique name) and
pair-wise distances between the atoms which are closer to each other than some threshold value.
We performed two experiments with the last mentioned dataset for cut-off set to 1 Angstrom
(Hexose ver. 1) and 2 Angstroms (Hexose ver. 2).

We applied the literal-elimination algorithm followed by the literal-substitution algorithm on the
three datasets. The compression rates (i.e. ratios of number of literals in the reduced learning
examples divided by the number of literals in the original non-reduced examples) are shown
in the left panel of Figure 11. The right panel of Figure 11 then shows the time needed to
run the reduction algorithms on the respective datasets. We note that these times are generally
negligible compared to runtimes of nFOIL and with the exception of Hexose ver. 2 also to
runtimes of Aleph.

8.3.1 Experiments with nFOIL

We used nFOIL to learn predictive models and evaluated them using 10-fold cross-validation.
For all experiments with the exception of the hexose-binding dataset with cut-off value 2

Angstroms, where we used beam-size 50, we used beam-size 100. From one point of view, this
is much higher than the beam-sizes used by [74], but on the other hand, we have the expe-
rience that this allows nFOIL to find theories which involve longer clauses and at the same
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Figure 13: Left: Runtime of Aleph on reduced (blue) and non-reduced (red) datasets. Right: Predictive
accuracies of Aleph on reduced (blue) and non-reduced (red) datasets estimated by 10-fold
cross-validation.
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Figure 14: Left: Average number of rules generated by Aleph on reduced (blue) and non-reduced (red)
datasets. Right: Average number of literals in rules generated by Aleph on reduced (blue) and
non-reduced (red) datasets.

time have higher predictive accuracies. The runtimes of nFOIL operating on reduced and non-
reduced data are shown in the left panel of Figure 12. It can be seen that the reduction was
beneficial in all cases but that the most significant speed-up of more than an order of magnitude
was achieved on Hexose data. This could be attributed to the fact that nFOIL constructed long
clauses on this dataset and the covering test used by it had not probably been optimized. So, in
principle, nFOIL could be made faster by optimizing the efficiency of its covering test. The main
point, however, is that we can speed-up the learning process for almost any relational learning
algorithm merely by preprocessing its input. The right panel of Figure 12 shows nFOIL’s predic-
tive accuracies (estimated by 10-fold cross-validation). The accuracies were not affected by the
reductions. The reason is that (unlike Aleph) nFOIL exploits learning examples only through
the entailment queries.

8.3.2 Experiments with Aleph

We performed another set of experiments using the relational learning system Aleph. Aleph
restricts its search space by bottom-clauses. After constructing a bottom-clause it searches for
hypotheses by enumerating subsets of literals of the bottom-clause. When we reduce learning
examples, which also means reduction of bottom-clauses, we are effectively reducing the size
of Aleph’s search space. This means that Aleph can construct longer clauses earlier than if it
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used non-reduced examples. On the other hand, this also implies that, with the same settings,
Aleph may run longer on reduced data than on non-reduced data. That is because computing
coverage of longer hypotheses is more time-consuming. Theories involving longer clauses may
often lead to more accurate predictions. For these reasons, we measured not only runtime and
accuracy, but also the average number of learnt rules and the average number of literals in these
rules on reduced and non-reduced data.

We ran Aleph on reduced and non-reduced versions of the datasets and evaluated it using
10-fold cross-validation. We used the literal elimination algorithm for reducing examples. We
set the maximum number of explored nodes to 50000, the noise parameter to 1% of the number
of examples in the respective datasets. The runtime in the performed experiments was higher
for reduced versions of datasets PTC and CAD, the same for Hexose ver. 2 and lower for Hexose
ver. 1 than for their non-reduced counterparts (see left panel of Figure 13). The accuracies were
higher for reduced versions of all four datasets (see right panel of Figure 13). Similarly, the
average number of rules, as well as the average number of literals in the rules, was higher for
the reduced versions of all four datasets (see Figure 14). These results confirm the expectation
that Aleph should be able to construct longer hypotheses on reduced datasets which, in turn,
should result in higher predictive accuracies.

8.4 conclusions

We have introduced a novel concept called safe reduction. We have shown how it can be used
to safely reduce learning examples (without affecting learnability) which makes it possible to
speed-up many relational learning systems by merely preprocessing their input. The methods
that we have introduced run in polynomial time for hypothesis languages composed of clauses
with treewidth bounded by a fixed constant.

8.5 proofs

Proposition 41. Let L be a hypothesis language containing only non-resolving clausal theories composed
of clauses from a set X and let CX be an x-presubsumption w.r.t. the set X. If e and ê are learning examples
(not necessarily from X), eCX ê and êCX e then for any H ∈ L it holds (H |= e)⇔ (H |= ê). Moreover,
if |ê| < |e| then ê is a safe reduction of e under entailment.

Proof. First, eCX ê and êCX e imply e ≈X ê (where ≈X denotes x-equivalence w.r.t. the set X).
Then for any non-resolving clausal theory H ∈ L we have (H |= e) ⇔ (H |= ê) because for any
clause A ∈ X we have (A �θ e) ⇔ (A �θ ê) (from e ≈X ê). This together with |ê| < |e| means
that ê is a safe reduction of e under entailment w.r.t. hypothesis language L.

Lemma 15 (Plotkin [97]). Let A and B be clauses. If A �θ B then A |= B.

Proposition 42. Let L be a hypothesis language and let e be a clause. Let ẽ be a clause obtained from e by
variabilizing the constants which are not contained in the hypothesis language. Then (H |= e)⇔ (H |= ẽ)
for any H ∈ L. If ê is a θ-reduction of ẽ and |ê| < |e| then ê is also a safe reduction of e.

Proof. We will start by showing validity of the implication (H |= e)⇒ (H |= ẽ). For contradiction,
let us assume that there is a model M of the clausal theory H such that M |= e and M 6|= ẽ. Then
there must be a substitution θ grounding all variables in ẽ such that2 M |= eθ and M 6|= ẽθ.
Now, we will construct another model M ′ of H in which e will not be satisfied. We take each
constant c in e that has been replaced by a variable V in ẽ and update the assignment φ of the
constants c to objects from the domain of discourse in the model3 so that φ(c) = φ(Vθ). Clearly,
we can do this for every constant c since every constant in e has been replaced by exactly one

2 We are applying θ also to e because e need not be ground.
3 A first-order interpretation consists of several components, one of them is the domain of discourse, and another is a

function φ which maps constants to elements of the domain of discourse.
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variable. Now, we clearly see that M ′ 6|= e. However, we are not done yet as it might happen that
the new model with the modified φ would no longer be a model of H. However, this is clearly
not the case since none of the constants c appears in H and therefore the change of φ has no
effect whatsoever on whether or not H is true in M ′. So, we have arrived at a contradiction. We
have a model M ′ such that M ′ |= H and M ′ 6|= e which contradicts the assumption H |= e. The
implication (H |= e) ⇐ (H |= ẽ) follows directly from Lemma 15. We have ẽ �θ e therefore also
ẽ |= e and finally H |= ẽ |= e. (ii) In order to show (H |= e) ⇒ (H |= ê), it suffices to notice that
H |= e and e �θ ê imply H |= ê. The implication (H |= e)⇒ (H |= ê) may be shown similarly as
follows: H |= ê and ê �θ e imply H |= e.

Proposition 43. Let X be a set of clauses and let L ⊆ 2X be a hypothesis language. Let A and B be
clauses. Let A ≈X B w.r.t. the set X and let the following be true for any H ∈ L and any clause C: if
H |= C and C is not a tautology then there is a clause D ∈ X such that H |= D and D �θ C. Then for
any H ∈ L, it holds (H |= A)⇔ (H |= B).

Proof. First, we need to consider the case when A and B are both tautologies. If both A and B
are tautologies then (H |= A) ⇔ (H |= B) naturally holds for any H. Now, we can consider the
case when at most one of the clauses A and B is a tautology. Let us assume w.l.o.g. that if one
of the clauses is a tautology then it is the clause B. If H |= A then there is a clause D ∈ X such
that H |= D and D �θ A (by the assumptions of the proposition). Since D ∈ X, D �θ A and
A �X B, we have D �θ B (from the definition of x-subsumption) and finally also H |= D |= B

and so H |= B. The other implication can be shown in a completely similar fashion if A is not a
tautology. If A is a tautology then the situation is even simpler because the implication is always
true.

Proposition 44. Let X be a set of clauses (Horn clauses, respectively) such that any clause which can
be derived from a clausal theory H ∈ 2X using resolution (SLD resolution, respectively) is contained
in X. If e and ê are two clauses (Horn clauses, respectively) such that e ≈X ê then for any H ∈ 2X:
(H |= e)⇔ (H |= ê).

Proof. We will use the subsumption theorem (the subsumption theorem for Horn clauses, respec-
tively) and Proposition 43. We will show that the conditions of this proposition imply conditions
of Proposition 43. If A is a non-tautological clause and H |= A then by the subsumption theorem
there must be a clause C derivable from H using resolution (SLD resolution, respectively) such
that C �θ A. Therefore for any non-tautological clause A, if H |= A where H ∈ 2X then there
must be a clause C ∈ X such that H |= C (because resolution is sound) and C �θ A. Now, since
e ≈X ê, we may finish the proof using Proposition 43 which gives us (H |= e) ⇔ (H |= ê) for
any H ∈ 2X.

Lemma 16 (Clique containment lemma [10]). Let A be a clause and TA be its tree decomposition. For
any l ∈ A, there is a vertex in TA labelled by a set of variables V such that vars(l) ⊆ V .

Proof. The proof can be found in [10]. More precisely, the paper [10] contains a lemma which
states that if C is a clique in a graph G = (V ,E) then any tree decomposition of G contains a
vertex labelled by a set of vertices L such that C ⊆ L. Our statement of this lemma in terms of
clauses and tree decompositions of clauses then follows immediately from this result which can
be shown by noticing that the decomposition of the clause A can be easily converted to a tree
decomposition of A’s Gaifman graph GA where, for any l ∈ A, var(l) corresponds to a clique
in GA.

Lemma 17. Let A be a function-free clause and TA be its tree decomposition. Let l∗ ∈ A be a literal
and let θ be a substitution affecting only the variables in l∗, mapping variables to variables or terms (i.e.
not to function symbols) and never mapping any variables to elements of the set vars(A). Then a tree
decomposition of Aθ can be obtained by applying the substitution θ on the the variables contained in the
labels of the tree decomposition TA and removing constants from these sets if necessary – we denote the
new labelled tree by TAθ. As a consequence, the treewidth of Aθ is never greater than the treewidth of A.
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Proof. If we apply the substitution θ on the labels of the tree decomposition TA then none of
the label-sets associated to the vertices of TA increases in size (this is in part due to the fact
that we do not consider function symbols). Therefore if we are able to show that TAθ is a tree
decomposition of Aθ then we will automatically get also the result that the treewidth of Aθ is
not greater than the treewidth of A. So, let us show that TAθ is indeed a tree decomposition of
Aθ.

(i) Claim: For every variable V ∈ vars(Aθ) there is a vertex of TAθ labelled by a set containing V .
This is obvious.

(ii) Claim: For every pair of variables U, V which both appear in a literal l ∈ Aθ, there is a vertex of
TAθ labelled by a set containing both U and V . There must be a literal l ′ ∈ A containing two
variables U ′ and V ′ such that U ′θ = U and V ′θ = V (because U and V are both contained
in a literal). Therefore there must be a vertex t of TA labelled by a set St containing both
U ′ and V ′. After applying the substitution θ on the set St, we get a set by which some
vertex contained in TAθ is labelled and it contains both U and V .

(iii) Claim: For every V ∈ vars(Aθ), the set of vertices of TAθ labelled by sets containing V forms
a connected subgraph of TAθ. Let us assume (for contradiction) that there is a variable
V ∈ vars(Aθ) such that the set of vertices of TAθ labelled by sets containing V forms
a disconnected graph. It follows that there must be two variables U ′, V ′ (U ′ 6= V ′) such
that U ′θ = V ′θ = V and the sets of vertices SU ′ and SV ′ of the tree decomposition TA
corresponding to the variables U ′ and V ′, respectively, must be disjoint (because the set
of vertices with labels containing a given variable must form a connected subgraph in
any tree decomposition). However, the variables U ′ and V ′ must appear in the literal l∗

because the substitution θ affects only variables contained in l∗ and maps no variables to
elements of the set vars(A) (since at least one of the variables must have been affected by
the substitution and since it is equal to the other variable, the other variable must have
been affected by the substitution as well). Thus, since both U ′ and V ′ must be contained
in l∗ there must be a vertex in the tree decomposition TA labelled by a set which contains
both U ′ and V ′. The sets of vertices of TA labelled by sets containing the variables U ′ and
V ′, respectively, therefore cannot be disjoint which is a contradiction.

We have thus shown that TAθ is a tree decomposition of Aθ.

Lemma 18. Let A = l1 ∨ l2 ∨ · · ·∨ lm and B = m1 ∨m2 ∨ · · ·∨mn be two standardized-apart
function-free clauses. Let θ be a most general unifier of the literals li, ¬mj such that vars(liθ) ∩
vars(A) = vars(liθ)∩ vars(B) = ∅. Next, let

C = (l1 ∨ · · ·∨ li−1 ∨ li+1 ∨ · · ·∨ lm ∨m1 ∨ · · ·∨mj−1 ∨mj+1 ∨ · · ·∨mn)θ

be a binary resolvent of A and B. Then for the treewidth kC of C, it holds kC 6 max{kA,kB} where kA
is the treewidth of A and kB is the treewidth of B.

Proof. Using Lemma 17, we get that Aθ has treewidth at most kA and Bθ at most kB. Therefore
also (because if X ⊆ Y then X has treewidth lower or equal than Y):

A ′ = (l1 ∨ · · ·∨ li−1 ∨ li+1 ∨ · · ·∨ lm)θ

has a tree decomposition TA ′ of width at most kA and

B ′ = (m1 ∨ · · ·∨mj−1 ∨mj+1 ∨ · · ·∨mn)θ

has a tree decomposition TB ′ of width at most kB. We will now show how to construct a tree
decomposition of width at most max{kA,kB} for the clause C. Let VA (VB, respectively) be a
vertex from TA ′ (TB ′ , respectively) which is labelled by a set of variables VA (VB, respectively)
such that vars(liθ) ⊆ VA (vars(liθ) ⊆ VB) – such vertices must exist by Lemma 16. We construct
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the new tree decomposition TC by connecting TA ′ and TB ′ by a new edge between the vertices
VA and VB. Clearly, TC has width at most max{kA,kB}. We need to show that it is indeed a
tree decomposition of C. The first two conditions from Definition 11 are trivially satisfied which
follows from the fact that TA ′ and TB ′ are tree decompositions of the two clauses A ′ and B ′

from which C is composed (C = A ′ ∪ B ′). It remains to show validity of the third condition
(connectedness).

Let us assume (for contradiction) that there is a variable V ∈ vars(C) such that the vertices
labelled by sets containing the variable V form a disconnected subgraph of TC. The variable V
cannot be contained in vars(A) or vars(B). If V ∈ vars(A) then V 6∈ vars(B) (because A and
B were standardized apart) and also A 6∈ vars(liθ) (because we selected the unifier θ to satisfy
vars(liθ) ∩ vars(A) = ∅) but then the set of vertices labelled by sets containing the variable V
could not be disconnected because it is actually connected in TA and none of the labels in TB
contains V . The same argument can be used to show that V 6∈ vars(B). So the only remaining
possibility is that V ∈ vars(liθ). However, this is not possible either. Since both TA ′ and TB ′ are
tree decompositions, the set of vertices labelled by the sets containing the variable V forms a
connected subgraph in both TA ′ and TB ′ . Moreover, a vertex from TA ′ and a vertex from TB ′

which are both labelled by sets containing all variables from vars(lθ) are connected by an edge
in TC therefore the set of vertices labelled by the sets containing the variable V must form a
connected subgraph of TC. Thus, we have arrived at a contradiction because there cannot be any
variable with a disconnected subgraph of TC associated to it.

We have verified that TC is a tree decomposition of C with width at most max{kA,kB}.

Proposition 45. Let Xk be the set of all function-free Horn clauses with treewidth at most k. Then for
any clause C derivable by SLD resolution from a clausal theory H ∈ 2Xk it holds C ∈ Xk.

Proof. Since this proposition considers only SLD resolution, we can consider just the case of
binary resolvents (we do not need to take factors into account). The proposition then follows
immediately from Lemma 18 because any clause derived by applying the binary resolution rule
on two clauses must always have treewidth bounded by the treewidth of the clauses from which
it was derived.



Part IV

B I O I N F O R M AT I C S A P P L I C AT I O N S

*Illustration adapted from en.wikipedia.
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Prediction of DNA-binding propensity of proteins is an important biological problem that has
not been fully solved yet. Proteins which bind to DNA play various essential roles in living cells,
including transcription, replication and maintenance of DNA and regulation of gene expression.
Knowing which proteins bind to DNA is important for several reasons. If we know which
proteins bind to DNA, we can better understand various processes that occur in living cells
on the microscopic level. Being able to detect which proteins bind to DNA and preferably also
at which sites is also beneficial for designing new proteins that could be potentially useful
for emerging gene therapies. In this chapter we present an approach for prediction of DNA-
binding propensity of proteins based on the feature-construction algorithm RelF (described in
Chapter 5). Here, RelF is used for construction of features describing local spatial configurations
of amino acids in proteins. The present approach is different from some of most recent methods
based on similarity of proteins, for example structural alignment or threading-based methods
[140, 38, 39], or methods exploiting information about evolutionary conservation of amino acids
in proteins [94]. In general, methods exploiting evolutionary information can be more accurate
than approaches aiming to infer binding propensity purely from physicochemical or structural
protein properties. On the other hand, the main advantage of approaches not using evolutionary
information is that since they do not rely on the existence of homologous proteins, they can be
used to predict DNA-binding function for proteins with no known homologs.

This chapter is organized as follows. We review the most important existing approaches to
DNA-binding propensity prediction in Section 9.1. Then we describe the datasets of proteins
used in the experiments presented in this chapter in Section 9.2. We outline the method for
prediction of DNA-binding propensity of proteins in Section 9.3. We present results of the ex-
periments in Section 9.4. Section 9.5 concludes this chapter.

9.1 background and related work

In one of the first works on prediction of DNA-binding propensity, Stawiski et al. [114] investi-
gated the structural and sequence properties of large, positively charged electrostatic patches on
DNA-binding protein surfaces. They used a neural network with 12 features. Ahmad and Sarai
[1] developed another method based on neural networks using the following attributes: the net
charge, the electric dipole and quadrupole moments of the protein. The combination of charge
and dipole moment turned out to perform well, while information about the quadrupole mo-
ment further improved the accuracy only slightly. They found out that DNA-binding proteins
have significantly higher net positive charges and electric moments than other proteins. More
recently, Szilágyi and Skolnick [120] created a logistic regression classifier based on the amino
acid composition, the asymmetry of the spatial distribution of specific residues and the dipole
moment. Nimrod et al. [94] presented a random-forest-based method which relies heavily on
evolutionary information and works as follows. First, it detects clusters of evolutionarily con-
served regions on the surface of proteins using the PatchFinder algorithm. Next, a classifier is
trained using features like the electrostatic potential, cluster-based amino acid conservation pat-
terns, the secondary structure content of the patches and features of the whole protein, including
all the features used by Szilágyi and Skolnick [120].

Nassif et al. [89] previously used a relational learning based approach in a similar context,
in particular to classify hexose-binding proteins. The main differences of our approach from
the method of Nassif et al. are as follows. First, the fast relational learning algorithm that we
use enables us to produce features by inspecting much larger structures (up to tens of thou-
sands of entries in a learning example) than those considered in the work of Nassif et al. using
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the standard learning system Aleph. Second, our structural features acquire values equal to
the number of occurrences of the corresponding spatial pattern, whereas Nassif et al. only dis-
tinguished the presence of a pattern in a learning example from its absence. Our preliminary
results [116] indicated that occurrence-counting indeed substantially lifts predictive accuracy.
Lastly, the approach of Nassif et al. resulted in classifiers that are more easily interpretable
than state-of-the-art classifiers and comparable in predictive accuracy. Here we maintain the
interpretability advantage and achieve accuracies competitive to the state-of-the-art predictive
accuracies both by a purely structural approach (without the physicochemical features) and also
through the combination of structural and physicochemical features.

9.2 datasets

DNA-binding proteins are composed of DNA-binding domains, which are independently folded
protein domains that contains at least one motif that recognizes double-stranded or single-
stranded DNA. The following datasets of DNA-binding proteins and non-DNA-binding pro-
teins were used in the experiments described in this chapter.

• PD138 - a dataset of 138 DNA-binding protein structures in complex with DNA,

• UD54 - a dataset of 54 DNA-binding protein structures in unbound conformation,

• BD54 - a dataset of 54 DNA-binding protein structures in DNA-bound conformation cor-
responding to the set UD54

• APO104 - a dataset of 104 DNA-binding protein structures in unbound conformation,

• NB110 - a dataset of 110 non-DNA-binding protein structures,

• NB843 - a dataset of 843 non-DNA-binding protein structures.

The dataset PD138 was created by Szilágyi and Skolnick [120] using the Nucleic Acid Database
(NDB). It contains DNA-binding proteins in complex with DNA strands. The maximum pair-
wise sequence identity of any pair of proteins in this dataset is 35%. Both the protein and the
DNA can alter their conformation during the process of binding. This conformational change
can involve small changes in side-chain location, and also local refolding, in the case of the pro-
teins. Predicting DNA-binding propensity from a structural model of a protein makes sense if
the available structure is not a protein-DNA complex, i.e. if it does not contain a bound nucleic
acid molecule. In order to find out how the results would change according to the conformation
before and after binding, we used two other datasets (UD54, BD54). The dataset BD54 con-
tains bound conformations of DNA-binding proteins, i.e. DNA-protein complexes. The dataset
UD54 contains the same sequences in their unbound, free conformation. These datasets were
also obtained from Szilágyi and Skolnick [120]. Another set of DNA-binding protein structures
(APO104) determined in the absence of DNA was obtained from Gao et al. [38].

The dataset NB110 contains non-DNA-binding proteins. Originally, Rost and Sander con-
structed a dataset RS126 which was intended for secondary structure prediction. Ahmad &
Sarai [1] then removed the proteins related to DNA binding from it, which gave rise to the
dataset of non-DNA-binding proteins NB110. We also used an extended dataset NB843 which
was compiled by Nimrod et al. [94]. This dataset contains all proteins from the dataset NB110

and 733 additional structures of non-DNA-binding proteins. These additional structures were
gathered using the PISCES server. Entries in this list include crystal structures with a resolution
better than 3.0Å. The sequence identity between each pair of sequences is smaller than 25%.

9.3 method

Our method exploits techniques of propositionalization. It uses the feature-construction algo-
rithm RelF in conjunction with state-of-the-art attribute-value learning algorithms. Very briefly,
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our method can be viewed as proceeding in three steps. It starts with PDB1 files which contain
descriptions of experimentally determined spatial structures of proteins. Then it creates a rela-
tional representation of the proteins. After that it employs RelF to extract meaningful counting
relational features from the relational structures describing proteins and uses them to create
an approximate attribute-value representation – an attribute-value table where attributes corre-
spond to the automatically discovered features. This attribute-value representation is then used
as input to train attribute-value classifiers.

The method uses a relational representation of proteins that consists of literals representing
types of amino-acid residues and literals representing pair-wise distances between the residues
up to maximum distance 10Å. These distances are computed from alpha-carbon coordinates
obtained from PDB2. Despite the relative simplicity of our relational representation of proteins,
some of the examples contained, in the end, tens of thousands literals which would be very
challenging for common relational learning systems such as Aleph [111], not to mention that
these systems do not allow computing numbers of covering substitutions. Our representation
of proteins differs from the representation used by Nassif et al. [90] in that it describes pro-
teins on the amino-acid level whereas Nassif et al. described their proteins on the atomic level.
There are several reasons for devising and using this new representation. First, some proteins
in the datasets that we use are not described on the atomic-level but contain only coordinates of
alpha-carbon atoms of individual amino-acid residues. Thus, we would have to discard valuable
learning examples corresponding to these proteins if we wanted to use the atomic-level descrip-
tion of protein structures. Second, the detailed configurations of atoms in amino acids should be,
at least implicitly, determined by the relative positions of the amino-acids’ alpha carbons. More-
over, DNA-binding propensity has been predicted with relatively high accuracy using much
cruder level of detail (recall for instance the methods based on global physicochemical prop-
erties of proteins mentioned in Section 9.1). Therefore it is natural to expect that it should be
possible to predict DNA-binding propensity of proteins also from the representation of proteins
on the amino-acid level. Third, already the representation on amino-acid level gives rise to learn-
ing examples involving tens of thousands of literals and the learning examples would be even
bigger for the atom-level representation.

9.4 experiments , results and discussion

We performed experiments with the datasets described in Section 9.2 in order to evaluate the
predictive accuracy and also the interpretability of our approach. We compared classifiers based
on structural features discovered by our method (SF) with classifiers based on 10 physicochem-
ical features (PF) identified as most predictive by Szilágyi and Skolnick’s method [120]. We
also experimented with classifiers based on the combination of the structural features and the
physicochemical features (PSF). For each experiment we estimated predictive accuracy and the
area under the ROC curve (AUC) by 10-fold cross-validation. Lastly, we inspected the most
informative, according to χ2 criterion [79], structural features in order to evaluate their inter-
pretability. We used six state-of-the-art attribute-value learning algorithms listed in Table 14.
We used implementation of these learning algorithms present in the WEKA [133] open-source
machine learning software.

Parameters of the classifiers were tuned using internal cross-validation. When performing
cross-validation, the set of features was created separately for each train-test split corresponding
to iterations of cross-validation procedure. The number of trees for random forests and the
number of iterations for Ada-boost was selected from the set {10, 20, 50, 100, 200, 500, 1000}. The
complexity parameter c for linear support vector machine and for support vector machine with
RBF kernel was selected from the set {1, 10, 102, 103, 104, 105, 106}. The regularization parameter

1 PDB is a widely used format for protein structures.
2 http://www.pdb.org
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Figure 15: Example zinc-finger proteins (1A1F and 1AAY) containing one discovered relational feature
displayed using the protein viewer software [85]. Residues assumed by the pattern are indi-
cated in the following way: CYS - pink, HIS - violet, ARG - yellow.

classifier category references

Linear support vector machine kernel [15]
SVM with RBF kernel kernel [15]
Simple logistic regression regression/ensemble [72]
L2-regularized logistic regression regression [47]
Ada-boost (with decision stamps) ensemble [36]
Random forest ensemble [11]

Table 14: State-of-the-art attribute-value learning algorithms used for classification.

of L2-regularized logistic regression was selected from the set {10−3, 10−2, 10−1, 1, 10, 102, 103}.
The minimum frequency of features on one of the classes was set to 0.7.

We used a different methodology for experiments with the dataset PD138/NB843, because
the size of this dataset required a sampling-based approach to feature construction rather than
exhaustive search. Therefore, we followed an approach in which features were constructed on
several randomly selected subsets of data and then evaluated on the complete dataset. The
number of random samples was set to 10, the number of proteins in the samples from each class
was set to 20. The minimum frequency for each sample was set to 1.

We performed four sets of experiments with datasets of DNA-binding proteins - PD138, UD54,
BD54 and APO104 – each one as a set of positive examples and the dataset of non-DNA-binding
proteins NB110 - as a set of negative examples. We obtained about 1400 features for the dataset
PD138/NB110, approximately 1500 structural features for the dataset UD54/NB110, about 2400

structural features for the dataset BD54/NB110 and about 2800 structural features for the dataset
APO104/ NB110. Accuracies and areas under the ROC curve (AUC) obtained on these datasets
by stratified 10-fold cross validation using physicochemical features (PF), structural features (SF)
and the combination of both of them (PSF) are shown in Tables 16, 17, 15 and 18. The results
for the method based on physicochemical features (PF) differ slightly from the results reported
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by Szilágyi and Skolnick [120], because we used 10-fold cross-validation whereas Szilágyi and
Skolnick used leave-one-out cross-validation.

We computed average rankings over the six machine learning algorithms for accuracies and
AUCs. The method based on purely structural features (SF) and the method based on the com-
bination of structural and physicochemical features (PSF) achieved higher predictive accuracies
than the method based purely on physicochemical features (PF). The only exception was in
case of the dataset BD54/NB110, where the method based on purely physicochemical features
performed better than the method based on purely structural features. The results were not as
definite in the case of AUC as in the case of predictive accuracy. The method based on structural
features turned out to be better than the method based on physicochemical features on two
datasets. Interestingly, these two datasets contain DNA-binding proteins in their unbound con-
formations. The method based on the combination of structural and physicochemical features
was better than the method based on purely physicochemical features on three datasets.

We made an additional experiment with the dataset PD138/NB843 in order to be able to
compare our method with the method of Nimrod et al. [94]. In this experiment we used only
the random forest classifier which was also used by Nimrod et al. On this dataset Nimrod et al.
obtained AUC 0.9. We obtained AUC 0.84 with the method of Szilágyi and Skolnick, 0.82 with
the method based on structural features and 0.82 with the method based on the combination
of structural and physicochemical features. It is important to note that unlike the method of
Nimrod et al. our method does not rely on information about evolutionary conservation.

It is interesting to compare the results for the datasets UD54 and BD54. The dataset UD54

contains DNA-binding proteins in unbound conformation, the dataset BD54 contains the same
DNA-binding proteins, but in bound conformation with DNA. Whereas the highest predictive
accuracies and best AUCs were obtained by the method based on structural features on the
dataset UD54, this method performed worst on the dataset BD54. Interestingly, the number of
frequent structural features was significantly higher for the dataset BD54 (approximately 2400

structural features) than for the dataset UD54 (approximately 1500 structural features). This sug-
gests that conformational changes after DNA-binding give rise to greater variability of spatial
arrangements of some amino acid groups. Moreover, conformational changes may be responsi-
ble for increase of spatial asymmetry of some amino acids or protein’s dipole moment. This can
explain the better performance of the method based on physicochemical features on the dataset
BD54 (recall that these features were selected by experimenting on DNA-binding proteins in
bound conformation with DNA by Szilágyi and Skolnick [120]). Also note that prediction of
DNA-binding propensity from unbound conformations is more important for practical applica-
tions.

9.4.1 Evaluation of binding motif independence

In order to find out whether the features discovered for DNA-binding proteins did not just
capture the consensus patterns of particular protein folds, we performed an experiment in which
the relational learning model was always constructed for proteins from all but one protein group
and then tested on this excluded group. Proteins of the dataset PD138 were divided into seven
groups following the work of Szilágyi and Skolnick [120]. They were the following: helix-turn-
helix, zinc-coordinating, zipper-type, other α-helix, β-sheet, other and enzyme. We used linear
SVM based on our structural features (SF), because SVM turned out to perform best in our
experiments. We show both the predictive accuracies obtained by testing the learnt classifiers
on the excluded groups and the cross-validated accuracies obtained by the classifiers on the
remaining parts of the dataset in Table 19. The resulting accuracies on the excluded groups,
which should correlate with the ability of our method to discover patterns characteristic for
DNA-binding proteins in general, are reasonably high with the exception of the enzyme group.
This agrees with the results of Szilágyi and Skolnick [120] and Stawiski et al. [114], who also
noticed a drop in the ability of their method to detect DNA-binding proteins in the enzyme
group. We can conclude that our method is indeed able to construct classifiers which can work
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Accuracy AUC

PD138 vs. NB110 PF SF PSF PF SF PSF
Simple log. regr. 83.4 (1) 82.2 (2) 80.7 (3) 0.91 (2) 0.90 (3) 0.94 (1)
L2-reg. log. regr. 81.4 (3) 83.5 (2) 85.5 (1) 0.92 (1) 0.91 (2) 0.91 (2)
SVM with RBF 81.8 (2) 79.9 (3) 85.1 (1) 0.92 (2) 0.90 (3) 0.93 (1)
Linear SVM 81.4 (3) 83.6 (2) 83.9 (1) 0.92 (2) 0.89 (3) 0.93 (1)
Ada-boost 80.6 (2) 78.6 (3) 81.4 (1) 0.90 (1) 0.90 (1) 0.90 (1)
Random forest 81.8 (3) 83.5 (1) 82.3 (2) 0.90 (3) 0.91 (2) 0.93 (1)

Average ranking 2.33 2.17 1.5 1.83 2.33 1.17

Table 15: Predictive accuracies and areas under the ROC curve (AUC) on the dataset PD138/NB110

achieved by 6 machine learning algorithms using physicochemical features (PF) as proposed
by Szilágyi and Skolnick [120], structural features (SF) automatically constructed by our algo-
rithm, and the combination of both feature sets (PSF).

Accuracy AUC

UD54 vs. NB110 PF SF PSF PF SF PSF
Simple log. regr. 81.0 (3) 86.0 (1) 82.8 (2) 0.91 (1) 0.89 (2) 0.89 (2)
L2-reg. log. regr. 82.2 (3) 82.4 (2) 84.1 (1) 0.89 (3) 0.91 (1) 0.90 (2)
SVM with RBF 81.0 (2) 84.0 (1) 80.4 (3) 0.92 (1) 0.88 (3) 0.91 (2)
Linear SVM 81.7 (2) 82.4 (1) 82.4 (1) 0.90 (2) 0.91 (1) 0.87 (3)
Ada-boost 76.2 (3) 78.0 (2) 79.3 (1) 0.88 (3) 0.89 (2) 0.90 (1)
Random forest 78.6 (3) 79.3 (1) 79.2 (2) 0.88 (3) 0.89 (2) 0.90 (1)

Average ranking 2.67 1.34 1.67 2.17 1.67 2

Table 16: Predictive accuracies and areas under the ROC curve (AUC) on the dataset UD54/NB110

achieved by 6 machine learning algorithms using physicochemical features (PF) as proposed
by Szilágyi and Skolnick [120], structural features (SF) automatically constructed by our algo-
rithm, and the combination of both feature sets (PSF).

Accuracy AUC

BD54 vs. NB110 PF SP PSP PF SP PSP
Simple log. regr. 80 (3) 80.5 (2) 81.8 (1) 0.91 (1) 0.85 (2) 0.91 (1)
L2-reg. log. regr. 83.1 (1) 81.9 (2) 81.7 (3) 0.92 (1) 0.88 (3) 0.91 (2)
SVM with RBF 82.5 (2) 82.5 (2) 83.6 (1) 0.91 (1) 0.90 (2) 0.90 (2)
Linear SVM 81.4 (3) 82.3 (2) 82.9 (1) 0.93 (2) 0.90 (3) 0.94 (1)
Ada-boost 84.2 (1) 73.8 (3) 79.8 (2) 0.91 (1) 0.88 (2) 0.88 (2)
Random forest 82.4 (1) 75.0 (3) 79.4 (2) 0.89 (2) 0.89 (2) 0.91 (1)

Average ranking 1.83 2.33 1.67 1.33 2.33 1.5

Table 17: Predictive accuracies and areas under the ROC curve (AUC) on the dataset BD54/NB110

achieved by 6 machine learning algorithms using physicochemical features (PF) as proposed
by Szilágyi and Skolnick [120], structural features (SF) automatically constructed by our algo-
rithm, and the combination of both feature sets (PSF).
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Accuracy AUC

APO104 vs. NB110 PF SF PSF PF SF PSF
Simple log. regr. 80.7 (3) 85.0 (1) 80.8 (2) 0.89 (3) 0.92 (1) 0.91 (2)
L2-reg. log. regr. 82.6 (3) 84.5 (1) 83.1 (2) 0.90 (2) 0.91 (1) 0.91 (1)
SVM with RBF 79.4 (3) 83.2 (2) 84.1 (1) 0.88 (3) 0.90 (2) 0.91 (1)
Linear SVM 79.4 (3) 84.5 (1) 84.1 (2) 0.89 (2) 0.89 (2) 0.92 (1)
Ada-boost 77.6 (3) 78.1 (2) 79.1 (1) 0.87 (2) 0.87 (2) 0.89 (1)
Random forest 81.7 (1) 78.5 (3) 79.4 (2) 0.88 (2) 0.87 (3) 0.89 (1)

Average ranking 2.67 1.67 1.67 2.33 1.83 1.17

Table 18: Predictive accuracies and areas under the ROC curve (AUC) on the dataset APO104/NB110

achieved by 6 machine learning algorithms using physicochemical features (PF) as proposed by
Szilágyi and Skolnick [120], structural features (SF) automatically constructed by our algorithm,
and the combination of both feature sets (PSF).

protein group acc . on excl . group cv acc . on training data

Helix-turn-helix 83.3 80.3
Zinc-coordinating 100 82.9
Zipper-type 88.9 83.1
Other α-helix 100 85.0
β-sheet 77.8 86.0
Other 100 82.5
Enzyme 58.1 90.4

Table 19: Predictive accuracies obtained by linear SVM classifiers trained on the datasets PD138/NB110

with protein groups excluded from PD138. The accuracy on excluded group is the percentage
of correctly classified proteins from the protein group excluded from the training data. The
cross-validated accuracy on training data is the accuracy of the learnt model estimated by 10-fold
cross-validation on the training data.

accurately over various (non-enzyme) groups of proteins and that its ability to detect DNA-
binding proteins is not due to discovery of conserved consensus patterns of different protein
folds.

9.5 conclusions

We applied relational machine learning techniques to predict DNA-binding propensity of pro-
teins. We utilized the feature construction algorithm RelF described in Chapter 5. We have
shown that our relational learning approach is competitive to a state-of-the-art physicochemical
approach for DNA-binding propensity prediction in terms of predictive accuracy.
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Antimicrobial peptides are molecules responsible for defence against microbial infections in the
first stages of the immunological response. Recently antimicrobial peptides have been recog-
nized as a potential replacement of conventional antibiotics for which some microorganisms
had already acquired resistance. Although, there are theories about the mechanisms by which
antimicrobial peptides kill pathogenic microorganisms, the process has not been fully uncovered
yet. Several computational approaches have been developed in past years to predict antimicro-
bial activity of peptides [16, 124].

In this chapter we describe an approach to prediction of antimicrobial activity from modelled
spatial structure information. We utilize the feature-construction algorithm RelF. We use the
same relational representation that we used for DNA-binding propensity prediction of proteins
in Chapter 9. Whereas RelF was only used for classification problems so far, in this chapter,
we use it for regression (prediction of antimicrobial activity, which is a continuous variable).
We show that this approach improves on a state-of-the-art method to antimicrobial activity
prediction.

10.1 antimicrobial peptides

Antimicrobial peptides (AMPs) have been actively researched for their potential therapeutic ap-
plication against infectious diseases. AMPs are amino acid sequences of length typically from 6

to 100. They are produced by living organisms of various types as part of their innate immune
system [96]. They express potent antimicrobial activity and are able to kill a wide range of
microbes. In contrast to conventional antibiotics, AMPs are bacteriocidal (i.e. bacteria killer) in-
stead of bacteriostatic (i.e. bacteria growth inhibitor). Most AMPs work directly against microbes
through a mechanism which starts with membrane disruption and subsequent pore formation,
allowing efflux of essential ions and nutrients. According to current view this mechanism works
as follows: AMPs bind to the cytoplasmic membrane and create micelle-like aggregates, which
leads to disruption of the membrane. In addition, there may be complementary mechanisms
such as intracellular targeting of cytoplasmic components crucial to proper cellular physiology.
Thus, the initial interaction between the peptides and the microbial cell membrane allows the
peptides to penetrate into the cell to disrupt vital processes, such as cell wall biosynthesis and
DNA, RNA, and protein synthesis. A convenient property of AMPs is their selective toxicity
to microbial targets, which makes them non-toxic to mammalian cells. This specificity is based
on the significant distinctions between mammalian and microbial cells, such as composition,
transmembrane potential, polarization and structural features.

Antimicrobial peptides are small, positively charged, amphipathic molecules. They include
two or more positively charged residues and a large proportion of hydrophobic residues. Many
AMPs exist in relatively unstructured conformations prior to interaction with target cells. Upon
binding to pathogen membranes, peptides may undergo significant conformational changes
to helical or other structures. These conformations of antimicrobial peptides may impact their
selective toxicity [138]. The three-dimensional folding of the peptides results in the hydrophilic
or charged amino acids segregating in space from the hydrophobic residues, leading to either
an amphipathic structure, or a structure with two charged regions spatially separated by a
hydrophobic segment. Such a structure can interact with the membrane [44]. The amphipathicity
of the AMPs enables insertion into the membrane lipid bilayer.
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10.2 existing approaches to activity prediction

Several methods have been developed to predict antimicrobial activity of AMPs with potential
therapeutic application. Some algorithms take advantage of data mining and high-throughput
screening techniques and apply attribute-value approach to scan protein and peptide sequences
[75, 123]. Similar strategies were proposed based on supervised learning techniques, such as
artificial neural networks or support vector machines, in order to evaluate amounts of complex
data [52]. Most attempts have been focused to the prediction of peptide’s activity using quantita-
tive structure-activity relationships (QSAR) descriptors together with artificial neural networks
[53, 33, 16], linear discriminant [122] or principal component analysis [121]. A QSAR-based artifi-
cial neural network system was experimentally validated using SPOT high-throughput peptide
synthesis, demonstrating that this methodology can accomplish a reliable prediction [32]. Re-
cently, an artificial neural network approach based on the peptide’s physicochemical properties
has been introduced [124]. These properties were derived from the peptide sequence and were
suggested to comprise a complete set of parameters accurately describing antimicrobial pep-
tides.

The approach that we propose in this chapter differs from the above mentioned approaches
mainly in the following. Rather than using an ad-hoc set of physicochemical properties of the
peptides, we use an automatic feature construction method based on relational machine learning
to discover structural features capturing spatial configuration of amino acids in peptides. A
positive aspect of our method (besides improving predictive accuracy) is that it provides us
with interpretable features involving spatial configurations of selected amino acids. Moreover,
it is not limited to the prediction of antimicrobial activities as it can easily be used also for
prediction of other numeric properties of peptides.

10.3 antimicrobial activity prediction

Our approach to antimicrobial-activity prediction exploits structure prediction methods and
techniques of relational machine learning in conjunction with state-of-the-art attribute-value
learning algorithms. Very briefly, our method can be imagined as proceeding in four steps. In
the first step, 3D structures of peptides are computed using LOMETS software [135]. LOMETS
combines results of several threading-based structure prediction algorithms and returns sev-
eral models with predicted coordinates of alpha carbon atoms. We use only the best full-length
model according to ordering given by LOMETS for each sequence. In the second step, the rela-
tional representation of peptides’ spatial structures is created from the structures returned by
LOMETS. In the third step, the feature-construction algorithm RelF is used to construct a set of
meaningful structural features. Since RelF had been designed for classification problems, we had
to find a way to use it for regression problems like this. We followed a straightforward approach.
We enriched RelF with preprocessing in which the training data are split into two sets1 accord-
ing to antimicrobial activity - the first set containing peptides with lower-than-median activities,
the second set containing peptides with higher-than-median activities. As soon as we have a
dataset with at least two classes, RelF can be used for construction of discriminative features.
The output of RelF is an attribute-value representation in WEKA format. We also added to these
files additional information about dipole moment, proportions of amino acid types and their
spatial asymmetries [120]. In the last step, SVM with RBF kernel is trained to give a regression
model using the WEKA files generated in step 3. Parameters of the regression model are tuned
using internal cross-validation. When performing cross-validation, the set of patterns is created
separately for each train-test split corresponding to iterations of the cross-validation procedure.

1 When performing cross-validation, we always split the data taking into account only the training set to avoid infor-
mation leakage into the independent test set.
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Torrent et al. [124] Our Regression Model

q2 q2 q RMSE

CAMEL 0.65 0.65 0.81 1.23

RANDOM 0.72 0.74 0.87 1.23

BEE - 0.3 0.61 1.04

Table 20: Experimental results obtained by cross-validation, where q2 is coefficient of determination, q is
correlation coefficient and RMSE is root-mean-square error.

10.4 data

We used three datasets to evaluate our antimicrobial-activity prediction method. The first dataset
named CAMEL was sourced from Cherkasov et al. [16]. It is composed of 101 antimicrobial pep-
tides with experimentally tested antimicrobial potency. These peptides are rich in leucine and
it has been demonstrated that they exhibit high activity against various strains of bacteria. The
minimal inhibitory concentrations for these peptides have been averaged over 13 microorgan-
isms. The target variable typically modelled in studies on antimicrobial activity is the antimicro-
bial potency which can be calculated from the average minimal inhibitory concentrations (MIC)
according to the following formula from [83]

Potency = log2
1066

MIC
.

The second dataset named RANDOM was presented by Fjell et al. [32]. It contains 200 pep-
tides with fixed length which are composed of a few amino acids (TRP, ARG and LYS and,
more limitedly, LEU, VAL and ILE). Although antimicrobial peptides are actually enriched in
these residues, a wide diversity in the amino acid content can be found in natural antimicrobial
peptides [13]. The peptides were assayed for antimicrobial activity using a strain of Pseudomonas
aeruginosa. Fjell et al. did not report absolute MIC values, but only MIC values divided by MIC
of Bac2A peptide (to simplify the measurements). Using relative MIC values poses no problem,
because it manifests itself only through addition of a constant to the potency values (due to the
logarithm).

The last dataset, which we named BEE, was compiled from three different sources: peptides
from the venom of the eusocial bee Halictus sexcinctus and their analogs [84], peptides from
the venom of the eusocial bee Lasioglossum laticeps [128] and peptides from the venom of
the cleptoparasitic bee Melecta albifrons [127]. They contain peptides of length ca. 5 - 15 amino
acids. The minimal inhibitory concentrations for these peptides were obtained for Bacillus subtilis,
Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa. We used the average of these values
following the methodology of previous works [16, 32]. In some cases, when only lower bounds
on MIC were available, we used these values.

These datasets have been also used in Chapter 7 in the evaluation of the algorithm BULL.
However, there, we tackled only a restricted classification problem – we focused on predicting
which peptides have higher-than-median antimicrobial activity.

10.5 results

In this section we present experiments performed on real-life data described in Section 10.4.
We used a representation of peptides that consisted of literals representing types of the amino
acids and literals representing pair-wise distances between the amino acids up to 10 Å. These
distances were computed from alpha-carbon coordinates obtained from PDB files computed
by LOMETS. We used discretisation of distances with discretisation step 2 Å. We trained sup-
port vector machine [15] regression models with RBF kernel selecting optimal C (complexity
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A B C

Figure 16: Most informative structural features according to the χ2 criterion for the dataset of CAMEL
(A), RANDOM (B) and BEE (C)(edges not to scale).

constant) and gamma (determines the kernel width parameter) for each fold by internal cross-
validation. The estimated results are shown in Table 20.

We performed experiments on three datasets (CAMEL, RANDOM and BEE). We compared
the results of our relational learning method for regression with the results reported by Torrent
et al. [124] which is a state-of-the-art method. In the work of Torrent et al., only cross-validated
coefficients of determination (q2) were given. Coefficient of determination can be regarded as
the proportion of variability in a dataset that is accounted for by the statistical model. In ad-
dition, we also report correlation coefficient (q) and root-mean-square error (RMSE) for our
regression method. On the dataset CAMEL we achieved the same results as Torrent et al. On
the dataset RANDOM we improved upon the results of Torrent et al. in terms of coefficients of
determination. Since the dataset BEE is a newly compiled dataset, there are no results to com-
pare our approach with. It is also a harder dataset, than the other two, because it is composed
of three different sources. Each of these sources is homogeneous on its own, but the data are
heterogeneous when joined. Also the variance of antimicrobial activity is lower in this dataset
than in the other two. This explains why the coefficient of determination is so small as compared
to the coefficients of determination obtained for the other datasets.

A problem of antimicrobial peptides as antibiotics is that they often have the ability to lyse eu-
karyotic cells, which is commonly expressed as hemolytic activity or toxicity to red blood cells.
Unlike the other methods which use a pre-fixed set of physicochemical features our method is
not limited to one particular task. Since the sources from which we compiled the dataset BEE
contained also information about the hemolytic activity, we decided to assess the potential of
our method also for prediction of hemolytic activity. Because more than half of the reported
hemolytic activities were given only by an lower-bound (200 µM) (i.e. they were not capable
to measure the exact value), we decided to transform the problem to a two-class classification
problem - the first class corresponding to peptides with activities below the lower-bound, the
second class corresponding to peptides with activities higher than the lower-bound. We per-
formed experiments following the same steps as in the prediction of antimicrobial activity, but
with a random forest classifier instead of support vector machine classifier for regression. We
obtained accuracy 60.83% and AUC (area under ROC curve) 0.725.

In addition, we analysed the structural features used in the regression model in order to get
insight into the process by which the antimicrobial peptides kill bacteria. We used the following
methodology. First, we discretized the antimicrobial activity attribute, so that we could apply
χ2 criterion for ranking of patterns. Then, for each split of the datasets (CAMEL, RANDOM
and BEE) induced by 10-fold cross-validation we selected the three most informative structural
features according to the χ2 criterion. We then selected the pattern which appeared for most
of the folds among the three most informative patterns. These patterns are shown in Figure 16

for the three datasets. The pattern selected by this procedure for the dataset CAMEL assumes
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presence of five amino acids: ILE, LEU, 2×LYS, VAL with distances between them as depicted in
Figure 16. The positively charged Lysines are known to correlate with antimicrobial activity and
the presence of leucine can be explained by the fact that the dataset CAMEL contains mostly
leucine-rich peptides. Interestingly, the remaining two amino acids - Isoleucine and Valine -
and leucine are the only proteinogenic branched-chain amino acids - they each have a carbon
chain that branches off from the amino acid’s main chain, or backbone. The pattern selected
for the dataset RANDOM is very simple. It assumes presence of Tryptophan. Since the patterns
count the number of occurrences, it corresponds to proportion of TRP in peptides. This is not
surprising, given that the peptides of the dataset RANDOM are composed mostly of TRP and
some other amino acids. Finally, the pattern selected for the dataset BEE assumes presence
of two amino acids: LEU and LYS in the distance 4Å from each other. Again, the positively
charged amino acid - Lysine is known to correlate well with antimicrobial activity. Both leucine
and Lysine appeared also in the selected pattern for the dataset CAMEL.

10.6 conclusions

We applied relational machine learning techniques to predict antimicrobial activity of peptides.
To our best knowledge this study was the first attempt to automatically discover common struc-
tural features present in antimicrobial peptides and to use them for prediction of antimicrobial
activity. We utilized the feature construction algorithm RelF. There are two main differences
between the work presented in this chapter and our earlier work. First, the problem that we
tackled in Chapter 9 dealt with classification, whereas here we built a regression model. Second,
here only primary structures of peptides are available and therefore we had to rely on structure
prediction, whereas we could use spatial structures obtained by X-ray crystallography in our
study with DNA-binding proteins. We have shown that our relational learning approach for
regression improves on a state-of-the-art approach to antimicrobial activity prediction.



11P O LY N O M I A L F E AT U R E S F O R P R E D I C T I O N O F D N A - B I N D I N G
P R O P E N S I T Y

In this chapter, we show that the idea of multivariate polynomial aggregation that we introduced
in the relational context (see e.g. Section 4.5) can be used also outside the relational-learning con-
text. Namely, we show that polynomial aggregation features can be used to improve predictive
accuracy of a domain-specific method for DNA-binding propensity prediction called the ball-
histogram method that we introduced in [117].

As we have already mentioned in Chapter 9, improving methods that do not exploit evolu-
tionary information is an important problem. Such methods are valuable mainly due to their
ability to predict DNA-binding propensity of proteins for which evolutionary information is
not available. One such method based on the algorithm RelF was presented in Chapter 9. An-
other method not explicitly relying on relational learning, so-called ball-histogram method, was
described in our work [117]. This method improves upon state-of-the-art in the following way.
Rather than relying on a set of features hand-crafted by domain experts, it is based on a system-
atic, Monte-Carlo-style exploration of the spatial distribution of amino-acids complying to au-
tomatically selected properties. For this purpose we employed so-called ball histograms, which
are capable of capturing joint probabilities of these specified amino acids occurring in certain
distances from each other. A somewhat limiting property of the original ball-histogram method
was that it could only work with discrete properties of proteins’ regions such as numbers of
amino acids of given types. In this chapter we present an approach for dealing with continu-
ous properties of proteins’ regions within the ball histogram method. As it turns out, the new
method has improved predictive accuracy w.r.t the original ball-histogram method.

This chapter is organized as follows. First, we review the ball-histogram method in Section
11.1. Then we introduce the method for handling continuous properties of protein regions in Sec-
tion 11.2. We describe experiments on 4 protein datasets in Section 11.3. Section 11.4 concludes
the chapter.

11.1 ball-histogram method

In this section we describe the original ball-histogram method which has already been applied to
prediction of DNA-binding propensity of proteins in [117]. Originally, the motivation for the
method was the observation that distributions of certain types of amino acids differed signifi-
cantly between DNA-binding and non-DNA-binding proteins. This suggested that information
about distributions of some amino acids in local regions of proteins could have been used to
construct predictive models able to classify proteins as binding or non-binding given their spa-
tial structure. We developed an approach which was able to capture fine differences between the
distributions. It consisted of four main parts. First, so-called templates were found. In the second
step ball histograms were constructed for all proteins in a training set. Third, a transformation
method was used to convert these histograms to a form usable by standard machine learning
algorithms. Finally, a random forest classifier [11] was learned on this transformed dataset and
then it was used for classification. In the rest of this section we describe this method in detail.

11.1.1 Ball histograms

A template is a list of some Boolean amino acid properties. A property may, for example, refer to
the charge of the amino acid (e.g. Positive), but it may also directly stipulate the amino acid type
(e.g. arginine). An example of a template is (Arg,Lys,Polar) or (Positive,Negative,Neutral).

127
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A bounding sphere of a protein structure is a sphere with center located in the geometric center of
the protein structure and with radius equal to the distance from the center to the farthest amino
acid of the protein plus the diameter of the sampling ball which is a parameter of the method.
We say that an amino acid falls within a sampling ball if the alpha-carbon of that amino acid is
contained in the sampling ball in the geometric sense.

A ball histogram for a protein P is computed as follows. First, the geometric center C of all
amino acids of a given protein P is computed (each amino acid is represented by coordinates of
its α-carbon). The radius RS of the sampling sphere for the protein structure P is then computed
as:

RS = max
Res∈P

(distance(Res,C)) + R,

where R is a given sampling-ball radius. After that the method collects a pre-defined number
of samples containing at least one amino acid from the bounding sphere. For each sampling
ball the algorithm counts the number of amino acids in it, which comply with the particular
properties contained in a given template and increments a corresponding bin in the histogram.
In the end, the histogram is normalized.

Figure 17: Example ball histogram with template (Arg,Lys) and sampling-ball radius R = 12 Åcon-
structed for protein 1A31 from the dataset PD138.

Example 39. Let us illustrate the process of histogram construction. Consider the template
(Arg,Lys) and assume we already have a bounding sphere. The algorithm starts by placing
a sampling ball randomly inside the bounding sphere. Assume the first such sampling ball
contained the following amino acids: 2 Arginins and 1 leucine therefore we increment (by 1) the
histogram’s bin associated with vector (2, 0). Then, in the second sampling ball, we get 1 histi-
dine and 1 Aspartic acid, so we increment the bin associated with vector (0, 0). We continue in
this process until we have gathered a sufficient number of samples. In the end we normalize the
histogram. Example of such a histogram is shown in Figure 17.

Ball histograms capture the joint probability that a randomly picked sampling ball (see Figure
18) containing at least one amino acid will contain exactly t1 amino acids complying with
property f1, t2 amino acids complying with property f2 etc. They are invariant to rotation and
translation of protein structures which is an important property for classification. Also note that
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Figure 18: Bounding sphere and sampling ball.

the histograms would not change if we increased the size of the bounding sphere. We make a
crisp distinction between the case where an amino acid falls within a sampling ball on one hand,
and the case where it falls out of it, on the other hand.

11.1.2 Transformation-based learning

The transformation method for classification is quite straightforward. It looks at all histograms
generated from the protein structures in a training set and creates a numerical attribute for each
vector of property occurrences which is non-zero at least in one of the histograms. After that an
attribute vector is created for each training example using the collected attributes. The values
of the entries of the attribute-vectors then correspond to heights of the bins in the respective
histograms. After this transformation a random forest classifier (or some other classifier able to
cope with a large number of attributes) is learned on the attribute-value representation. This
classifier is then used for the predictive classification.

11.2 extending ball histograms with continuous variables

In this section we describe our novel efficient method for incorporation of continuous attributes
into the ball-histogram framework. We start by explaining why the existing ball-histogram ap-
proach is not suitable for work with continuous attributes. Then we introduce so-called polyno-
mial aggregation features and after that we show how they can be used in a ball-histogram-based
approach to predictive classification.

11.2.1 Motivation

A drawback of the original ball-histogram method is that it is ill-suited for work with continuous
variables. For example, it is possible to model the distributions of arginines and Lysines using the
ball-histogram method as we have seen in the previous section. There we were able to construct
an empirical estimate of the probability P(Arg = i,Lys = j) that there are exactly i arginines and
j Lysines in a ball randomly sampled from a given protein structure (which can be regarded as the
desired model of the distributions of amino acids for our predictive purposes). However, if we tried
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to model distributions of e.g. hydropathy and volume of amino acids in a given protein structure
in the very same way, we would face serious difficulties stemming from combinatorial explosion
of the number of histograms’ bins - attributes as the next example indicates.

Example 40. Let us have a protein structure P and a sampling-ball radius R such that any
ball can contain at most 6 amino acids. Let us have a template τ = [Arg,Lys]. Then there
is less than 72 = 49 non-zero bins in the respective histogram for values [Arg,Lys] = [0, 0],
[Arg,Lys] = [1, 0], . . . , [Arg,Lys] = [6, 0], . . . , [Arg,Lys] = [0, 6]. Let us now have a template
τ2 = [Hydropathy,Volume] and note that both hydropathy and volume are properties of amino
acids which acquire non-integer values. Now, we can construct a (perhaps pathological and

unrealistic) protein structure such that the number of bins will be at least

(
20

6

)
= 38760 bins.

This is certainly an impractically high number. Moreover, if we followed the transformation-
based approach of the basic ball-histogram method which represents each bin as a real-valued
attribute, we would be effectively discarding much of the information about which bins are
close to each other (and thus could possibly be considered as one discretized bin).

The above example has illustrated the problems that would arise if we tried to use the original
ball-histogram method for continuous properties. A possible approach to cope with these prob-
lems would be to use discretization of the values. However, discretization is known to perform
poorly when the number of dimensions of the problem increases [17] which may very often be
the case with ball histograms. Instead of relying on discretization, we use multivariate polynomial
aggregation - a strategy that we have recently introduced in the context of statistical relational
learning.

11.2.2 Multivariate Polynomial Aggregation Features

Now, we introduce multivariate polynomial aggregation features. We start by defining monomial and
polynomial features for sampling balls and then use these definitions to define values of monomial
and polynomial features on protein structures.

A monomial feature M is a pair (τ, (d1, . . . ,dk)) where τ is a template with k properties and
d1, . . . ,dk ∈ N. Degree of M is deg(M) =

∑k
i=1 di. Given a sampling ball B placed on a protein

structure P, we define the value of a monomial feature M = (τ, (d1, . . . ,dk)) as M(B) = τd11 ·
τd22 · · · · · τ

dk
k where τi is the average value of the i-th property of template τ averaged over the

amino acids contained in the sampling ball B. We use the convention that 00 = 1. Sometimes,
we will use a more convenient notation for monomial features motivated by this definition of
value:

(τ = (τ1, . . . , τk), (d1, . . . ,dk)) ≡def τd11 · τ
d2
2 · · · · · τ

dk
k

Example 41. Let us have a template

τ = [hydropathy, volume],

a monomial feature
M = hydropathy · volume2

and a sampling ball containing two leucines (hydropathy = 3.8, volume = 124) and one argi-
nine (hydropathy = −4.5, volume = 148). Then

M(B) =
2 · 3.8− 4.5

3
·
(
2 · 124+ 148

3

)2
≈ 1.8 · 104

A multivariate polynomial feature is an expression of the form

N = α1M1 +α2M2 + · · ·+αkMk
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where M1, . . . ,Mk are monomial features and α1, . . . ,αk ∈ R (formally expressed as a pair of
two ordered sets - one of monomials and one of the respective coefficients). Value of a polynomial
feature N = α1M1 + · · · + αkMk w.r.t. a sampling ball B placed on a protein structure P is
defined as

N(B) = α1M1(B) +α2M2(B) + · · ·+αkMk(B).

Degree of a polynomial aggregation feature P is maximum among the degrees of its monomials.
Now, we extend the definitions of values of monomial and polynomial features for protein

structures. Given a polynomial aggregation feature N and a sampling-ball radius R, we define
the value N(P) of a polynomial feature N w.r.t. a protein structure P as:

N(P) =

∫
P̂
N(B)dB∫
P̂
dB

(9)

where P̂ is the set of all sampling balls with radius R which contain at least one amino acid
of the protein structure P. The integral

∫
P̂
dB in the denominator is used as a normalization

constant. Intuitively, the integral computes the average value of a polynomial feature N over
balls located on a given protein structure. (Although the definition is hopefully intuitively clear,
it is not completely specified since we did not define integration over the space of balls. We
provide a formal definition in Section 11.5.)

It can be seen quite easily that polynomial aggregation features on protein structures share
convenient properties with the discrete ball histograms. They are invariant to rotation and trans-
lation of the protein structures which is important for predictive classification tasks. Intuitively,
a monomial feature M = τi corresponds to the average value of property τi (in sampling balls
of a given radius) over a given protein structure. A monomial feature M = τ2i captures the
dispersion of the values of property τi over a given protein structure. Indeed, let us have two
proteins A and B and a monomial feature M = charge2 and let us assume that A and B are
composed of the same number of amino acids and that they contain the same number of posi-
tively charged amino acids and no negatively charged amino acids. Finally, let us also assume
that the positively charged amino acids are distributed more or less uniformly over the protein
structure A but are concentrated in a small region of the protein structure B. Then it is not
hard to see that for the values M(A) and M(B) it should hold M(A) 6 M(B). Analogically, a
monomial feature M = τi · τj corresponds to agreement of values of properties τi and τj over
a given protein structure but the covariance of these values is better captured by the following
expression involving monomial features:

M1(P) −M2(P) ·M3(P)

where M1 = τi · τj, M2 = τi and M3 = τj. Note that this expression is not a polynomial
aggregation feature but only an expression composed of polynomial (monomial) aggregation
features. This can be seen when we expand M1(P), M2(P) and M3(P) and obtain

M1(P) −M2(P)M3(P) =
∫
P̂
τi·τjdB∫
P̂
dB

−
∫
P̂
τidB∫
P̂
dB
·
∫
P̂
τjdB∫
P̂
dB

which is not a value of a polynomial aggregation feature. However, it can be easily constructed
from some polynomial aggregation features.

Values of polynomial aggregation features can be further decomposed into so called k-values
computed only from balls containing exactly k amino acids. Given a polynomial feature N and
a positive integer k, the k-value of N w.r.t. a protein P is given as

N(P|k) =

∫
P̂k
N(B)dB∫
P̂k
dB
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where P̂k is the set of all sampling balls which contain exactly k amino acids. The value of a
polynomial feature can then be expressed using k-values as

N(P) =
∑
i

βi ·N(P|i)

where βi =
∫
P̂i
dB/
∫
P̂
dB.

In summary, polynomial aggregation features can be expressed using combinations of mono-
mial aggregation features and values of monomial aggregation features can, in turn, be com-
puted using simple expressions involving k-values of monomial aggregation features and pro-
portions of balls containing exactly a given number of amino acids. This implies that when
using polynomial features for construction of attributes for machine learning, we can rely solely
on the k-values and the few proportions and let the machine learning algorithms compute the
values of monomial or polynomial aggregation features from these values if needed.

11.2.3 Ball Histograms with Continuous Variables

Polynomial aggregation features can be used for predictive classification in a way completely
analogical to discrete ball histograms. Given a template τ, sampling-ball radius R, a maximum
degree dmax and a protein structure, we construct all monomials containing the continuous
variables from τ and having degree at most dmax. After that we construct the attribute-table.
The rows of this table correspond to examples and the columns (attributes) correspond to k-
values of the constructed monomial features. There is an attribute for every k-value such that
there is at least one protein structure in the dataset such that it contains a set of k amino acids
which fit into a ball of radius R.

The integrals used in definitions of values (or k-values) of monomial aggregation features
are difficult to evaluate precisely therefore we use a Monte-Carlo-based approach similar to
the case of discrete ball histograms. The set of k-values of monomial aggregation features for
a protein P is computed as follows. First, a bounding sphere is found for the protein structure
(with geometric center located in the geometric center of the protein structure and with radius
RS = maxRes∈P(distance(Res,C)) + R, where R is a specified sampling-ball radius). After that
the method collects a pre-defined number of samples containing at least one amino acid from
the bounding sphere. For each sampling ball B the algorithm computes kB-values (where kB is
the number of amino acids contained in B) of all monomial features complying with a given
template and with a given maximum degree and stores them. In the end, the collected k-values
of sampling balls are averaged to produce approximate k-values for the protein structure P.

After the attribute-table is constructed, it can be used to train an attribute-value classifier such
as random forest or support vector machine which can be then used for prediction on unseen
proteins.

11.3 experiments

In this section, we describe results obtained in experiments with four datasets of proteins. We
compare our novel method to the original ball-histogram method and to the method of Szilágyi
and Skolnick [120], which are methods relying only on structural information. We also compare
our method with the results of Nimrod et al. [94], which is a method which uses not only
structural information but also evolutionary-conservation information.

11.3.1 Data

We used two datasets of DNA-binding proteins and two datasets of non-DNA-binding proteins
in our experiments:

• PD138 - dataset of 138 DNA-binding protein structures in complex with DNA,



11.3 experiments 133

• UD54 - dataset of 54 DNA-binding protein structures in unbound conformation,

• NB110 - dataset of 110 non-DNA-binding protein structures,

• NB843 - dataset of 843 non-DNA-binding protein structures.

These datasets were described in Section 9.2.

11.3.2 Results

We performed predictive experiments with the four combinations of datasets PD138/ NB110,
PD138/NB843, UD54/NB110 and UD54/NB843 described in the previous section. We used
monomial aggregation features with maximum degree 3 and the following basic chemical prop-
erties of amino acids:

• Amino acid charge (under normal conditions)

• Amino acid Van der Waals volume

• Amino acid hydropathy index

• Amino acid isoelectric point (pI)

• Amino acid dissociation constants pK1 and pK2

and the following three properties related to DNA-binding derived by Sathyapriya et al. [106]

• Amino acid base-contact propensity

• Amino acid sugar-contact propensity

• Amino acid phosphate-contact propensity

We trained random forest classifiers using only the attributes having non-zero information gain-
ratio on training set. When performing cross-validation, this attribute selection was performed
separately on the respective training sets induced by cross-validation so that no information
could leak from a training set to a testing set. We compared the continuous ball-histogram method
presented in this chapter with the original discrete ball-histogram method and with the method
of Szilágyi and Skolnick [120], which we reimplemented. The estimated accuracies and AUCs
are shown in Table 21. The new continuous ball-histogram method performed best in terms of
accuracy in all cases and in terms of AUC in all but one case where the discrete ball-histogram
method performed best. We also tested the original ball-histogram method with random forest
classifiers enriched with attribute-selection but it did not improve performance.

In addition, we performed experiments with the method of Szilágyi and Skolnick where we
replaced logistic regression by random forests (the classifier originally used in their paper was
logistic regression for which the obtained accuracy is shown in Table 21). We also compared the
obtained results with results reported by Szilágyi and Skolnick in [120]. When using random
forest classifier with features of Szilágyi and Skolnick, accuracy increased to 0.82 for the dataset
PD138/NB110, which is still lower than 0.89 obtained by the continuous ball-histogram method,
and remained unchanged for dataset PD138/NB843 and AUC actually decreased for both of
the datasets by 0.02. In [120], AUC 0.93 was reported for the dataset PD138/NB110 which is
still lower than 0.95 obtained by the continuous ball-histogram method. Szilágyi and Skolnick
also reported AUC 0.91 for the dataset UD54/NB110 in [120] which is higher by 0.01 than the
result obtained by the continuous ball histograms. However, this value of AUC was obtained on
the dataset UD54/NB110 by a logistic regression classifier trained on the dataset PD138/NB110.
The reported value is very probably overoptimistic because the proteins from the dataset NB110

were used both in the training set and in the test set.
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Cont. ball histograms Disc. ball histograms Szilágyi et al.

Acc AUC Acc AUC Acc AUC

PD138/NB110 0.89 0.95 0.87 0.94 0.81 0.92

PD138/NB843 0.89 0.86 0.88 0.87 0.87 0.84

UD54/NB110 0.87 0.90 0.81 0.89 0.82 0.89

UD54/NB843 0.95 0.83 0.94 0.81 0.94 0.78

Table 21: Experimental results obtained by cross-validation for the continuous ball-histogram method
(C. ball histograms), the original discrete ball-histogram method (D. ball histograms) and the
method of Szilágyi and Skolnick (Szilágyi et al.).
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Figure 19: Values of feature volume · pI2 (k = 3) for combinations of amino acids in the form
{AA1,AA1,AA2}. The x-axis corresponds to AA1 and the y-axis corresponds to AA2.

In order to see whether the ball-histogram method, which uses only structural information,
could come close to the results of methods which exploit also information about evolution-
ary conservation of regions on protein surfaces, we compared our results with the results of
Nimrod et al. [94]. The AUC 0.96 and accuracy 0.90 reported in [94] for the datasets PD138

and NB110 differs only slightly (by 0.01) from our best results. The AUC 0.90 obtained for the
datasets PD138 and NB843 differs by 0.04 from our best results. These results are encouraging
given how important evolutionary information turned out to be according to experiments from
[94]. When removing evolutionary information, Nimrod et al.’s misclassification error on the
dataset PD138/NB110 increased by 0.035 which corresponds to lower predictive accuracy than
obtained by our method. Moreover, even without the evolutionary information their classifier
used significantly more information than our method (e.g. secondary structure information).

In addition to improved accuracy, our method provides us with to-some-extent interpretable
features involving distributions of regions with certain chemical properties. We used information-
gain attribute selection method to select three most informative attributes on the dataset PD138/
NB843 for further inspection. The selected attributes (i.e. k-values of monomial features) were:
volume ·pI2 (k = 3), P_p · volume · charge (k = 2) and P_p · volume ·pI (k = 2). It is interesting
to note that the first (best) monomial did not involve any of the propensities P_p, P_B or P_S and
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that only the propensity P_p appeared in the remaining two of the three best monomials. The
best feature volume · pI2 (k = 3) defines one value for every combination of three amino acids,
which can appear in a sampling ball, and these values are then used to compute aggregated
values over protein structures. In Figure 19 we show these values for combinations of amino
acids in the form {AA1,AA1,AA2}. It is interesting to note that the balls corresponding to the
highest values of this feature are those containing positively-charged amino acids - arginine and
lysine and that, analogically, the balls corresponding to the lowest values are those containing
the negatively-charged amino acids - aspartic acid and glutamic acid. This is of course mainly
caused by the pI2 term because pI is the pH at which an amino acid carries no electrical charge.
However, it is interesting that the monomial volume · pI2 is a better predictor of DNA-binding
propensity than monomials pI, pI2 or pI3.

11.4 conclusions

We have extended our recently introduced ball histogram method by incorporation of polynomial
aggregation features which are able to capture distributions of continuous properties of proteins’
regions. The method achieved higher predictive accuracies than the original ball-histogram
method as well as an existing state-of-the-art method. There are interesting future research
directions regarding our novel approach. For example, it would be interesting to explore the
possibility to use more chemical descriptors of amino acids or protein-regions.

11.5 theoretical details

In the main text, we used integration over the space of sampling balls without explicitly defining
it. We remedy this here. Formally, a sampling ball B is a four-tuple (x,y, z,R) where x,y, z are
coordinates of the ball center and R is the ball’s radius. Let us have a function f(x,y, z,R) and a
set of sampling balls X with fixed radius R and an expression V =

∫
X f(B)dB. Then V is equal to

V =

∫
(x,y,z,R)∈X

f(x,y, z,R)dxdydz.

For example, when we have a monomial feature M = volume · charge, then

f(x,y, z,R) =
avg_volumeB · avg_chargeB

nB

where nB, avg_volumeB and avg_chargeB are the number, the average volume and the average
charge of amino acids in the sampling ball with center x,y, z and radius R.
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In this thesis, we dealt with the problem of making construction of relational features more
efficient in the cases when we know or assume that a good set of features can be constructed
from features having some special restricted form. We introduced novel algorithms for fast
construction of relational features and several other methods and ideas applicable in relational
learning in general. We presented novel algorithms of two types: algorithms based on a block-
wise strategy exploiting monotonicity of redundancy and reducibility and algorithms based on
a new notion of bounded least general generalization.

The main idea underlying the first type of algorithms presented in Part ii is that redundancy
and reducibility can be made monotonous in a certain block-wise feature-construction strat-
egy. The introduced feature-construction algorithms RelF, HiFi and Poly are able to construct
exhaustive sets of relatively long non-redundant treelike features. The treelike bias does not
compromise the predictive ability. In fact, the new algorithms were able to obtain better pre-
dictive accuracies in many domains compared to state-of-the-art relational learning systems.
Moreover, they turned out to be useful building blocks of systems for the prediction of DNA-
binding propensity of proteins and for the prediction of antimicrobial peptides, which are both
important biological problems.

The main idea of the second type of algorithms presented in Part iii is to generalize exist-
ing notions of θ-subsumption, θ-reduction and least general generalization and parametrize
them by sets of first-order-logic clauses. Informally, the resulting algorithms then guarantee
that the constructed clauses (features) will be at least as good as clauses from the set used for
parametrization. Importantly, a vast number of local consistency techniques from the field of
constraint satisfaction can be used as building blocks of algorithms for various parametrization
sets. Two important examples of parametrization sets with the respective local consistency tech-
niques are: clauses of treewidth at most k with the k-consistency algorithm and acyclic clauses
with the generalized-arc-consistency algorithm. The experiments that we performed indicate
that the new algorithms are able to achieve state-of-the-art accuracy using only small sets of
long complex features.

Besides the main contributions which are the feature-construction algorithms, this thesis also
introduced polynomial features. We showed that polynomial features are useful in the relational
context. In Chapter 11, we also showed that they can be useful even outside the relational
context. Another smaller contribution presented in this thesis is the introduction of the concept
of a safe reduction of a learning example and the development of methods for its utilization as
a preprocessing technique. Using the idea of safe reduction, we were able to speed up existing
relational learning algorithms by preprocessing their input.

We also described the use of some of the presented algorithms as components of bioinfor-
matics methods for solving the problems of the DNA-binding propensity prediction and the
antimicrobial activity prediction of peptides.
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AT R E E L I K E R - A S U I T E O F F E AT U R E C O N S T R U C T I O N A L G O R I T H M S

The software package TreeLiker described in this chapter contains implementations of three
feature-construction and propositionalization algorithms: HiFi, RelF (described in Chapter 5),
and Poly (described in Chapter 6). All three produce treelike features, use the same mechanism
(so-called templates) for specifying a particular language bias, and exploit a special, block-wise
strategy to construct features. HiFi and RelF generate Boolean-valued or numerical (integer-
valued) features. In the latter case, the value is the number of different matching substitutions
for the example. Unlike HiFi, RelF assumes that examples are class-labeled and thus is especially
suitable for supervised-learning analysis. Using class labels, RelF can filter out strictly redundant
features. Poly generates numerical (real-valued) features and does not require class labels. Its
main distinguishing feature is its focus on domains which contain large amounts of informa-
tion in the form of numerical data. Poly is based on a technique of multivariate polynomial
aggregation.

The algorithms contained in TreeLiker have already been used successfully in several bioinfor-
matics studies. RelF was used for prediction of DNA-binding propensity of proteins achieving
favourable results as compared to a state-of-the-art method (Chapter 9). It was also used for
prediction of antimicrobial activity of peptides for which it also achieved results better than a
state-of-the-art method (Chapter 10). Poly was used in preliminary studies to automatize con-
struction of gene-set definitions where it was able to find definitions of gene-sets in terms of
gene relations (Chapter 6). These gene-sets turned out to be competitive to gene-sets based on
fully-coupled fluxes when used in predictive setting. Poly was also used to construct predictors
of DNA-binding propensity that used only information about primary and secondary structure
of proteins (Chapter 6).

a.1 implementation

The algorithms are implemented in Java and all three are based on the same core set of under-
lying classes. These classes provide support for the syntactical generation of features, for their
filtering based on syntactical and redundancy constraints, and for multivariate aggregation. The
core classes are compact, comprising of approximately 15 thousand lines of code. The implemen-
tation is intended to be easily extendible. For example, it is easy to add new types of multivariate
aggregation features. The core code of the algorithms is documented using JAVADOC; there are
about 7 thousand lines of comments in the code.

Efficiency of the implemented algorithms was an important objective during the development
of TreeLiker. The implementation contains substantial parts which are parallelized in order to
harness the power of multi-core processors. Furthermore, many sub-results are cached using
intelligent mechanism of so-called soft-references provided by the Java virtual machine. Soft ref-
erences allow us to let the virtual machine decide when the cached results should be discarded
in order to free the memory.

a.1.1 Representation of Input Data

Learning examples are composed of ground facts which are expressions not involving variables,
for example: hasCharge(arginine). Two instances of learning examples are shown below:

DNA-binding aminoacid(a), is(a, histidine), aminoacid(b), is(b, cysteine), distance(a, b, 6.0), dis-
tance(b, a, 6.0)
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non-DNA-binding aminoacid(a), is(a, tryptophan), aminoacid(b), is(b, tyrosine), distance(a, b,
4.0), distance(b, a, 4.0)

Here, the first word on each line denotes class of the example. The rest of the line is then the
set of true facts - the description of the example. In this simple case, the first learning example
is labelled as a DNA-binding protein (that is the class of this example) and the protein has an
amino acid Histidine and an amino acid Cysteine which are in distance 6.0 Å from each other.
The second learning example is labelled as a non-DNA-binding protein and has an amino acid
Tryptophan and an amino acid Tyrosine which are in distance 4.0 Å from each other. In a realistic
setting, the description of a protein would consist of thousands of facts.

a.1.2 Types of Relational Features

The algorithms contained in TreeLiker (RelF, HiFi and Poly) are intended for construction of
relational features. Relational features are conjunctions of literals. For example,

F = aminoacid(A), distance(A,B, 6.0), is(B, cysteine)

is a feature stipulating the presence of an untyped amino acid and a cysteine in the mutual
distance of 6Å. A feature F matches example e if and only if there is a substitution θ to the
variables of F such that Fθ ⊆ e. So for example, our feature F matches the first learning example
in the previous section. This can be also seen as checking whether a conjunctive database query
(feature) succeeds for a given relational database (learning example).

There are three settings in which the three feature construction algorithms can work. The first
is the existential setting in which we are only interested in whether a given feature matches an
example. As a result of matching, the feature thus receives a Bolean value. The second setting
is the counting setting. Here, we count how many substitutions θ there are such that Fθ ⊆ e

for feature F and example e. The feature then receives an integer value. The counting inter-
pretation showed some significant advantages over the existential interpretation in analysis of
DNA-binding proteins [118].

Finally, there is also a third setting based on multivariate relational aggregation, designed
especially for representing structures annotated with numerical data. The method is described
in detail in Chapters 4 and 6. Briefly, in this setting, a feature may contain several distinguished
variables which are used as extractors of numerical information. Every substitution θ such that
Fθ ⊆ e gives us one sample of the numerical variables which is a vector of real numbers. This
vector can be used as input to a multivariate function (which may compute e.g. correlations of
the variables). The result is then computed by averaging outputs of the multivariate function
over all samples for the given example e.

a.1.3 Language Bias - Templates

Through templates, the user constrains the syntax of generated features.1 Formally, templates are
sets of literals. For example, the following expression is a template:

τ1 = aminoacid(−a), is(+a, #str), distance(+a,−b, #num), aminoacid(+b), is(+b, #str).

Literals in templates have typed arguments. In template τ1 above, the types are: a and b. Only
same-typed arguments may contain the same variable in a correct feature. For example, the next
feature complies with the typing from template τ1:

F1 = aminoacid(X), distance(X, Y, 4), is(Y, histidine)

1 Templates are similar in spirit to mode-declarations used in inductive logic programming systems Aleph or Progol
[86].
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which can be checked easily: variable X appears only in arguments which can be marked by
type a and variable Y appears only in arguments which can be marked by type b. On the other
hand, the next expression is not a valid feature according to the typing in template τ1:

F2 = aminoacid(X), is(Y,X)

because X appears in arguments marked by two different types: a and str.
Arguments of literals in templates also have modes. The most important types of modes are the

following (signs, shown in parentheses, are used in templates to denote the particular modes):
input (+), output (-), constant (#) and aggregation (*).

We start by explaining the two most important types of modes: input and output modes. Any
variable in a valid feature must appear exactly once as an output (i.e. in an argument marked by
mode -) and at least once as an input (i.e. in an argument marked by mode +). For example, F1
(shown above) complies with this condition w.r.t. the respective templates. On the other hand,
for example, F2 and F3 and F4 shown below do not comply with modes specified in template
τ1:

F3 = aminoacid(A), distance(A,B, 6)

F4 = distance(A,B, 6), is(B, histidine).

The feature F3 is not valid because variable B appears as an output but not as an input. The
feature F4 is not valid because variable A appears as an input but not as an output.

A simple way to understand how templates specify features is to imagine them procedurally
as defining a process for constructing valid features. The process can be visualized as follows.
We find a literal in the given template which does not contain any input-argument (i.e. none of
its arguments is marked by +) and create the first literal of the feature to be constructed from it,
e.g.

aminoacid(A) (10)

from the template-literal aminoacid(−a). Then we search for literals in the template which have
an input-argument with such type that can be connected to aminoacid(A). Such a literal is
distance(+a,−b, #num) or is(+a, #str). So, for example, we can create a literal distance(A,B, 8)
according to distance(+a,−b, #num) and connect it to aminoacid(A) which gives us

aminoacid(A), distance(A,B, 8). (11)

Now, we have several options to extend the partially constructed feature 11. One possibility is
to connect another literal to the variable A. We can add another literal based on is(+a, #str) or
distance(+a,−b), because there may be multiple input-occurrences of one variable, or we can
add a literal based on is(+b, #str) or aminoacid(+b) and connect it to variable B. Let us assume
that we decided to follow the last option. Then we can get e.g. the following expression:

aminoacid(A), distance(B,C, 6), is(B, histidine) (12)

We could continue in this process indefinitely and create larger and larger expressions. How-
ever, as we have shown in Chapter 5, there is only a finite number of non-reducible treelike fea-
tures. Moreover, there are usually even fewer non-reducible and non-redundant features. RelF,
HiFi and Poly are able to search through all these possible features exhaustively and efficiently.

Any template-literal can contain at most one input-argument. For example, the next template
is not valid

τ2 = atom(−a, #atomType), bond(+a,+a)

because the literal bond(+a,+a) has two input arguments.
Mode and type declarations must not contain cycles. There is an additional technical require-

ment on valid templates. Let us define an auxiliary graph. In this graph, we have one vertex for
each type (of arguments) contained in the template. There is an edge from a vertex V to a vertex
W if and only if there is a literal which contains the type associated to the vertex V in an input



A.1 implementation 142

argument and the type associated to the vertex W in an output argument. This graph must not
contain oriented cycles.

This means that the next template

τ3 = atom(+a), bond(+a,−a)

is not valid because there is a cycle (loop in this case) from a to a. Similarly, the template

τ4 = atom(−a), bond(+a,−b), bond(+b,−a)

is also not valid because there is a cycle a− b− a.
Very often, we need not only variables but also constants. Templates can be used to denote

which arguments may contain only constants. For example for the next template

τ5 = aminoacid(−a), is(+a, #const)

one of the possible valid features could be

F5 = aminoacid(A), is(A, histidine).

where his is a constant. Another example of a template using constants is shown next:

τ6 = atom(−a, #atomType), bond(+a,−b), atom(+b, #atomType)

which specifies features such as:

F6 = atom(X, carbon), bond(X, Y), atom(Y, carbon), bond(X,Z), atom(Z, hydrogen).

The feature-construction algorithm Poly is able to construct multi-variate polynomial rela-
tional features. These are polynomial aggregation features which generalize µ-vectors and σ-
matrices from Gaussian logic (see [63]). We need to be able to select which arguments can con-
tain variables that should be used to extract the numerical values from the learning examples.
We use so-called aggregation modes (denoted by *) for this. For example the next template:

τ7 = charge(−a, ∗chrg), bond(+a,−b), charge(+b, ∗chrg)

defines features which are able to construct multivariate polynomial features involving charges
of atoms in molecules such as:

F7 = charge(X,CH1), bond(X, Y), charge(Y,CH2), bond(X,Z), charge(Z,CH3)

which can in turn be used to construct the polynomial aggregation features such as AVG(CH1 ·
CH2 ·CH3) or AVG(CH12).

a.1.4 TreeLiker GUI

The user interacts with TreeLiker either through a graphical interface or through a scripting
interface. The former provides only a rather limited access to WEKA’s learning algorithms and
is meant mainly to assist the user in rapid assessment of the usefulness of the propositionalized
representation in the iterations of template tuning. As soon as reasonable settings have been
established, the user may employ TreeLiker through the scripting interface within more intricate
experimental workflows.

The application consists of six main modules: Input Module, Template Module, Pattern Search
Module, Found Patterns Module and Training Module. The Input Module allows the user to
select the dataset directories or the specific files that should be used as input data. The user
can add as many datasets as desired. The Template Module permits the user to introduce the
template specifying the language bias that should be used in the execution of the algorithms.
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Figure 20: A screenshot of the graphical user interface of TreeLiker.

The Pattern Search Module enables the user to construct relational patterns for the datasets
selected in the Input Module. The language bias is taken from the Template Module. The Found
Patterns Module uses the results provided by the Pattern Search Module. It shows the structural
patterns that were found. The Training Module allows the user to train a classifier based on the
patterns generated in the Pattern Search Module. The available classifiers are Zero Rule, SVM
with Radial Basis Kernel, J48 Decision Tree, One Rule, Ada-boost, Simple Logistic Regression,
Random Forest, L2-Regularized Logistic Regression and Linear SVM.

A screenshot of the graphical user interface is shown in Figure 20.

a.1.5 TreeLiker from Command Line

The command line interface of TreeLiker provides full access to all features of TreeLiker (it
provides access to some advanced functionalities which are not accessible from TreeLiker GUI).
It allows to set-up more complicated experiments through TreeLiker-batch files.

TreeLiker can be run from command line once we have a TreeLiker-batch file with settings
of the experiment. Here, we assume that we already have a TreeLiker-batch file called experi-
ment.treeliker. Then, TreeLiker can be run using the following command:
java -Xmx1G -jar TreeLiker.jar -batch experiment.treeliker

a.1.5.1 TreeLiker-Batch Files

TreeLiker-batch files specify the data to be processed, algorithms with which they should be
processed and the detailed settings of the algorithms. The content of a sample TreeLiker-batch
file is shown below:

set(algorithm, relf) % the algorithm
set(output_type, single) % type of output (single = one file)
set(output, ’trains.arff’) % where to save the results
set(examples, ’trains.txt’) % the learning examples
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% the template
set(template, [aminoacid(-a), is(+a, #aa_type), aminoacid(+b), is(+b, #aa_type), distance(+a, -b,
#num)])
work(yes) % tells TreeLiker to run the selected algorithm

% with the selected parameters

The first line set(algorithm, relf) sets the algorithm to be used by TreeLiker. In this case, it is
RelF which works in existential mode.

The second line set(output_type, single) sets the type of output. There are three types: 1. single
which constructs one file using all the examples given in the training data, 2. cv which creates
the given number (10 by default) of pairs of training and testing .arff (WEKA) files which can
be used to perform cross-validation, 3. train_test which creates two files from the given training
and testing data.

The third line set(output, ’trains.arff’) sets the output file in which the constructed relational
features and the propositionalized table should be stored. TreeLiker uses .arff file format which
is used in WEKA.

The fourth line set(examples, ’trains.txt’) sets path to the training examples which should be
used.

The fifth line set(template, [aminoacid(-a), is(+a, #aa_type), aminoacid(+b), is(+b, #aa_type),
distance(+a, -b, #num)]) specifies the template which should be used to constrain the space of
possible features.

Finally, the sixth line work(yes) tells TreeLiker to run the selected feature construction algo-
rithm.

If the above TreeLiker-batch file is run on the following file of training examples (trains.txt):
DNA-binding aminoacid(a), is(a, his), aminoacid(b), is(b, cys), aminoacid(c), is(c, arg), dis-
tance(a, b, 6.0), distance(b, a, 6.0), distance(a, c, 4.0), distance(c, a, 4.0)

non-DNA-binding aminoacid(a), is(a, his), aminoacid(b), is(b, cys), aminoacid(c), is(c, arg), dis-
tance(a, b, 4.0), distance(b, a, 4.0), distance(a, c, 4.0), distance(c, a, 4.0)

non-DNA-binding aminoacid(a), is(a, trp), aminoacid(b), is(b, tyr), distance(a, b, 4.0), distance(b,
a, 4.0)

then it outputs the following .arff file:

@relation propositionalization
@attribute ’aminoacid(A), distance(A, B, 4.0), aminoacid(B)’ {’+’}
@attribute ’aminoacid(A), distance(A, B, 4.0), is(B, cys)’ {’+’,’-’}
@attribute ’aminoacid(A), distance(A, B, 6.0), aminoacid(B)’ {’+’,’-’}
@attribute ’aminoacid(A), is(A, arg)’ {’+’,’-’}
@attribute ’aminoacid(A), is(A, trp)’ {’+’,’-’}
@attribute ’classification’ {’DNA-binding’,’non-DNA-binding’}

@data
’+’, ’+’, ’-’, ’+’, ’-’, ’non-DNA-binding’
’+’, ’-’, ’+’, ’+’, ’-’, ’DNA-binding’
’+’, ’-’, ’-’, ’-’, ’+’, ’non-DNA-binding’

In the more realistic settings of our previous experimental evaluations, TreeLiker would con-
struct tens of thousands features for thousands of learning examples. More involved ways of
using TreeLiker are described in the user manual.
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a.1.6 Output

All the three algorithms store their output as .arff files which can be read by WEKA [133]. As
exemplified in the previous section, the output file contains both the definitions of the produced
features and the attribute-value table consisting of evaluations of each feature on each example.

a.2 availability and requirements

Project name: TreeLiker
Project home page: http://sourceforge.net/projects/treeliker
Operating system: Platform independent
Other requirements: Java 1.6 or higher
License: GNU GPL



BA P R O B A B I L I S T I C F R A M E W O R K F O R F E AT U R E S

Here, we formalize the notion of probability space of learning examples and prove a proposition
stated but not proved in the main text of the thesis.

b.1 the framework

Examples are split into two parts: discrete and continuous. They have both structure and real
parameters. The structure is described by an interpretation, in which the constants ri represent
uninstantiated real parameters. The parameter values are determined by a real vector. Formally,
an example is a pair (H,~θ) where H is an interpretation, ~θ ∈ ΩH, where ΩH ⊆ R|I(H)| and R
denotes the set of real numbers. The probability space for our learning examples, assuming a
given first-order language L, is the triple (Ω,A,P) where Ω, A and P are given as follows.

Let L be a first-order language with a countable number of predicate symbols, function sym-
bols and constants. Let HL be the set of all Herbrand interpretations w.r.t. the language L

with finite length. Note that this set is countable. Since, the set HL is countable, we can write
HL = {H1,H2, . . . }. We set

Ω =

∞⋃
i=1

{Hi}× R|I(H)|.

Next, we set

AHi =
{
{Hi}×M|M ∈M(R|Ind(Hi)|)

}
where Hi ∈ H is a Herbrand interpretation and M(Rn) denotes the σ-algebra of Lebesgue-
measurable subsets of Rn. Then we can define

A =

{ ∞⋃
i=1

Xi

∣∣∣∣∣Xi ∈ AHi

}
.

What we need to show now is that A is a σ-algebra.

1. ∅ ∈ A: Obvious, we can set Xi = ∅ for all i ∈ N (because ∅ ∈ M(Rn) for any n ∈ N and
{Hi}× ∅ = ∅) and get

⋃∞
i=1 ∅ = ∅.

2. If A ∈ A then Ω \A ∈ A:

Ω \A =

( ∞⋃
i=1

{Hi}× R|I(Hi)|
)
\

( ∞⋃
i=1

{Hi}×Mi

)

where Mi ∈M(R|Ind(Hi)|). We can write:

Ω \A =

∞⋃
i=1

(
{Hi}× (R|I(Hi)| \Mi)

)
.

Now, (R|I(Hi)| \Mi) ∈M(RI(Hi)) because M(RI(Hi)) is a σ-algebra. Therefore also

∞⋃
i=1

(
{Hi}× (R|I(Hi)| \Mi)

)
∈ A.
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3. If A1,A2,A3, · · · ∈ A then
⋃∞
i=1Ai ∈ A: We can write

Aj =

∞⋃
i=1

Xi,j

where Xi,j ∈ AHi . Then the infinite union can be written as:

∞⋃
i=1

Ai =

∞⋃
j=1

( ∞⋃
i=1

(
{Hi}×Mi,j

))

where Mi,j ∈M(R|Ind(Hi)|). We can continue as follows:

∞⋃
i=1

Ai =

∞⋃
i=1

{Hi}×

 ∞⋃
j=1

Mi,j

 .

SinceMi,j ∈M(R|Ind(Hi)|), it must be also the case that
⋃∞
j=1Mi,j ∈M(R|Ind(Hi)|) because

M(R|Ind(Hi)|) is a σ-algebra. Therefore we can easily see that
⋃∞
i=1Ai ∈ A.

We have shown that A is a σ-algebra on Ω. Now, we will show how to get a probability
measure on this space. Let P∗(H) be a probability function on the countable set of Herbrand
interpretations HL (some such function certainly exists because the set HL is countable). Let
{fH1 , fH2 , . . . } be a countable set of probability density functions on R|Ind(Hi)|. Let us define
P as follows (this corresponds to the distribution from Eq. 1 which was defined informally in
Chapter 4):

P

( ∞⋃
i=1

({Hi}×Mi)

)
=

∞∑
i=1

P∗(Hi) ·
∫
Mi

fHi

(
~θ|Hi

)
d~θ.

Here, Hi ∈ HL, Mi ∈ M(R|Ind(Hi)|) and d~θ is Lebesgue measure. Next, we will show that P
satisfies Kolmogorov’s three axioms of probability.

1. P(A) > 0 for any A ∈ A: trivial.

2. P(Ω) = 1:

P(Ω) = P

( ∞⋃
i=1

(
{Hi}× R|Ind(Hi)|

))
=

∞∑
i=1

P∗(Hi) ·
∫
R|Ind(Hi)|

fHi

(
~θ|Hi

)
d~θ =

=

∞∑
i=1

P∗(Hi) · 1 = 1

Here, the first equality follows from the fact that fHi is a probability density function and
the second equality follows form the fact that P∗ is a probability function.

3. For any countable collection of disjoint setsA1,A2, · · · ∈ A, it holds P(
⋃∞
i=1Ai) =

∑∞
i=1 P(Ai):

We write

Aj =

∞⋃
i=1

(
{Hi}×Mi,j

)
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where Mi,j is a Lebesgue measurable subset of R|Ind(Hi)| then

P

 ∞⋃
j=1

Aj

 = P

 ∞⋃
j=1

∞⋃
i=1

(
{Hi}×Mi,j

) = P

 ∞⋃
i=1

{Hi}×
∞⋃
j=1

Mi,j

 =

=

∞∑
i=1

P∗(Hi) ·
∫
⋃∞
j=1Mi,j

fHi

(
~θ|Hi

)
d~θ =

∞∑
i=1

P∗(Hi) ·

 ∞∑
j=1

∫
Mi,j

fHi

(
~θ|Hi

)
d~θ

 =

=

∞∑
i=1

∞∑
j=1

P∗(Hi) ·
∫
Mi,j

fHi

(
~θ|Hi

)
d~θ =

∞∑
j=1

∞∑
i=1

P∗(Hi) ·
∫
Mi,j

fHi

(
~θ|Hi

)
d~θ =

=

∞∑
j=1

P

( ∞⋃
i=1

(
{Hi}×Mi,j

))
=

∞∑
j=1

P
(
Aj
)

Note that the above manipulations are correct because all the involved series converge
absolutely.

Thus, we have shown that the triple (Ω,A,P) is a probability space.

b.2 proofs of propositions

Next, we prove a proposition from Chapter 4. We will need the following lemma.

Lemma 19. Let E = {S1,S2, . . . } be a countable set of sequences of random variables (estimators) such
that:

1. any sequence Si ∈ E, Si = Xi1,Xi2, . . . converges in mean to the value E∗,

2. for each Si,Sj ∈ E, it holds ESi[k] = ESj[k] where Si[k] is the k-th element of the sequence Si.

Let Em ⊆ E be finite subsets of E. Then

lim
m→∞Pr

∣∣∣∣∣∣E∗ − 1

|Em|

∑
Si∈Em

Si[m]

∣∣∣∣∣∣ > ε
 = 0

where ε > 0.

Proof. Let us suppose, for contradiction, that the assumptions of the lemma are satisfied, δ > 0
and that

δ = lim
m→∞Pr

∣∣∣∣∣∣E∗ − 1

|Em|

∑
Si∈Em

Si[m]

∣∣∣∣∣∣ > ε
 6 lim

m→∞Pr
 1

|Em|

∑
Si∈Em

|E∗ − Si[m]| > ε


From this we have

lim
m→∞E

 1

|Em|

∑
Si∈Em

|E∗ − Si[m]|

 > δ · ε > 0

but

lim
m→∞E

 1

|Em|

∑
Si∈Em

|E∗ − Si[m]|

 = lim
m→∞

 1

|Em|

∑
Si∈Em

E |E∗ − Si[m]|

 =

= lim
m→∞

(
1

|Em|
· |Em| · E |E∗ − S1[m]|

)
= lim
m→∞ (E |E∗ − S1[m]|) = 0
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(where the last equality results from the convergence in mean of the individual random vari-
ables) which is a contradiction. The only remaining possibility would be that the limit does not
exist but then we can select a subsequence of Ei which has a non-zero limit and again derive
the contradiction as before.

Proposition 3. Let us fix a distribution on examples with probability function P (H,ΩH). Let F be a
feature and fF be the density of its sample distribution. Let q(θ) be a multivariate polynomial. Let Xi be
vectors sampled independently from the distribution with density fF and let Yi = 1

i

∑i
j=1 q(Xj). If Yi

converges in mean to Ŷ for i→∞ then

Ỹi =
1

i

i∑
j=1

Q(ej)

converges in probability to Ŷ for i→∞whereQ is a polynomial relational feature given by the polynomial
q(θ) and the feature F, and ei are independently sampled examples.

Proof. First, we will rewrite the formula for Ỹi as an average of a (large) number of variables
converging in mean to Ŷ and after that we will apply Lemma 19. Let us impose a random total
ordering on the elements of the sample sets S(F, ei) = {s1, . . . , smi

} so that we could index the
elements of these sets. Next, let us have

Xm = {1, 2, . . . , |S(F, e1)|}× {1, 2, . . . , |S(F, e2)|}× · · · × {1, 2, . . . , |S(F, em)|}

Then the formula for Ỹi can be rewritten as follows:

Ỹm =
1

|Xm|

∑
(j1,j2,...,jm)∈Xm

1

m

(
q(s1,j1) + · · ·+ q(sm,jm)

)
where sj,k is the k-th element of the sample set S(F, ej). Now, each of the summands Z(j1,j2,...,jm)

m =
1
m

(
q(s1,j1) + · · ·+ q(sm,jm)

)
is a random variable and any sequence of these summands Z(j1,j2,...,jm)

m

converges in mean to Ŷ for m→∞ according to the assumptions of the proposition. Also,

E
[
1

m

(
q(s1,j1) + · · ·+ q(sm,jm)

)]
= E

[
1

m
(q(s1,k1) + · · ·+ q(sm,km))

]
for all (j1, . . . , jm) ∈ Xm and (k1, . . . ,km) ∈ Xm. Therefore, we may apply Lemma 19 and infer
that Ỹm converges in probability to Ŷ for m→∞.
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L. Borovičková, V. Fučík, L. Bednárová, I. Votruba, and J. Straka. Lasioglossins: Three
novel antimicrobial peptides from the venom of the eusocial bee lasioglossum laticeps
(hymenoptera: Halictidae). ChemBioChem, 10(12):2089–2099, 2009.

[129] C. Vens, A. Van Assche, H. Blockeel, and S. Dzeroski. First order random forests with
complex aggregates. In ILP: Inductive Logic Programming, pages 323–340, 2004.

[130] F. Železný. Tractable construction of relational features. In Znalosti 05, Bratislava, 2005.
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