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Abstract

Background: Although the use of clustering methods has rapidly become one of the standard computational

approaches in the literature of microarray gene expression data analysis, little attention has been paid to

uncertainty in the results obtained.

Results: We present an R/Bioconductor port of a fast novel algorithm for Bayesian agglomerative hierarchical

clustering and demonstrate its use in clustering gene expression microarray data. The method performs

bottom-up hierarchical clustering, using a Dirichlet Process (infinite mixture) to model uncertainty in the data

and Bayesian model selection to decide at each step which clusters to merge.

Conclusions: Biologically plausible results are presented from a well studied data set: expression profiles of A.

thaliana subjected to a variety of biotic and abiotic stresses. Our method avoids several limitations of traditional

methods, for example how many clusters there should be and how to choose a principled distance metric.
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Background

Although the use of clustering methods has rapidly become one of the standard computational approaches

in the literature of microarray gene expression data analysis [1–3], little attention has been paid to

uncertainty in the results obtained. In clustering, the patterns of expression of different genes across time,

treatments, and tissues are grouped into distinct clusters (perhaps organized hierarchically), in which genes

in the same cluster are assumed to be potentially functionally related or to be influenced by a common

upstream factor. Such cluster structure is often used to aid the elucidation of regulatory networks.

Agglomerative hierarchical clustering [1] is one of the most frequently used methods for clustering gene

expression profiles. However, commonly used methods for agglomerative hierarchical clustering rely on the

setting of some score threshold to distinguish members of a particular cluster from non-members, making

the determination of the number of clusters arbitrary and subjective. The algorithm provides no guide to

choosing the “correct” number of clusters or the level at which to prune the tree. It is often difficult to

know which distance metric to choose, especially for structured data such as gene expression profiles.

Moreover, these approaches do not provide a measure of uncertainty about the clustering, making it

difficult to compute the predictive quality of the clustering and to make comparisons between clusterings

based on different model assumptions (e.g. numbers of clusters, shapes of clusters, etc.). Attempts to

address these problems in a classical statistical framework have focused on the use of bootstrapping [4,5] or

the use of permutation procedures to calculate local p-values for the significance of branching in a

dendrogram produced by agglomerative hierarchical clustering [6, 7].

A commonly used computational method of non-hierarchical clustering, based on measuring Euclidean

distance between feature vectors is given by the k-means algorithm [8,9]. However, the k-means algorithm

requires the number of clusters to be predefined, and has been shown to be inadequate for describing

clusters of unequal size or shape [10], which limits its applicability to many biological datasets.

Bayesian methods provide a principled approach to these types of analyses and are becoming increasingly

popular in a variety of problems across many disciplines: clustering stocks with different price dynamics in

finance [11], clustering regions with different growth patterns in economics [12], in signal processing

applications [13], as well as in computational biology and genetics [14].

Bayesian approaches to hierarchical clustering of gene expression data have been described by Neal [15],

who used a Dirichlet diffusion tree model, and by Heard et al. [16,17] who describe a Bayesian model-based

approach for clustering time series, based on regression models and nonlinear basis functions. In previous

work [18] we have also described an approach to the problem of automatically clustering gene expression
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profiles, based on the theory of Dirichlet process (i.e. countably infinite) mixtures. However, all this work,

like most Bayesian approaches, is based on sampling using Markov Chain Monte Carlo (MCMC) methods.

While MCMC has useful theoretical guarantees, its applicability to large post-genomic datasets is limited

by its speed.

In this paper, we present an R/Bioconductor port of the fast novel algorithm for Bayesian agglomerative

hierarchical clustering (BHC) introduced by Heller and Ghahramani [19]. This algorithm is based on

evaluating the marginal likelihoods of a probabilistic model, and may be interpreted as a bottom-up

approximate inference method for a Dirichlet process mixture model (DPM). A DPM is a widely used

model for clustering [20] which has the interesting property that the prior probability of a new data point

joining a cluster is proportional to the number of points already in that cluster. Moreover, with a

probability proportional to α/n the (n+ 1)th data point forms a new cluster. Here α is a hyperparameter

controlling the expected number of clusters as a function of the number of data points n. The BHC

algorithm uses a model based criterion based on the marginal likelihoods of a DPM to merge clusters,

rather than using an ad-hoc distance metric. Bayesian hypothesis testing is used to decide which cluster

merges increase the tree quality. Importantly, the optimum tree depth is also calculated, resulting in the

best number and size of clusters to fit the data.

Methods

The BHC algorithm is similar to traditional agglomerative clustering in that it is a one-pass, bottom-up

method which initializes each data point in its own cluster and iteratively merges pairs of clusters.

However, instead of distance, the algorithm uses a statistical hypothesis test to choose which clusters to

merge.

Let D = {x(1), . . . ,x(n)} denote the entire data set, and Di ⊂ D the set of data points at the leaves of the

subtree Ti. The algorithm is initialized with n trivial trees, {Ti : i = 1 . . . n} each containing a single data

point Di = {x(i)}. At each stage the algorithm considers merging all pairs of existing trees. In considering

each merge, two hypotheses are compared. The first hypothesis, denoted by Hk
1 is that all the data in Dk

were in fact generated independently and identically from the same probabilistic model, p(x|θ) with

unknown parameters θ. The alternative hypothesis, denoted by Hk
2 would be that the data in Dk has two

or more clusters in it.

To evaluate the probability of the data under hypothesis Hk
1 , we need to specify some prior over the
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parameters of the model, p(θ|β) with hyperparameters β. We now have the ingredients to compute the

probability of the data Dk under Hk
1 :

p(Dk|Hk
1) =

∫
p(Dk|θ)p(θ|β)dθ

=
∫ [ ∏

x(i)∈Dk

p(x(i)|θ)
]
p(θ|β)dθ (1)

This calculates the probability that all the data in Dk were generated from the same parameter values

assuming a model of the form p(x|θ). This is a natural model-based criterion for measuring how well the

data fit into one cluster.

The probability of the data under the alternative hypothesis, Hk
2 (if we restrict ourselves to clusterings that

partition the data in a manner that is consistent with the subtrees Ti and Tj , where Ti and Tj are the two

subtrees of Tk ), is simply a product over the subtrees p(Dk|Hk
2) = p(Di|Ti)p(Dj |Tj) where the probability

of a data set under a tree (e.g. p(Di|Ti)) is defined below. Combining the probability of the data under

hypotheses Hk
1 and Hk

2 , weighted by the prior that all points in Dk belong to one cluster, πk
def= p(Hk

1), we

obtain the marginal probability of the data in tree Tk:

p(Dk|Tk) = πkp(Dk|Hk
1) + (1− πk)p(Di|Ti)p(Dj |Tj) (2)

The prior for the merged hypothesis, πk, can be defined such a manner that BHC efficiently computes

probabilities of clusterings consistent with the widely used Dirichlet process mixture model. Note that πk

is not an estimated parameter but rather a deterministic function of α and the number of points in a given

subtree. It is computed bottom-up as the tree is built as described in [19].

The posterior probability of the merged hypothesis rk
def= p(Hk

1 |Dk) is then obtained using Baye’s rule:

rk =
πkp(Dk|Hk

1)
πkp(Dk|Hk

1) + (1− πk)p(Di|Ti)p(Dj |Tj)
(3)

If this posterior probability rk > 0.5 it means that the merged hypothesis is more probable than the

alternative partitionings and therefore sub-trees should be left intact. Conversely, if rk < 0.5 then the

branches constitute separate clusters.

The BHC algorithm is very simple and is shown below. Full details of the algorithm and underlying theory,

as well as validation results based on synthetic and real non-biological datasets (including comparisons to

traditional agglomerative hierarchical clustering using a Euclidean distance metric and average, single and

complete linkage methods) can be found in [19].
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Algorithm 1 Bayesian Hierarchical Clustering Algorithm
input: data D = {x(1) . . .x(n)}, model p(x|θ), prior p(θ|β)
initialize: number of clusters c = n, and Di = {x(i)} for i = 1 . . . n
while c > 1 do

Find the pair Di and Dj with the highest probability of the merged hypothesis:

rk =
πkp(Dk|Hk

1)
p(Dk|Tk)

Merge Dk ← Di ∪ Dj , Tk ← (Ti, Tj)
Delete Di and Dj , c← c− 1

end while
output: Bayesian mixture model where each tree node is a mixture component
The tree can be cut at points where rk < 0.5

Evaluating the Quality of Clustering

For a data set, which has labelled classes, it is possible to compare the quality of hierarchical clusterings

obtained from different methods to these known classes. However, the literature is notably lacking in

quantitative measures of dendrogram quality suitable for use with the BHC algorithm.

For instance, most of the quality indices implemented in the clValid package [23] require a distance metric:

since BHC does not use a distance metric these indices are unsuitable for our comparisons. Another

commonly used index for measuring the agreement between two clusterings is the adjusted Rand

index [24]: large values for the adjusted Rand index mean better agreement between two clusterings. A

value of unity would indicate a perfect match between the clustering partition and ground truth, with zero

being the expected result for a random partition. However, this index is only really of use if the true

clustering structure is known. In most real-world applications of clustering to microarray data, the

biological ground truth is unknown. Nevertheless, the adjusted Rand index has been used to evaluate the

performance of a variety of clustering algorithms on experimental microarray data by Yeung et al [25].

These authors used a subset of the data described by Ideker et al. [26], a set of 997 mRNA profiles across

20 experiments representing systematic perturbations of the yeast galactose-utilization pathway. A subset

of 205 of these genes were assigned to four functional categories (biosynthesis, protein metabolism and

modification; energy pathways, carbohydrate metabolism, catabolism; nucleobase, nucleoside, nucleotide

and nucleic acid metabolism; transport), based on Gene Ontology (GO) annotations. However, in their

supplementary material, Yeung et al. note that since this array data may not fully reflect these functional

categories, this classification should be used with caution.

For the purposes of comparison, we have applied our BHC algorithm to this data set, treating the four
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assigned classes as “ground truth”, with the caveat above. The BHC algorithm automatically correctly

identifies four classes in the data, as shown in the dendrogram in additional file 8. The adjusted Rand

index is 0.955, which is in the upper range of those calculated by Yeung et al. [25]. For comparison,

standard hierarchical clustering using average linkage and a correlation distance metric gives an adjusted

Rand index of 0.866. The shrinkage correlation coefficient (SCC) of Yao et al. [27], which used the same

data set as a benchmark, gives an adjusted Rand index of 0.876.

Quality Measures

In order to perform the comparison of two dendrograms produced by different clustering methods, we have

devised a new quantitative measure: DendrogramPurity, which takes as input a dendrogram tree

structure T and a set of class labels C for the leaves of the tree and outputs a single number measuring

how “pure” the subtrees of T are with respect to the class labels C.

DendrogramPurity(T ,C): where T is a binary tree (dendrogram) with set of leaves L = {1 . . . , L} and

C = {c1, . . . , cL} is the set of known class assignments for each leaf. The DendrogramPurity is defined to be

the measure obtained from this random process: pick a leaf ` uniformly at random. Pick another leaf j in

the same class, i.e. c` = cj . Find the smallest subtree containing ` and j. Measure the fraction of leaves in

that subtree which are in the same class, i.e. c`. The expected value of this fraction is the

DendrogramPurity. This measure can be computed efficiently using a bottom up recursion (without

needing to resort to sampling). The overall tree purity is 1 if and only if all leaves in each class are

contained within some pure subtree.

For each leaf of the tree it also useful to measure how well it fits in with the labels of the leaves in the

surrounding subtree. Leaves which do not fit well contribute to decreasing the overall dendrogram purity.

These may highlight unusual or misclassified genes, drugs or cell lines. We define the LeafHarmony of a

leaf ` as a measure of how well that leaf fits in.

LeafHarmony(`,T ,C): Pick a random leaf j in same class as leaf `, i.e. cj = c`, j 6= `. Find the smallest

subtree containing ` and j. Measure the fraction of leaves in that subtree which are in class c`. The

expected value of this fraction is the LeafHarmony for ` and it measures the contribution of that leaf to the

DendrogramPurity.

For the case of data sets where there are not clearly defined class labels these measures are not applicable

so we have defined a third measure, the LeafDisparity, which highlights differences between two

hierarchical clusterings (i.e. dendrograms) of the same data. Intuitively, this measures for each leaf of one
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dedrogram how similar the surrounding subtree is to the corresponding subtree in the other dendrogram.

Define the correlation between two sets S and R to be c(S,R) = |S ∩ R|/|S ∪ R|, where | · | denotes the

number of elements in a set. c(S,R) = 1 iff S = R and c(S,R) = 0 iff |S ∩ R| = ∅. Note that a tree T can

be converted into a set-of-sets representation T = {τ1, . . . , τk}. For each node j in the tree, τj is the set of

the leaves in the subtree descending from j. (Thus in a binary tree with n leaves contains n− 1 non-leaf

internal nodes, so k = 2n− 1).

LeafDisparity(`,T ,T ′): Convert each tree into a set-of-sets representation. Align the trees: For each set

τj in T , find the set ρk in T ′ such that the correlation is greatest: rj = maxk c(τj , ρk). For each leaf ` find

the average of rj over all sets that contain `, calling this r̄(`). If the element ` appears in both T and T ′

let its disparity be the minimum of 1− r̄(`) in either tree. Thus this measure will be symmetric and

sensitive to disagreement between the hierarchical clustering given by each tree.

Implementation

The R/Bioconductor port consists of two functions, bhc and WriteOutClusterLabels. The bhc function calls

efficient C++ routines for the special case of the BHC algorithm as described in this paper. The algorithm

has a computational complexity of order N2 for N data points, and runs in about 8 minutes on a Macbook

Pro 2 GHz laptop for a data-set of size 880 and dimensionality 31 (i.e. the NASC data set used in this

paper). The reverse clustering (i.e. size 31 with dimensionality 880) runs in approximately a minute.

Runtimes for data sets of various sizes are shown in Table 1.

The WriteOutClusterLabels function outputs the resulting cluster labels to an ASCII file. Because the bhc

function outputs its results in a standard R dendrogram object, a graphical representation of the output

can be obtained by calling the standard R plot function. A 2D heat-map visualization of the clustering can

be generated using the standard R function heatmap.

In our model the hyperparameters are the concentration parameter, α, which controls the distribution of

the prior weight assigned to each cluster in the DPM, and is directly related to the expected number of

clusters, and the hyperparameters, β, of the probabilistic model defining each component of the mixture.

The concentration parameter, α, was fixed to a small, positive value (0.001). The hyperparameters for the

individual mixture component (Dirichlet) priors β are scaled by a single additional hyperparameter, giving

the data model greater flexibility. This additional hyperparameter was determined by optimising the

overall model Evidence (marginal likelihood), using a combination of golden section search and successive

parabolic interpolation (as implemented in the R function optimize). The unscaled β hyperparameters were
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set by using the whole data-set as a measure of the relative proportions of each discrete value for each gene.

Application to Microarray Data

We illustrate our methods with application to a published data set of GeneChip expression profiles of A.

thaliana subjected to a variety of biotic and abiotic stresses, derived from the AtGenExpress consortium

(NASC), identical to that used by Torres-Zabala et al. [21]. The expression profiles were selected,

normalized and interpreted by the GC content-adjusted robust multi-array algorithm (GCRMA) [22]

exactly as in the original manuscript. Continuous transcript levels were discretised into three levels

(unchanged, under- or over-expressed) by dividing the levels at fixed quantiles for each given gene. This

makes our analyses more robust to any experimental systematics, as well as simplifying the algorithm by

using multinomial distributions and their conjugate Dirichlet priors. By discretizing mRNA levels we model

the important qualitative changes in mRNA levels without making strong unjustifiable assumptions (e.g.

Gaussianity) about the form of the noise in microarray experiments. We note that such an approach has

also been used by other workers in the field [28]. In order to identify the optimal discretization thresholds

we utilized the following procedure. The discretization threshold is parameterised via the quantiles, x, of

the data for a given gene, such that the data counts are distributed in the proportions x : (1− 2x) : x. We

can then optimise x jointly over all the genes by running the BHC algorithm for different x values (and

hence discretisations) and using the lower bound on the overall model Evidence, modified to account for

the above parameterisation by dividing the Evidence by the relevant bin width for each data point. Results

are shown in Tables 2 and 3, which also show the optimal value for the hyperparameter mentioned in the

previous section. These results indicate that the optimal quantitles for the discretization of this data set

are 20/60/20 and 25/50/25 for the experiment and gene clustering, respectively.

Results and Discussion

Clustering of the Arabidopsis genes and experimental conditions was carried out using our BHC algorithm

and a biologically plausible clustering pattern was observed (Fig 1). This was compared to the

conventional agglomerative hierarchical clustering of the same data carried out by de Torres-Zabala et

al. [21] , using an uncentred correlation coefficient as a distance metric and complete linkage. We observed

that the essential features of the hierarchical clustering of experimental conditions were reproduced, but

with more specific clusters as evidenced by the DendrogramPurity measure of 0.968 (BHC) versus 0.473

(agglomerative hierarchical clustering). LeafHarmony measures for the BHC clustering are shown in
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supplementary Figure 3 – most leaves have a value of 1.0, indicating the consistency of the clusters

produced. In particular, we observed specific clusters for drought, osmotic stress and salt. In the case of

pathogen infection (DC3000) and the phytohormone abscisic acid (ABA) treatment, we find that each

group of experiments forms a well-defined cluster. We note that in the clustering of de Torres-Zabala et

al. [21] only two of the ABA experiments (30 min and 1 h) cluster at the lowest level, and splitting the

dendrogram at this level places the ABA 3 h experiment in a separate cluster with salt and osmotic stress

experiments. The clustering produced by BHC thus seems more intuitive, with the ABA 3 h experiment

appearing unconnected in the dendrogram. An advantage of the BHC method over conventional

hierarchical clustering is that Bayesian hypothesis testing is used to decide which clusters to merge.

The overall dendrogram structures, are, however, demonstrably different, as evidenced by the

comparatively low values of LeafDisparity shown in supplementary Table 7 and the adjusted Rand indices

of 0.299 for the gene clusters and 0.325 for the experiment clusters.

For the genes, we find that BHC produces a clustering of finer granularity; for instance, genes highlighted

in clusters I-IV in de Torres-Zabala et al. [21] are split between a number of smaller clusters (see

supplementary information). Most of the genes in clusters I and II are divided between our clusters 5 and 7.

Cluster 5 contains 22 out of the 28 genes in cluster II, including six PP2Cs, NCED3 and three NAC domain

transcription factors, all of which are known to be regulated by ABA. Genes in cluster III are all in BHC

cluster 16, which is enriched with Gene Ontology annotations indicating chloroplast function (see below).

To further validate the quality of the clusters produced by BHC we have analyzed the statistically

significantly over-represented GO annotations related to a given cluster of genes. The probability that this

over-representation is not found by chance can be calculated by the use of a hypergeometric test,

implemented in the R/Bioconductor package GOstats [29]. Because of the effects of multiple testing, a

subsequent correction of the p-values is necessary. We apply a Bonferroni correction, which gives a

conservative (and easily calculated) correction for multiple testing. We extract the lowest levels of the

ontology graphs using the GOstats command ‘sigCategories’. In the supplementary material we show the

lowest level GO annotations for the BHC clusters which are significant at a Bonferroni-corrected p-value of

0.01. We compared the enriched GO annotations for the BHC clusters to those from the agglomerative

hierarchical clustering of Torres-Zabala et al. (see supplementary information). To quantify this

comparison, we calculated the Biological Homogeneity Index (BHI) of Datta and Datta [30] as

implemented in the clValid package of Brock et al. [23]. This index provides a measure the ‘biological

meaning’ of clusters based on the homogeneity of functional classes represented by the GO annotations.
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Taking the number of clusters to be 29, as found by BHC, we calculate a BHI of 0.179 (BHC) versus 0.161

(agglomerative hierarchical clustering), indicating more biologically homogeneous clusters in the former

case.

As mentioned above, we observe some overlap between significant GO annotations for two of these clusters

( II with BHC cluster 5; III with BHC cluster 16 ). However, many biologically significant terms are

enriched only in the BHC clusters (for example camalexin biosynthesis in BHC cluster 29), indicating that

the BHC clusters represent a more refined view of the data, which enables processes important in defence

to be identified. This can be illustrated by examining the GO groupings of the BHC clusters that are

intuitively meaningful in the context of plant-microbe interactions.

For example, cluster 16 comprises a major cluster of genes associated with chloroplast function and

chlorophyll biosynthesis. Chloroplasts are emerging as a key target of bacterial effector function [31].

Interestingly, cluster 10 is strongly biased towards genes involved in ion homeostasis, and changes in ion

fluxes represent the earliest physiological changes associated with plant defences. Rapid ion changes are

often associated with changes in phosphorylation status of transporters, and cluster 5 is over-represented

by cellular components associated with phosphorylation. Reconfiguration of secondary metabolism is

central to the ability to modify plant defences. Notably, clusters 29 and 6 elegantly capture pathway

components of indolic and jasmonic acid metabolism. Within this context, cluster 19 is worthy of further

investigation. Members of cluster 19 directly impact upon the secondary metabolism defined in clusters 29

and 6 above. Thus the BHC approach may have revealed a set of co-regulated genes whose biological

activity is responsible for activating the biosynthetic networks highlighted in clusters 29 and 6.

Experiments to address this hypothesis are currently underway.

Conclusions

We have presented an R/Bioconductor port of a fast novel algorithm for Bayesian agglomerative

hierarchical clustering and have demonstrated its use in clustering gene expression microarray data.

Biologically plausible results are presented from a well studied data set: expression profiles of A. thaliana

subjected to a variety of biotic and abiotic stresses. The BHC approach has identified a new avenue of

research not revealed by the previous clustering analyses of this data. The use of a probabilistic approach

to model uncertainty in the data, and Bayesian model selection to decide at each step which clusters to

merge, avoids several limitations of traditional clustering methods, such as how many clusters there should

be and how to choose a principled distance metric. Extensions of the algorithm described here are
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straightforward for other distributions in the exponential family, such as Gaussians [19], which may be

useful when such distributions are well justified for the data in question.

Availability

Available under the Gnu GPL from http://sites.google.com/site/bayesianhierarchicalclustering/1 and

through the Bioconductor website. Online supplementary data is available at the journal’s web site.
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Tables
Table 1 - Speed-trial of the BHC algorithm.

Trials were based on the NASC data (880 genes, 31 features), clustering over genes. In each case, the data

were duplicated or a subset of genes taken as appropriate to get the required number genes and features.

All trials were run on a single 2 GHz CPU core on a Macbook Pro laptop.

Table 2 - Data discretisation for NASC experiment clustering
Table 3 - Data discretisation for NASC gene clustering

Figures
Figure 1 - Clustering of 880 genes and 31 conditions of A. thaliana

Clustering of 880 genes and 31 conditions of A. thaliana, subjected to a variety of biotic and abiotic stresses

(as used by [21]). Shown are transcript profile clustering (left), condition clustering (above and below) and

the corresponding 2D heat map, aligned with the 1D dendrograms. Red dashed lines are merges our

algorithm prefers not to make. The numbers on the branches are the log odds for merging (log rk

1−rk
)

Additional Files
Additional file 1 — Large pdf file of Figure 1
Additional file 2 — Large pdf file of gene clustering dendrogram
Additional file 3 — Large pdf file of condition clustering dendrogram
Additional file 4 — Statistically significantly over-represented GO annotations for BHC clusters
(Bonferroni-corrected p-value < 0.01)
Additional file 5 — Statistically significantly over-represented GO annotations for clusters manually
identified from agglomerative hierarchical clustering (Bonferroni-corrected p-value < 0.01)
Additional file 6 — BHC cluster membership
Additional file 7 — LeafDisparity values for the NASC experiments

The BHC clustering dendrogram is compared to a standard hierarchical method using uncentred

correlation coefficients and complete linnkage.

Additional file 8 — Gene clustering dendrogram of a subset of the Ideker et al. data, showing leaf
harmony values
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