
Computer Science Construct Use, Learning, and Creative Credit in
a Graphic Design Community
Brian Dorn, Allison Elliott Tew, and Mark Guzdial

Technical Report
#GT–IC–08–01
February 2008

Abstract: End-users, who are projected to outnumber professional programmers in the next decade, present a unique
opportunity to understand how computer science knowledge is acquired in the real world. We conducted an analysis
of projects created by end-user programmers to discern their adoption of introductory computing constructs. A variety
of project sizes were represented in the data, ranging from fewer than 100 lines of source code to greater than 1500.
Many introductory computing constructs were highly adopted, but some were relatively unused. As these variations
in adoption could be indications of topic complexity, we compared our findings to previous work in the novice pro-
gramming literature. Additionally, a data-driven analysis provided insight into user sharing and reuse practices. Many
distinct approaches to copyright and code ownership concerns were found in the projects studied, and their potential
impact on end-user learning was considered.

A short paper based on these results appears as: B. Dorn, A. E. Tew, and M. Guzdial. Introductory computing construct
use in an end-user programming community. In VL/HCC’07: Proceedings of the 2007 IEEE Symposium on Visual
Languages and Human-Centric Computing, pages 27–30, 2007

School of Interactive Computing
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0760

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4717168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Computer Science Construct Use, Learning, and Creative Credit
in a Graphic Design Community

Brian Dorn, Allison Elliott Tew, and Mark Guzdial
School of Interactive Computing

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332
{dorn, allison, guzdial}@cc.gatech.edu

Abstract

End-users, who are projected to outnumber profes-
sional programmers in the next decade, present a
unique opportunity to understand how computer sci-
ence knowledge is acquired in the real world. We
conducted an analysis of projects created by end-user
programmers to discern their adoption of introductory
computing constructs. A variety of project sizes were
represented in the data, ranging from fewer than 100
lines of source code to greater than 1500. Many in-
troductory computing constructs were highly adopted,
but some were relatively unused. As these variations in
adoption could be indications of topic complexity, we
compared our findings to previous work in the novice
programming literature. Additionally, a data-driven
analysis provided insight into user sharing and reuse
practices. Many distinct approaches to copyright and
code ownership concerns were found in the projects
studied, and their potential impact on end-user learn-
ing was considered.

1. Introduction

End-users, who are projected to outnumber profes-
sional programmers by more than four to one in the next
decade [17], present a unique opportunity to understand
how computer science knowledge is acquired in the real
world. Graphic designers and others involved in media
editing make up a relatively new and growing group of
end-user programmers (EUP). Through scripting, these
users might build software to create custom effects or
automate batch jobs to cut down on repetitive tasks.
The Adobe R© Photoshop R© image-editing application is
one widely available tool with affordances for script-

ing in the graphic design domain. These users often
program with ExtendScript, a cross-platform extended
implementation of the JavaScriptTM language used in
Adobe applications1.

In a previous study of graphic design end-users, we
gathered self-reported practices and knowledge through
an online survey [4]. The respondents recognized and
claimed to use many programming constructs like vari-
ables, subroutines, conditionals, loops, and data struc-
tures. They also indicated a propensity for code reuse
by sharing and borrowing code. Following this analysis
we were interested in exploring the ways end-users’ re-
ported behaviors correspond to actual scripted artifacts.

Additionally, graphic designers reported use of re-
lated example projects as a common source of sup-
port when learning something new—a result mirrored
in other end-user contexts. We believe that online com-
munities and forums provide a vital repository of ex-
ample projects from which other end-users learn. As
such, we were curious about the extent of computer sci-
ence knowledge contained within projects found in on-
line end-user communities.

To investigate these questions, we analyzed a cor-
pus of scripting projects written by users of Photoshop,
in particular looking for evidence of introductory com-
puting construct use. The results of this code-centric
exploration are presented here. The method used for
this study is outlined in Section 2. An overview of the
results is presented in Section 3, with a detailed discus-
sion of patterns in construct adoption following in Sec-
tion 4. Matters related to code as intellectual property
are outlined in Section 5. We conclude with a brief com-
mentary on future directions for this line of research.

1Adobe and Photoshop are registered trademarks of Adobe Sys-
tems, Inc. JavaScript is a trademark of Sun Microsystems, Inc.

Tech. Rpt. #GT–IC–08–01 1

2. Method

We conducted an artifact analysis of all scripts pub-
licly available for download in the Photoshop section
of the Adobe Exchange repository2, an end-user pro-
gramming community for graphic designers. To fo-
cus our analysis, we only considered scripts that were
hosted in the Adobe forum directly and did not include
forum contributions that referenced scripts hosted on
other sites.

2.1. Development of Coding Scheme

We developed a coding scheme that considered
both general introductory computing constructs as well
as EUP domain specific constructs. The computing con-
structs were informed by the computing education liter-
ature, while the domain specific constructs were sug-
gested by end-user programming studies and derived in
a data-driven manner by the scripts themselves.

To avoid bias from a particular language or ped-
agogical approach, we wanted to identify comput-
ing constructs that were common across introductory
courses. We began by conducting an analysis of the
table of contents of the top two CS1 textbooks as iden-
tified by each of the major publishers—12 books in to-
tal. This list of concepts was revised using the frame-
work of the Computer Science volume of Computing
Curricula 2001 [1] as an organizing principle. It was
further refined by analyzing the content of canonical
texts representing each of the common introductory ap-
proaches (objects-first [3, 13], functional-first [5], and
imperative-first [22]). A construct was included in the
coding scheme if it was covered by all of the texts or
excluded by only one of the texts. The coding scheme
was then further modified considering the EUP domain.
Some concepts, such as scope, were too abstract to op-
erationalize; others were not relevant or practical in the
domain (e.g., Big-O notation and class-based inheri-
tance). The resulting computing constructs included in
the coding scheme are listed in Figure 1.

Most of these constructs in JavaScript are similar
to their counterparts in general-purpose computing lan-
guages. However, a few warrant additional explanation.
The “number” coding element included use of any kind
of numeric literal as JavaScript does not distinguish be-
tween types of numerics (e.g., integer, floating point).
In this community of graphic designers, user input and
output is inherently graphical in nature. As such, the
I/O constructs in the coding scheme included input di-
alogs and message boxes. Lastly, since the nature of

2All files retrieved November 30, 2006 from http://share.
studio.adobe.com

variable selection (if)
mathematical operators definite loop (for)
relational operators indefinite loop (while)
logical operators nested loops
assignment recursion
number user defined functions
boolean user defined objects
string user input
array output to user
type conversion

Figure 1. Textbook-Based Coding Elements

Photoshop scripting considered here almost always re-
quires calling of functions and using objects from the
API, we limited our scope to instances of user-defined
functions and objects. User-defined functions had to be
explicitly defined and named, and user-defined objects
had to include a constructor and be instantiable.

To properly analyze EUP scripts, it was important
to supplement the general introductory computing con-
cepts with domain specific ones. Previous studies of
end-user programming practices [4, 15, 16] suggested
that intellectual property and code modularity could be
important considerations in this domain. We added
three items to the coding scheme (copyright notice, end-
user license agreement, and credits external sources)
to address the issue of intellectual property. Extend-
Script allows for importing and exporting of code to aid
in modularity and code reuse, so these items were also
added to the coding scheme.

A few data-driven constructs were included as well.
We noted that some users had attempted to make their
scripts unreadable by humans; others employed built-
in functionality in Photoshop to record their script via
the user interface rather than typing code; and others
still incorporated rather sophisticated exception han-
dling mechanisms. We wondered how common these
practices were and added these to the coding scheme.
The resulting EUP constructs are listed in Figure 2.

copyright notice exception paths (try/catch)
end user license agreement use of recorded code
credits external sources includes external code
code obfuscation externalizes code to client

Figure 2. EUP Coding Elements

2.2. Coding Process Details

We began the coding process by establishing the
reliability of the coding scheme. The first two authors
coded a random sample consisting of 13 scripts (≈ 20%
of the total data set) according to the coding scheme.

Tech. Rpt. #GT–IC–08–01 2

We computed the kappa statistic [2] as a measure of
inter-rater reliability, and while most of our coding ele-
ments exceeded the κ=0.80 threshold expected in the
social sciences [11], some revisions were necessary.
After updating the criteria and recoding another sam-
ple, we achieved a κ=1.00 on all remaining coding ele-
ments. Our high κ values may be partially attributed to
binary coding categories and the lack of rater judgment
required on some constructs. Once inter-rater reliability
was confirmed, the first two authors each coded half of
the scripts according to the revised coding scheme.

3. Results

The initial set of Photoshop scripts was collected
from the Adobe Exchange community and then cleaned
of any entries that were corrupt or incorrectly catego-
rized. After removing the improper entries, the final
data set contained a total of 62 individual scripts making
up 48 distinct projects contributed by 27 unique users.
We use the term project to refer to one downloadable
entry in the online community. For example, a project
could consist of a single script posted as a text file, or
it could be an archive file containing multiple, related
scripts and associated data files. Figure 3 illustrates the
distribution of project submissions. Most users posted
only one project, though one-third of users made multi-
ple contributions to the community.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5

Number of Projects

N
u

m
b

e
r

o
f

U
s
e
rs

Figure 3. Distribution of Project Submissions

The bulk of the results presented here uses a per-
project unit of analysis, rather than a per-user or per-
script approach. Focusing on individual projects miti-
gates skewing effects that might be introduced by sin-
gle projects that contain multiple scripts (as in a per-
script analysis). We also avoid a per-user analysis as
it would be somewhat precarious to infer knowledge of
programming based solely on constructs used in a min-
imal set of examples, particularly given that most users

only contributed one project. Although previous stud-
ies indicate that many end-users lack formal training in
computer science (e.g., [4, 15]), we do not know the
particular training background of the users who posted
to this forum, nor can we infer whether these scripts are
the result of personal or work projects. In a sense, what
we present here is an analysis of the computing content
embodied in projects that might serve as case examples
from which another end-user could learn [10].

3.1. Project Size

While there were as many as eight scripts in a sin-
gle project, most (87.5%) contained only one script. In
order to gain insight into the size and complexity of the
projects being created, we calculated the total number
of lines used for code statements, whitespace, and com-
ments for each. We report based on the sum of the indi-
vidual script line lengths for projects containing mul-
tiple scripts. Table 1 summarizes basic statistics for
project size. There was a large amount of variation in
each of the line types computed, as noted by the stan-
dard deviations. However, the median lengths indicated
the creation of moderately sized scripts that included a
fair amount of commenting, though the nature of the
comments was not closely examined.

Table 1. Project Line Length Breakdown
Mean StDev Median Min Max

Code 555.56 674.89 246.5 9 3224

Comment3 63.54 65.18 26.5 0 237

Whitespace 65.46 158.47 20.5 0 1057

Total 676.96 760.61 403.5 11 3300

Looking at the distribution of these lengths pro-
vided a more detailed picture of project size. Figure 4
depicts the range of project sizes in terms of the num-
ber of source code lines. There were two noticeable
peaks in this distribution, the first of which occurred at
200 or fewer lines of code. This might be predicted
if users are expected to implement short programs that
accomplish relatively simple tasks. More surprisingly,
there was a clear second peak occurring in projects with
greater than 1000 lines of code.

Project sizes provided an initial feel for the size and
complexity of code, but a more detailed analysis of each
project’s content was needed to understand the types of
computing knowledge evidenced in the code base.

3Lines counted under “Comment” include both comment-only
lines and code lines which have terminal comments.

Tech. Rpt. #GT–IC–08–01 3

0

2

4

6

8

10

12

≤
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
5
0
0

M
o
re

Lines of Code

N
u

m
b

e
r

o
f

P
ro

je
c
ts

Figure 4. Distribution of Project Lengths

3.2. Project Content

Application of the coding scheme to all of the in-
dividual scripts resulted in an overview of construct
use. These results were then aggregated to form a per-
project summary. For those projects containing multiple
scripts, a construct was indicated as being used if one or
more of the constituent scripts used the construct. The
aggregate use amounts for each construct, grouped by
higher-order concern, are presented in Table 2.

The most commonly used programming constructs
were: variable, assignment, relational operators, selec-
tion, number, and string. These results were largely ex-
pected given that tasks like assigning a numeric value
to a variable are fundamental to most coding activi-
ties. Excluding those related to intellectual property and
recorded code (as these are not programmatic constructs
per se), the least frequent constructs were: indefinite
loop, nested loops, recursion, type conversion, user-
defined objects, and exporting/importing code. Some
of these observations could be tied to tool and lan-
guage influences (e.g., creation of instantiable objects
in JavaScript is awkward). Others, like the decrease
in use from definite loops to nested loops to recursion,
seem indicative of conceptual difficulties noted in pre-
vious research (e.g., [18, 21]). We present a detailed
discussion of these issues in the section that follows.

4. Discussion of Construct Adoption

We observed that within the higher-order concerns
Expressions, Control Structures, and Modularity some
constructs are heavily adopted while others are used at
much lower levels (see Table 2). End-user programmers
can be viewed in many ways as novices because they
traditionally lack formal training in computer science
and learn content just-in-time as it relates to their spe-

Table 2. Construct Use by Project
Construct Use %

Variable 100.00%

Use of Recorded Code 33.33%

E
xp

re
ss

io
ns Assignment 100.00%

Relational Operators 97.92%

Mathematical Operators 83.33%

Logical Operators 54.17%

C
on

tr
ol

St
ru

ct
ur

es

Selection (if) 97.92%

Definite Loop (for) 60.42%

Exception Paths (try/catch) 60.42%

Indefinite Loop (while) 37.50%

Nested Loops 29.17%

Recursion 2.08%

D
at

a
Ty

pe
s

&
St

ru
ct

ur
es

Number 100.00%

String 95.83%

Array 83.33%

Boolean 79.17%

Type Conversion 29.17%
I/

O Output to User 83.33%

User Input 60.42%

M
od

ul
ar

ity

User-defined Functions 70.83%

User-defined Objects 18.75%

Import or Include External Code 0.00%

Export Code to External Client 0.00%

In
te

lle
ct

ua
l

Pr
op

er
ty

Copyright Notice 62.50%

End User License Agreement 47.92%

Credit Given to External Sources 22.92%

Human Unreadable Code Obfuscation 8.33%

cific tasks [4, 15]. Therefore, previous studies of novice
programmer behavior provide useful information for in-
terpreting our results.

4.1. Learning Complexity

4.1.1. Operators. Almost all (97.92%) of the projects
used a relational operator (e.g., <, >=, !=), most often in-
side the condition of a selection (if) statement. A clear
majority (83.33%) also used mathematical operators.
While some projects did include numeric calculations
to resize images or parts of images, many of the math-
ematical operators noted were uses of the unary incre-
ment operator as part of a definite loop (for) construct.
However, markedly fewer projects (54.14%) used a log-
ical operator (&&, ||, !).

Our previous work with introductory students [19]

Tech. Rpt. #GT–IC–08–01 4

indicated that beginners tend to struggle with boolean
logic in conditional statements. Pane, et al. [14] found
that boolean operators are particularly difficult for be-
ginners because they require statements to be expressed
in ways that are unfamiliar. Since many end-user pro-
grammers are self-taught and have learned to program
to support their own goals, it is perhaps not surprising
that they seem to have adopted the operators in their
projects which are most familiar.

4.1.2. Control Structures. Control structures of some
kind were included in most of the projects we analyzed.
Almost all (97.92%) of them included a selection (if)
statement, and most (60.42%) used a definite loop (for)
construct. However, only a third of the projects used the
indefinite loop (while) or nested loop constructs.

Soloway, et al. [18] identified the inherent com-
plexity of the while loop because it conflicts with the
preferred cognitive strategy that students employ when
solving iterative problems. The definite loop (for) con-
struct more closely matches the read, then process strat-
egy, thus possibly explaining its higher adoption rate by
the end-user programmers we studied. Additionally, the
infrequent use of nested loops could be another sign of
cognitive complexity. Boundary condition errors are a
frequent mistake when beginning students write loops,
and loop nesting only exacerbates these boundary con-
cerns [7].

Only one project included recursion, a topic with
which many novices struggle [21]. A common peda-
gogical technique to address this difficulty is to intro-
duce recursion by way of analogy, but Photoshop lacks
readily apparent concrete examples. However, there are
some tasks in this context that lend themselves to recur-
sive solutions. For example, the one use of recursion
in our analysis, in effect, traversed a tree made of im-
age layers (leaf nodes) and layer sets (internal nodes)
removing all non-visible layers along the way.

4.1.3. Abstraction and Modular Coding. A large
portion (70.83%) of the projects contained user-defined
functions, while significantly fewer (18.75%) imple-
mented objects. Despite the fact that ExtendScript doc-
umentation highlights the ability to create reusable code
modules using external files, we noted that no project
incorporated either the import or export construct—
though ExtendScript is a relatively recent addition to the
Adobe product line, and users may still be discovering
and learning its extended functionality.

Fleury [6] observed that students consistently pre-
ferred programs containing duplicated code rather than
programs that used abstracted functions, claiming that
it was more easily read and debugged. While we note

that functions were highly used in this domain, more
advanced abstractions for modularity were largely ig-
nored. Hoadley, et al. suggest an explanation that “ab-
stract understanding of a function and belief in the ben-
efits of reusing code” [8, p. 109] impact whether or not
a user is likely to invest time in programming for ab-
straction.

4.2. Pathways for Learning

The novice programming literature sheds light on
why some constructs are being adopted more heavily
than others. Being optimists, we do not believe that
even an end-user programmer will be satisfied using
only the most common constructs. Being realists, we
do not believe that end-user programmers will use more
sophisticated constructs having never experienced the
more common ones. Notably, the projects in this corpus
provide a unique illustration of points along the contin-
uum towards expert programming practices.

4.2.1. Functional Decomposition. One such set of
points can be seen in the transition from programs
containing neither functions nor notions of scope to
near textbook examples of procedural coding. We saw
several examples of monolithic code blocks, lacking
any indication of functional separation. Other projects
had clearly demarcated sections with specific roles, but
lacked formal declaration of functions—though creat-
ing them would have been relatively easy given the end-
user’s forethought. Still other scripts contained what
might best be called “ad hoc functions” where func-
tion declarations were intermixed with mainline code
and were immediately called following the definition
(as well as later in the main program). Here we imag-
ine a programming process where an end-user realizes
the need for code written previously and decides to
mark the earlier code block as a function, thus reusing,
rather than copying. Lastly, we did have one example
of model procedural code with a main program, distinct
functions, logical organization of program components,
and detailed comments including a discussion of iden-
tifier scope.

4.2.2. Recorded Code. Uses of recorded code in this
data set also hint at possible first, critical steps from
“non-programmer” to “programmer.” Photoshop pro-
vides the ability to record a user’s activity in the in-
terface (e.g., mouse clicks, menu selections) as a tex-
tual script, which can later be inspected and modified.
Figure 5 shows the code produced when selecting the
“rotate clockwise 90 degrees” option from the menu.
The generated code is rudimentary—a replay of win-
dowing events, with little connection to the underlying

Tech. Rpt. #GT–IC–08–01 5

var id905 = charIDToTypeID("Rtte");
var desc44 = new ActionDescriptor();
var id906 = charIDToTypeID("null");

var ref6 = new ActionReference();
var id907 = charIDToTypeID("Dcmn");
var id908 = charIDToTypeID("Ordn");
var id909 = charIDToTypeID("Frst");
ref6.putEnumerated(id907, id908, id909);

desc44.putReference(id906, ref6);
var id910 = charIDToTypeID("Angl");
var id911 = charIDToTypeID("#Ang");
desc44.putUnitDouble(id910, id911, 90.000000);

executeAction(id905, desc44, DialogModes.NO);

Figure 5. Recorded Code for Rotating Image

semantics of the operations performed. It also uses in-
dentation in a seemingly mysterious, nonstandard way.
Matt Kloskowski, education and curriculum developer
for the National Association of Photoshop Profession-
als, notes:

I have to warn you, though—this is not for
those with weak hearts or those who frighten
easily. This [recorded] log file is really scary
looking, but you should be able to see some
familiar text in it. [9, p. 165]

The familiar text to which he refers often takes the form
of input values, like the parameter 90.0 in the rotate ex-
ample. Despite its awkwardness, the recording feature
can be useful to generate code for actions which one
would like to incorporate but are not easily achieved us-
ing the API [9].

There were projects in our corpus, including the
largest project of over 3000 lines, that were entirely
recorded, but we also saw scripts that consisted of
recorded sections intermixed with user-written com-
ments and code. At the far end, the distinction between
recorded and written code was blurred when some end-
users appeared to use code that looked recorded but
lacked the characteristic auto-generated variable names,
like those seen in Figure 5. We also had examples
of recorded code that had been encapsulated in user-
defined functions with descriptive comments about their
purpose, a strategy suggested by Photoshop reference
materials (e.g., [9, 20]).

5. Intellectual Property Concerns

In addition to our analysis of introductory construct
use, we added a number of items to our coding scheme
to explore issues of code sharing and reuse. The data
collected for these items hint at aspects of end-user
culture related to intellectual property and raise ques-
tions for those who seek to support the end-user prac-

tice of learning from pre-existing example code. A sig-
nificant number (62.50%) of projects contained explicit
declaration of their author’s copyright in the project
source code or an accompanying documentation file.
There was also evidence that collaboration and code re-
use between users does take place in this community;
22.92% of the projects contained acknolwedgements of
code borrowed or adapted from other people. Notably,
47.92% of projects contained some form of end-user li-
cense agreement (EULA). Though these projects were
produced by only 8 of the 27 total users, the range of
agreement types represented was surprising. Seven dis-
tinct EULA types were in the corpus:

• Public Domain

• Freeware, modifiable & redistributable

• Freeware, non-modifiable & non-redistributable

• Charity-ware

• Donation-ware

• Demo-ware

• GNU General Public License v2

The least restrictive EULA was an explicit “pub-
lic domain” declaration in the source code comments.
There were variations on the notion of freeware with
some definitions permitting reuse of source code, while
others did not. Interestingly, one project implored the
user to make a donation to any charity if he or she
found the script to be useful. Others politely requested a
small contribution to the author, and some even tempted
users with premium versions of the script with addi-
tional functionality upon payment. The most sophisti-
cated agreement, legally speaking, was one author’s use
of the GNU GPL open source software license in four
separate projects.

A number of potential issues were unaddressed by
the EULAs in this set of projects. Many of the licenses
were implied by simple use of a single term (e.g., free-
ware). Individual interpretations of what such terms
mean could lead to many different outcomes. Further,
several licenses were incomplete and only specified part
of the acceptable use terms. For example, the charity-
ware and donation-ware cases state that users should
make some remuneration if they find the script useful.
However, the license does not specify in which activi-
ties the user may engage following payment—would it
be acceptable to borrow some of the code in a new script
of the user’s design?

The difficulty with EULAs in this context is the
confusion of source code with its executable artifact.

Tech. Rpt. #GT–IC–08–01 6

Many of these license paradigms make sense if they are
applied to a compiled, executable program; however,
the fact that these scripts are human-readable and later
interpreted by the Photoshop host application blurs the
boundaries. One author appeared to have this in mind
and obfuscated projects by using escape characters to
replace all of the ASCII text from the source files.

Our analysis of intellectual property concerns re-
lated to sharing has implications for the potential of
this community to serve as a knowledge base for others.
Restrictive license agreements could discourage others
from trying to use a project as a source of knowledge,
and code obfuscation makes any learning impossible.
With the attention paid to patent lawsuits and other in-
tellectual property disputes in the mass media today,
vague EULAs (or the lack of any terms of use) could
confuse many users about what actions are and are not
acceptable.

There have been recent efforts to make licensing
more accessible to the general public. The Creative
Commons4 offers a simple way for content creators to
mark their works and outline acceptable uses through li-
cense standards [12]. Unfortunately Creative Commons
agreements are not intended to cover source code, and
authors are merely referred to GNU’s open source li-
cense agreements. The range of license types in this
small corpus suggests that a one-size-fits-all approach
will not be sufficient, but that some standardization of
terms is necessary. Finding new ways to balance shara-
bility and credit seem particularly important for foster-
ing learning in end-user programming communities.

6. Conclusion & Future Work

Our analysis of the Adobe Photoshop Exchange
scripting community indicates that graphic design end-
users are producing moderately sized projects. Arti-
facts from this community exhibit varying degrees of
introductory computing construct use. The high rate
of use of some constructs matches our intuitions, but
some results are suprising. For example, every project
contained variable and assignment constructs, but un-
expectedly more than half incorporated exception han-
dling mechanisms. Research findings on construct com-
plexity from the study of novice programmers appear to
explain much of the variation in construct adoption in
this end-user sample.

The transitional processes described in Section 4.2
raise questions beyond the scope of this study. Are these
truly points on a theoretical developmental curve along
which end-users progress, or do individuals retain their
personal strategies over time? Do these points repre-

4http://www.creativecommons.org

sent a natural progression that we might leverage in our
formal classrooms to help better develop student under-
standing?

We speculated on end-user practices in Section 5
that are deeply connected with ownership of and recog-
nition for creative artifacts. Yet, the real effect of li-
censing agreements on learning in these communities is
unclear. Pursuing more rich understandings of intellec-
tual property concerns and developing new paradigms
for sharing source code could be fruitful.

The claims here about computer science knowl-
edge are limited to the constructs that were present
in the online community—the projects were treated as
case studies. However, it would also be of interest to
determine the true extent of computer science knowl-
edge among these end-users. Thus, a natural next step
would be to conduct comprehensive interviews to tease
out the depth of construct understandings. Such an anal-
ysis would also allow us to investigate which constructs
users perceive as most relevant to their practices.

On a larger scale, end-user programming provides
a unique outlet for the examination of informal com-
puter science learning. Not only could further research
here allow tool builders to better support end-users, but
insights gained about how and why computer science
knowledge is acquired “in the wild” could also impact
traditional classroom environments. We hope to better
understand existing end-user practices in order to ex-
plore their educational implications in both formal and
informal settings.

7. Acknowledgments

This material is based upon work supported in part
by the National Science Foundation under grants ITR-
SoD 0613738 and CCLI-ASA 0512213.

References

[1] Computing curricula 2001. Journal on Educational Re-
sources in Computing, 1(3es):1–240, 2001.

[2] J. Cohen. A coefficient of agreement for nominal
scales. Educational and Pyschological Measurement,
20(1):37–46, 1960.

[3] H. Deitel and P. Deitel. C++: How to Program. Prentice
Hall, Upper Saddle River, NJ, 5th edition, 2005.

[4] B. Dorn and M. Guzdial. Graphic designers who pro-
gram as informal computer science learners. In ICER
’06: Proceedings of the Second International Com-
puting Education Research Workshop, pages 127–134,
2006.

[5] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishna-
murthi. How to Design Programs: An Introduction to

Tech. Rpt. #GT–IC–08–01 7

Programming and Computing. MIT Press, Cambridge,
MA, 2001.

[6] A. Fleury. Code reuse through the eyes of students and
professionals. In Proceedings of the National Educa-
tional Computing Conference, pages 136–142, 1997.

[7] D. Ginat. On novice loop boundaries and range con-
ceptions. Computer Science Education, 14(3):165–181,
2004.

[8] C. M. Hoadley, M. C. Linn, L. M. Mann, and M. J.
Clancy. When, why, and how do novice programmers
reuse code? In W. D. Gray and D. A. Boehm-Davis, ed-
itors, Empirical Studies of Programmers: 6th Workshop,
pages 109–129. Ablex, Norwood, NJ, 1996.

[9] M. Kloskowski. The Photoshop CS2 Speed Clinic: Au-
tomating Photoshop to Get Twice the Work Done in Half
the Time. Peachpit Press, Berkeley, CA, 2006.

[10] J. L. Kolodner. Educational implications of analogy.
American Psychologist, 52(1):57–66, 1997.

[11] J. R. Landis and G. G. Koch. The measurement of
observer agreement for categorical data. Biometrics,
33(1):159–174, 1977.

[12] L. Lessig. Code version 2.0. Basic Books, New York,
NY, 2006.

[13] J. Lewis and W. Loftus. Java Software Solutions (Java
5.0 version): Foundations of Program Design. Addison
Wesley, Boston, MA, 4th edition, 2005.

[14] J. F. Pane, C. Ratanamahatana, and B. A. Myers. Study-
ing the language and structure in non-programmers’ so-
lutions to programming problems. International Journal
of Human-Computer Studies, 54:237–264, 2001.

[15] M. B. Rosson, J. Ballin, and J. Rode. Who, what, and
how: A survey of informal and professional web devel-
opers. In 2005 IEEE Symposium on Visual Languages
and Human-Centric Computing, pages 199–206, 2005.

[16] C. Scaffidi, A. Ko, B. Myers, and M. Shaw. Dimensions
characterizing programming feature usage by informa-
tion workers. In VL/HCC ’06: 2006 IEEE Symposium
on Visual Languages and Human-Centric Computing,
pages 59–62, 2006.

[17] C. Scaffidi, M. Shaw, and B. Myers. Estimating the
numbers of end users and end user programmers. In Vi-
sual Languages and Human-Centric Computing, 2005
IEEE Symposium on, pages 207–214, 2005.

[18] E. Soloway, J. Bonar, and K. Ehrlich. Cognitive strate-
gies and looping constructs: An empirical study. In
E. Soloway and J. C. Spohrer, editors, Studying the
novice programmer, pages 191–207. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1989.

[19] A. E. Tew, W. M. McCracken, and M. Guzdial. Impact
of alternative introductory courses on programming con-
cept understanding. In ICER ’05: Proceedings of the
2005 International Workshop on Computing Education
Research, pages 25–35, 2005.

[20] J. Tranberry. Installing and using the ScriptingLis-
tener plug-in. Retrieved March 13, 2007, from
http://www.tranberry.com/photoshop/
photoshop_scripting/tips/listener.
html.

[21] S. Wiedenbeck. Learning recursion as a concept and as
a programming technique. In SIGCSE ’88: Proceed-
ings of the Nineteenth SIGCSE Technical Symposium on
Computer Science Education, pages 275–278, 1988.

[22] J. M. Zelle. Python Programming: An Introduction to
Computer Science. Franklin Beedle, Wilsonville, OR,
2004.

Tech. Rpt. #GT–IC–08–01 8

