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Abstract
A RANSAC-based algorithm for robust estimation of epipo-
lar geometry from point correspondences in the possible
presence of a dominant scene plane is presented. The al-
gorithm handles scenes with (i) all points in a single plane,
(ii) majority of points in a single plane and the rest off the
plane, (iii) no dominant plane. It is not required to know a
priori which of the cases (i) – (iii) occurs.

The algorithm exploits a theorem we proved, that if five
or more of seven correspondences are related by a homog-
raphy then there is an epipolar geometry consistent with
the seven-tuple as well as with all correspondences related
by the homography. This means that a seven point sample
consisting of two outliers and five inliers lying in a domi-
nant plane produces an epipolar geometry which is wrong
and yet consistent with a high number of correspondences.
The theorem explains why RANSAC often fails to estimate
epipolar geometry in the presence of a dominant plane.

Rather surprisingly, the theorem also implies that
RANSAC-based homography estimation is faster when
drawing non-minimal samples of seven correspondences
than minimal samples of four correspondences.

1. Introduction
The1 topic of this paper is robust estimation of epipolar
geometry (EG) from image point correspondences in the
possible presence of a dominant scene plane. A novel
RANSAC-based algorithm is presented that handles in a
unified manner the following three classes of scenes:

1. all points belong to a single scene plane,
2. majority of points belong to a dominant plane and the

rest is off the plane,
3. minority or no points lie in a scene plane (a general

scene).
In the first case, only a plane homography is computed, in
the other cases, a correct EG is computed. It need not be
known a priori which class the input scene belongs to, and
still the computations are not slower than in EG estimation
by plain RANSAC for a general scene.

1The authors were supported by Czech Academy of Sciences under
project 1ET101210406 and by the European Commission under project
IST-004176.

Figure 1: The LAMPPOST scene with 97% of correct tentative
correspondences lying in or near a dominant plane. In 100 runs,
RANSAC fails to find a single inlier on the lamp 83 times; in the
remaining 17, no more than 4 out of the 10 correspondences on
the lamppost are found. Points on the lamppost are far from the
dominant plane and therefore critically influence the precision of
epipolar geometry and egomotion estimation. The DEGENSAC

algorithm, with the same computational complexity as RANSAC,
found the 10 lamppost inliers in all runs. Corresponding points ly-
ing in the dominant plane are dark, off-the-plane points are light,
and the points on the lamp are highlighted by line segments.

The algorithm is based on the following theorem from
two-view geometry, proved in the paper. If five or more
correspondences in a sample of seven correspondences are
related by a homography (we refer to such a sample as
H-degenerate), there always exists an EG consistent with
both the seven correspondences and all correspondences re-
lated by the homography, including those not in the seven-
tuple (that is, not used in the EG estimation). For exam-
ple, given five correspondences related by a homography
and two other arbitrary correspondences, there is an EG
consistent with all correspondences related by the homogra-
phy and with the two other correspondences. H-degeneracy
is not necessarily indicated by ill-conditioned fundamental
matrix estimation in the seven-point algorithm.

In robust EG estimation, it is standard practice to mea-
sure the quality of the EG by the number of inliers [4] or
some closely related quantity such as robust likelihood [11].
It has been observed that in scenes where most points lie in
a plane, standard EG estimation algorithms often return an
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EG with a high number of inliers that is however totally in-
correct. This behavior is explained by the proved geometric
theorem, since a high inlier count can be obtained even if
the seven-point sample includes two outliers. Such a num-
ber of inliers can cause the termination of RANSAC before
a non-degenerate all-inlier sample is drawn. In general, the
problem cannot be overcome by ex-post local optimization
such as bundle adjustment, since the solution does not in-
clude off the plane correspondences, and therefore is likely
to converge to a wrong local optimum.

Exploiting properties of H-degenerate samples, we also
present a RANSAC-based algorithm for homography estima-
tion that draws non-minimal samples. Contrary to the com-
mon practice of drawing minimal samples in RANSAC, the
expected running time of the algorithm is lower than if mini-
mal samples of four correspondences are drawn. This rather
counter-intuitive result is explained by statistical analysis of
the algorithm.

The planar degeneracy problem has been addressed be-
fore. In [9], different criteria for model selection are stud-
ied. The PLUNDER algorithm, which estimates multiple
models separately and then performs model selection, was
proposed in [8]. A method for correct feature tracking in a
video sequence containing degenerate subsequences is de-
signed in [10]. The method was extended in [7], where
complete metric reconstruction is obtained. The proposed
algorithm is novel since, unlike the previous approaches, it
does not separately search for the two models (homogra-
phy, epipolar geometry). Instead, it detects both competing
models simultaneously, and the detection is not slower than
direct estimation of the correct (but unknown) model.

The rest of the paper is organized as follows. In Sec-
tion 2, degenerate samples are classified by the number of
correspondences consistent with a homography, and prop-
erties of each class are discussed. The H-degeneracy test is
developed in Section 3. A novel DEGENSAC algorithm for
EG estimation unaffected by a dominant plane is presented
(Section 4). Section 4.3 shows how homography can be
estimated efficiently exploiting H-degeneracy. The perfor-
mance of DEGENSAC is evaluated on two views of a scene
with a dominant plane (Section 5). The paper is summa-
rized and conclusions are drawn in Section 6.

2. H-degenerate Configurations
In the paper, symbols x ∼ y denote equality of vectors
up to scale, |A| determinant, [v]× cross-product matrix, and
{x | φ(x) } is the set of elements x with property φ(x).

Corresponding point pairs (x1,x′1), . . . , (xn,x′n) from
two images taken by pinhole cameras satisfy the EG con-
straint [4]

(∀i = 1, . . . , n) x′>i Fxi = 0, (1)

where the 3× 3 fundamental matrix F has rank 2.

Up to scale, there are 3 fundamental matrices consistent
with n = 7 correspondences in general position, of which
2 may be complex conjugates. They are computed by the 7
point algorithm [4] as follows. Matrices F satisfying seven
equations (1) form a 2-dimensional linear space, F ∼ λF1 +
(1−λ)F2. Requiring F to have rank 2 imposes an additional
cubic constraint

|λF1 + (1− λ)F2| = 0. (2)

A homography, represented by a 3 × 3 matrix H, is said
to be consistent with EG represented by F if all point pairs
satisfying x′ ∼ Hx simultaneously satisfy x′>Fx = 0. This
happens if and only if matrix H>F is skew-symmetric [4].

The contribution of the paper is based on the following
fact from geometry of two uncalibrated images. Let a set
X of n correspondences be related by a unique homogra-
phy, but otherwise in general position. If n = 7 or n = 6,
then any EG consistent with X is also consistent with the
homography. If n = 5, one of the three EGs defined by
X and two more correspondences is consistent with the ho-
mography. A configuration of 7 correspondences, of which
5, 6 or 7 are homography related, is called an H-degenerate
configuration2.

To prove this, we start with two rather general theorems.

Theorem 1 Let x1, . . . ,x4 be points in a plane. The lo-
cus of such points e that the cross-ratio of the line pencil
(e× x1, . . . , e× x4) is constant is a conic passing through
x1, . . . ,x4.

Proof. This is a well-known theorem from the projective
geometry, sometimes called Chasles’ theorem [2]. ut

Theorem 2 Let x1, . . . ,xn be 5 or more points in a plane,
no three of them collinear. Let H be a non-singular ho-
mography. The set of epipole pairs consistent with corre-
spondences {(x1, Hx1), . . . , (xn, Hxn)} is given by E =
Ep ∪ Ec where

Ep = { (e, He) | e is arbitrary },
Ec = { (e, e′) | points Hx1, . . . , Hxn, He, e′ are conconic }.

Proof. Assume without loss of generality H = I, that is,
x′i ∼ xi. Then the theorem is a trivial consequence of what
is called Chasles’ theorem in [4, Theorem 22.3]. However,
since Chasles’ theorem is usually stated only for four points
(Theorem 1 in this paper), we will give an explicit proof.

An epipole pair (e, e′) is consistent with the correspon-
dences if line pencil e(x1, . . . ,xn) is projectively related to
line pencil e′(x1, . . . ,xn). That is, the pencil joining e with

2H-degeneracy should not be confused with the term degenerate con-
figuration, which we use in the usual meaning to denote a configuration of
7 correspondences consistent with an infinite class of EGs.
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any four points of {x1, . . . ,xn} must have the same cross-
ratio as the pencil joining e′ with the same four points.

Let us choose e arbitrarily. By Theorem 1, e′ must lie on
the conic passing through points {x1, . . . ,x4, e} and, at the
same time, on the conic passing through {x2, . . . ,x5, e}.
If these two conics are different, their common points are
{x2,x3,x4, e}. There cannot be more common points since
two different non-singular conics have at most four inter-
sections. By induction on other 4-tuples of {x1, . . . ,xn},
we obtain that either e′ ∼ e or, if points {x1, . . . ,xn} are
conconic, that e and e′ both lie on this common conic. ut

Theorem 2 states that a set of 6 or more homography-
related point pairs not lying on a single conic is consistent
with the same class of EGs as is the whole homography.
However, if the points are conconic (which is always the
case for 5 pairs), there is another class of EGs besides the
one consistent with the homography, namely the class de-
fined by epipoles lying anywhere on the respective conics.

In the theorem, the former class is denoted by Ep. This
stands for the planar part of E, since given (e, e′) ∈ Ep,
3D reconstruction of the correspondences lies in a plane.
The latter part is denoted by Ec. This stands for cubic part
of E since the 3D reconstruction of the correspondences lies
on a twisted cubic along with the two camera centers. The
cubic part is closely related to the horopter theorem [4].

If the points are conconic, it can be shown that set E
corresponds to the set of fundamental matrices given by

F = { F | F = H−>([v]×+λQ), |F| = 0, v ∈ R3, λ ∈ R },

where matrix Q represents the Steiner conic [4, Section 9.4]
passing through the points. Taking λ = 0 yields the planar
part Ep, whereas λ 6= 0 yields the cubic part Ec.

The rest of this section applies Theorem 2 to prove the
above facts about H-degenerate configurations.

2.1. All 7 Pairs Related by Homography
If all 7 out of 7 correspondences are related by a homog-
raphy, the class of EGs consistent with them is the same
as the class consistent with the homography. The EGs are
parametrized by the position of one epipole.

Theorem 3 Let points x1, . . . ,x7 contain no collinear
triplet and not lie on a conic. Let H be a non-singular ho-
mography. Then all fundamental matrices consistent with
correspondences {(x1, Hx1), . . . , (x7, Hx7)} are consistent
with H. In detail, these fundamental matrices form a set

F7 = { [e′]×H | e′ ∈ R3 }.

Proof. Straightforward by Theorem 2. Since the points are
not conconic, it is Ec = ∅ and E = Ep. ut

For this configuration, the linear space of matrices F sat-
isfying (1) has dimension 3 (rather than 2 as for a 7-tuple

in a general position) and all these matrices have rank 2. It
follows that F7 is a 3-dimensional linear space.

2.2. 6 of 7 Pairs Related by Homography
If 6 of 7 pairs are related by a homography, the class of EGs
consistent with them is the class consistent with the homog-
raphy and one additional pair off the homography. The class
is parametrized by the position of one epipole which has to
be collinear with the last pair.

Theorem 4 Let points x1, . . . ,x6 contain no collinear
triplet and not lie on a conic. Let H be a non-singular ho-
mography. All fundamental matrices consistent with corre-
spondences {(x1, Hx1), . . . , (x6, Hx6)} are consistent with
H. In detail, for any (x7,x′7), fundamental matrices con-
sistent with correspondences {(x1, Hx1), . . . , (x6, Hx6),
(x7,x′7)} form set

F6 = { [e′]×H | e′ ∈ R3, e′>(Hx7 × x′7) = 0 }.

Proof. Straightforward by applying Theorem 2 on the first
6 points. This yields E = Ep. Part of Ep consistent with
(x7,x′7) contains pairs (e, He) for e being collinear with the
7th point pair. ut

For this configuration, the linear space of matrices F sat-
isfying (1) has dimension 2. However, unlike for a 7-tuple
in a general position, all matrices in this space have rank 2.
In other words, coefficients in the polynomial (2) are iden-
tically zero. Therefore, F6 is a 2-dimensional linear space.

2.3. 5 of 7 Pairs Related by Homography
The class of EGs consistent with the configuration of 5 ho-
mography related pairs and 2 more pairs off the homogra-
phy always contains an EG consistent with the homography.
This follows straightforwardly from the plane-and-parallax
algorithm [5, 4], which linearly computes EG from a ho-
mography and additional 2 point pairs off the homography.

Not so obviously, this configuration is non-degenerate in
the usual sense because, like a general configuration of 7
points, it yields 3 solutions for EG. In contrast, the configu-
rations in the previous two subsections are degenerate.

By Theorem 2, the class of EGs consistent with this con-
figuration is the same as the class consistent with a point-
wise corresponding pair of conics and two additional point
pairs off the homography fixed by the conics.

Theorem 6 bellow will summarize these facts. Before
stating it, we give another theorem needed for its proof. It
defines the class of EGs consistent with two point-wise cor-
responding conics and a single additional point pair (the the-
orem assumes H = I, hence only one conic is mentioned).

Theorem 5 Let Q be a conic and x and x′ two points not on
Q. Let (e, e′) be a pair of epipoles lying on Q and consistent
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Figure 2: Conic R is the envelope of lines joining epipole
pairs consistent with conic Q and the point pair (x,x′).

with correspondences { (y,y) | y ∈ Q } ∪ (x,x′). Then the
line e× e′ is tangent to the conic (see Figure 2)

R = (x>Qx)(x′>Qx′)Q− |Q|(x× x′)(x× x′)>. (3)

Proof. A pair of epipoles lying on Q and consistent with
{ (y,y) | y ∈ Q } ∪ (x,x′) has the property that the point
u = (x × e) × (x′ × e′) lies on Q. Thus, all such epipole
pairs are parameterized by a point u moving on Q.

Given a point u on Q, the second intersection of the line
u× x with Q is e = Au where A = I− 2xx>Q/(x>Qx) is
the harmonic homology [4] with the vertex x and the axis
Qx. Similarly, e′ = A′u where A′ = I−2x′x′>Q/(x′>Qx′).

If Q is real non-degenerate, we can without loss of gener-
ality assume Q = diag(1, 1,−1) and u = [cos t, sin t, 1]>.
It can be verified that the expression (e × e′)>R∗(e × e′)
vanishes identically. Hence the line e×e′ is tangent to R for
any u lying on Q. Here, R∗ denotes the matrix of cofactors
of R, representing the conic dual to R.

If the signature σ of Q is different from (1, 1,−1), mean-
ing than Q is complex and/or degenerate, we proceed the
same way using Q = diag(σ) and the appropriate parame-
terization of u moving on Q. ut

Alternatively, R is obtained by transforming Q by the ho-
mology [4] B with the axis x× x′, the vertex Qx× Qx′, and
the characteristic ratio µ = (x>Qx′)/

√
(x>Qx)(x′>Qx′)

being the projective invariant of a conic and two points [4,
Exercise 2.10.2]. Unlike equation (3) however, this con-
struction is indefinite if the line x× x′ is tangent to Q.

Let j and j′ denote the common points of Q and the line
x× x′, and let γ denote the cross-ratio 〈x,x′; j, j′〉. Then it
can be shown that 4µ2 − 2 = γ + γ−1.

Assuming non-degeneracy of Q, conic R degenerates if
either (x>Qx)(x′>Qx′) = 0 (in that case, R is the double
line x × x′), or x>Qx′ = 0 (then homology B is singular
and R is the pair of tangents to Q from the point Qx× Qx′).

Theorem 6 Let no three of points x1, . . . ,x5 be collinear.
Let H be a non-singular homography. Let (x6,x′6) and
(x7,x′7) be two correspondences in general position w.r.t.

the first five ones and H. There is s finite number of EGs con-
sistent with correspondences {(x1, Hx1), . . . , (x5, Hx5),
(x6,x′6), (x7,x′7)} of which one EG is consistent with H.

Proof. Assume H = I. By Theorem 2, the first five cor-
respondences restrict the epipole pairs to be in Ep ∪ Ec

where Ep = {(e, e) | e arbitrary} and Ec = {(e, e′) |
x1, . . . ,x5, e, e′ conconic}.

By the plane-and-parallax algorithm [4], the subset of
Ep consistent with {(x6,x′6), (x7,x′7)} is given by e =
(x6 × x′6)× (x7 × x′7).

Let Q be the conic through x1, . . . ,x5. By Theorem 5,
the subset of Ec consistent with (x6,x′6) is given by requir-
ing the line e×e′ to be tangent to the conic which we denote
by R6. The similar conic for (x7,x′7) is denoted by R7.

An epipole pair lying on Q and consistent with
{(x6,x′6), (x7,x′7)} must lie on a common tangent to R6

and R7. In general case, there is a finite number (up to four)
of these tangents, hence there is a finite number of feasible
epipole pairs and the configuration is non-degenerate.

Note, not every common tangent intersects Q in a feasi-
ble epipole pair. Some do in epipole pairs consistent with
{(x6,x′6), (x

′
7,x7)} rather than with {(x6,x′6), (x7,x′7)}.

A feasible epipole pair must satisfy that the points (e×x6)×
(e′ × x′6) and (e× x7)× (e′ × x′7) lie on Q. ut

3. Detection of H-degenerate Samples
This section describes an efficient test whether seven cor-
respondences {(xi,x′i)}7

i=1 are H-degenerate. The input is
not only the seven correspondences but also a fundamen-
tal matrix F consistent with them (one of the F output by
the 7-point algorithm). The test verifies whether there exist
five correspondences related by a homography H which is
consistent with F exist.

Given F, only three correspondences {(xi,x′i)}3
i=1 are

sufficient to compute a plane homography H as [4]

H = A− e′(M−1b)>, (4)

where A = [e′]×F and b is a 3-vector with components

bi = (x′i × (Axi))>(x′i × e′)‖x′i × e′‖−2,

and M is a 3× 3 matrix with rows x>i .
A triplet from each five-tuple defines a homography and

the other four correspondences are checked for consistency
with this homography. Any of

(
7
5

)
= 21 five-tuples con-

tains at least one of the triplets {1, 2, 3}, {4, 5, 6}, {1, 2, 7},
{4, 5, 7} and {3, 6, 7}. Hence, at most five homographies
have to be tested.

In general, up to three fundamental matrices are consis-
tent with the seven correspondences and the test should be
carried for all of them. In practice, it is sufficient to check
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H-degeneracy of the F consistent with the largest number of
tentative correspondences, for details see Section 4.

Note that the test is also applicable to samples containing
six or seven H-related correspondences, as every fundamen-
tal matrix from the sets F6 and F7 is consistent with H.

4. Two-view Geometry Estimation
Unaffected by a Dominant Plane

In this section, we show how the results on degeneracies of
seven point correspondences (Section 2) can be exploited
to design an EG estimation algorithm that is robust to the
presence of a dominant plane in the scene. Epipolar ge-
ometry estimators of practical importance must be able to
handle outliers among tentative correspondences. RANSAC,
which achieves robustness by drawing independent samples
repeatedly, is the most commonly used EG estimator and we
focus on this algorithm.

Frequently, an incorrect EG is output by RANSAC if the
dominant plane is present in the scene, i.e., if a large frac-
tion of correct tentative correspondences are related by a
homography. The behavior, demonstrated in Fig. 5, is not
difficult to explain. In standard RANSAC [3], it is assumed
that once an all-inlier sample is drawn, the correct model is
recovered. However, this is a necessary but not a sufficient
condition. To estimate the EG correctly, the sample from
which the EG is estimated must also be non-degenerate, i.e.
at most five of its correspondences may be related by a sin-
gle homography (as shown in Sections 3).

Let us analyze the RANSAC stopping criterion in detail.
Let PF be the probability that a good sample is drawn, i.e. a
sample that enables estimation of the correct EG. The prob-
ability η that RANSAC failed to find the correct solution after
k independent draws, i.e. no good sample has been drawn,
is

η(PF) = (1− PF)k. (5)

In standard RANSAC, an all-inlier sample is assumed to be
a good sample. The probability of drawing an all-inlier
(seven-tuple containing seven inliers) is P7/7 = ε7, where
ε is the fraction of inliers in the set of tentative correspon-
dences. However, for the case of a dominant plane, the
probabilities P7/7 and PF differ. The correct EG can only
be estimated from an all-inlier sample with no more than
five correspondences from the plane and 2 or more inliers
off the plane. Let εH be the fraction of homography consis-
tent correspondences. Then the probability PF of drawing a
good sample is

PF =
5∑

i=0

(
7
i

)
εi
H(ε− εH)7−i. (6)

Note that PF = P7/7 if εH = 0, and PF < P7/7 otherwise. If
εH were known (and it never is), the probability PF could be

used to calculate the confidence 1−η(PF). Such a stopping
rule would be very inefficient, as the PF drops to zero when
εH approaching ε.

4.1. The DEGENSAC Algorithm
The DEGENSAC algorithm that correctly estimates epipolar
geometry even for high values of εH is introduced in this
section. The first two steps of the algorithm, summarized
in Alg. 1, are identical to standard RANSAC [4, p.291]. The
algorithm repeatedly draws samples Sk of seven correspon-
dences. The seven-point algorithm produces up to three
fundamental matrices. Let Fk be the fundamental matrix
with the largest support Ik of the fundamental matrices cal-
culated from Sk. If Fk is the best so far (Ik > Ij , j =
1 . . . k − 1) the fundamental matrix and the size of its sup-
port is stored.

Input: The set of N point-to-point correspondences.
Output: The fundamental matrix F with the largest sup-

port; optionally the homography H with the
largest support.

Set the lower bound on the number of inliers I∗ := 0.

Repeat until the probability η(P7/7) = (1 − (I∗/N)7)k of
finding EG with support larger than I∗ in k-th step falls
under threshold η0 :

1 Select a random sample of 7 correspondences, calcu-
late up to three fundamental matrices consistent with
the sample. Compute the support for each of them.
Let Fk be the one with the largest support (size Ik).

2 If Ik > I∗:

—
—

—
—

-N
ov

el
ty

—
—

—
–

3 Store Fk and let I∗ := Ik.
4 Evaluate the H-degenerate sample test (see Sec-

tion 3). If 5 or more correspondences from the
sample consistent with homography Hk are found:
5 Compute the size IHk of the support of Hk. Store

Hk if it has the biggest support between homogra-
phies so far.

6 Execute robust estimation of fundamental matrix
FHk based on plane-and-parallax algorithm and
calculate its support size IFk .

7 If IFk > Ik store FHk and let I∗ := IFk .

Algorithm 1: The structure of the DEGENSAC algorithm.

When the best sample so far is drawn, the H-degeneracy
test involving Fk and the seven-tuple Sk is performed
(step 4) as described in Section 3. If no five correspon-
dences are H-related, the inliers are considered to be in gen-
eral position and the algorithm continues with the step 1.
Otherwise, an H-degenerate sample is detected which means
that a homography Hk consistent with at least five corre-
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Figure 3: Probabilities P5/7, PF and P (eqs. (6-8)), for inlier
percentage ε = 67% (top) and log(P5/7/PF) for values 25%,
60% and 100% of ε respectively (bottom).

spondences from Sk exists. Using Hk, EG is estimated by
the plane-and-parallax algorithm (step 6). In this case, Hk

and two additional correspondences are sufficient to define
an EG. The EG with the largest support found in step 6 is
stored and the algorithm proceeds with the next iteration.

4.2. DEGENSAC – the Probability of Success
There are two cases how the correct EG is recovered; either
from an all-inlier non-degenerate sample, or by the plane-
and-parallax algorithm after a homography is detected. The
former case occurs with probability PF, see (6). The lat-
ter case happens when a sample containing five or more H-
related correspondences is drawn. The probability P5/7 of
drawing an H-degenerate sample is

P5/7 =
7∑

i=5

(
7
i

)
εi
H(1− εH)7−i. (7)

The sample of five H-related and two EG consistent but not
H-related correspondences is both a good and H-degenerate
sample. The probability of drawing such a sample, 21ε5

H(ε−
εH)2, is included in both probabilities PF and P5/7. There-
fore, following the inclusion-exclusion principle, the prob-
ability that the correct EG is recovered by drawing a single
sample is

P = PF + P5/7 − 21ε5
H(ε− εH)2. (8)

Note, that P ≥ P7/7 as an all-inliers sample is either good or
H-degenerate sample, or both.

Probabilities PF, P5/7 and P are plotted in Fig. 3 (top).
As PF and P5/7 are functions of both ε and εH, ε = 0.67 was
fixed in the figure to keep the plot one-dimensional. The
figure shows, that the probability of drawing a good sample

is almost unchanged up to approximately 30% of inliers ly-
ing on a single plane. The probability drops off for higher
values of εH/ε. For more than 52% of coplanar inliers, it
becomes more likely to draw an H-degenerate sample than
a good sample. Note that P ≥ max(PF, P5/7). Qualita-
tively, the dependency is the same for all values of ε. The
log(P5/7/PF) function for different ε is drawn in Fig. 3-
bottom. The plot shows when it is more likely to draw a
non-degenerate all-inliers sample (log(P5/7/PF) < 0) or H-
degenerate sample.

The termination criterion. The two algorithms, DE-
GENSAC and RANSAC, have equal probability of finding a
correct solution after the same number of steps if εH = 0.
With increasing εH, the probability of success is increasing
for DEGENSAC and decreasing for RANSAC, i.e. εH = 0 is
the worst case for DEGENSAC. To ensure the required con-
fidence in the solution even in the worst case, DEGENSAC
is terminated when η(P7/7) falls under predefined threshold
(typically 5%).

Computational complexity. The computations carried
out in DEGENSAC and RANSAC are identical with one ex-
ception – when the best sample so far is drawn. Note that
other than the best samples so far are of no interest, as EG
fitting as many correspondences as possible is sought for. It
is not difficult to show [1], that the best sample so far oc-
curs on average only log(k) times, where k is the number of
samples drawn. Thus, the procedure is executed rarely and
its time complexity is not critical.

If the best sample so far is drawn, the H-degeneracy test
is performed (step 4). It takes constant (and in practice in-
significant) time to evaluate the test. A more complex pro-
cedure (step 6), based on the plane-and-parallax algorithm,
is executed if the test detects an H-degenerate sample. In
this step, another RANSAC-like strategy that draws samples
of two correspondences not related by the detected homog-
raphy Hk is performed. Note that the time complexity of
algorithm searching for a two inlier sample is significantly
lower then the complexity of the main loop.

Homography or epipolar geometry? Besides returning
the EG, the DEGENSAC algorithm also outputs the homog-
raphy with the largest support. The EG is valid unless a
planar scene is observed or if there is a zero translation of
the camera center. Some model selection strategy [9] can
be applied to check the validity of the EG. The dominant
plane homography may or may not be of direct interest. It
can be used e.g. as a strong geometric constraint in guided
matching [4].

4.3. Homography Estimation through EG
Consider the problem of homography estimation from data
containing outliers. The standard approach (of RANSAC)
is to draw samples of four correspondences to generate a
hypotheses of homography. Surprisingly, a modified DE-
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Figure 4: The ratio of probabilities of drawing an H-
degenerate sample and an all-inlier (four out of four) sample
(P5/7/P4/4).

GENSAC is almost always able to estimate the homography
in a smaller number of iterations.

Instead of drawing minimal samples of four correspon-
dences and estimating homography directly, samples of
seven correspondences are drawn and epipolar geometry is
estimated instead. If the support of the EG is the best so far,
then the H-degenerate sample test is carried out to recover
the homography. In other words, the DEGENSAC algorithm
is run and the plane-and-parallax step is not executed and
the estimated EG is ignored. The probability of drawing an
H-degenerate sample is P5/7 and therefore the algorithm is
terminated when the confidence η(P5/7) falls under a prede-
fined threshold.

Let us compare the probability that the solution is found
in a single sample by standard RANSAC, P4/4 = ε4

H , and by
the DEGENSAC based algorithm P5/7 (7). Fig. 4 shows the
ratio of the two probabilities P5/7/P4/4. For εH ∈ (0.052, 1)
the DEGENSAC method finds the solution in less iterations
than the standard RANSAC! Note, that the range of values
of εH where P5/7 is bigger than P4/4 covers all practical situa-
tions.

However, the estimation of homography through EG is
unlikely to bring a significant speed-up3. Nevertheless, this
is an interesting situations where a model of lower dimen-
sion can be estimated indirectly through an estimation of a
model of higher dimension.

5. Experiments
Properties of EG estimation by the DEGENSAC and RANSAC
algorithms are demonstrated on the BOX (Fig. 5) and the
LAMPPOST (Fig. 1) scenes.

In the BOX experiment, both algorithms processed
958 tentative correspondences established by wide-baseline
matching [6]. The set of correspondences includes 643 in-
liers (ε = 67%) and 613 correct matches related by a ho-
mography (εH = 64%). The fraction of inliers that lie on
a plane is εH/ε = 95%. For such values of ε and εH, the
probabilities PF of drawing a good sample (6) and a H-

3There are up to three fundamental matrices defined by seven points
and hence the decrease in the number of samples will be offset by increased
number of verified fundamental matrices.

degenerate sample P5/7 (7) are PF = 0.003 and P5/7 = 0.5
respectively.

Both the RANSAC and DEGENSAC algorithms, were ex-
ecuted one hundred times. The percentage of runs where
a given correspondence was labeled as an inlier is plot-
ted in Fig. 6, for both RANSAC (top) and DEGENSAC (bot-
tom). The same correspondence occupies the same column
in both plots and the correspondences are sorted according
to the DEGENSAC results.

In each of the hundred execution, DEGENSAC detected
the same set of 613 H-related correspondences. From the
set of the remaining 345 correspondences, 329 were classi-
fied constantly in every single execution of DEGENSAC: 29
as inliers and 300 as outliers. This demonstrates the stabil-
ity of the estimated EG. The remaining 16 correspondences
consist of 8 correct matches and 8 mismatches that lie on
the boundary of the error threshold. On average, of the 16
borderline correspondences, 4 correct matches and 2.8 mis-
matches were labeled as inliers per execution of DEGEN-
SAC.

On the other hand, RANSAC often failed to find correct
off-plane matches and returned an incorrect EG defined by
in-plane matches and some random mismatches. To visual-
ize the resulting epipolar geometries, four ”ground truth”
correspondences were established manually ex-post, two
off the plane and two in the plane4.

The EG detected by DEGENSAC is shown in Fig. 5a. All
four ”ground truth” correspondences, both in and off the
plane, satisfy the epipolar constraint. Examples of EGs es-
timated by RANSAC are depicted in Fig. 5b-d. Note, that
even though the number of correspondences labeled as in-
liers in Fig. 5b-d are non random and close to the number
of inliers in Fig. 5a, the resulting EG is incorrect. Only the
in-plane correspondences satisfy the epipolar constraint.

Similar results were obtained for the LAMPPOST scene
Fig. 1. In this experiment, the fraction of inliers was
ε = 86% and the fraction of in-plane correspondences was
εH = 65%; εH/ε = 76%. Most of the off-plane inliers lie
close to the dominant frontal plane (correspondences on the
roof). Together, 97% of correspondences were in or near
the plane. Ten inliers most distant from the plane, critical
for the well-posedness of the solution, are located on the
lamppost. In all of the one hundred DEGENSAC executions,
all ten correspondences on the lamppost were labelled as
inliers. RANSAC selected as inlier none of them in 83 exe-
cutions. In the remaining 17 executions, RANSAC labelled
no more than 4 of the correspondences as inliers.

4The manually established correspondences were, of course, not part
of the input to RANSAC and DEGENSAC.
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(a) 643 inliers (ε = 0.67) (b) 621 inliers (ε = 0.65) (c) 615 inliers (ε = 0.64) (d) 614 inliers (ε = 0.64)

Figure 5: The BOX experiment. Examples of three EGs estimated during hundred executions of standard RANSAC (b-d);
all 100 EGs estimated by DEGENSAC (a) were qualitatively the same. Epipolar lines F>x′ and Fx for four ground truth
correspondences, two off the plane and two in the plane, are superimposed over the images. The EGs on (b-d) are consistent
with the floor plane, but not with the correspondences off the plane.
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Figure 6: Each column in the graph represents a correspon-
dence off the plane. The bars show the number of runs when
the correspondence was labeled as inlier during 100 repeti-
tions of RANSAC (top) and DEGENSAC (bottom). Note the
bimodality of the DEGENSAC output.

6. Conclusions
The concept of H-degeneracy of a sample of seven corre-
spondences was defined. The cases with five, six and seven
H-related correspondences were analyzed separately and a
single test of H-degeneracy for all three cases was proposed.

Exploiting the results on H-degeneracy, a novel algo-
rithm, DEGENSAC, was designed. If no large plane is
present in the scene, DEGENSAC works exactly as RANSAC.
If a dominant plane is detected, DEGENSAC switches to
EG estimation using the plane-and-parallax strategy. The
computational cost of the H-degeneracy test and, poten-
tially, plane-and-parallax is not significant, since the steps
not present in RANSAC are executed only in log(k) times,
where k is the total number of samples drawn.

The EG estimation process was analyzed and we showed
that the larger the number of H-related correspondences, the
higher the probability that DEGENSAC finds the solution. As
a consequence, with the increase in the number of points in
a dominant plane the running time of DEGENSAC decreases.
It was demonstrated experimentally that, unlike RANSAC,

DEGENSAC estimates both the EG and the homography cor-
rectly and reliably in the presence of a dominant plane.
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