
Managing BGP Routes with a BGP Session Multiplexer

Vytautas Valancius and Nick Feamster
School of Computer Science, Georgia Tech

ABSTRACT

This paper presents the design, implementation, and evalu-
ation of BGP-Mux, a system for providing multiple clients
access to a common set of BGP update streams from mul-
tiple BGP peers. By providing multiple clients access to
the same set of BGP feeds, BGP-Mux facilitates many ap-
plications, including: (1) scalable, real-time monitoring of
BGP update feeds; (3) new routing architectures that require
access to all BGP routing updates from neighboring ASes
(as opposed to just the best BGP route for each destination);
and (2) virtual networks running on shared infrastructure that
share common underlying network connectivity. We have
implemented BGP-Mux through by configuring existing fea-
tures in the Quagga software router; we have deployed BGP-
Mux on VINI and evaluated its scalability and performance
in a controlled environment on the Emulab testbed.

1. Introduction

The Border Gateway Protocol version 4 (BGP) [12] is
the Internet’s interdomain routing protocol; it is used to ex-
change reachability information about global destinations
between all the routers on the boundaries of independently
operated networks, or autonomous systems (ASes). ASes,
such as Internet Service Providers (ISPs) exchange reacha-
bility information about global destinations over BGP ses-
sions. Managing these BGP sessions and routes generated
by them is a burdensome task. Many applications and ser-
vices could benefit from receiving up-to-date BGP routing
information. For example, route monitoring applications
for troubleshooting, security, and research may need to re-
ceive complete, up-to-date information about global reacha-
bility [8, 9, 15]. Virtual networks that are hosted on a shared
platform also may each need to receive distinct BGP update
streams [1]. Finally, new routing architectures that enhance
management and control, such as the Routing Control Plat-
form [2], may require additional visibility into the complete
set of routes that are advertised from neighboring ASes.

Despite BGP’s widespread use, arbitrary applications, net-
works, and monitoring services cannot typically obtain real-
time BGP routing updates directly from routers, because
these “update feeds” require direct sessions with production
routers. Furthermore, because routers propagate only a sin-
gle best route over their BGP sessions, even direct BGP ses-
sions to the routers do not provide complete visibility into all
of the BGP routes received by a router.

To enable on-demand, real-time BGP monitoring for these
new classes of applications, this paper presents BGP-Mux, a
Border Gateway Protocol Multiplexer. BGP-Mux provides
clients with real-time, on-demand access to BGP sessions.
Figure 1 shows the high-level design of BGP-Mux. BGP-
Mux connects to upstream (or neighboring) ISPs with sta-

ISP A ISP B

BGP-Mux

Client 

Domain X

Client 

Domain Y

eBGP Session

Upstream

Downstream

Figure 1: High-level design for BGP-Mux.

ble, persistent upstream sessions. Clients (or applications)
connect to BGP-Mux over client sessions, which resemble
the sessions a client would see if it had connected directly to
the upstream ISPs. In this fashion, whereas typically a client
domain connecting through a router would only see a sin-
gle route to each destination, BGP-Mux allows each down-
stream client to receive multiple routes to each destination as
if it had direct BGP sessions with upstream ISPs.

BGP-Mux “clients” may be real-time BGP update moni-
tors; they may also be routers in physical or virtual networks.
A monitoring system could connect to a BGP-Mux to obtain
real-time BGP update feeds from all of the upstream ASes
that provide feeds to that BGP-Mux. This service would
essentially be a real-time BGP route update server. The
route servers at Oregon RouteViews [10] provide snapshots
of BGP updates; a similarly situated BGP-Mux could pro-
vide downstream clients with real-time feeds of BGP update
streams. As another example, suppose that a virtual net-
work wants to receive BGP updates as if it were physically
connected to some set of upstream networks. For example,
nodes in the VINI testbed [1] have external BGP connectiv-
ity to upstream ISPs; individual virtual networks (i.e., exper-
iments) on this testbed may wish to obtain external connec-
tivity without having to independently negotiate and estab-
lish BGP sessions with upstream ISPs. Thus, BGP-Mux can
act on behalf of multiple client networks as a single point of
negotiation for upstream BGP connectivity.

BGP-Mux has several salient features. First, because
client sessions receive upstream feeds through BGP-Mux,
the clients can be transient and unreliable. Second, be-
cause it readvertises the same complete set of BGP update
streams to each downstream client, BGP-Mux allows each
new client to receive feeds from many upstream ASes by es-
tablishing a BGP session with a single entity (in contrast to
the status quo, where each client must establish a separate
BGP session with each upstream ISP). ISPs are typically re-
luctant to provide access to their feeds because of the pro-
visioning overhead; BGP-Mux allows many clients to see

1



these routes without requiring per-client provisioning from
upstream ASes.

This paper presents three main contributions. First, we
present a new model for BGP interconnection that facilitates
new applications that require real-time BGP update streams,
such as real-time monitoring, centralized route control and
virtual networks. Second, we describe the design and imple-
mentation of BGP-Mux, a system that enables this new in-
terconnection model; we have deployed BGP-Mux on VINI
and connected it to receive routes from two upstream ISPs.
Third, we evaluate the scalability and performance of BGP-
Mux as we increase number of clients. We have deployed
BGP-Mux on the VINI testbed to provide external connec-
tivity to virtual networks; our evaluation of BGP-Mux in a
controlled setting on Emulab shows that BGP-Mux can prop-
agate 99% BGP announcements and withdrawals to as many
as 20 clients in less than 1.3 seconds with less than 5% CPU
load and using 200 MB of RAM.

The rest of the paper is organized as follows. Section 2
describes three possible scenarios for BGP-Mux usage. Sec-
tion 3 describes the design goals for BGP-Mux, and 4 de-
scribes the and implementation of BGP-Mux in the Quagga
software router. Section 5 evaluates the performance and
scalability of BGP-Mux, Section 6 discusses related work,
and Section 7 concludes.

2. Background and Motivation

We present a brief overview of the Border Gateway Pro-
tocol (BGP) [12] and explain its shortcomings for certain
applications. We then present three motivating applications
for multiplexing BGP sessions: (1) remote BGP monitoring;
(2) local BGP route monitoring for intelligent route selec-
tion; and (3) access for virtual networks.

2.1 BGP: Background and Limitations

BGP is the Internet’s interdomain routing protocol: it ex-
changes reachability information (i.e., routes) about global
destinations between ISPs. BGP is an incremental proto-
col: when a route to a destination changes at some BGP-
speaking router, that router propagates BGP updates over all
of its BGP sessions to neighboring routers. These updates
are exchanged over BGP sessions; each router advertises a
single “best” route to each destination over each BGP ses-
sion. Although this model allows BGP to scale well, it also
imposes several limitations.

Limited visibility. A BGP router selects and readvertises
only a single best route per destination, which enables BGP
to compute routing trees but hinders visibility for certain ap-
plications. For example, today, it is very difficult for ISPs
to collect all external BGP routing updates real-time; essen-
tially, it would require deploying (expensive) packet moni-
tors on all peering sessions [4]. Instead, BGP-Mux could es-
tablish sessions to each eBGP session and “reflect” the routes
learned on each of those sessions to a monitor.

Provisioning overhead and issues with trust. The BGP
session provisioning involves exchange of multiple param-
eters (such as IP addresses and AS numbers) between the

ISP A ISP B

University IndividualsInstitute

BGP-MuxPublic

Network

Figure 2: Remote, real-time monitoring of BGP updates.

ISP

BGP-Mux

Monitor

R3

R4

R5

R1

R2

R6

Figure 3: BGP update monitoring inside an ISP network.

participating parties and manual configuration on the bor-
dering routers. Network operators are reluctant to provision
new BGP sessions unless these sessions are necessary for
normal network operation; further, they must typically trust
the neighboring network with which it is exchanging routes;
in the case of an experimental network (e.g., VINI) that re-
quires external connectivity, an operator may not trust that
the experimenter will not introduce false routing information
through misconfiguration (or malice).

Exposure to instability. Unstable sessions utilize CPU on
border routers, especially when a full BGP feed must be re-
sent each time the session comes back up. These issues are
especially apparent when the neighboring network is a re-
search network or a monitoring station that is not optimized
for stability. BGP-Mux could “mask” the instability from
virtual networks by maintaining a single, stable upstream
BGP session to the upstream ISP.

2.2 Applications for BGP Multiplexing

The limitations of BGP outlined in the previous section
make several applications difficult to deploy. This sec-
tion describes three such applications that BGP multiplexing
could enable.

Remote, real-time BGP monitoring (Figure 2). Monitor-
ing, security, and reactive routing applications may bene-
fit from having access to real-time BGP update feeds from
many ISPs to perform measurements (and perhaps also react
or raise alarms in real-time). For example, systems that mon-
itor routing updates for suspicious advertisements or route
hijacks (e.g., [8,9,15]) could benefit from having direct real-
time feed of all of the ISPs that send routes to RouteViews

2



ISP A ISP B

Virtual Network Infrastructure - VINI

Virtual 

Network 1

Virtual 

Network 3

Virtual 

Network 2

(a) Solution without BGP-Mux.
Each virtual network must estab-
lish independent BGP sessions to
neighboring ISPs. Instability in
virtual networks is exposed to ex-
ternal ISPs.

ISP A ISP B

Virtual Network Infrastructure - VINI

Virtual

Network 1

Virtual

Network 3

Virtual

Network 2

BGP-Mux

(b) Solution with BGP-Mux.
Multiple virtual networks can re-
ceive BGP routes from upstream
providers without separately
provisioned sessions.

Figure 4: BGP-Mux allows multiple virtual networks on the same

shared physical infrastructure to exchange routes with upstream ISPs,

without independent, direct BGP sessions for each virtual network.

(as opposed to relying on periodically archived route update
files).

Unfortunately, as previously explained, establishing a sep-
arate BGP session from each upstream ISP to each new mon-
itoring service incurs high overhead. Instead, BGP-Mux
could provide transparent access to each new monitoring ser-
vice or application that relies on real-time feeds, without re-
quiring a separate negotiation with each upstream ISP every
time. Both ISPs and services benefit: ISPs only need to es-
tablish only one stable BGP session to BGP-Mux; clients
don’t need to negotiate update feeds from multiple parties.

BGP Monitoring inside ISP networks (Figure 3). Service
providers want real-time visibility into the routes that are ad-
vertised over every external BGP session. Monitoring ev-
ery external BGP session has several applications, including
monitoring these sessions to enforce peering agreements [4],
modeling BGP route selection for performing what-if sce-
narios [5], and running network routing systems that exercise
greater control over route selection (e.g., RCP [2]).

Unfortunately, achieving this type of “global visibility” is
difficult today: operators can log into the routers to “dump”
routing tables, but this approach is complicated and only
yields a snapshot; it does not give real-time stream of BGP
updates. Alternatively, operators can deploy a monitor that
speaks internal BGP to each router, but that monitor will
learn only the best route to each destination (as opposed to
all BGP routes). Instead, BGP-Mux can relay BGP update
streams from every external BGP session to a central moni-
toring point for analysis, and reflect those BGP routes to the
routers themselves.

External connectivity for virtual networks (Figure 4).
Network virtualization facilities such as VINI [1] support
multiple concurrent networks running on the same infras-
tructure. To exchange real user traffic with external, global
destinations, these virtual networks must exchange routes
with routers in neighboring networks, which implies that
routers in the virtual network need to establish external BGP
feeds with routers in neighboring networks. Ideally, each vir-
tual network would see BGP routes from each upstream ISP
as if it were that upstream’s router, but the limitations dis-

cussed in Section 2.1 make this difficult (i.e., these facilities
are used for research and thus may be inherently unstable).
BGP-Mux reduces provisioning overhead by providing on-
demand access to the BGP routes from each upstream that it
connects to. BGP-Mux also masks upstream ISPs from the
route instability that would otherwise result from fluctuating
virtual networks.

3. Design Goals

The applications described in Section 2 give rise to the
following four design requirements:

Session transparency. Both the monitoring applications and
the virtual networks need to receive BGP routing updates ex-
actly as they would have received them over a direct BGP
session with the upstream AS. Specifically, session initiation
messages must carry the appropriate AS numbers, and up-
date messages from upstream ASes must be passed to clients
with no changes to the route attributes; for example, no addi-
tional AS hops must be added to the AS path, the next-hop IP
address must appear as though the route was received from
the router in the upstream AS, etc.

Scalability and fast propagation. In practice, BGP-Mux
may have a large number of downstream clients. In the
case of support for virtual networks, a single shared phys-
ical infrastructure may need to support tens to hundreds of
co-existing virtual networks, each of which needs its own set
of BGP sessions to BGP-Mux. BGP-Mux would also need
to support hundreds to thousands parties (i.e., researchers
and operators) who would want a real-time BGP update feed
(say, from RouteViews). In these cases, not only is support-
ing a large number of client sessions important, but all of
these sessions must also receive the BGP routing updates
from BGP-Mux in a reasonably short time after the route
was sent to BGP-Mux.

Isolation. Because client networks may be experimental and
transient, BGP-Mux must “protect” upstream ISPs against
misbehaving or misconfigured experiments that mistakenly
advertise erroneous BGP routes. Accordingly, BGP-Mux
must have a default policy in place that filters most updates
originating from client networks. BGP-Mux must also fil-
ter updates from one client network to another unless such
advertisements are explicitly allowed by policy.

Upstream session stability. Provisioning BGP sessions
with neighboring ASes requires configuring a BGP-speaking
router on each end of the session; additionally, when ses-
sions are destroyed or are otherwise decommissioned, BGP-
speaking routers in neighboring ASes see the effects of such
instability. In the case of virtual network testbed such as
VINI, virtual networks may be provisioned and decommis-
sioned frequently, as experimenters create and destroy ex-
periments. The routers in upstream ISPs should be isolated
from the instability of an experiment’s associated BGP ses-
sions (i.e., as experiments come and go, the BGP session be-
tween the testbed and neighboring ASes should stay up). To
reduce provisioning overhead and present a stable BGP ses-
sion to upstream ASes, BGP-Mux must thus provide a stable

3



ISP1 AS1 ISP2 AS2

B
G

P
-M

u
x

Client 

AS65000

Client 

AS65001

V
ie

w

IS
P

1

V
ie

w

IS
P

2

IP1

IP3IP2

IP1 – Stable, external IP address

IP3 – Distinct IP address representing ISP2

IP2 – Distinct IP address representing ISP1

eBGP Session

1.0.0.1 2.0.0.1

3.0.0.1 4.0.0.1

Figure 5: BGP-Mux implementation for a single BGP-Mux instance on

a physical node.

bgp multiple-instance

!

router bgp 64512 view ISP1

! upstream session to ISP1

neighbor 1.0.0.1 remote-as 1

neighbor 1.0.0.1 route-map BLOCK out

...

! sessions to clients in the view

neighbor 3.0.0.1 remote-as 65000

neighbor 3.0.0.1 local-as 1

neighbor 3.0.0.1 ebgp-multihop 255

neighbor 3.0.0.1 attribute-unchanged

neighbor 3.0.0.1 advertisement-interval 1

neighbor 3.0.0.1 route-map BLOCK in

!

router bgp 64512 view ISP2

...

!

route-map BLOCK deny 10

Figure 6: Example Quagga configuration for BGP-Mux.

IP address and a session to each upstream ISP.
The next section describes our implementation of BGP-

Mux and how we achieve these design goals.

4. Implementation

This section describes the implementation of BGP-Mux.
We describe how we used advanced features in the Quagga
software router [11] to create a BGP-Mux. We then present
a single-node BGP-Mux. Finally, we describe how BGP-
Mux can be distributed across multiple physical machines to
improve scalability.

4.1 Implementation in Quagga

We implemented BGP-Mux with the Quagga BGP rout-
ing daemon [11]. Quagga is an open-source routing pro-
tocol suite consisting of RIP, OSPF, BGP and ISIS proto-
col implementations. Freely available source code makes
this implementation convenient for modifications to BGP.
BGP-Mux requires several advanced features that are not

present in many BGP implementations: (1) multiple BGP
views, (2) per-session configurable AS numbers, (3) trans-
parent propagation of updates, and (4) a configurable mini-
mum route advertisement interval (MRAI) timer. We explain
each of these features in more detail below.
BGP views separate BGP updates from different up-

streams. Updates in separate views are not subject to BGP’s
best path selection algorithm, so updates from each upstream
ISP (i.e., one per view) are forwarded downstream to clients.
Another crucial BGP-Mux feature is ability to configure its

AS number separately for each session, which allows BGP-
Mux to convey the AS number of the appropriate upstream
ISP and thus allows clients to see BGP routes exactly as they
would have been received from an upstream ISP.

BGP-Mux must also support update transparency: Every
update BGP-Mux forwards must be forwarded unchanged to
the clients. None of the update attributes should be changed,
especially AS-path, origin and next-hop attributes. Updates
must be transparent not only in their form, but also in their ar-
rival speed and rates. Such rates usually are affected by Min-
imum Router Advertisement Interval (MRAI). BGP-Mux
thus requires per-session modification of MRAI timer value

to decrease this timer’s effect on update propagation delay.

4.2 SingleInstance BGPMux

Combining the above-mentioned features yields a stan-
dalone, or single-instance, BGP-Mux, as shown in Figure 5.
The ISP sessions are terminated into separate BGP views.
Clients that connect to those views perceive the connection
as a direct connection to the ISP because each session on
BGP-Mux is configured with the AS number of the appro-
priate ISP. When updates travel from ISPs to clients, they
are propagated without any changes as quickly as possible.
In addition, standard BGP features, such as AS-path access
lists, are used to filter out updates coming from the clients.

Figure 6 shows the Cisco-style BGP configuration for the
corresponding BGP-Mux setup shown in Figure 5. BGP-
Mux peers with two upstreams, AS1 and AS2, with the
addresses 1.0.0.1 and 2.0.0.1, respectively; and with two
clients, with private AS numbers 65000 and 65001 (the sec-
ond client configuration is not shown). Sessions to ISPs are
terminated on different views. Sessions to clients are config-
ured with local-as property (ensure that client sessions prop-
agate routes using using provider’s AS number) and with
decreased advertisement-interval (to increase update prop-
agation speed). The ebgp-multihop option enables BGP ses-
sions with clients that are more than one hop away, which
is needed when clients are remote monitors. Although it is
not shown in the configuration, the session to the same client
from view ISP2 should be configured to use a different inter-
face. If both views used the same interface, a standard BGP
client could not distinguish between the two TCP sessions.

4.3 MultiInstance BGPMux

To scale large numbers of clients, BGP-Mux can be dis-
tributed across multiple machines using standard BGP con-
figuration tools. Figure 7 shows a distributed, or multi-
ple instance, BGP-Mux configuration. The main BGP-Mux

4



ISP1 AS1 ISP2 AS2

Client

AS65000

Client

AS65001

View Instance

Instance 

ISP1

Instance 

ISP2V
ie

w

IS
P

1

V
ie

w

IS
P

2

IP1

IP3IP2

IP1 – Stable, external IP address

IP3 – Distinct IP address representing ISP2

IP2 – Distinct IP address representing ISP1

eBGP Session

iBGP Session

1.0.0.1 2.0.0.1

3.0.0.1 4.0.0.1

Figure 7: Scalable, Multi-instance BGP-Mux. To support a large num-

ber of clients, BGP-Mux can be distributed across multiple machines.

Emulab Facility

BGP-Mux

(stable)

BGP-Mux

(experimental)

Figure 8: BGP-Mux evaluation setup

terminates sessions from ISP1 and ISP2 to views and dis-
tributes routes to separate BGP instances through iBGP ses-
sions. These BGP instances, in turn, serve as a client session
pools. As we describe in the next section, the number of BGP
clients is limited by memory constraints. Memory is mainly
consumed for the outgoing adjacency Routing Information
Base (RIB).

5. Evaluation

Although BGP-Mux aims to maximize session trans-
parency, it imposes processing and transmission delays on
update propagation, and it might also have scalability lim-
itations. In this section, we study the effects of BGP-Mux
on update propagation time, as well as its ability to sup-
port many downstream clients using real BGP sessions ter-
minated on a number of clients. We show that BGP-Mux

Announcements Withdrawals
Clients 90% (sec) 99% (sec) 90% (sec) 99% (sec)

1 0.9528 0.9956 0.0583 0.1186
2 0.9858 1.0272 0.0595 0.8200
5 1.0332 1.0804 0.1955 0.3799

10 0.9810 1.3422 0.0599 0.3263
20 1.0299 1.0955 0.0594 0.0601

Table 1: BGP-Mux update forwarding delay. The two columns corre-
spond to the time it took to deliver 90% and 99% of updates during the

test runs. Each row corresponds to a number of clients configured to

use BGP-Mux.

impact to route propagation dynamics is very limited.

5.1 Experiment Setup

Figure 8 shows the evaluation setup. A BGP-Mux on VINI
receives routes from two upstream ISPs: Verio and AT&T.
The BGP sessions are terminated on a BGP-Mux installed
on a production server with a stable IP address on the VINI
testbed [1]. The BGP-Mux “under test” is at Emulab [3]
and connects to a stable BGP-Mux to receive route feeds.
The BGP-Mux under test also used non-default BGP ports
to avoid firewalls deployed at Emulab. The BGP-Mux on
Emulab belongs to a small LAN with a number of machines
that are tested as BGP-Mux clients. Due to limited resources,
we limit the number of clients in our tests to 20. Such a
setup would be similar to the BGP-Mux deployment scenario
described in Section 2.2.

The BGP-Mux under test and its BGP clients in Emulab
run Linux Redhat 9 with 2.6.22 kernel and modified Quagga
0.98.6 route daemon. The Emulab nodes were Dell Pow-
eredge 2850 servers with 3.0 GHz 64-bit Intel Xeon pro-
cessor with 1MB L2 cache, 800 MHz FSB, 2GB 400MHz
DDR2 RAM and Gigabit ethernet interfaces. Nodes are in-
terconnected with a Gigabit ethernet switched network.

5.2 Propagation Delay

To streamline update propagation, we minimize Minimum
Route Advertisement Interval (MRAI). MRAI is used in the
internal Quagga session scheduler; and setting it to very low
values can affect daemon performance. The Quagga BGP
daemon is stable when MRAI is set to 1 second; smaller val-
ues cause the process to consume a lot of CPU.

To measure propagation delay, our system records the
timestamp of the update as it arrives at BGP-Mux and the
timestamp as the same update is sent to each BGP client.
We perform this experiment for 1, 2, 5, 10 and 20 clients.
The updates were measured using real feeds over 10-minute
intervals, so each test scenario received slightly different up-
date loads. Because updates and withdrawals are processed
differently, we studied their propagation times separately.

Table 1 shows the update propagation times: 99% of BGP

announcements are delivered within 1.3 seconds. The prop-
agation delay is affected by MRAI timer. When an update
arrives, the BGP-Mux does not readvertise it to clients un-
til the MRAI timer expires. Withdrawal propagation is not
subject to MRAI timer; furthermore, withdrawals are sub-
ject to less checks and processing (for example, they are not
subject to inbound and outbound filtering). Therefore, with-

5



 0

 5

 10

 15

 20

 25

 30

1 client

2 clients

5 clients

10 clients

20 clients

L
o
ad

 (
%

)

CPU Load (%)
Memory (%)

Figure 9: CPU and memory load on BGP-Mux as number of client ses-

sions are increasing. There was 1Gb of RAM on the system. The spike

in memory usage is due to Quagga’s aggressive buffer pre-allocation

polices.

drawals are delivered even faster than announcements. 99%
of BGP withdrawals were delivered within 0.82 seconds. We
observed no noticeable increase in update propagation time
as the number of clients increases.

5.3 Memory and CPU Usage

Figure 9 shows how CPU load and memory vary with the
number of BGP-Mux clients. The CPU usage was primarily
affected by the churn caused by upstreams but was not sig-
nificantly affected by the number of clients. On the other
hand, the BGP daemon consumes more memory as more
clients are added because it must maintain more outbound
RIB adjacency structures. Because memory in Quagga is
pre-allocated to buffers in large blocks, memory usage in-
creases abruptly between 10 and 20 clients.

6. Related Work

Oregon RouteViews [10] and the RIPE routing informa-
tion service (RIS) [13] currently maintain the most widely
used archives of BGP routing data. These services were ini-
tially deployed to help operators debug routing by providing
routing table views from many different vantage points. Over
time, however, these facilities have evolved to support a wide
variety of analysis and monitoring projects, some of which
could benefit from access to the real-time updates as seen
by the route server itself [7–9, 15]. Unfortunately, BGP up-
dates are logged to files only once every 15 minutes, which
is too slow for many monitoring applications for both hi-
jacking and reactive routing. The above mentioned improve-
ments offered by BGP-Mux could enable new applications
that could benefit from real-time monitoring of global BGP
update data.

Many tools and software routers monitor BGP routing up-
dates by directly connecting to a router and logging the re-
ceived update stream, but these systems typically require
direct BGP connections to the routers they are monitor-
ing [6, 11]; BGP-Mux facilitates the same type of moni-
toring, but allows allowing many clients indirect access to
BGP update feeds from all upstream ISPs through an indirect

connection. In an expired Internet draft, Scudder describes
a BGP Monitoring Protocol (BMP), which would have en-
abled online monitoring of incoming BGP route advertise-
ments, albeit via a separate protocol [14].

7. Conclusion

We have presented BGP-Mux, a system that enables real-
time, on-demand BGP session multiplexing for multiple
downstream clients. BGP-Mux provides route monitoring
services and virtual networks with the appearance of a di-
rect connection to upstream ISPs without requiring direct
connections to each upstream ISP for each downstream ser-
vice or virtual network (which incur provisioning overhead
and induce instability in upstream ISPs). We have deployed
BGP-Mux on the VINI testbed and tested its scalability and
performance by adding up to 20 downstream client networks.
We have deployed BGP-Mux on VINI testbed to provide
external connectivity to virtual networks; our evaluation of
BGP-Mux in a controlled setting on Emulab shows that
BGP-Mux propagates 99% BGP announcements and with-
drawals to as many as 20 clients in less than 1.3 seconds
while incurring less than 5% CPU load and using less than
200 MB of RAM. We envision that BGP-Mux will be useful
not only for building virtual networks but also for projects
and systems that rely on real-time BGP route monitoring.

REFERENCES
[1] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In

VINI Veritas: Realistic and Controlled Network Experimentation. In
Proc. ACM SIGCOMM, Pisa, Italy, Aug. 2006.

[2] M. Caesar, N. Feamster, J. Rexford, A. Shaikh, and J. van der Merwe.
Design and implementation of a routing control platform. In Proc.

2nd USENIX NSDI, Boston, MA, May 2005.

[3] Emulab. http://www.emulab.net/, 2006.

[4] N. Feamster, Z. M. Mao, and J. Rexford. BorderGuard: Detecting
cold potatoes from peers. In Proc. Internet Measurement Conference,
Taormina, Italy, Oct. 2004.

[5] N. Feamster, J. Winick, and J. Rexford. A model of BGP routing for
network engineering. In submission, Nov. 2003.

[6] M. Handley, O. Hudson, and E. Kohler. XORP: An open platform for
network research. In Proc. 1st ACM Workshop on Hot Topics in

Networks (Hotnets-I), Princeton, NJ, Oct. 2002.

[7] J. M. Hellerstein, T. Condie, M. Garofalakis, B. T. Loo, P. Maniatis,
T. Roscoe, and N. Taft. Public Health for the Internet (PHI): Towards
a New Grand Challenge for Information Management. Jan. 2007.

[8] J. Karlin, S. Forrest, and J. Rexford. Pretty Good BGP: Protecting
BGP by cautiously selecting routes. Technical report, University of
New Mexico, Oct. 2005. TR-CS-2005-37.

[9] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang. PHAS: A
prefix hijack alert system. In Proc. 15th USENIX Security

Symposium, Vancouver, BC, Canada, Aug. 2006.

[10] U. of Oregon. RouteViews. http://www.routeviews.org/.

[11] Quagga software routing suite. http://www.quagga.net/.

[12] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4

(BGP-4). Internet Engineering Task Force, Jan. 2006. RFC 4271.

[13] Réseaux IP Européens Next Section Routing Information Service
(RIS). http://www.ripe.net/ris/.

[14] J. Scudder. BGP Monitoring Protocol. Internet Engineering Task
Force, Aug. 2005. http:
//tools.ietf.org/html/draft-scudder-bmp-00Work
in Progress, expired Feb 2006.

[15] C. Zheng, L. Ji, D. Pei, J. Wang, and P. Francis. A Light-Weight
Distributed Scheme for Detecting IP Prefix Hijacks in Realtime. In
Proc. ACM SIGCOMM, Kyoto, Japan, Aug. 2007.

6


