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SUMMARY 

Several investigators have demonstrated that spores of various 

species of Bacillus contain about five times more cyst(e)ine than the 

vegetative cells. This supports the general hypothesis that the protein 

structure of bacterial spores is substantially different from that of the 

vegetative cells and that it may contribute to the increased resistance 

of spores to many chemical and physical factors. 

The objective of this research was to determine if such cyst(e)ine 

differences also exist between the spores and vegetative cells of Clos

tridium botulinum, an anaerobic sporeformer. 

Cyst(e)ine was determined using the Kuratomi method which involves 

reductive decomposition of proteins with hydrazine. The hydrogen sulfide 

produced in this reaction was liberated by acidification and reacted with 

zinc acetate to yield zinc sulfide. The zinc sulfide was measured colori-

metrically by Caro's method. The protein nitrogen content was deter

mined by the Lowry method. 

Based on the research reported in this text, it was concluded 

that the spores of Clostridium botulinum contain approximately ten times 

more cyst(e)ine than the vegetative cells. In addition, no correlation 

was found between the total amount of cyst(e)ine (cysteine plus cystine) 

and the resistance of the spore types to gamma irradiation. Also, no 

difference was found in the spore/cell cyst(e)ine content ratios between 

Langeland (Type F), OGB -69 (Type F), and Beluga (Type E). 
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CHAPTER I 

INTRODUCTION 

Several investigators have repoi'ted that spores of various species 

of Bacillus contain significantly more cyst(e)ine* than the vegetative 

cells. However, only a very limited amount of research of this kind 

has been reported for the C l o s t r i d i a . The purpose of this thesis re

search is to measure the cyst(e)ine content of spores and vegetative cells 

of Clostridium "botulinum, type E , Beluga s t r a i n , a n d type F , s t r a i n 

Langeland, and its variant 0GB-69* The results of these analyses are 

considered in relation to.the greater resistance of spores to various 

chemical and physical factors. 

The Bacterial Spore 

The bacterial spore represents a unique form of life capable of 

adapting to unfavorable environmental changes and of restoring normal 

metabolic activity under suitable conditions. Initiation of sporogenesis 

normally occurs at the end of the logarithmic growth phase and seems to 

be activated by two interdependent external factors: reduction of the 

concentration of one or more growth-supporting substrates which repress 

the spore genome and accumulation of catabolites (Murrell, 1967)* 

The mature spore consists of a core, containing soluble proteins 

and nuclear material, surrounded by layers of a mucopeptide cortex, 
••\ 

*Total content of cysteine plus cystine. 
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proteinaceous outer coats, and an exosporium in some species. Electron 

micrographs show that that the spore coats are multilayered structures 

which appear late in sporogenesis (Kondo and Foster, 19&7; Rode and 

Williams, 1966). The coats occupy about 50 percent of the spore volume 

and UO-60 percent of the dry weight, and they are composed largely, if 

not exclusively, of protein (Warth, Ohye and Murrell, 1963)* Kadota 

(1965) showed that the nitrogen content of spore coat samples increases 

proportionally with the purity of the sample; for example, whole spores 

contain about 10 percent N, crude spore, coats contain 1 1 . 2 percent W, and 

enzymatically-purified spore coats contain li+«5 percent N, a value com

parable to that of pure protein. In addition, Kadota (1965) discovered 

unique crystalline structures in spore coats of B. subtilis, and, using 

crystallographical and chemical analyses, demonstrated the similarity of 

the structures to a and 3-keratin. 

Cystine-Rich Coat Protein 

There are at least two types of coat proteins, each associated 

with a distinct structural layer (Spudich and Kornberg, I968; Ohye and 

Murrell, 1962) . The laminated, thioglycollate-soluble, inner coat layer 

of B. cereus represents 80 percent of total coat protein and consists 

mainly of polypeptides cross-linked by disulfide bonds (Aronson and Fitz-

James, 1968). The dense, thioglycollate-insoluble, outer coat layer is 

synthesized during a definite time period associated with a rapid uptake 

of cystine from the medium and with the increased cystine content of the 

coat layers (Vinter, 1959a, 1959b, and i960) . Pulse-chase experiments with 

several labelled amino acids indicated that the kinetics of this cystine 
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incorporation in synchronously sporulating B. megaterium and B. cereus 

differed markedly from that of the other amino acids in that there was 

a four to five-fold increase of cystine-incorporation during the fore-

spore stage, several hours before the appearance of the coat layers 

(Vinter, 1 9 6 l , 1 9 6 2 ) . Because this cystine incorporation could be in

hibited by reagents which compete for sulfhydryl groups, Aronson and 

Fitz-James ( 1 9 6 8 ) concluded that cystine exchanges with available sulf

hydryl groups of coat precursor proteins rather than being involved in 

polypeptide synthesis. These disulfide exchange reactions have been 

described by Eagle, Oyama, and Piez ( i 9 6 0 ) , and by Smithies ( 1 9 6 5 ) . 

Aronson and Fitz-James ( 1 9 6 8 ) proposed that the outer coat layers consist 

of cystine-rich polypeptides held together by hydrophobic bonds and with 

the cystine residues buried within the folded protein structure. 

The coat precursor proteins are probably synthesized by messenger 

RNA and polysomes bound to the cytoplasmic membrane (Aronson, 1 9 6 5 a and 

1 9 6 5 b ) . 

Results of experiments by Vinter ( 1 9 5 9 a , 1 9 6 0 a , 1 9 6 0 b ) indicated 

that spores of several species and strains of Bacillus contain four 

to five times more cyst(e)ine than the vegetative forms. Vegetative 

cells of B. subtilis, for example, have been found to contain 26 |ig 

cyst(e)ine sulfur per mg protein nitrogen; spores contained 1 0 8 |j,gs/mgN; 

enzymatically-purified spore coats contained 2 9 2 ngS/mgN (Kadota, 1 9 6 5 ) * 

Tsuji and Perkins (1962) reported five times more cyst(e)ine in spores 

( U 8 . 3 ugS/mgN) of Clostridium botulinum, type 62A, than in vegetative 

cells ( 9 . 6 (jgS/mgN). 



Cystine-Rich Structure and Resistance 

The great resistance of bacterial spores to many chemical and 

physical factors is the result of a complex system of protection involv

ing both the structural and biochemical properties of the spores. However, 

it has been difficult to determine the contribution of the individual com

ponents of the protective system because the integration of all the com

ponents must be taken into account. Therefore, any discussion of the 

cystine-rich structure in the resistance of spores can only be speculative 

for the present. 

Cystine, with its disulfide bonds, is an integral part of the 

tertiary structure of many proteins. Vinter (1959&, 1960b, 19&9) suggests 

that the stabilization of the protein structure of spores by disulfide bonds 

may contribute to the overall resistance of the spore in much the same 

way in which disulfide bonds stabilize highly inert proteins, such as 

keratins. There is an apparent relation between the disulfide content 

of spore coats and regulation of the permeability of resting spores, be

cause treatment of spores with agents which rupture disulfide bonds ren

ders them permeable to dyes and lysozyme (Gould and Hitchins, 1963)* 

Spores are normally 10-20 times more resistant to irradiation than parent 

vegetative cells (Rowley and Newcomb, 196^ ; Stuy, 1956; Grecz, 1965; 

Vinter, 1969). In addition, Vinter ( 1961 , 1962) demonstrated that the 

radioresistance of sporulating bacilli appears simultaneously with the 

formation of the cystine-rich structure. Barron (1955) has reviewed the 

effects of ionizing radiation on sulfhydryl and disulfide groups, and the 

radioprotective effect of sulfhydryl compounds has been demonstrated in 
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spores (Powers and Kaleta, i960) and other biological materials (Eldjarn 

and Pihl, 1957; Ormerod and Alexander, 1962) . The effectiveness of some 

of these compounds is related to their ability to form disulfides 

(Eldjarn and Pihl, 1958). However, few or no sulfhydryl groups have been 

detected in spores of several species of Bacillus (Vinter, 196l, 1962; 

Mortenson and Beinert, 1953 ; Bott and Lundgren, I96U). 

A possible role of the disulfide bond in radioresistance is sug

gested by a number of paramagnetic resonance studies of X-irradiated 

proteins which indicated that the disulfide bond can serve as an electron 

donor for replacing electrons knocked out of the molecule (Gordy, Ard, and 

Shields, 1955 ; Gordy and Shields, 1958) . Gordy and Miyagawa (i960) pro

posed that the electron vacancy is led along the polypeptide chain to 

sulfur. 

In addition, breakage of disulfide linkages might serve as a non

destructive, non-lethal energy dissipator, since the rupture of disulfide 

bonds by radiation has been demonstrated in simple disulfides (Cavallini 

et al. i960) , proteins (Ray, Hutchinson and Morowitz, i960) and spores 

(Gould and Ordal, 1968). 

However, cystine-rich proteins seem to be possible radioprotectors 

only during the early stages of sporogenesis before they are incorporated 

into the spore coats. Mature spores of B. cereus are as resistant to 

gamma irradiation after treatment with agents which rupture 20-30 percent 

of the disulfide bonds or when they are irradiated in the presence of 

reagents which block the formation of sulfhydryl groups as are untreated 

spores (Hitchins, King, and Gould, 1966). 
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Chemical Methods 

The purpose of this thesis research was to measure the amounts of 

total protein and cysteine plus cystine in the spores and vegetative 

cells. The methods used were those most suitable for the accurate and 

reproducible estimation of these parameters from the small amount of 

test material available, the amount being restricted because, for instance, 

the process of spore collection required some two weeks and normally pro

duced only about 2 x 1 0 1 0 spores from nine liters of culture. 

Kirk (I9V7) has reviewed most of the methods for protein deter

mination in a perceptive and critical manner. The method of Lowry et_ al. 

( I 9 5 l ) j which is based on the color produced by the biuret and Folin 

reactions together, was selected because it can be scaled down to estimate 

protein in the 5-100 u.g range. In this method, treatment of protein with 

an alkaline copper solution and the Folin-Ciocalteau reagent (phospho-

molybdic acid-phosphotungstic acid) results in the development of a 

color which is 100 times more intense than that produced in the biuret 

method and depends much less upon the protein composition (i.e. tyrosine 

and tryptophan residues) than does the color developed by the Folin re

action alone. Further, this method is 10-20 times more sensitive than 

spectrophotometry assay of protein at 280 nm, and less subject to indi

vidual variation. The digestion of protein and estimation of the re

leased ammonia by Nesslerization can be as sensitive as the Lowry method 

but it is considerably more time consuming. The only limitation of the 

Lowry method is that the color is not directly proportional to all protein 

concentrations; that is, calibration curves commonly show two linear 

portions. This problem is overcome simply by working at protein 
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concentrations where the slope is linear (Lowry et al., 1 9 5 1 ) * 

For the estimation of cyst(e)ine a specific method developed by 

Akabori e_t al. (1952) was used involving reductive decomposition of pro

teins by hydrazine at 120 C. Kuratomi et al. (1957) have shown that this 

method gives rise to HgS specifically and quantitatively from cysteine 

and cystine and have confirmed that no HgS is produced from taurine or 

methionine under the same conditions. They offer the following possible 

reaction: 

Cystine + NHg - NHg -» 2 HgS + N H 3 + N 2 + unknown substance 

In addition, they showed that the HgS is retained in the hydrazine hydrate 

solution even at 120 C for eight hours. The HgS is liberated by acidifi

cation of the hydrazine hydrate solution with sulfuric acid and quantita

tively absorbed in zinc acetate solution. The zinc sulfide thus produced 

is reacted with a W, N, dimethyl-p-phenylenediamine solution resulting in 

the formation of methylene blue (St. Lorant, 1929) . This is generally 

known as Caro's method (ALmy, 1925)- The cyst(e)ine content in a tri

chloroacetic acid precipitate is usually expressed as ĝ of sulfur per 

mg protein nitrogen. 
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CHAPTER II 

MATERIALS AND METHODS 

Organisms Used 

Two immunological types of Clostridium botulinum were used as the 

test organisms in this study. The type E, Beluga strain was obtained 

from Dr. M. W. Eklund, Bureau of Commercial Fisheries, Seattle, Washington. 

The type F, Langeland strain was acquired from Dr. C. E. Dolman of the 

Unive r s i t y of British Columbia, Canada; and the i s o l a t e OGB-69> a c o l o n i a l 

variant of the Langeland strain, was obtained from Dr. Lillian Holdeman, 

Communicable Disease Center, Atlanta, Georgia. Stock cultures have been 

maintained as 2*5 ml samples of five-day cooked meat cultures which were 

quick-frozen at -80 C in a 2-ethoxyethanol-dry ice bath. The stock cul

tures were stored at - 1 0 C in the laboratory of Dr. N. W. Walls, Engineer

ing Experiment Station, Georgia Institute of Technology, Atlanta, Georgia. 

The vegetative cells were gram positive rods varying in size from 

0.5 to 0.9 micrometers in diameter and 2 .0 to 5*0 micrometers in length. 

Spores were subterminal in position and swelled the sporangium before 

release. 

Preparation of Spore Crops 

For production of a spore crop, a tube of frozen stock culture of 

the particular strain was thawed and the contents of the tube were trans

ferred to 30 ml of sterile cooked meat medium (see Appendix A). This was 
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incubated for four days after which 15 ml of this culture were transferred 

to 300 ml of cooked meat medium. After 72 hours incubation 150 ml of the 

culture supernate were used to inoculate a 3000 ml quantity of Type C 

Toxin Medium (see Appendix A) which was contained in a four liter 

Erlenmeyer flask. Type F cultures were incubated at 30 C and type E 

cultures at 25 C. 

Collection of Spores 

Sporulation in the growth medium was followed daily by microscopic 

examination of culture smears. The culture was harvested when there was 

no further increase in percentage of spores to vegetative cells. When 

the spore crop was ready for harvesting, 200 ml quantities of the culture 

were transferred to each of six 250 ml centrifuge bottles. These were 

placed in sealed centrifuge cups and spun in a refrigerated centrifuge* 

at 3000 x g for 30 minutes at 5 C. The supernatant was decanted and the 

spore sediment was washed out with a small volume of cold, sterile, de-

ionized water into a sterile 250 ml Erlenmeyer flask held in an ice-

water bath. This procedure was repeated until all the culture had been 

centrifuged and the sediment retrieved. The pooled sediment was washed 

four times with 200 ml quantities of cold, sterile, deionized water, 

centrifuging after each washing. The final wash water was carefully 

siphoned off and the spore pellet resuspended in a small volume of cold, 

sterile, deionized water. This was aseptically transferred to a sterile, 

50 ml screw-capped Erlenmeyer flask containing glass beads. The crude 

spore suspension was stored at k C 

*Model PR-2, International Equipment Company, Needham Heights, Mass. 
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Cleaning of Spores 

Vegetative cells and cell debris were removed from the crude spore 

suspensions using an adaptation of the method of Grecz et al. (1962) in

volving use of lytic enzymes and ultrasonic oscillation. Millipore filter-

sterilized solutions of lysozyme* (10 rag per ml) and trypsin (5 mg per ml) 

were prepared. One ml of each enzyme solution was added to the crude 

spore suspension which was then diluted to 50 ml with sterile deionized 

water. This gave a final concentration of 0.2 mg per ml of lysozyme and 

0 . 1 mg per ml of trypsin. The spore-enzyme mixture was incubated at K-5 C. 

Rapid lysis of the sporangia was enhanced by ultrasonic oscillation of the 

mixture for five minute periods at intervals of 0, 0 .5 , 1 and 2 hours 

after initiation of incubation. The 20 khz Bronwill Biosonjk III -oscilla

tor** was used at the 60 percent power setting. The cleaning procedure 

was completed by washing the spores five times with sterile deionized 

water. After each washing the spores were spun down in a refrigerated 

centrifuge*** at 30,000 x g and 5 0 for 10 minutes. The cleaned spores 

were resuspended in 10-20 ml of sterile distilled water. Freedom of these 

spore suspensions from vegetative cells and cell debris was greater than 

95 percent as estimated microscopically by the loss of crystal violet 

stainability. 

Spore Titration 

Titrations of the number of viable spores present in the clean 

spore suspensions were obtained with fresh pork infusion agar as the 

* See Appendix A for listing of the sources for all chemicals used in 
this research. 

** Will Scientific, Inc., Rochester, New York. 
***Model B-20, International Equipment Company, Needham, Mass. 
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growth medium (see Appendix A) in Fisher Scientific modified agar slant 

tubes. The tubes were heated in boiling water until the titration medium 

had melted and were then held at h-5 C in a water bath. Samples (l ml) of 

the clean spore suspensions were serially diluted 100-fold using sterile, 

99 ml, 0 . 1 percent (w/v) peptone water blanks (see Appendix A) contained 

in milk dilution bottles. From these, three replicate volumes, either 

0 . 1 or 1 ml, were transferred to the titration medium and each tube was 

vigorously rolled between the palms to distribute the spores evenly 

throughout the liquid. To prevent settling of the spores the tubes were 

placed in an ice water bath, facilitating rapid solidification of the 

medium, whereupon each tube was sealed with an overlay composed of a 

sterile two percent (w/v) Bacto-Agar (Difco) solution containing 0 . 1 per

cent (w/v) sodium thioglycollate, and the original cotton plug was then 

re-inserted in the top of the tube. The tubes were incubated five days 

at 30 C (or 25 C) after which the tubes containing approximately 10-200 

colonies were counted under the 1 . 5 X magnifying glass of a Bactronic 

colony counter*. Results were accepted if the three tubes of a particular 

dilution gave counts which did not vary more than 10 percent. 

Preparation of Vegetative Cell Crops 

For growth of a vegetative cell crop, 0.2 ml of a clean spore 

suspension was inoculated into 20 ml of trypticase soy broth medium (see 

Appendix A). After 2h hours incubation at 30 C (or 25 C), 10 ml of the 

culture were inoculated into 100 ml trypticase soy broth (TSB) which was 

incubated for 2h hours. Fifty ml of this culture were inoculated into 

*Model CC -110 ; New Brunswick Scientific Company, New Brunswick, New 
Jersey. 
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500 ml of TSB. After 18 hours at 30 C (or 25 C), this log-phase culture 

was spun at 3 0 , 0 0 0 x g and 5 C for 1 0 minutes. The cells were washed 

five times with sterile distilled water, resuspended in 1 0 ml of sterile 

distilled water and aseptically transferred to a sterile, 50 ml screw-

capped Erlenmeyer flask. 

Estimation of Total Protein 

Preparation of Spore and Cell Proteins 

The disruption of spores was accomplished "by ultrasonic oscilla

tion of a spore suspension for one hour' at the 5 ° percent power setting 

o f t h e 2 0 k h z B r o n w i l l B i o s o n i k III o s c i l l a t o r * - . One ml of a c o n c e n t r a t e d 

vegetative cell or sonicated spore suspension was added to 1 0 ml of 1 0 

percent (w/v) trichloroacetic acid (TCA). After 15 minutes at room tem

perature, the mixture was centrifuged at 3 0 , 0 0 0 x g and 5 C for 1 0 minutes 

in a refrigerated centrifuge. The supernatant was discarded; the pellet 

was washed once with 1 0 ml of distilled, water, extracted with 2 0 ml of 

ethanol-ether (3-l)> and heated at 9° C for 30 minutes in 25 ml of 5 per

cent (w/v) TCA. This mixture was then centrifuged as above, the super

natant decanted, and the pellet dissolved in 1 0 ml of 0 . 0 1 N NaOH. 

Reagents 

A. 50 ml of 2 percent (w/v) Na 2 C 0 3 in 0 . 1 N NaOH mixed immediately 

before use with 0 . 5 ml of 1 percent (w/v) C u S 0 4 and 0 . 5 ml of 

2 percent (w/v) sodium potassium tartrate. 

B. 5*0 ml of Folin-Ciocalteau reagent added to 6 .8 ml of distilled 

water to give a solution N in acid. 

*Will Scientific, Inc., Rochester, New York. 
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C. Standard solution of bovine serum albumin (ll mg protein N per 

ml) diluted 1 :100 with distilled water. 

Standard Curve for Total Protein 

A modification of the method of Lowry et al. ( l 95 l ) "was used to 

determine total protein throughout this study. To prepare a standard 

curve for total protein, aliquots of the standard bovine serum albumin 

(0 .05 -1 .0 ml) were diluted to 1 . 0 ml with distilled water. Five ml of 

reagent A were added to each sample. After 10 minutes, 0-5 ml of reagent 

B was rapidly added; within five seconds the mixture was vigorously agitated. 

A blank consisting of 1 . 0 ml distilled water, 5*0 ml reagent A, and 0.5 

ml reagent B was prepared in the same way. After 30 minutes at room 

temperature the absorbance of each sample was read at 500 nm in a Bausch 

and Lomb Spectronic 20 colorimeter* using matched, 1 . 2 7 cm diameter 

Spectronic 20 tubes. The absorbances of the samples were plotted against 

the respective concentrations of bovine serum albumin (Figure l). The 

lines fitted to these points by the method of least squares (see Appendix 

B) were used to estimate total protein. The standard errors of estimate 

(S ) were 0.02 for both slopes in Figure 1 . y.x 
Determination of Total Protein in Cells and Spores 

Aliquots ( 0 . 1 - 1 . 0 ml) of a dissolved trichloroacetic acid pre

cipitate (see Preparation of Spore and Cell Proteins) were diluted to 1 . 0 

ml with distilled water. The same procedure was followed as described in 

the preparation of the standard curve for total protein. 

*Bausch and Lomb, Inc., Rochester, New York. 
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TOTAL PROTEIN (MICROGRAMS) 

F igure 1 . Standard C a l i b r a t i o n Curve f o r the De te rm ina t i on o f T o t a l 
P r o t e i n ( Lowry e_t a l . , 1 9 5 1 )• 
The e s t i m a t i n g equat ions Y = 0.07^ + 0 . 0 1 1 X and 
Y = 0 . 3 3 1 + 0.007 X were d e r i v e d us ing the method o f 
l e a s t squares (see Appendix B ) . The s tandard e r r o r o f 
es t imate ( S y . x ) = 0.02 f o r bo th equa t i ons . 
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D e t e r m i n a t i o n o f C y s t i n e p l u s C y s t e i n e b y H y d r a z i n e - l y s i s 

R e a g e n t s 

A. H y d r a z i n e H y d r a t e - 85 p e r c e n t . 

B . Z i n c A c e t a t e S o l u t i o n - 60 g o f z i n c a c e t a t e , 1 7 g o f s o d i u m 

a c e t a t e a n d 0.05 g s o d i u m c h l o r i d e d i s s o l v e d i n d i s t i l l e d 

w a t e r a n d d i l u t e d t o o n e l i t e r . 

C. F e r r i c Ammonium S u l f a t e S o l u t i o n - 3 1 g o f f e r r i c ammonium 

s u l f a t e d i s s o l v e d i n d i s t i l l e d w a t e r , t r e a t e d w i t h 6.3 m l o f 

c o n c e n t r a t e d s u l f u r i c a c i d a n d m a d e u p t o 250 m l w i t h d i s t i l l e d 

w a t e r . 

D. N, N, d i m e t h y l - p - p h e n y l e n e d i a m i n e m o n o h y d r o c h l o r i d e s o l u t i o n -

0.5 g o f t h e h y d r o c h l o r i d e i n o n e l i t e r o f a n a q u e o u s s o l u t i o n 

c o n t a i n i n g 200 m l o f c o n c e n t r a t e d s u l f u r i c a c i d . 

E . 6 N S u l f u r i c A c i d . 

F . C y s t i n e S t a n d a r d - 6.00 mg (25 | i m o l e s ) 1 - c y s t i n e ( p r o d u c e s 

50 u m o l e s h y d r o g e n s u l f i d e ) 

Gas G e n e r a t i o n a n d C o l l e c t i o n A p p a r a t u s 

T h e a p p a r a t u s u s e d f o r t h e g e n e r a t i o n a n d c o l l e c t i o n o f h y d r o g e n 

s u l f i d e i s shown i n F i g u r e 2 . A l l j o i n t s i n t h e a s s e m b l y w e r e s t a n d a r d 

t a p e r 1^ /20 g r o u n d g l a s s . The c e n t e r j o i n t o f t h e t h r e e - n e c k e d , 50 m l , 

r o u n d b o t t o m d i s t i l l i n g f l a s k (Ace #9287)* w a s t i g h t l y s e a l e d w i t h a 

g r o u n d g l a s s s t o p p e r (Ace #9390). A d i s t i l l i n g a d a p t e r w i t h 75° a n g l e 

s i d e a r m (Ace #9156) w a s f i t t e d t o o n e o f t h e r e m a i n i n g j o i n t s , a n d a 

v a c u u m a d a p t e r (Ace #9136) w a s a t t a c h e d t o t h e d i s t i l l i n g a d a p t e r . A 

*Ace G l a s s I n c o r p o r a t e d , V i n e l a n d , New J e r s e y . 
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F igu re 2 . The Apparatus Used f o r the Generat ion and C o l l e c t i o n o f Hydrogen S u l f i d e . 
(A) N i t r o g e n D e l i v e r y Tube ; (B) Sy r inge ; (C) Rubber Serum B o t t l e Cap; 
(D) Three-Necked F l a s k ; (E ) Ground Glass Stopper; (F) D i s t i l l i n g Adapter ; 
(G) Vacuum Adapter ; (H) Latex Tub ing; ( i ) Gas D i spe rs i on Tube. o\ 
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glass tube 20 cm in length and k mm I.D. was expanded on one end and 

fitted with a 9 mm diameter sintered glass disc. This tube was attached 

to the tube of the vacuum adapter by means of a k cm length of latex 

tubing. The remaining joint was tightly stoppered with a rubber serum 

bottle cap. Nitrogen was introduced into the apparatus through a small 

syringe attached to the nitrogen delivery tube. 

Calibration Curve for Hydrogen Sulfide 

A cystine standard (6.00 mg) was treated with 0 .5 ml of pure hydra

zine hydrate and the mixture was refluxed in an oil bath at 1 1 5 - 1 2 0 C for 

8 hours. The flask was then cooled with water, the condenser thoroughly 

rinsed with cold water and the flask contents and condenser washings 

were diluted to 50 ml with distilled water. An aliquot of this solution 

(0 .5 - 5 ml) containing 0 .5 - 5 pmoles hydrogen sulfide was transferred 

to the flask of the gas generation apparatus. Ten ml of 6 W HgS04 was 

pipetted rapidly into the flask through the gas inlet port. The port was 

stoppered and nitrogen gas was run through the apparatus for 30 minutes 

at a rate of three liters per hour. Simultaneously, the flask was heated 

in a water bath at 50-55 C to drive out the hydrogen sulfide completely. 

The hydrogen sulfide was passed into a test tube (1.8 cm x 15 cm) con

taining 3*5 ml of the zinc acetate solution. After all the hydrogen 

sulfide had been driven out and absorbed in the zinc acetate solution> the 

gas dispersion tube was disconnected from the vacuum adapter and rinsed 

with 1.5 ml zinc acetate solution. This rinse was then pooled with the 

3*5 ml solution containing the bulk of the absorbed hydrogen sulfide. 

Five ml of the N, N, dimethyl-p-phenylenediamine monohydrochloride solu

tion and 1.0 ml of the ferric ammonium sulfate solution were added and 
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the mixture vigorously swirled. A blank was prepared from 5*0 ml zinc 

acetate solution, 5-0 ml of N, N, dimethyl-p-phenylenediamine solution, 

and 1 . 0 ml of ferric ammonium sulfate solution. Each tube was capped and 

read after exactly one hour at 630 nm using the Bausch and Lomb equipment 

previously mentioned. The absorbances of the samples were plotted against 

the respective hydrogen sulfide concentrations (Figure 3) and. the esti

mating equation for hydrogen sulfide was determined by the method of 

least squares. The standard error of estimate (S x ) was 0 . 0 1 . 

Determination of Cystine plus Cysteine in Cells and Spores 

Hot trichloroacetic acid precipitates were prepared from 2 .0 ml of 

a concentrated cell suspension or from 1 . 0 ml of a clean spore crop as 

described previously (see Preparation of Spore and Cell Proteins). These 

protein precipitates were transferred to a 10 ml pear shaped distilling 

flask with a standard taper lh/20 joint (Ace #9293)* The contents of the 

flask were dried at 105 C. The flask was then attached to a reflux con

denser (Ace #9195)> 1*0 m l Pure hydrazine hydrate was added, and the flask 

was heated at 1 1 5 - 1 2 0 C for 8 hours. The flask was cooled and the con

denser rinsed with cold, distilled water. The combined flask contents 

and condenser washings were diluted so that 5 ml of the diluted solution 

would contain 1 - 1 0 umole of hydrogen sulfide. The degree of dilution 

used here was determined by trial and error in earlier experiments. Five 

ml aliquots of this diluted solution were transferred to the gas genera

tion apparatus. The methods of evolution, absorption, and colormetric 

estimation of hydrogen sulfide were conducted exactly as described in the 

previous sections. Conversion from pjiioles hydrogen sulfide to |j,g S was 
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accomplished as follows: 

(pmole HgS) (.9k2 \mole S/pjnole H^S) * (32 p,g S/pjnole S) = |ig S 

-*The factor 0.9k2 was obtained from the fact that sulfur (MW = 32) 
comprises 32/3U = O.9U2 of HgS (MW = 3k). 

file:///mole
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2 3 4 5 6 
HYDROGEN SULFIDE (MICROMOLES) 

Figure 3 . Standard Calibration Curve for the Determination of Hydrogen 
Sulfide ( Kuratomi et a l , , 1957 )• 
The estimating equation Y = 0.20 X was derived using 
the method of least squares (see Appendix B). The standard 
error of estimate (Sy. x) = 0 .01 
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CHAPTER III 

RESULTS AND DISCUSSION 

The results of five or six chemical analyses of the spores and 

cells of each of the three test types of Clostridium botulinum are given 

in Table 1 . The ratio |ig S/mg N is a true expression of the cyst(e)ine 

content of the spore and cell proteins because (l) the amount of sulfur 

is a function of hydrogen sulfide liberated only from cysteine and cystine 

by reductive decomposition with hydrazine; (2) the amount of nitrogen 

represents only protein nitrogen. 

The ratios of the cyst(e)ine sulfur content of protein between 

spores and cells of each of the three test organisms are summarized in 

Table 2 . The errors expressed for these ratios are a function largely of 

the considerable scatter in the values for the sulfur content of spores 

and cells (Table l). The coefficients of variation for these values 

are 1 7 percent (Langeland), 26 percent (OGB-69)^ and 26 percent (Beluga). 

During the preparation of the hydrogen sulfide calibration curve 

(Figure 3) it was found that adding the reagents (see MATERIALS AND 

METHODS) to a standard sulfide solution (5 |ig zinc sulfide/ml zinc ace

tate) produced a color intensity that always slightly exceeded that pro

duced by driving over an equivalent amount of hydrogen sulfide with 

nitrogen. That is, there was a slight loss in the transfer process. 

However, this was always strictly reproducible so no error was introduced 

in reading from a calibration curve when the same conditions of gas 
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Table 1 . Results of Chemical Analyses of Spores and Cells of Clostridium 
botulinum 

Cyst(e)ine Sulfur Protein Nitrogen 
M-g S/mg N Test Material Analysis (micrograms) (milligrams) M-g S/mg N 

1 122 1 .35 90. k 
Langeland Spores 2 1 1 7 1 .35 •86.7 

3 1 1 6 1-35 85.9 
(Type F) k 1^.5 1 . 3 ^ 107 

5 179 1 .35 133 
6 168 1 -35 12k 

1 3h 3>h 10 
Langeland Cells 2 39 3.0 1 3 

3 33 3.0 1 1 
(Type F) k 30 3.5 8.6 

5 32 k.2 7-k 

1 157 2 . 1 0 7k.8 
OGB-69 Spores 2 lh7 2 . 1 0 70.0 

3 iQk 2 . 1 0 87.6 
(Type F) k 256 2 . 1 0 122 

5 298 2 . 1 0 lk2 
6 206 2 . 1 0 98 

1 39 k.o 9.8 
OGB-69 Cells 2 60 k.2 Ik 

3 52 k.7 1 1 
(Type F) k k6 k.o 1 2 

5 3k k.o 8.0 

1 38 0.50 76 
Beluga Spores 2 79 0.50 160 

3 6 1 - 0.50 120 
(Type E) k 50 0.50 100 

5 k6 0.50 92 
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Table 1 . (Continued) 

Cyst(e)ine Sulfur Protein Nitrogen 
Test Material Analysis (micrograms ) (milligrams ) ug S/mg N 

1 18 1 .6 1 1 
Beluga Cells 2 15 1 . 8 8.3 

3 Ik 1 .6 8.8 
(Type E) k 1 1 1 . 5 7 -3 

5 26 2 .0 1 3 
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Table 2 . Summary of the Ratios of the Cyst(e)ine Sulfur Content of 
Protein Between Spores and Cells of Clostridium botulinum 

Organism 
Cyst(e )ine Sulfur Content* 

(ug S/mg N) 
Spores** Cells Spore/Cell Ratio*** 

Langeland (Type F) 105 10 1 0 . 5 ± 3.8 

OGB-69 (Type F) 99 .1 1 1 9.0 ± 3.9 

Beluga (Type E) 1 1 0 9-7 1 1 . 3 ± 5 . 1 

* Average values from five or six determinations (see Appendix B). 
** Coefficients of variation: Langeland ( 1 7 $ ) , OGB-69 (26%), Beluga (26%). 
***Determined as the average of five or six individual ratios. 
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transfer were used both in preparation of the calibration curve and each 

experimental analysis. In addition, the standard error of estimate of 

the hydrogen sulfide calibration curve was quite small (S = O.Ol). 
y.x 

Therefore, the scatter of sulfur content values is probably due to random 

errors in (l) the completeness of the hydrazinolysis reaction; (2) loss 

of hydrogen sulfide during the hydrazinolysis reaction or the dilution 

and transfer of the decomposed material to the apparatus for the genera

tion of hydrogen sulfide. 

Despite the size of the errors, it is evident from the data in 

Table 1 and Table 2 that the spores of the test organisms contain about 

ten times more cyst(e)ine than the corresponding vegetative cells. In 

addition, there seems to be no difference between the spore/cell ratio of 

the three test organisms. 

Furthermore, there is no perceptible difference between the 

cyst(e)ine sulfur contents of the two type F spores and the type E spore 

(see Table 2 ) . These findings were considered in relation to the radiation 

resistances of the three types of Clostridium botulinum spores used in 

this thesis research. The data shown in Table 3 were supplied by Dr. N. 

W. Walls from experiments in which the spores were exposed to cesium-137 

gamma irradiation while suspended in pH 7 phosphate buffer. The D 1 0 

values shown in the second column of Table 3 were calculated from data 

from the logarithmic death cycles of these spores, where inactivation 

occurs with exponential kinetics relative to dose. The observation that 

they do not differ significantly is consistent with the notion that a 

common mechanism of death is involved. However, the radiation doses 
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T a b l e 3* R a d i a t i o n R e s i s t a n c e o f S p o r e s o f C l o s t r i d i u m b o t u l i n u m 

D 1 0 v a l u e s * * ( i n M r a d ) D 1 0 v a l u e s * * * ( i n M r a d ) 
O r g a n i s m * f o r L o g a r i t h m i c D e a t h f o r F i r s t Log C y c l e 

L a n g e l a n d ( T y p e F ) . 150 .56 

OGB-69 ( T y p e F ) . 150 .U8 

B e l u g a ( T y p e E ) . 1 ^ 5 • 3 1 

* C e s i u m - 1 3 7 gamma i r r a d i a t i o n w h i l e s u s p e n d e d i n pH 7. p h o s p h a t e b u f f e r 
( W a l l s , p e r s o n a l c o m m u n i c a t i o n , u n p u b l i s h e d d a t a ) . 

* * The a m o u n t o f r a d i a t i o n r e q u i r e d f o r 90 p e r c e n t i n a c t i v a t i o n o f t h e 
m i c r o o r g a n i s m s o f a t e s t p o p u l a t i o n d u r i n g t h e e x p o n e n t i a l p o r t i o n o f 
t h e s u r v i v a l c u r v e . 

* * * T h e a m o u n t o f r a d i a t i o n r e q u i r e d f o r t h e f i r s t l o g c y c l e r e d u c t i o n . 
The f i r s t l o g c y c l e i n c l u d e s t h e " s h o u l d e r " r e g i o n w h e r e some t y p e o f 
c u m u l a t i v e a c t i o n i s i n d i c a t e d . 
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necessary to effect the first log cycle reduction are significantly differ

ent, and it appears that the spores of the two proteolytic type F or

ganisms have some radioprotective mechanism which is present to a much 

lesser extent in the spores of the non-proteolytic type E test organism. 

Because there is no perceptible difference "between the total cyst(e)ine 

sulfur contents of the two type F spoils and the type E spore, it can "be 

concluded that the total amount of cysteine and cystine is not involved 

in the radioprotective mechanism of these mature spores. It should "be 

noted, however, that the errors in the measurement of total cyst(e)ine 

and radiation resistance were perhaps too large to permit detection of 

small correlations. In addition, it is possible that the content of 

either cysteine or cystine alone could be correlated to the radioprotec

tive mechanism. 



28 

CHAPTER IV 

CONCLUSIONS 

Based on the research reported in the preceding text, the follow

ing conclusions are made: 

Spores of the types of Clostridium botulinum analyzed in this 

research contain approximately ten times more cyst(e)ine than do the 

corresponding vegetative cells. 

The total amount of cyst(e)ine in Clostridium botulinum spores is 

not correlated with the resistance of the spores to gamma irradiation. 

No difference was found in the spore/cell cyst(e)ine content 

ratios between Langeland (Type F), OGB -69 (Type F), and Beluga (Type E). 
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CHAPTER V 

RECOMMENDATIONS 

Based on the results of this investigation, the following ex

tensions of this research can "be recommended: 

The development of efficient methods for synchronization of Clos

tridium "botulinum growth and spore formation would allow studies of the 

.sequential expression of "biochemical events and of the development of re

sistance. Specifically, such synchronization methods would permit experi

ments which would determine if the commencement of the increase in radio-

resistance coincides with the phase of enrichment of cellular proteins with 

cystine and the development of specific morphological structures of the 

spore. However, when conventional cultivation techniques are used the 

vegetative cell population consists of cells of different ages and physio

logical states, and chemical analysis of such cell mixtures must "be some

what inaccurate. 

Chemical analysis of coat fractions isolated after disintegration 

of spores of Clostridium botulinum would help ascertain if cystine-rich 

proteins are located in these layers. 

Hydrolysis of spore and cell proteins under conditions which would 

not destroy cysteine or cystine would furnish data which could be com

pared with results of hydrazinolysis experiments. In addition, such 

hydrolysis would permit separate analysis of cysteine and cystine. This 

type of data could demonstrate a correlation between one of these amino 
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ac ids and r a d i o r e s i s t a n c e which can not "be de tec ted when a t o t a l o f t he 

two i s measured. 

Determina t ion o f t he res i s tances o f t he v e g e t a t i v e c e l l s o f the 

th ree t e s t organisms t o c e s i u m - 1 3 7 gamma i r r a d i a t i o n would a l l o w the 

c a l c u l a t i o n o f an accurate r a t i o o f the r a d i a t i o n res i s tances "between 

spores and c e l l s . This type o f experiment would be t e c h n i c a l l y d i f f i c u l t , 

however, because i t would r e q u i r e the p r o d u c t i o n o f a spo re - f r ee vege

t a t i v e c e l l crop and the i r r a d i a t i o n and growth o f these oxygen-sens i t i ve 

organisms under s t r i c t l y anaerobic c o n d i t i o n s . 



APPENDICES 



3 1 

APPENDIX A 

Formulae of Media Used 

1 . Type C Toxin Medium 

Proteose Peptone (Difco)* 120 grams 

N-Z-amine type B (Sheffield Farms)**.... 60 " 

Yeast Extract (B-B-L)*** 60 " 

Dextrose (Mallinckrodt) 30 " 

Deionized Water 2850 ml 

All the ingredients except the dextrose were added to the deionized 

water and the mixture was heated with constant stirring until the solid 

materials had dissolved. The pH of the three liters of medium was adjusted 

to 7«2 with 10 N NaOH and the medium was placed in a four liter Erlenmeyer 

flask which was then plugged with cotton and covered with aluminum foil. 

The medium was autoclaved at 15 psi and 120 C for 30 minutes. When the 

medium had cooled somewhat 150 ml of a filter-sterile 20 percent dextrose 

solution were added aseptically and the flask swirled gently to insure 
uniform mixing. 

2 . Peptone Water 

Bacto-Peptone (Difco) 1 gram 

Deionized water 1000 ml 

The peptone was dissolved in the deionized water and 99 ml aliquots 

* Difco Laboratories, Detroit, Michigan. 
** Sheffield Chemical, Norwich, New York. 
***Baltimore Biological Laboratory, Baltimore, Maryland. 
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were dispensed into 150 ml milk dilution bottles. These were autoclaved 

at 15 psi and 120 C for 20 minutes, capped with rubber stoppers, and stored 

at room temperature until needed. 

3* Fresh Pork Infusion Medium 

A whole fresh pork ham was trimmed of fat, ground using the fine 

attachment of an electric food chopper* and mixed with tap water in the 

ratio of one pound of pork per liter of water. This mixture was brought 

to a boil, then simmered for one hour. While still hot, the meat and broth 

were filtered through eight layers of cheese-cloth to remove the meat 

particles. The pork infusion broth was caught in a large enamel boiler, 

then cooled overnight in a refrigerator to allow any fat still present to 

solidify as a layer on top of the medium. On the next day, after the fat 

had been skimmed from its surface, the broth was carefully measured into 

a clean enamel boiler and brought up to its original volume with tap water. 

The following ingredients were added: 

Bacto-Peptone (Difco) 5 g/l 

Bacto-Tryptone (Difco) 1 . 5 " 

Dextrose (Mallinckrodt) 1 " 

Soluble Starch (Merck) 1 " 

Sodium Thioglycollate (Difco) 1 " 

KgHP04 (Mallinckrodt)..., 1 . 2 5 " 

The medium was heated with frequent stirring until the dry ingre

dients had dissolved, then cooled to room temperature and adjusted to 

pH J.k with 10 N NaOH. The medium was dispensed into four liter Erlenmeyer 

*Model D, General Slicing Machine Company, Walden, New York. 
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f l a s k s (2 .5 t o 3 l / f l a s k ) a n d t o e a c h w a s a d d e d 1 . 5 p e r c e n t ( w / v ) B a c t o -

A g a r ( D i f c o ) . The f l a s k s w e r e c o t t o n - p l u g g e d , t h e p l u g s c o v e r e d w i t h 

a l u m i n u m f o i l , a n d t h e m e d i u m a u t o c l a v e d a t 15 p s i a n d 120 C f o r 30 m i n u t e s . 

A f t e r a u t o c l a v i n g , t h e f l a s k s w e r e p l a c e d i n a 55 0 w a t e r b a t h i n a t i l t e d 

p o s i t i o n a n d l e f t o v e r n i g h t t o a l l o w t h e p r e c i p i t a t e w h i c h f o r m s i n p o r k 

i n f u s i o n m e d i u m t o s e t t l e t o t h e b o t t o m o f t h e f l a s k g . The f o l l o w i n g d a y 

t h e c l e a r p o r t i o n o f t h e m e d i u m w a s c a r e f u l l y d e c a n t e d a n d f i l t e r e d 

t h r o u g h f o u r l a y e r s o f c h e e s e - c l o t h w i t h a l / 2 i n c h l a y e r o f a b s o r b e n t 

c o t t o n b e t w e e n t w o o f t h e l a y e r s . T w e n t y f i v e m l o f t h e c l a r i f i e d m e d i u m 

were d i s p e n s e d i n t o e a c h P r i c k e t t t u b e ( F i s h e r S c i e n t i f i c m o d i f i e d a g a r 

s l a n t t u b e ) . The t u b e s w e r e c o t t o n - p l u g g e d , p l a c e d i n d e e p r o u n d w i r e 

b a s k e t s , w e i g h t e d w i t h a b o a r d a n d o n e o r t w o b r i c k s , a n d a u t o c l a v e d a t 

15 p s i a n d 120 C f o r 30 m i n u t e s . 

k. T r y p t i c a s e S o y B r o t h ( B - B - L ) 

F i f t e e n g r a m s o f t r y p t i c a s e s o y b r o t h were a d d e d t o 500 m l o f d e 

i o n i z e d w a t e r i n a o n e l i t e r , s c r e w - c a p p e d , E r l e n m e y e r f l a s k a n d m i x e d 

u n t i l s o l u t i o n w a s c o m p l e t e . The m e d i u m was a u t o c l a v e d a t 15 p s i a n d 120 C 

f o r 15 m i n u t e s . 

5. C o o k e d M e a t Medium ( D i f c o ) 

T h i r t y m i l l i l i t e r s o f d e i o n i z e d w a t e r w e r e a d d e d t o 3*75 g o f t h e 

d r y c o o k e d m e a t m e d i u m i n a l a r g e s c r e w - c a p p e d c u l t u r e t u b e (2 .5 cm x 

20 cm) a n d t h e m i x t u r e a l l o w e d t o s t a n d 15 m i n u t e s t o i n s u r e c o m p l e t e 

w e t t i n g o f t h e m e a t p a r t i c l e s b e f o r e a u t o c l a v i n g a t 15 p s i a n d 120 C f o r 

15 m i n u t e s . The s t e r i l e m e d i u m w a s c o o l e d t o r o o m t e m p e r a t u r e a n d i m m e 

d i a t e l y i n o c u l a t e d w i t h a t h a w e d s t o c k c u l t u r e . 
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S o u r c e s o f C h e m i c a l s U s e d 

T r i c h l o r o a c e t i c a c i d , s o d i u m c a r b o n a t e , s u l f u r i c a c i d , a n h y d r o u s 

e t h e r , h y d r o c h l o r i c a c i d a n d p o t a s s i u m , p h o s p h a t e d i b a s i c w e r e o b t a i n e d 

f r o m M a l l i n c k r o d t C h e m i c a l W o r k s , New Y o r k , "New Y o r k . Z i n c a c e t a t e , 1 -

c y s t i n e , f e r r i c ammonium s u l f a t e , s o d i u m c h l o r i d e , h y d r a z i n e h y d r a t e a n d 

F o l i n - C i o c a l t e a u r e a g e n t w e r e o b t a i n e d f r o m F i s h e r S c i e n t i f i c Company, 

A t l a n t a , G e o r g i a . B o v i n e s e r u m a l b u m i n w a s s u p p l i e d b y A r m o u r P h a r m a c e u t i c a l 

Company , K a n k a k e e , I l l i n o i s ; c y s t e i n e m o n o h y d r o c h l o r i d e b y Mann R e s e a r c h 

L a b o r a t o r i e s , I n c . , New Y o r k , New Y o r k ; N, N, d i m e t h y l - p - p h e n y l e n e d i a m i n e 

m o n o h y d r o c h l o r i d e b y E a s t m a n O r g a n i c C h e m i c a l s , R o c h e s t e r , New Y o r k ; 

c o p p e r s u l f a t e a n d a c e t i c a c i d b y M e r c k a n d Company , I n c . , R a h w a y , New 

J e r s e y ; s o d i u m p o t a s s i u m t a r t r a t e a n d s o d i u m a c e t a t e b y B a k e r C h e m i c a l 

Company , P h i l l i p s b u r g , New J e r s e y ; l y s o z y m e b y N u t r i t i o n a l B i o c h e m i c a l s 

C o r p o r a t i o n , C l e v e l a n d , O h i o ; t r y p s i n a n d s o d i u m t h i o g l y c o l l a t e b y D i f c o 

L a b o r a t o r i e s , D e t r o i t , M i c h i g a n . 



35 

APPENDIX B 

T a b l e h. C o m p u t a t i o n o f Sums f o r C o r r e l a t i o n o f 0 t o 6 6 M i c r o g r a m s o f 
P r o t e i n N i t r o g e n (x) a n d A b s o r b a n c e ( Y ) a t 5 0 0 nm 

C a s e X Y X 2 Y 2 XY 

1 1 1 O . 1 5 6 1 2 1 0 . 0 2 1 + 3 3 6 1 . 7 1 6 
2 1 1 . 1 6 9 1 2 1 . 0 2 8 5 6 1 1 . 8 5 9 
3 2 2 • 3 2 3 1+81+ . 1 0 1 + 3 2 9 7 . 1 0 6 

2 2 • 3 2 0 1+81+ . 1 0 2 1 + 0 0 7 . 0 1 + 0 , 
5 2 2 . 3 0 5 1+81+ . 0 9 3 0 2 5 6 . 7 1 0 
6 3 3 .1+26 1 0 8 9 . 1811+76 1 I + . 0 5 8 
7 . 3 3 .1+33 IO89 . I 8 7 I + 8 9 1 1 + . 2 8 9 
8 hh • 5 7 2 1 9 3 6 . 3 2 7 1 8 1 + 2 5 . 1 6 8 
9 1+1+ • 5 7 1 1 9 3 6 . 3 2 6 0 1 + 1 2 5 - 1 2 1 + 

1 0 1+1+ • 5 ^ 5 1 9 3 6 . 2 9 7 0 2 5 2 3 . 9 8 0 
1 1 5 5 " . 61+0 3 0 2 5 . I + O 9 6 O O 3 5 - 2 0 0 
1 2 5 5 . 6 5 0 3 0 2 5 . 1 + 2 2 5 0 0 3 5 - 7 5 0 
1 3 6 6 . 7 6 7 ^ 3 5 6 . 5 8 8 2 8 9 5 0 . 6 2 2 
1 U 6 6 • 7 7 5 V 3 5 6 . 6 0 0 6 2 5 5 1 . 1 5 0 
1 5 6 6 . 7 6 2 1+356 • 58061+1+ 5 0 . 2 9 2 
1 6 6 6 • 7 ^ 5 ^ 3 5 6 • 5 5 5 0 2 5 1 + 9 . 1 7 0 

TOTAL 6 6 0 8 . 1 5 9 3 3 1 5 ^ 1+ .82851+9 3 9 9 . 2 3 4 
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T a b l e 5* C o m p u t a t i o n o f Sums f o r C o r r e l a t i o n o f 77 -176 M i c r o g r a m s o f 
P r o t e i n N i t r o g e n (x) a n d A b s o r b a n c e ( Y ) a t 500 nm 

C a s e X Y X 2 Y 2 XY 

1 77 . 0.853 5929 0.727609 65.681 
2 77 •857 5929 • 7 3 ^ 9 65.989 
3 88 •951 7lkk .90UU01 83.688 

k 88 .963 7 7 ^ .927369 Qk.7kk 5 88 .917 7 7 ^ .8U0889 80.696 
6 88 .917 7 7 ^ .8U0889 80.696 
7 99 1.036 9801 I.O73296 102.56U 

C
O

 

99 1 .022 9801 i.okkkQk I O I . I 7 8 
9 1 1 0 1.097 12100 1.203U09 120.670 

10 1 1 0 1 . 1 3 1 12100 1 . 2 7 9 1 6 1 1 2 ^ . ^ 1 0 
1 1 1 1 0 1 .081 12100 1 .168561 1 1 8 . 9 1 0 
1 2 1 1 0 1 .081 12100 1 .168561 1 1 8 . 9 1 0 
1 3 176 1.538 30976 2 . 3 6 5 W 270.688 

Ik 176 1-553 30976 2.U11809 273.328 

TOTAL 1U96 1^-997 172788 16.690331 1692 .152 
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Table 6. Computation of Sums for Correlation of Micromoles of Hydrogen 
Sulfide (X) and Absorbance (Y) at 63O nm 

Case X Y X 2 Y 2 XY 

1 0.5 0.081 0.25 O.OO656I 0.0405 
2 0-5 •093 •25 .00861+9 .01+65 
3 0.5 .10k •25 .010816 .0520 
4 0.5 . 1 0 1 •25 .010201 .0505 
5 0-5 .080 •25 . 0061+00 .01+00 
6 0.5 . 1 1 0 •25 .012100 •0550 
7 0-5 .098 •25 . 009601+ .01+90 
8 0-5 .089 •25 .007921 .01+1+5 
9 0.5 .109 • 25 . 011881 .O5I+5 

10 0-5 . 1 1 0 .25 .012100 .0550 
1 1 1 .0 .200 1 . 0 . 01+0000 .2000 
1 2 1 .0 • 205 1 . 0 . 01+2025 .2050 
1 3 1 . 0 . 2 1 7 1 . 0 .01+7089 . 2170 
Ik 1 . 0 . 1 9 1 1 . 0 .0361+81 .1Q10 
15 1 . 0 . 2 1 0 1 . 0 . 01+1+100 .2100 
16 1 .0 .220 1 .0 . 01+8I+00 .2200 
1 7 1 .0 .195 1 . 0 .038025 .1950 
18 1 . 0 .187 1 .0 .031+969 .1870 
19 1 . 0 .207 1 . 0 . 0I+28I+9 .2070 
20 1 .0 . 2 2 1 1 .0 .0I+88I+1 . 2210 
2 1 2 .0 .385 1+.0 . H+8225 .7700 
22 2 .0 •397 1+.0 .157609 • 7940 
23 2 .0 .U07 1+.0 .165649 .8140 
24 2.0 .380 1+.0 . 11+1+1+00 .76OO 
25 2 .0 . 4 1 1 1+.0 .168921 .8220 
26 2 .0 .ko6 1+.0 .161+836 .8120 
27 2 .0 •391 k.o . 152881 .7820 
28 2 .0 .402 k.o . 161601+ .8040 
29 2 .0 •39k k.o •155236 .7880 
30 2 .0 .1+01 k.o .160801 .8020 
3 1 3-0 . 6 1 1 9.0 •373321 1.8330 
32 3.0 .625 9.0 .390625 1.8750 
33 3-0 .609 9.0 .370881 1.8270 
34 3-0 .611+ 9.0 .376996 1.8420 
35 3.0 •595 9.0 • -354025 1.7850 
36 3-0 .600 9.0 .360000 1.8000 
37 3-0 .612 9.0 • 374544 1.8360 
38 3-0 .618 9.0 .381924 1.8540 
39 3-0 .589 9.0 .346921 1.7670 
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T a b l e 6. ( C o n t i n u e d ) 

C a s e X Y X 2 Y 2 XY 

ko 3.0 . 6 1 0 9.0 .372100 1.8300 

hi k.o .780 16 .0 .608U00 3.1200 
• h2 k.o .79^ 16 .0 .630^36 3 . 1 7 6 0 

h3 k.o .802 1 6 . 0 .6k320k 3.2080 

kk k.o . 813 16 .0 .660969 3-2520 
^5 k.o .788 1.6.0 .6209UU 3 . 1 5 2 0 
k6 k.o . 8 1 1 1.6.0 • 6 5 7 7 2 1 3-2kkO 

k7 k.o .805 1.6.0 •6U8025 3-2200 

kQ k.o .809 16 .0 . 6 5 ^ 8 1 3-2360 

h9 k.o .797 16 .0 .635209 3.1880 
50 k.o .801 16 .0 .6^1601 3 . 2 0 1 K ) 
5 1 5-0 1.003 25-0 1.006009 5.0150 
52 5-0 1 . 0 1 1 25 .0 1 . 0 2 2 1 2 1 5.0550 
5 3 5 . 0 0.98k 2 5 - 0 0.968256 ^.9200 

'5h 5-0 1.002 25 .0 l.OOifOOif 5.0100 
55 5-0 1.01k 25-0 1.028196 5.0700 
5 6 5-0 0.995 25-0 0.990025 ^•9750 
5 7 5-0 0.990 25.0 O .98OIOO U.9500 
58 5-0 0.992 25-0 0.9dko6k If. 9600 
59 5-0 1 .016 25-0 I . O 3 2 2 5 6 5.0800 
60 5-0 1.009 25-0 1 .0 l808 l 5.0^50 

TOTAL 1 5 5 3 1 . 1 0 1 552.5 2 2 . 2 3 ^ 0 0 1 1 0 . 8 1 7 5 
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C o m p u t a t i o n o f t h e E s t i m a t i n g E q u a t i o n a n d S t a n d a r d E r r o r 
( S ) f o r t h e D e t e r m i n a t i o n o f H y d r o g e n S u l f i d e 

y , x 

The e s t i m a t i n g e q u a t i o n f o r h y d r o g e n s u l f i d e w a s c a l c u l a t e d b y 

s o l v i n g t h e t w o " n o r m a l " e q u a t i o n s : 

I . ZY = Na + b£X 

I I . ZXY = aEX + b £ X 2 

W h e r e X = a n o b s e r v e d v a l u e o f X ( p m o l e HgS) 

Y = a n o b s e r v e d a b s o r b a n c e v a l u e 

a = Y - i n t e r c e p t 

b = s l o p e 

U s i n g sums f r o m T a b l e 6 

I . 3 1 - 1 0 1 = 6 0 a + 1 5 5 ^ 

I I . 1 1 0 . 8 1 7 = 1 5 5 a + 5 5 2 . 5 b 

a = 0 . 0 0 

b = 0 . 2 0 

The e s t i m a t i n g e q u a t i o n i s Y = 0 . 2 0 X 

T h e s t a n d a r d e r r o r (S ) o f e s t i m a t e w a s c a l c u l a t e d b y s u b s t i t u t -
y . x ' 

i n g v a l u e s o b t a i n e d i n T a b l e 5 i n t o t h e f o l l o w i n g f o r m u l a : 

Q _ I f g r 2 - (a£Y + bSXY) 
S y . x = J) N 

Q , , 2 2 . 2 3 4 4 - [ ( 0 . 0 0 ) ( 3 1 . 1 0 1 ) + . ( 0 . 2 0 ) ( 1 1 0 . 8 1 7 5 ) 1 
y . x " I I 6 0 

S = 0 . 0 1 
y . x 
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C o m p u t a t i o n o f t h e E s t i m a t i n g E q u a t i o n s a n d S t a n d a r d E r r o r s 
T s ) f o r t h e D e t e r m i n a t i o n o f T o t a l P r o t e i n 

Y ' X ' 

The e s t i m a t i n g e q u a t i o n s a n d s t a n d a r d e r r o r s o f e s t i m a t e w e r e 

c a l c u l a t e d u s i n g v a l u e s o b t a i n e d i n T a b l e k a n d T a b l e 5 -

F o r 0 t o 6 6 ug p r o t e i n : 

I . 8 . 1 5 9 = 1 6 a + 6 6 0 b 

I I . 3 9 9 - 2 3 ^ = 6 6 0 a + 3 3 1 5 ^ 

a = 0.07k 
b = 0 . 0 1 1 

The e s t i m a t i n g e q u a t i o n i s : Y = 0.07k + 0 . 0 1 1 X 

- , . 8 2 8 5 ^ 9 - [ ( 0 . 0 7 * 0 ( 8 . 1 5 9 ) + ( 0 . 0 1 1 ) ( 3 9 9 - 2 3 ^ ) ] 
b y . x " U % 

S = 0 . 0 2 y . x 

F o r > 6 6 ug p r o t e i n : 

I . l i f . 9 9 7 = ika. + 1 4 9 6 b 

I I . 1 6 9 2 . 1 5 2 = l i + 9 6 a + 1 7 2 7 8 8 b 

a = O . 3 3 1 

b = 0 . 0 0 7 

The e s t i m a t i n g e q u a t i o n i s : Y = O . 3 3 I + 0.007X 

6 9 0 3 3 1 - [ ( 0 - 3 3 1 ) ( l U . 9 9 7 ) + ( 0 . 0 0 7 ) ( 1 6 9 2 . 1 5 2 ) ] 
— 11 y . x 

s = „ — - - - - l h 

S = 0 . 0 2 
y . x 
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C o m p u t a t i o n o f t h e Mean (x) a n d S t a n d a r d D e v i a t i o n ( g ) o f 
O b s e r v e d D a t a f r o m C h e m i c a l A n a l y s e s o f C l o s t r i d i u m b o t u l i n u m , 
Type F , L a n g e l a n d 

L a n g e l a n d S p o r e L a n g e l a n d C e l l 

X (us S/mg N) X2 X (us S/mg N) X2 

90. h 8172 10 100 
86.7 7517 1 3 169 
85.9 7379 1 1 1 2 1 

107 11449 8.6 74 
133 17689 7.4 55 
I2h 15376 

627 67582 50 519 

- _ D ( _ 6 2 7 _ 1 0 i , c - 7 _ ^ _ 5 0 

X - N - — - 104.5 X - N - 5 - 10 
- II EX2 f£X\2 * 11 EX2 (TXV 
a = K ~ - {—} a = y ~ ¥ ~ " \ ~ N ) 

a ="|( 343.4 = 18 .5 a = "\j 3-8 = 1 . 9 

C o m p u t a t i o n o f t h e R a t i o o f (ug S/mg N) B e t w e e n L a n g e l a n d 
S p o r e s a n d C e l l s 

S p o r e / C e l l = ^f^f = 10J * g - 10.5 ± 36* = 10.5 ± 3-8 
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C o m p u t a t i o n o f t h e Mean (X) a n d t h e S t a n d a r d D e v i a t i o n ( g ) o f 

T v p e F ; OGB-69 

OGB-69 S p o r e OGB-69 C e l l 

X (LW S/mg N) X 2 X ( u g S/mg N) X 2 

74 .8 
70.0 
87.6 

1 2 2 
142 

98.O 

5595 
4900 
7674 

14884 
20164 

9604 

9-8 96 
14 196 
1 1 1 2 1 
1 2 144 

8.0 64 

594.4 62821 54.8 621 

7 TX 594.4 
N ~~ 6 = 99-06 X - * = 5^ . 8 = 1 0 . 9 6 

a = "||656 = 25.6 a = "\ 4.08 = 2 . 02 

C o m p u t a t i o n o f t h e R a t i o o f (ug S/mg N) B e t w e e n OGB-69 S p o r e s 
a n d C e l l s 

S p o r e / C e l l = ^ - = 9-0 ± W = 9-0 ± 3-9 
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C o m p u t a t i o n o f t h e Mean (X) a n d t h e S t a n d a r d D e v i a t i o n (q) o f 
O b s e r v e d D a t a f r o m C h e m i c a l A n a l y s e s o f C l o s t r i d i u m b o t u l i n u m , 
Type E , B e l u g a 

B e l u g a S p o r e B e l u g a C e l l 
X ( u g S/mg N) X y X ( u g S/mg N) X y 

76 5776 11 121 
160 25600 8.3 69 120 i44oo 8.8 77 100 10000 7.3 53 92 8 4 6 4 13 169 
5 4 8 64240 48.4 1+89 

A _ " | 64240 _ ^ 5 4 8 y . = 4 8 £ _ 4̂8.4J2 

= 1(835.8 = 28.9 B =JZ 09 = 2.02 
C o m p u t a t i o n o f t h e R a t i o o f (u,g S/mg N) B e t w e e n B e l u g a S p o r e s 
a n d C e l l s 

In 11 HO ± 28.9 HO ± 26% -1 -• Q 4 - W O / -1 -1 o + * i S p o r e / C e l l = 9 < 7 ± 2 > Q = ± ^ = 11.3 ± 47% = 11.3 ± 5-1 
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