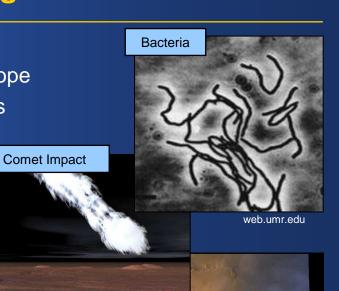
GIT SMART: A Feasibility Study of a Mars Scout Vehicle to Study Methane

Erik Kabo, Program Manager (ekabo@asdl.gatech.edu) Kathy Goben, Chief Engineer (kgoben@asdl.gatech.edu) Matt Daskilewicz, Zhi Deng, Ramraj Harikanth, SoYoung Kim, Kybeom Kwon, Kathleen Stokes, Daili Zhang

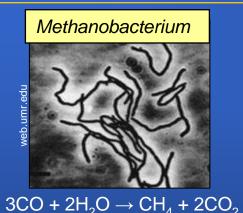

> Aerospace Systems Design Laboratory External Advisory Board Meeting, 2 May 2006


Guggenheim School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 http://www.asdl.gatech.edu

Methane may be evidence of life on Mars

- Methane was found in the Martian atmosphere by
 - The Fourier Transform Spectrometer on CFH Telescope
 - The Planetary Fourier Spectrometer on Mars Express
- Methane is a biomarker
 - Martian methane may be evidence of life on Mars
- Potential sources of methane on Mars:
 - Living organisms
 - Volcanic activity
 - Comet impact

www.nada.kth.se


We need a way to determine the source of the methane

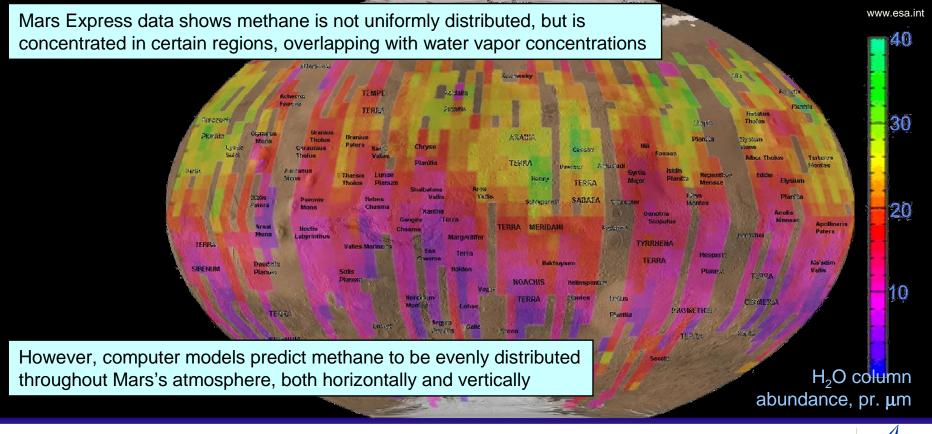
Volcano

nasa.gov

Isotope ratios determine methane source

Methanococcus

Isotope ratios can be compared to determine the source of methane


- Methane comes in many isotopes
- Living organisms are less likely to metabolize heavy isotopes because of the increased energy required to break their molecular bonds.

 $4H_2 + CO_2 \rightarrow CH_4 + 2H_2O$

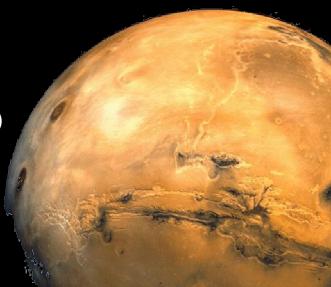
We can compare the isotope ratios of the methane found on Mars to inorganic reference values of these ratios. Ratios lower than the reference value would indicate a biological source.

Observations suggest methane concentrations near water

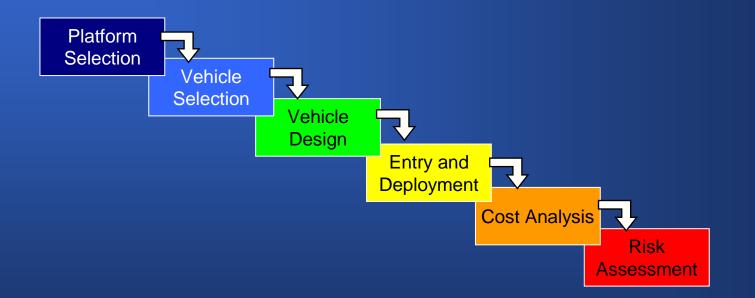
Kathy Goben and Erik Kabo

Further studies of Martian methane must be performed

- Martian atmospheric methane needs further study
 - Data needs to be validated at higher resolution
- In order to study methane, a mission will need to:
 - Search for the methane
 - Methane location theory and data conflict
 - Mission will need long endurance, large range, and ability to search multiple altitudes
 - Detect and characterize methane
 - Measurement of isotope ratios requires atmospheric immersion
 - Isotope ratios are small and require concentration of the methane for measurement
 - Characterize atmosphere
 - Measuring pressure, temperature, and wind speed will supplement methane data


Mission objective: characterize the methane in the Martian atmosphere

Characterizing methane is perfect for a Mars Scout mission


Mars Scout 2006

- Small, simple missions to perform basic science and technology demonstration
- Missions designed by industry and academia
- Launch by December 31, 2011
- \$439 million FY06 and launch services provided
- Mars Exploration Program Analysis Group (MEPAG)
 - Goal 1: Determine whether life ever arose on Mars
 - Goal 2: Characterize the climate of Mars
 - Goal 3: Characterize the geology of Mars
 - Goal 4: Prepare for human exploration of Mars

Our project: a feasibility study for a Mars Scout mission to characterize Martian methane

Kathy Goben and Erik Kabo

7

UAVs have the capabilities necessary for studying methane

Platform Selection	Vehicle Selection	Vehicle Desig	n Entry and De	eployment Co	st Analysis	Risk Assessment
Lander				Platform	Capabilities	
	Rover	Platform	Long Endurance	Large Range	Multiple Altitudes	Atmospheric Immersion
		Lander	\checkmark			\checkmark
		Rover	\checkmark	\checkmark		\checkmark
UAV		UAV	\checkmark	\checkmark	\checkmark	\checkmark
All pictures: www.nasa.gov	Orbiter	Orbiter	\checkmark	✓	✓	

Kathy Goben and Erik Kabo

A Matrix of Alternatives shows all options for a UAV

Plat	form Selection	cle Selection Vehicle	Design Entry and Deplo	yment Cost Analysis	Risk Assessment
	Functions		Alterr	natives	Over 4600
icle	Source of lift	Forward velocity	Rotational velocity	Lighter than air	Concepts!
Vehicle	Source of thrust	Propulsion system	Wind driven	Propulsion plus wind	
	Range	< 10 km	< 100 km	< 1000 km	> 1000 km
ile	Endurance	Hours	Days	Months	Years
Flight Profile	Artificial intelligence	None	Low	Medium	High
Fligh	Degree of control	No control	Control altitude	Control direction	Control altitude and direction
	Landings	Continuous flight, without landings	Elight with landings		

Vehicle Generation: Fixed Wing Aircraft

Plat	tform Selection Vehicle	Selection Vehicle D	esign Entry and Deploy	yment Cost Analysis	Risk Assessment
	Functions		Altern	atives	
icle	Source of lift	Forward velocity	Rotational velocity	Lighter than air	
Vehicle	Source of thrust	Propulsion system	Wind driven	Propulsion plus wind	
	Range	< 10 km	< 100 km	< 1000 km	> 1000 km
lle	Endurance	Hours	Days	Months	Years
Flight Profile	Artificial intelligence	None	Low	Medium	High
Fligh	Degree of control	No control	Control altitude	Control direction	Control altitude and direction
	Landings	Continuous flight, without landings	Flight with landings		

Vehicle Generation: Rotorcraft

Platform Selection	Vehicle Selection	Vehicle Design	Entry and Deployment	Cost Analysis	Risk Assessment

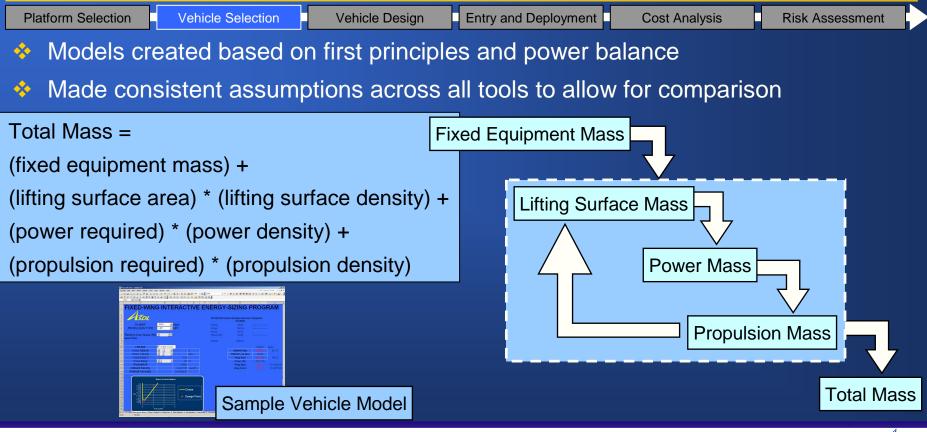
	Functions		Altern	atives	
Vehicle	Source of lift	Forward velocity	Rotational velocity	Lighter than air	- A mon
Veh	Source of thrust	Propulsion system	Wind driven	Propulsion plus wind	ALL & A MAIN
	Range	< 10 km	< 100 km	< 1000 km	> 1000 km
ile	Endurance	Hours	Days	Months	Years
Flight Profile	Artificial intelligence	None	Low	Medium	High
Fligh	Degree of control	No control	Control altitude	Control direction	Control altitude and direction
	Landings	Continuous flight, without landings	Flight with landings		

Vehicle Generation: Airship

Plat	tform Selection Vehicle S	Selection Vehicle I	ction Vehicle Design Entry and Deployment Cost Analysis		
	Functions		Alteri	natives	
Vehicle	Source of lift	Forward velocity	Rotational velocity	Lighter than air	- Acres
Veh	Source of thrust	Propulsion system	Wind driven	Propulsion plus wind	ma that
	Range	< 10 km	< 100 km	< 1000 km	> 1000 km
		TT	D		N7

	Range	< 10 km	< 100 km	< 1000 km	> 1000 km
ile	Endurance	Hours	Days	Months	Years
nt Profile	Artificial intelligence	None	Low	Medium	High
Flight	Degree of control	No control	Control altitude	Control direction	Control altitude and direction
	Landings	Continuous flight, without landings	Flight with landings		

Kathy Goben and Erik Kabo

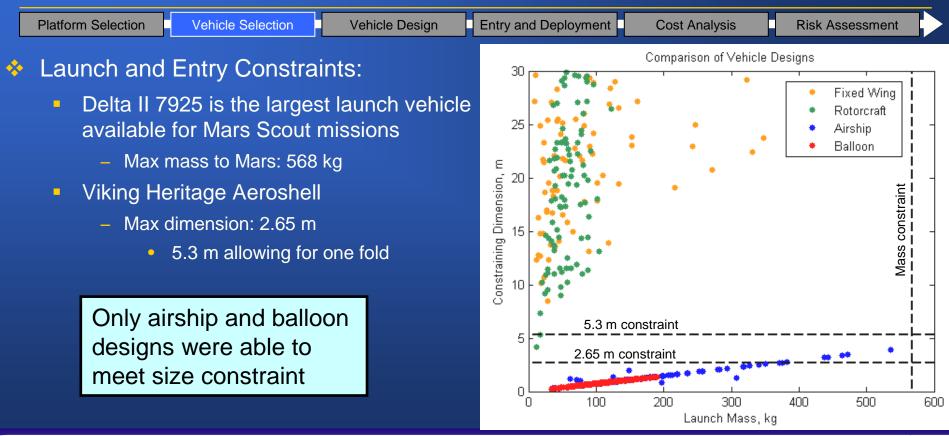


A Matrix of Alternatives shows all options for a UAV

Plat	form Selection Vehicle	Selection Vehicle Design Entry and Deployment Cost Analysis		Risk Assessment	
	Functions		Altern	atives	
icle	Source of lift	Forward velocity	Rotational velocity	Lighter than air	
Vehicle	Source of thrust	Propulsion system	Wind driven	Propulsion plus wind	5784 S 10
	Range	< 10 km	< 100 km	< 1000 km	> 1000 km
ile	Endurance	Hours	Days	Months	Years
Flight Profile	Artificial intelligence	None	Low	Medium	High
Fligh	Degree of control	No control	Control altitude	Control direction	Control altitude and direction
	Landings	Continuous flight, without landings	Flight with landings		

Models were created to size vehicles

Monte Carlo was used to generate vehicle designs


Platform Selection Vehicle Select	ion Veh	n Vehicle Design		oyment	Cost Analysis Risk Assessment
Vehicle Tool Inputs					
Venicle roor inputs	Fixed Wing	Rotorcraft	Airship	Balloon	
Fixed Equipment Mass (kg)	5 to 50	5 to 50	5 to 50	5 to 50	
Power Subsystem Density (kg/W)	0.015 to 0.25	0.015 to 0.25	0.015 to 0.25	n/a	Design space was
Lifting Surface Density (kg/m ²)	0.100	0.100	0.020	0.020	filled with thousands
Propulsion Subsystem Density (kg/W)	0.005	0.005	0.005	n/a	of designs using
Altitude (km)	1 to 10	1 to 10	1 to 10	1 to 10	Monte Carlo
Velocity (m/s)	0 to 200	0 to 200	0 to 200	n/a	
Lifting Surface Aspect Ratio	5 to 30	5 to 50	n/a	n/a	

Fixed equipment mass based on previous planetary missions

Densities based on data from existing systems

Vehicle Downselection

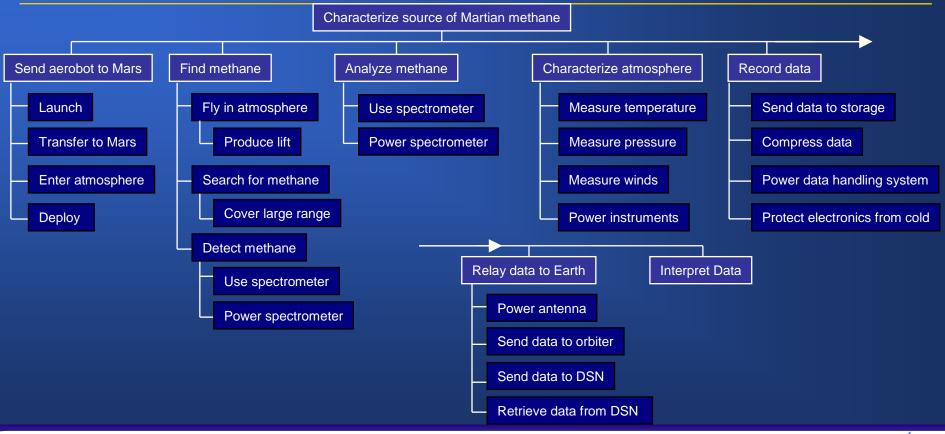
Kathy Goben and Erik Kabo

Qualitative analysis adds information to vehicle selection

Platform Selection Vehicle Selection	Vehicle Design	Entry and Deploym	nent Cost	Analysis	Risk Ass	sessment
Figures of Merit:			Sample P	ugh Matrix		
 Vehicle Complexity 			Fixed Wing	Rotorcraft	Airship	Balloon
Probability of Success	3	Vehicle Complexity	0		+	+
		Probability of Success	_	ne	0	+
Control		Control	+	Baseline	0	_
Feasibility		Feasibility 0		Ba	+	+
Scientific Capability		Scientific Capability	0		0	0
	that a	Sum +	1		2	3
 Pugh matrices suggest that a 		Sum –	1		0	1
balloon offers similar so	Sum 0	3		3	1	
capabilities with less co	mplexity					

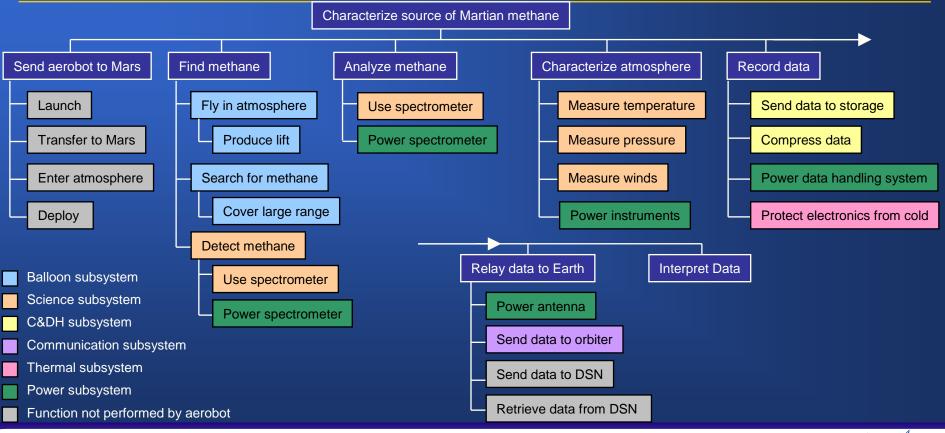
Balloon has similar science capability with less complexity

The Balloon is the best vehicle for this mission

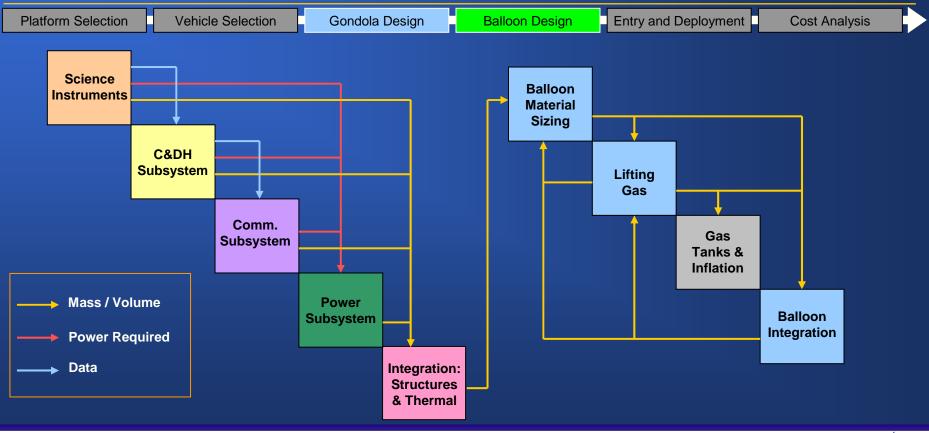

					CARGONING AND A REAL PROPERTY OF
Platform Selection	Vehicle Selection	Vehicle Design	Entry and Deployment	Cost Analysis	Risk Assessment

- The balloon meets the launch and entry system constraints
- The balloon has comparable capability with less complexity
- Fixed Wing and Rotorcraft cannot fit into aeroshell without excessive folding
- Fixed Wing, Rotorcraft, and Airship require complex propulsion, control and artificial intelligence with no value added
- Aerobot: lighter than air vehicle designed to explore the planets

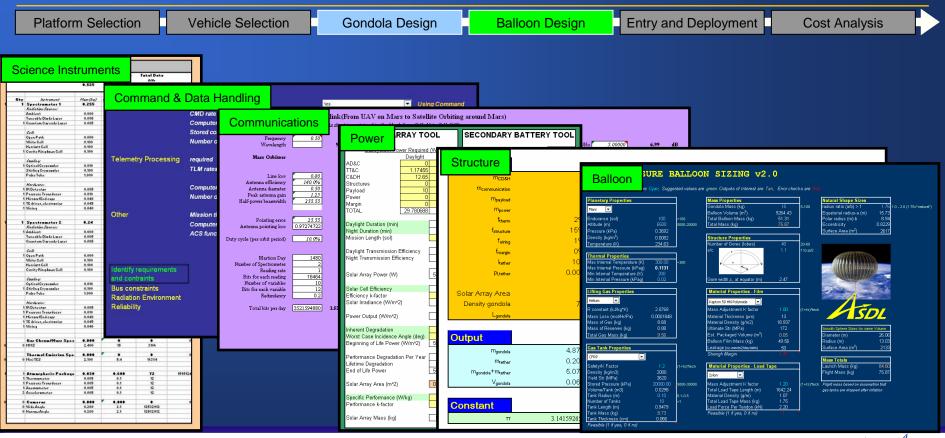
These results warrant a more detailed study at a higher level of fidelity


Aerobot Functional Decomposition

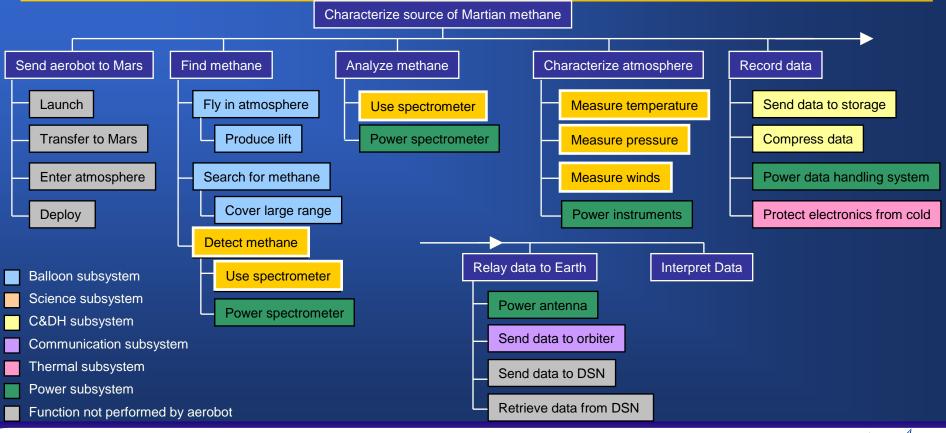
Kathy Goben and Erik Kabo


Subsystem Identification

Kathy Goben and Erik Kabo


Integrated Environment

Kathy Goben and Erik Kabo


Tools Created to Size Subsystems

Kathy Goben and Erik Kabo

Science Functions

Kathy Goben and Erik Kabo

Science Instruments Subsystem

_									
	Platform Selection Vehicle Sel	ection	Gondola Des	ign 🔤 B	alloon Design	Entry and Deployr	ment Cost Analysis		
	Needs:	Why 2 QCL spectrometers and atmospheric package?							
	Small mass		 Minimu 	ım required i	nstruments to	fulfill mission			
	Small volume		Each s	pectrometer	can provide c	lifferent functions			
	Low power requirements		Other i	nstruments r	needlessly inc	reased mass and	power requirements		
	Sensitivity		■ Redun	dancy and d	ecreased risk				
					_		(A)		
	Methane Detection Devices	Mass (kg)	Power (W)	Data (bits)	Sized Su	ıbsystem:			
Qua	antum Cascade Laser Spectrometer								

Methane Detection Devices	Mass (kg)	Power (W)	Data (bits)
Quantum Cascade Laser Spectrometer	0.25	3	320
Tunable Diode Laser Spectrometer	0.24	3	320
Gas Chromatography/Mass Spectrometer	2.4	15	320
Other Instruments of Interest	Mass (kg)	Power (W)	Data (bits)
Thermal Emission Spectrometer	2.1	5.4	320

0.03

0.4

0.6

4.2

Components:

- •2 QCL spectrometers
- •1 Atmospheric package
 - •1 Thermometer
 - •1 Pressure Transducer •Volume:
 - •1 Anemometer
 - •3 Accelerometers

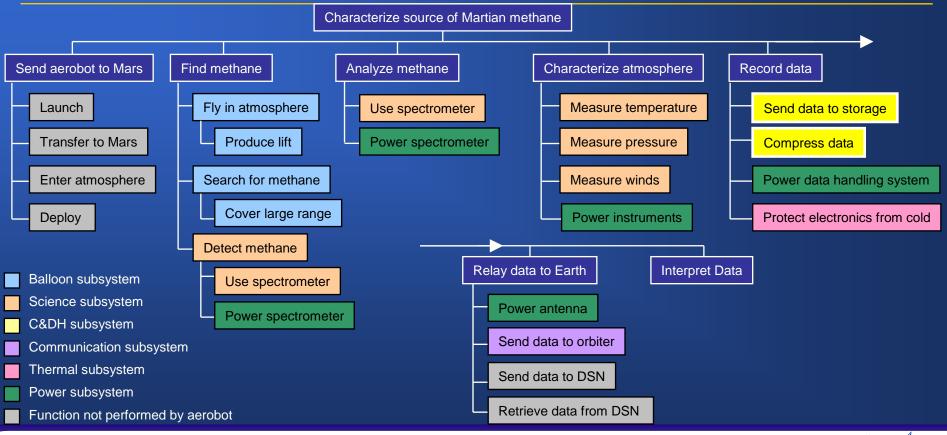
- •Power: 6.6 W (day), 0.6 W (night)
- •Data/day: 6.2 Mbits

Georgia Tech

Kathy Goben and Erik Kabo

Cameras (1 wide angle and 1 narrow angle)

Atmospheric Package

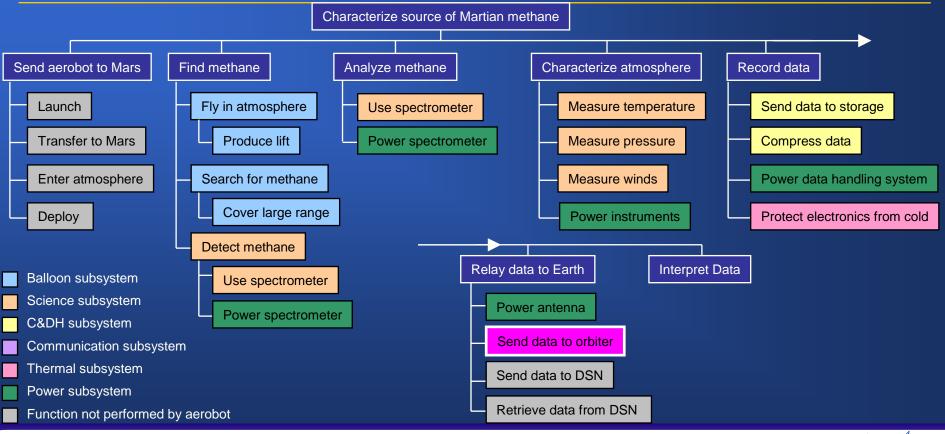

GIT SMART: A Feasibility Study of a Mars Scout Vehicle to Study Methane

72

25165824

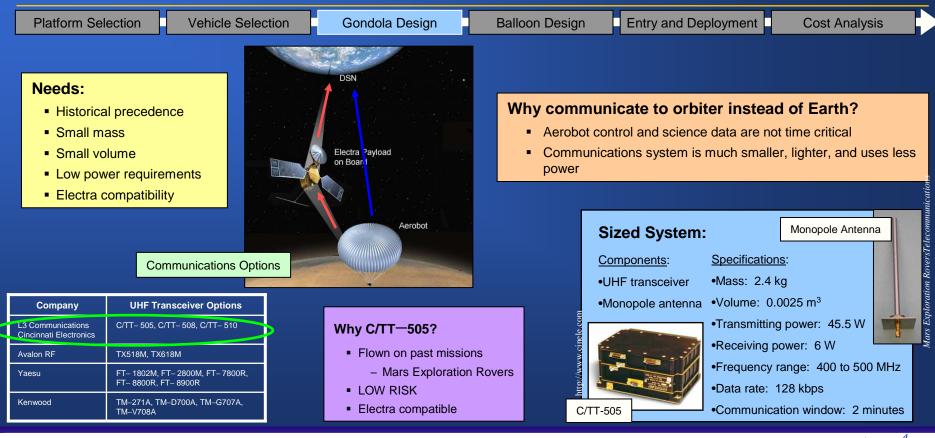
Command and Data Handling Functions

Kathy Goben and Erik Kabo

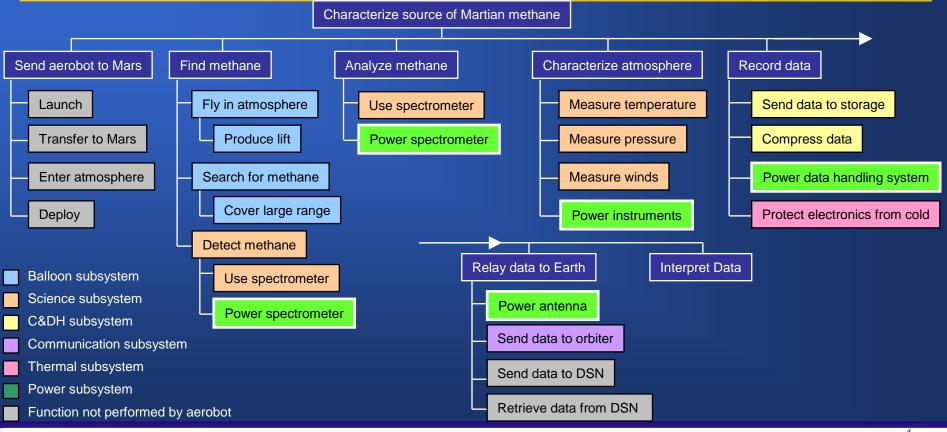

Command & Data Handling Subsystem

Plat	tform Selection Ve	hicle Selection Gonde	ola Desigr	n	Balloon Design	Entry and Deployment	Cost Analysis
	Needs: Historical p Small mass Small volut Low power Processing	s ne requirements	• F	Flown o – Mars – Mars – Mars LOW RI			eis. Itat. baesystemts.com
	Company	CPU Options] • {	Sufficier	nt capability to per	rform mission	
	BAE Systems	RAD750		Sizo	d Subsyster	n-	
- 🧲	BAE Systems	RAD6000					RAD6000 Processor
	Sandia National Laboratories	Rad-hard variant of Intel Pentium		Com	ponents:	Specifications:	
	Honeywell Aerospace	RH32		•RAE	D6000 CPU	•Mass: 3 kg	
	Honeywell Aerospace	PowerPC 603e		•Bac	kup RAD6000	•Volume: 0.0023 m	3
	Sun Microsystems	SPARC V8					
	GEC-Plessey	RG1750		•256	MB flash memory	y ●High Power: 7.5 W	
	Harris Corporation	RH3000		•Data	a acquisition boar	d •Low Power: 3.1 W	
	Boeing Company	Rad-hard variant of PowerPC 750				•Dose: < 1 Mrad	

Kathy Goben and Erik Kabo


Communication Functions

Kathy Goben and Erik Kabo



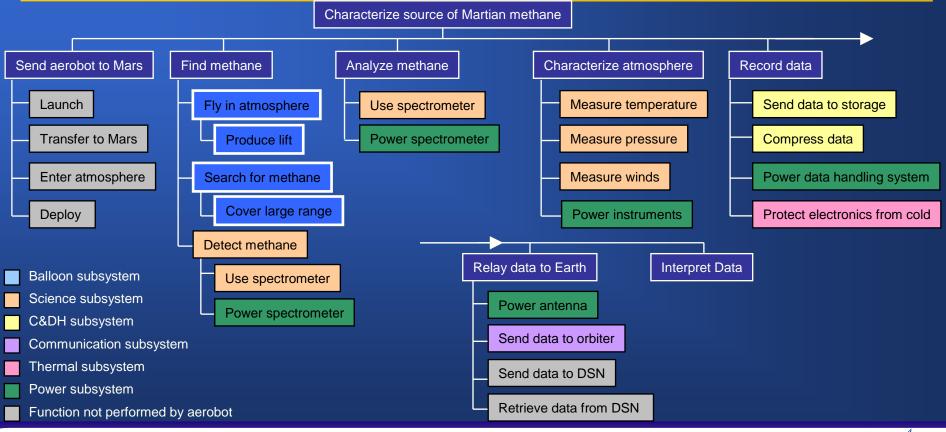
Communication Subsystem

Power Functions

Kathy Goben and Erik Kabo

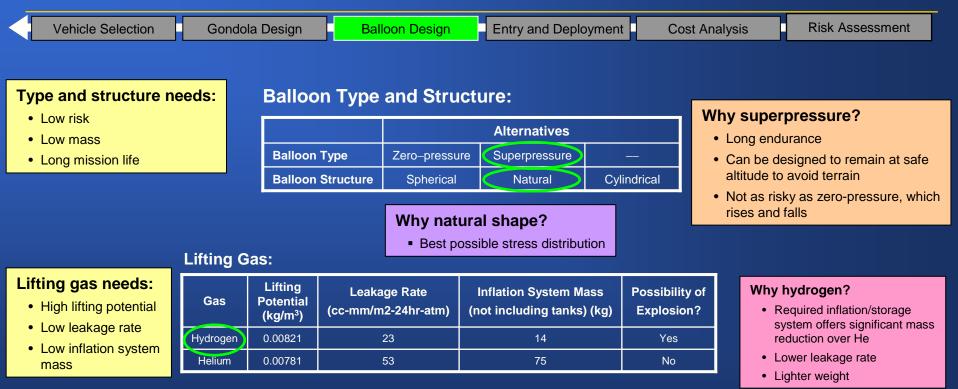
Power Subsystem

Platform Selection	Vehicle Selection	Gondo	ola Design	Balloo	n Design	Entry ar	d Deployment	Cost Ana	alysis
Needs:]	Powe	er Generat	ion Opti	ons:			
 Historical preceden Small mass 	ce			Characteris	stic	Solar Array	Radioisoto	ppe Fuel Cell	
Small volume			Spec	tific Performan	ce (W/kg)	25 to 300	5 to 20	275	
Long mission life (re	enewable power source)		Fuel	Availability		Unlimited	Very limite	ed Limited	
Power Storage	Options:								
	Nickel-Cadmium	Nickel-M	etal-Hydride	Lead-acid	Lithium-i	ion Lithiur	n-ion-polymer	Reusable Alka	line
Energy Density (Wh/	(xg) 45 to 80	60	to 120	30 to 50	110 to 16	50 1	100 to 130		
Energy Density (Wh/kg) 45 to 80 60 to 120 30 to 50 110 to 160 100 to 130 80 Why solar arrays and Li-Ion batteries? Sized System: Specifications: Mass: 2.4 kg Triple junction gallium arsenide solar cells Mass: 2.7 kg Triple Junction GaAs solar cells Mass: 2.7 kg Triple Junction GaAs Solar cell Triple Junction GaAs Solar cell Mass: 2.7 kg Mass: 2.7 kg Triple Junction GaAs Solar cell Mass: 2.7 kg Mass: 2.7 kg									

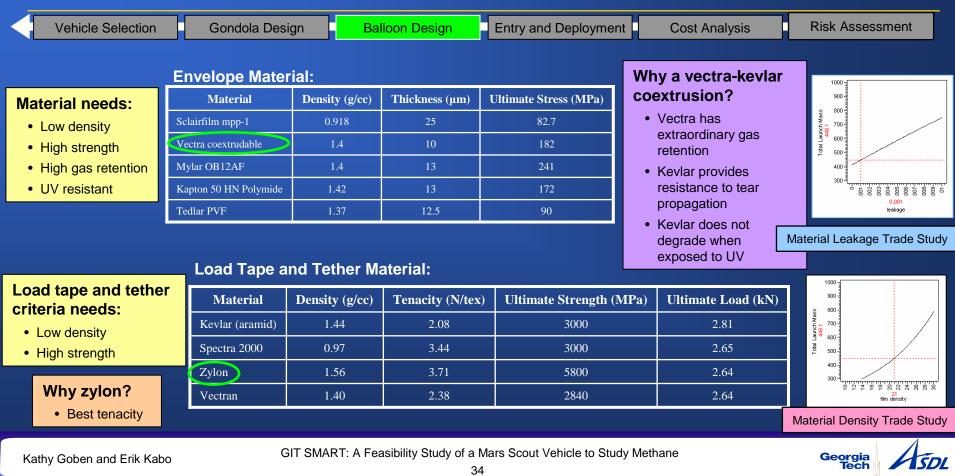


Gondola Design Summary

Platform Selection Veh	icle Selection	Gondola Design	Balloon Design Entry and Deployment Cost Analysis
Desi	gn Budge	ets	Gondola Dimensions: •Diameter: 0.4 m
Subsystem Mass (kg)		Power Required (W)	•Packaged Height: 1.1 m
Science Instruments	0.53	6.6 (day) 0.6 (night)	•Deployed Height: 2.2 m
Command &Data Handling	3.00	7.5 (day) 3.1 (night)	•Volume: 0.1382 m ³ •Mass: 11.6 kg
Communications	2.40	45.5 (transmitting) 6 (receiving)	•Mass: 11.6 kg
Thermal	0.23		
Power	3.43	3.7 (day) 0.9 (night)	Imprime transmission Imprime transmission
Structure	1.70		
TOTAL	11.6 kg	77.4 W (average)	www.ae.gatech.edu


Balloon Functions

Kathy Goben and Erik Kabo

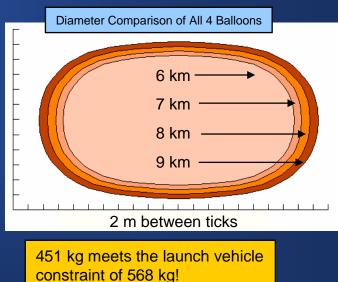


Balloon Subsystem

Balloon Subsystem Continued

Balloon Design Summary

Vehicle Selection	Gondola Design	Balloon Design	Entry and Deployment	Cost Analysis	Risk Assessment
Bal	loon Summary				
Balloon type	Superpressu	ıre			
Load tape material	Zylon				
Envelope material	Vectra-Kevlar co	mposite			
Number of gores	80				
Tether material	Zylon				
Lifting gas	Hydroger	1		///////////////////////////////////////	
Lifting gas tanks	6 tanks Mass of each tank Radius of each tan Height of each tanl	k: 0.1 m			
Inflation system mass	14 kg			Final Balloon Design	



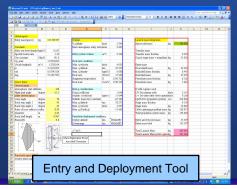
Aerobot Design Summary

Vehicle Selection	Gondola Design	Balloon Design	Entry and Deployment	Cost Analysis	Risk Assessment
-------------------	----------------	----------------	----------------------	---------------	-----------------

- 4 Aerobots
 - Each designed to fly at a different altitude: 6, 7, 8, and 9 km
 - Identical gondolas

		Aerobot Summary							
Altitude	Balloon Mass (kg)	Gas Mass (kg)	Tank Mass (kg)	Inflation Mass (kg)	Gondola/ Tether Mass (kg)	Volume (m ³)	TOTAL MASS (kg)		
6 km	54.2	4.9	12.9	14	12.6	8600	99		
7 km	61.6	5.4	13.4	14	12.6	10500	107		
8 km	69.9	6.0	14.0	14	12.6	12700	117		
9 km	79.7	6.6	14.8	14	12.6	15400	128		
TOTAL MASS (kg)	265	23	55	56	50		451		

GIT SMART aerobot is comparable to Martian aerobot baselines


Vehicle Selection	Gondola Design	Balloon Design		Entry and Dep	oloyment Cost Analysis	Risk Assessment
	System	Mars '96	MAP	MABS	GIT SMART	
	Shape	Cylinder	Sphere	Sphere	Natural	
	Diameter (m)	13.2x43	18	27.2	15.4/16.4/17.5/18.6	
	Volume (m ³ /10 ³)	5.5	3	10.5	8.6/10.5/12.7/15.4	
	Payload (kg)	28.5	9.3	15	12.6	
	Balloon Mass (kg)	30.5	15.3	55.3	54.2/61.6/69.9/79.7	
	Altitude (km)	2 to 4	6	6.5	6/7/8/9	
	Material	Mylar	Nylon-6	My/Kv/PE	Vec/Kev	
	Area Dens (g/m ²)	7.7	11.5	20	21	
	Max Diff. Press (Pa)	40	214	238	92	
	Stress Level (N/m)	854	976	1617	1515	

Entry and Deployment Systems

ehicle Selection Gondola Design	Balloon Design	nt Cost Analysis Risk Assessment
---------------------------------	----------------	----------------------------------

- Constraint: total launch mass must be less than launch vehicle limit (1022 kg)
 - Delta II 7925 is largest launch vehicle available for scout missions
- Aerial deployment was selected to reduce risk of tangling/tearing that could occur during ground deployment
- Entry and deployment system includes:
 - Transfer vehicle
 - Heat shield
 - Backshell
 - Parachute

451
005
205
67
82
17
822

Cost estimates within budget

	Vehicle Selection Gondola Design Balloon Design Er	ntry and Deployment Cost Analysis	Risk Assessment
*	Constraint: cost must be less than Mars Scout budget]	
	 \$439 million (FY06) 		
*	Cost tools		
	 Spacecraft/Vehicle Level Cost Model (SVLCM) 		
	 Advanced Missions Cost Model (AMCM) 		

	seft Excel - cest (2							
		Figuret 108 Data 107dov 1000 (7 12) & 12 12 - 기 기 - 이 - 원, X - 12 12 12 12 12	1915 - B I A	9 RID RID		₩ 第11月15 N +	pe a question for help rd dR FR	
a 20	b ⊡ ⊗ ≥16	20 2 Bargal Witters with Changes Bud Besters		101 101 <u>10</u>				
G18	A •	В	С	D	E	F	G	-
1	A	В	C	U	E	F	G	
2		Cost Estimation						
3		Combined SVI CM and AMCM						
4		Combined OVECIM and AMOM						
5		Inputs				Key		
6		Number of Vehicles	4			Input		
7		Weight per vehicle	84.7	ka		Output		
8				ů.				
9		SVLCM Assumptions						
10		Learning Curve	85	%				
11								
12		AMCM Assumptions						
13		Number of Missions	1					
14		IOC Year	2011					
15		Block Number	2					
16		Difficulty	2	(2 = Average)				
17								
18		Output						
19		DDT&E Cost		\$mil FY06				1
20		Production Cost		\$mil FY06				
21		Development and Production Cost		\$mil FY06				
22		Life Cycle Cost	483.9	\$mil FY06				
23								
24		Co	st To					
25	H\Summary/SVU	DI / AMOH / FITOS NASA Runding /			_			׾
Ready				Marcat Provident	Manager Parel -		M.N.	

Cost Type	Cost (\$mil FY06)	Model
Design, Development, Testing & Evaluation Cost	162.7	SVLCM
Production Cost	56.1	SVLCM
Life Cycle Cost	483.9	AMCM
Launch Cost	55.0	AIAA Reference
Principal Investigator Cost	428.9	LCC minus Launch Cost

Actual Principal Investigator Cost = \$428.9 million (FY06)

Risk Mitigation Plan

Vehicle Selection Gondola D	esign Balloon D	esign	Entry and Deployment Cost Analysis Risk Assessment
Criteria: A design that performs m level of risk Lowest level of risk possi		le	 Goal: mitigate all unknown and high risk events in our control Risk Mitigation Plan: Incorporate redundancy
Risk Assessment:			– Four balloons
Mission Events	Probability of Success		– Four altitudes
Launch	94%		 Two CPUs Two spectrometers
Transit to Mars	71%		 Reliable, proven hardware
Entry	83%		– All subsystem hardware (except spectrometers)
Deployment	Unknown		successfully flown on previous Mars missions
Locating the methane	Unknown		Simplicity
Science instruments operate	Unknown		✤ Largest risk: deployment
All other subsystems operate	Unknown		 Perform more research concerning envelope
Transmitting data from UAV to orbiter	Unknown		material properties and packing
Transmitting data from orbiter to DSN	~100%		

Aerobot is the best vehicle for methane characterization mission

- UAV is only platform that fulfills all required capabilities
- Aerobot is most feasible UAV
 - Simplicity of design and operation
 - Easily fits inside aeroshell
 - Offers competitive science capability with fewer cost, risk, and operations disadvantages
- Fixed wing, rotorcraft, and airship are more complex and do not offer any advantageous capabilities over aerobot
- Four aerobots simultaneously performing the mission increases probability of success
- Risk mitigation incorporated into aerobot design
- Feasibility study is successful in identifying aerobot as best vehicle for methane characterization mission

Our feasibility study successfully identified an aerobot as the best vehicle for a methane characterization mission

