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CHAPTER I 

INTRODUCTION 

1.1 Background 

Statistical quality control is divided into two major 

areas, acceptance sampling and process control through the 

application of control charts. Control charts can be broadly 

classified into charts for use with variable data or attribute 

data. Three types of control charts are often employed when the 

data is in attribute form, the p-chart or control chart for 

fraction defective, the c-chart or control chart for defects, and 

the u-chart or control chart for defects per unit. The c and 

u charts are investigated in this thesis. 

The Poisson distribution is often automatically assumed 

to represent the underlying distribution of the occurrence of 

defects for discrete data. Actually, many quality control 

references provide control limits for c and u charts with little 

mention of the fact that they hold for only the Poisson distribution, 

and that for many situations, these limits would not even be good 

approximation. Consequently, the full economic savings that should 

result from the use of control charts, may not be realized. In 

fact, economic loss could possibly result from the incorrect 

application of the Poisson distribution. 

Situations that may lead to other distributions are: 

1) When defects occur in clusters. 
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2) Where the defects are the result of two or more 

underlying sources. 

3) Where the probability of zero defects is not related to 

the distribution of counts or the occurrence of zero 

defects cannot be recorded. 

No analytical work has been published to date concerning the extent 

of the dangers associated with application of an incorrect discrete 

distribution when modeling the occurrence of defects. 

1.2 Problem Statement 

This thesis considers the development of practical methods 

for determining the proper discrete distribution to represent the 

occurrence of defects, and the determination of appropriate control 

procedures for several alternative probability models. The 

economic consequences of model misspecification will also be 

investigated. 

1.3 Objectives and Scope 

The overall objective of this thesis is to develop a practi

cal methodology for the utilization and measurement of discrete 

distributions in process control procedures for defects. The 

specific objectives entail answering the following questions. 

1) What discrete distributions do defects frequently follow? 

The selection of distributions to study will be based 

primarily on information gleaned from the literature survey. 

2) How can an analyst determine which distribution model 

adequately represents a distribution of defects? 
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Graphical methods as well as goodness of fit tests to 

aid an analyst are presented in Chapter III. 

3) What are some appropriate control procedures for the 

distributions found in Objective 1? Economic models of 

the control procedures based on these distributions 

are provided in Chapter 4. 

4) What are some of the possible economic consequences if 

the defect distribution is misspecified? The effect of 

the shape of the selected distributions are analyzed in 

this portion of the research. For example, what differences 

in costs arise with the assumption that the underlying 

distribution of defects is Poisson when in actuality it 

is the negative binomial distribution with an approxi

mately equal mean and variance. Chapter 5 presents the 

results of a numerical analysis involving distribution 

misspecification. 
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CHAPTER II 

LITERATURE SURVEY 

The literature survey is divided into three sections. 

These sections pertain to: 

1) The adequacy of the Poisson model; 

2) The determination of a probability model which 

satisfactorily represents a distribution of defects. 

3) The economic design of quality control charts. 

The numbers in parenthesis in the following discussion refers to 

the bibliography. 

2.1 The Adequacy of the Poisson Model 

Hahn and Shapiro (8) note that the Poisson distribution 

may be used to represent the occurrence of independent events that 

take place at a constant rate. The negative binomial model arises 

when the occurrence rate is not constant. 

Jackson (9) presents and discusses three situations that 

would lead to distributions other than the Poisson. These situa

tions are where defects occur in clusters, where defects are the 

result of two underlying causes, and where the probability of 

zero defects is not related to the distribution of counts or the 

occurrence of zero defects cannot be recorded. The selection of 

the distributions utilized in this research was largely based on 

Jackson's article and the references listed in it. A more detailed 
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explanation of Jackson's article is presented in Section 2.4. 

Montgomery (12) reports that it is important to model the 

occurrence of assignable causes properly when developing control 

charts for defects. He states that most of the currently 

available models assume that assignable causes occur according 

to a Poisson process. He also contends that "if the occurrence 

of assignable causes can be thought of as random 'shocks' acting 

on the system, that is, if the probability of a process shift 

within any small interval of time is directly proportional to 

the length of the interval, then this assumption is probably 

appropriate." However, if assignable causes occur as a result 

of the cumulative effects of heat, vibration, shock, and other 

similar phenomena, or as a result of an improper setup or excessive 

stress during process start-up, then use of the exponential 

distribution to model the interval during which the process is 

in-control may not be appropriate. He further contends that serious 

economic consequences may result from incorrectly using the Poisson 

process assumption. Alternatives to the Poisson distribution 

were not provided. 

2.2 The Determination of a Distribution Model Which Satisfactorily 
Represents a Distribution of Defects 

Pearson (19) noted that for the hypergeometric distribution 

the ratio (Pj+1 - Pj+1 + Pj) is of the form 

linear function of j 
quadratic function of j 
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where 

?. = PR[X = j] 

Pearson used this as a starting point for obtaining (by a 

limiting process) the differential equation defining the 

Pearson system of continuous distribution functions. 

Ord (16,17) has developed a system for discrete distri

butions similar to the Pearson system for the discrete case. 

This system is fairly general at the current time but quite 

useful for many applications. 

Katz (11) shows those parts of the (a,3) plane occupied 

by the Poisson, negative binomial (Pascal), and binomial 

distributions, where 

2 
a = ^ and 6=1 - H_ 

a a 

An analyst can readily determine which, if either of the Poisson, 

negative binomial or binomial distribution are adequate to model 

their data by calculating and then plotting the a and 3 values 

on this a,3 plane. 

Johnson and Katz (10) present a summary of all the above 

mentioned articles, as well as methods of approximation for the 

negative binomial and Neyman Type A distributions. 

Hahn and Shapiro (8) present the fundamentals of probability 

plotting and tests for checking distributional assumptions. 
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Probability plots for the normal, exponential, gamma and other 

continuous distributions are shown. Tests for distributional 

assumptions include tests to evaluate specifically the assumption 

of: 

1) Normal or Log-Normal Distribution; 

2) Exponential Distribution-Origin Known; 

3) Exponential Distribution-Origin Unknown 

The Chi-Square Goodness of Fit Test is also presented. 

Dubey (6) presents graphical tests for the binomial, 

Poisson and negative binomial distributions. The tests for the 

Poisson and negative binomial are discussed in Chapter 3. 

Anscombe (1) compared the negative binomial form of 

distribution with the Neyman Type A and six other two-parameter 

forms of distributions. He shows that they can be arranged in 

order of increasing skewness and tail length, and that they vary 

in the number of modes possible in the frequency function. 

White, Schmidt, and Bennett (21) describe and provide 

examples illustrating the Kolmogorov-Smirnov tests, Chi-Square 

Goodness of Fit test, and a special Poisson-Process test. The 

latter test is discussed further in Chapter 3. 

2.3 The Economic Design of Quality Control Charts 

Montgomery, Heikes, and Fuller (14) presents discrete time 

models for the optimum economic design of both c-charts and u-charts. 

A grid search procedure is used to select the control chart 

parameters that minimize the objective function. The sensitivity 
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analysis in this paper indicates that the model reaction to 

changes in cost coefficients and other model parameters is 

appropriate. They also state that the cost function is convex 

and relatively flat in the neighborhood of the optimum. 

Montgomery (12) reviews and analyzes several different 

process models that have been developed and applied to most of 

the major types of control charts. He also provides some dis

cussion on the practical implementation of economic design 

procedures for control charts. The remaining articles analyzed 

in this survey are also discussed in Montgomery (12). 

Girshick and Rubin (7) considered a process model in which 

a machine produces items with a quality characteristic x. This 

machine can be in one of four states. States 1 and 2 are 

production states, while states 3 and 4 are repair states. They 

treat both 100 percent inspection and periodic inspection rules. 

The economic criterion is to maximize the expected income from 

the process. The optimal control rules are difficult to derive 

and consequently, the model's use in practice has been limited. 

The paper, however, is of significant theoretical value. Girshick 

and Rubin were the first to propose the expected cost (or income) 

per unit time criterion and rigorously show its usefulness for 

this problem. Numerous authors have investigated single assignable 

cause economic models for the fraction defective control chart. 

Chui (2,3) has formulated a cost model of the fraction defective 

chart. Chui uses a variation of Fibonacci search to find the 
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economically optimal design. He also proposes an approximately 

optimal design procedure. 

Chui (4) presents a brief sensitivity analysis of this model. 

He notes that the model is relatively insensitive to errors in 

estimating the cost coefficients, but requires more precise 

estimates of the fraction defective when in the in-control and 

out-of-control states. 

Montgomery, Heikes, and Mance (15) have developed a multiple 

assignable cause economic model for the fraction defective control 

chart. They use both the grid search methods and pattern search 

to minimize the cost function. The article contains solutions to 

approximately 100 numerical examples. Results of a sensitivity 

analysis are also reported. The model is not extremely sensitive 

to the number of out-of-control states utilized, and they note 

that a properly chosen single cause model would often be a good 

approximation for a complex multiple cause process. The cost 

response surface is convex and relatively flat in the vicinity 

of the optimum, therefore moderate error in estimating the model 

parameters has only a slight effect. 

Montgomery and Heikes (13) investigated the use of the 

geometric, Poisson and logarithmic series distributions to model 

the duration that a process is in-control. They note that the 

choice of process failure mechanism is an important aspect of opti

mum control chart design, and that misspecification of this 

property can result in significant economic penalties. 
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2.4 Distribution Selection 

Patil and Joshi (18) contains over 3000 cross-indexed 

references and information relating to the probability function, 

generating function, and other descriptive measures for over 150 

discrete distributions. 

Four distributions were chosen for study in this thesis. 

They are the Poisson, negative binomial, weighted sums of two 

Poissons and combination Poisson and negative binomial. The 

four distribution models chosen for this research should have 

wide industrial application. For example, Jackson (9) specifies 

several situations where the four distributions apply. Hahn 

and Shapiro (8) also provide applications for some of these 

distributions. 

2.5 Parameter Estimation 

Parameter estimation is not considered in this thesis; 

however, the parameters of the distributions must be known or 

estimated in order to utilize the techniques and models 

presented in this thesis. The following references are 

provided for the convenience of the reader in case parameter 

estimation is found to be necessary. 

Johnson and Katz (10) provide methods for estimating the 

parameters of the Poisson, negative binomial, and Neyman Type A. 

Cohen (5) provides methods for estimating the parameters of the 

distribution of the weighted sum of two Poissons and the distri

bution that results from the mixture of a Poisson and negative 

binomial. 
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CHAPTER III 

MODELING DISTRIBUTION OF DEFECTS 

3.1 Introduction 

The procedure most commonly employed (and the one used here) 

when modeling discrete data is to experimentally investigate 

several of the standard distributions. Other techniques are 

discussed in the literature survey. Generally, one of the standard 

distributions will approximate the actual distribution well enough 

so that it may be used for significance testing and estimation 

procedures. The selection of candidate distributions may be aided 

by investigation of the underlying mechanism of the process that 

generated the data. This should be done first if possible. The 

results of such an investigation may suggest a particular distri

bution or group of distributions. Conversely, if the underlying 

mechanism is unknown, the distribution having the best fit may 

provide a clue to the nature of the mechanism. 

Techniques to assess the adequacy of a selected model are 

also provided in this chapter. Two different techniques are 

discussed: probability plotting and statistical (goodness of fit) 

tests. Specifically, the method is discussed by which these 

techniques can be utilized to determine if it is reasonable to 

assume a Poisson or negative binomial or Neyman Type A model on 

the basis of the given data. These three distributions are 

frequently encountered in practice ( 9 ) . The flow diagram near the 



end of the chapter presents a logical course of action when 

modeling distribution of defects. A reference for other 

candidate distributions is listed on the flow diagram in case 

the Poisson, negative binomial and Neyman Type A are all 

found to be inappropriate. 

3.2 Probability Plotting 

Probability plotting consists of constructing a graphical 

or pictorial display of the data. The analyst visually examines 

this pictorial representation in an attempt to determine whether 

or not the data contradicts the assumed model. Probability 

plotting is generallyvery simple, which makes it a very appealing 

technique. However, it must be remembered that it is a subjective 

method and may not provide clear-cut answers to the appropriateness 

of a particular model. 

The following graphical tests are proposed by Dubey (6) to 

determine if the data can be satisfactorily described by the Poisson 

distribution or negative binomial (Pascal) distribution. 

The probability function p(x) of the Poisson distribution 

is given by 

p(x) = Prob. (X=x) = e _ V ! , x = 0,1,2 (3-1) 
x! 

where X is a positive number. From expression (3-1) we write: 

-X x+1 
p(x+l) = ±-2 (3-2) 
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Next we see that 

,(x+l) X ~ X + X X ( 3 " 3 ) 

which is a straight line with y = p(x)/p(x+l) as the dependent 

variable and x as the independent variable. This straight line has 

the same intercept and slope (1/X). Thus if we plot experimental 

data p(x)/p(x+l) against x and the points appear to be a straight 

line, we can feel confident in modeling the data with the Poisson 

distribution. 

Expression (3-4) is a recurrence relationship: 

P(x+1) = -J- p(x). (3-4) x+1 

This relationship may be helpful for computing the theoretical 

frequency p(x+l) from p(x). Note that by utilizing expressions 

(3-3) and (3-4) , theoretical frequencies may be computed after 

obtaining a satisfactory estimate of the parameter X. 

Table 3.1 shows discrete data in relative frequency form 

and the theoretical frequencies that would be obtained from a 

Poisson distribution with the same mean as that of the sample, 

X = 3.74. Figures 3.1 and 3.2 display the results from using these 

two sets of data and the Poisson Graphical Test. 

It is evident by v/iewing Figure 3.1 that the observed data 
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T a b l e 3 . 1 S a m p l e D a t a 

O b s e r v e d R e l a t i v e T h e o r e t i c a l P o i s s o n 

N u m b e r o f S c r a t c h e s F r e q u e n c i e s R e l a t i v e F r e q u e n c i e s 

0 . 1 6 6 0 . 0 2 3 8 

1 . 1 0 2 0 . 0 8 8 8 

2 . 1 2 4 0 . 1 6 6 2 

3 . 1 2 6 0 . 2 0 7 2 

4 . 1 2 2 0 . 1 9 3 6 

5 . 1 1 2 0 . 1 4 4 8 

6 . 0 8 0 0 . 0 9 0 2 

7 . 0 5 4 0 . 0 4 8 2 

8 . 0 4 0 0 . 0 2 2 6 

9 . 0 2 6 0 . 0 0 9 4 

1 0 . 0 1 2 0 . 0 0 3 5 

1 1 . 0 1 6 0 . 0 0 1 2 

1 2 . 0 1 0 0 -
1 2 . 0 1 0 0 _ 

1 . 0 0 0 1 . 0 0 0 



1 5 
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does not follow the Poisson distribution. Jackson (9) compares 

the theoretical data in Table 3.1 with the frequencies generated 

by a Thomas distribution with parameter X^ = 1.91 and X^ = .96. 

Jackson contends on the basis of a Chi-Square Goodness of Fit test 

that the data forms a distribution whose deviation from the 

Thomas distribution could be attributable to chance alone. 

Figure 3.2 displays results when the data follow a Poisson 

distribution. 

The probability function p (x) of the negative binomial 

distribution is given by: 

x equals the total number of trials required to encounter 

k successes. See Appendix B for futher explanation of the 

negative binomial distribution. 
~x-il 

is a binomial coefficient, p is a positive number in the 

open interval (0,1) and q = 1-p. 

From expression (3-5) we obtain: 

p(x) = Prob (X=x) = x-1 
k-1 

(3-5) 

where: 

p(x+l) = k-1 
x pk qx+l-k (3-6) 



1 7 

Figure 3.2. Poisson Data - Poisson Graphical Test 
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and furthermore: 

P(x) = 1-k^l _1 (3_7) p(x+l) q q x 

which generates a straight line with y = p(x)/p(x+l) as a dependent 

variable and z = 1/x as an independent variable. This line has an 

intercept of (1/q) and a slope of -(k-l)/q. If after plotting 

the experimental data p(x)/p(x+l) against ̂  , the points appear to 

be a straight line, we can feel confident in modeling the data 

with the negative binomial distribution. 

The recurrence relationship below is helpful for computing 

the theoretical frequencies p(x+l) from p(x) if a good set of 

negative binomial tables is not easily acceptable. However, 

notice that a satisfactory estimate of the parameter p must be 

obtained before the theoretical frequencies can be calculated. 

p(x+l) = qp(x) (3-8) 

Figure 3.3 shows the results when the negative binomial 

graphical test is applied to data generated by a negative binomial 

distribution with parameters: p = .95, k = 70, mean = 3.69 and 

variance = .95. For additional probability plots, consult Hahn 

and Shapiro (8). 

A decision concerning the appropriateness of a model is 

not always obvious from visual inspection of a probability plot. 

Often more objective techniques are necessary. Such techniques 



Figure 3.3. Negative Binomial Data - Negative Binomial Graphic Test 
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are discussed in the next section. 

3.3 Statistical Tests 

Statistical tests are more objective than probability 

plots and provide a probabilistic framework in which to evaluate 

the adequacy of the model. They may be used by themselves or 

as a supplement to probability plots when the plots fail to 

provide a clear-cut decision. 

Statistical tests allow us to reject a model, they never 

allow us to prove that the assumed model is correct. The outcome 

of a statistical test depends greatly on the amount of available 

data. The chances of rejecting an inappropriate model increases 

as the amount of data increases. 

As mentioned in the introduction, the Poisson distribution 

is virtually always assumed when distribution of defects is 

modeled. Therefore, it is of special interest to identify 

situations where a Poisson process is not present. The absence 

of a Poisson process can be determined by verifying that the 

number of defects over a fixed time interval does not have a 

Poisson distribution. 

Several statistical tests have evolved to evaluate 

distributional assumptions. The Poisson Process test is one often 

utilized to test for the absence of a Poisson process. Because 

of the importance of identifying non-Poisson processes, the Poisson 

Process test is outlined. This test was taken from J. White, 
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Schmidt and Bennett (21). 

Poisson Process Test: 

Let t, , t 0 ... t denote the times at which each of n 1 2 n 
defects occurred during a time interval of length T. If these 

defects are from a Poisson process, then the times are indepen

dent and uniformly distributed over the interval 0 to T with mean 
T 2 

T/2 and variance ŷ " • *f the sum below is formed, 

n 
S = I i (3-9) n ,L. — i=l n 

then by the central limit theorem, for large n the test statistic 

will be normally distributed with mean 

E(Sn) = T/2 (3-10) 

and variance 

T 2 

Var (S ) = — (3-11) 
n 12n . 

Thus, to test the hypothesis that the defects are generated by a 

Poisson process, first compute the normal test statistic 

Sn " T / 2 (3-12) 
(T 2/12n) 1 / 2 

Second choose a level of significance a and locate the critical 



22 

values Z and Z in the cumulative normal table. If 
l-a/2 a/2 

Z < z
a / 2 or Z > z i _ a / 2 » w e r e J e c t t n e null hypothesis that 

the defects were generated by a Poisson process. The steps 

of the Poisson Process Tests are summarized below. 

1) Compute the sum S n given by (3-9), 

2) Compute the normal test statistic Z given by (3-12). 

3) Select a level of significance a . 

4) Locate the critical values Z / 0 and Z, / 0 in a Cumulative 
a / 2 1-a / 2 

Normal Table. 

5) If Z < Z or Z > Z ( then reject the hypothesis that the 
a/2 a/2 

defects are generated by a Poisson process. 

The reader may wonder about the validity of the Poisson Process 

Tests for finite sample size. White, Schmidt and Bennett (21) state 

that since this test is based on the central limit theorem, as a 

rule of thumb we can safely apply the test whenever n ^ 30. They 

further report that tests based on the central limit theorem are 

more powerful than non-parametric tests such as the Chi-Square 

Goodness of Fit test. 

The times at which defects occur cannot always be conveniently 

measured in practice. A more convenient method may be to record 

the number of defects that occur over time intervals of fixed 

length. When data have been collected in this manner an estimate 

for the mean defect rate X is given by 

n I x 
-1 - - i i 

A = X = (3-13) 
n 
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where n is the total number of observations. This result is 

the maximum likelihood estimator for the parameter X of a 

Poisson mass function. Data collected by this latter method 

will not be in the proper format for the Poisson Process test 

and therefore a non-parametric goodness of fit test, such as 

the Chi-Square test should be utilized for distribution 

identification. Explanation of how to use the Chi-Square test 

is available in virtually every undergraduate level statistic 

book. 

3.4 Flow Diagram for Determination of Discrete Distribution 

The flow diagram for determination of discrete distributions 

was developed so analysts with limited statistical backgrounds 

could in an organized manner determine an adequate mathematical 

model to represent a distribution of defects. The flow diagram is 

presented in Exhibit 3-4. 

The flow diagram is a result of the investigation of 

probability plotting, statistical tests and the knowledge that 

the Poisson and the negative binomial are unimodal distributions 

and that the Neyman Type A distribution often exhibits more than 

one mode. 
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CHAPTER IV 

MODELS 

4.1 Introduction 

The third objective of this thesis was to develop 

appropriate control procedures when the underlying distribution 

of occurrence of defects was either Poisson, negative binomial, 

the weighted sum of two Poisson or a combination of Poisson and 

negative binomial. A computer model capable of giving the 

economic control limits for c and u charts was developed for 

each distribution. Optimal inspection plans can be obtained 

through application of these computer models and an appropriate 

grid search technique. 

The general model structure is the same for each computer 

model and is described in Section 4.2. A description of each 

computer model and its application are given in Section 4.3 

4.2 General Model Structure 

Montgomery (12) reports that it seems that multiple 

assignable cause processes can usually be well approximated by an 

appropriately chosen single assignable cause model. The models 

developed for this thesis are characterized as single assignable 

cause models and they assume that once the process shifts out-of-

control, it remains in the out-of-control state until detected and 

corrective action is taken. 
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The models assume that a sample of n units is taken after 

the production of (N-n) units, where N is the interval between 

decisions. This interval is called the sample interval in the 

following discussion. There are three sets of conditions which 

can arise: 

1) N = N = 1; 2) N = n f 1; 3) N > n and n > 0 

A c-chart results from the first set of conditions. The second set 

of conditions also results in a c-chart, however the sample unit 

has been redefined. For example, if n = 2, and the original 

sample unit was one automobile, under the second set of conditions 

the sampling unit becomes two automobiles. A u-chart results if 

the third set of conditions are true. The third set of conditions 

are assumed to prevail in the remainder of the discussion on 

model structure. The equation can be simply modified to fit the 

definition of a c-chart by setting N = n. 

4.2.1 Control Chart Parameters 

The control procedure is as follows. Let an item be the 

basic unit of production. The models assume that the last "n" 

items of each N items are inspected, where n equals the inspection 

size and N equals the sampling interval. For example if N = 50 

and n = 5, items 46 through 50 are inspected in every 50 items 

produced. 

The number of defects per item when the process is in the 

"in-control" state follow a given distribution with mean X-, . The 
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number of defects per item when in the "out-of-control" state 

follows the same distribution with mean Â -

The control procedure is as follows. The total number of 

defects in the "n" inspection units, say n^, is observed. The 

value of n is then plotted on a control chart with centerline c 
nX^ and control limits given by: 

LCL = nAx - k (STD) (4-1) 

UCL = nX± - k (STD) (4-2) 

where nX^ is the mean of the distribution under investigation for 

sample size n, k is the distance from the centerline (nX^) expressed 

in standard deviations, and STD is the standard deviation of the 

distribution of interest with mean nX^. Equations for calculating 

the standard deviations for all the distributions are given in 

Appendix B. If n^ falls inside the control limits, the process 

is assumed to be in control. 

4.2.2 Cost Structure1 

Economic schemes are based on the cost that occur because 

of the application of a control procedure. All the models 

developed contain four cost components: 

A q = Variable cost of sampling or testing one item for the 

presence of a defect. 

A^ = Fixed cost of sampling inspection 

A 2 = Cost of a "false" alarm 

1 
The general cost model structure is due to Girshick and Rubin (7) 
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= Cost per unit of operating out-of-control 

The variable cost of sampling, A^, includes all direct 

sampling costs attributed to an item of production. The fixed 

cost, A^ contains all direct and indirect costs that result from 

the existence of the sampling procedure that are independent of 

the sample size, n. 

The cost of a false alarm, A 2 > arises because of the 

probability of a Type I error; that is, the probability of 

concluding the process is out-of-control, when in fact it is in 

control. 

The cost per unit of operating out-of-control, A^, includes 

all the additional unit costs incurred as a result of the increased 

(average) number of defects per unit. This cost can take many 

forms. For one, the additional repair cost per unit that results 

when the average number of defects per unit increases to that of 

the out-of-control state is included under this cost heading. The 

inspection cost per sampling interval is equal to: 

c = (A x n ) + k± + ( A 2 x a ) + (A 3 x (4-3) 

where n is the sample size, a is the probability of a false alarm 

and B-̂  is the expected number of units produced per sampling 

interval N, while the process is in the out-of-control state. 

The inspection cost per unit equals: 

c M = c/N (4-4) 
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How to calculate a, 3 and B-̂  is presented in the following 

sections. The probability of a Type II error, 3, must be known 

before B^ can be calculated. 

4.2.3 Type I and Type II Error 

Let n^ be the number of items in the sampling interval N 

from the "in-control" state and n 2 equal the number of items 

produced while in the "out-of-control" state. The total sample 

interval N equals n^ + n2» 

If d equals the total number of defects in the n items 

inspected, then the probability of a Type I error, a, can be 

expressed as: 

a = PR(d > UCL|n2 = 0) + PR(d < LCL|n£ = 0) (4-5) 

The calculation of the probability of a Type II error is 

much more complicated. Let p = probability of a shift between 

production of single units, y ^ = probability of starting a period 

in-control, y = the probability of starting any period out-of-

control, where a period is equal to the sample interval. The 

above statements are based on the assumption that the process is 

not self correcting. The probability of starting a period out-of-

control y2» i s e<lual to the probability of a shift between items 

dividing periods plus the probability that a shift occurred un

detected (Type II error) in the previous period. 

Y 2 = P + e (4-6) 
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where 3 is the probability of a Type II error. 

A shift to an out-of-control state can occur during sampling 

or before samples are taken. The possible number of units in the 

sample produced while the process is out-of-control is between 1 

to N. The probability of a Type II error, 3 , then equals 

(4-7) 

= PR(LCL <_ d <_ UCL|n2 = 1) x PR(n2 = 1) + 

PR(LCL <_ d <_ UCL n 2 = 2) x PR(n2 = 2) + 

PR(LCL <_ d <_ UCL n 2 = n - 1) x PR(n2 = n - 1 + 

PR(LCL < d < UCL n 2 = n) x PR(n2 = n) + ... 

PR(LCL < d < UCL n) x PR(n0 = N - 1) + 

PR(LCL <_ d <_ UCL n) x PR(n2 = N) 

The calculations of 3 was divided into three segments. The 

first segment consisted of calculating the probability of a Type II 

error given the shift to the out-of-control state occurred during 

inspection of the n units. This is defined as, a. 

n-1 
a = I PR(LCL < d < UCL|n2) x PR(n2) (4-8) 

n2=l 

The shift to the out-of-control state in the second segment 

is assumed to occur before inspection and after production of the 

first unit in the current period. Call this probability b, then 
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N-l 
b = I PR(LCL < d < UCL|n9) x PR(n9) (4-9) 

The shift to the out-of-control state in the third segment 

is assumed to have occurred before the current period. Denoting 

this c, 

c = PR(LCL < d < UCL n) x PR(n2 = N) (4-10) 

Now equation (4-7) can be rewritten as: 

3 = Y x a + Y l b + y 2
 c (4-11) 

Equation 4-12 results from substituting p + 3 for Y 2 (4-6) and 

noting that Yj_ = 1 ~ Y 2 

_ a + b + p [ c - b - a ] 
1 - c + b + a (4-12) 

Setting f = a+b, the above equation can be simplified to 

f + P (c - f) 
" 1 - c + f (4-13) 

4.2.4 Expected Number of Units Produced While in the Out-of-Control 
State, (B1) 

N-l N _ n 

B X = (Y 2) (N) + I (n 2 ) (p) (1-p) 2 (4-14) 
n2=l 



32 

equals the product of the probability of starting out-of-

control, Y2» a n c* t n e number of units in the sample interval N, 

plus, the summation of the product n 2 and the probability that 

the shift occurred after the production of the (N-n^) item of 

the period, where n^ can range from 1 to N-1. 

4.2.5 Expanded Cost Equation and an Example 

Equation (4-3) can be expanded by substituting the 

appropriate terms for a and B^. The expanded cost equation 

(4-15) is presented on the following page. The most difficult 

part of this equation is the calculation of the Type I ot, and 

Type II error, 0 . The following example illustrates how to 

calculate a and 0 for the case where the defect distribution is 

Poisson. It is assumed that the control limits have been converted 

to integer values in the following equations. Since the data 

is in discrete form, integer control limits are more practical. 

As mentioned before the process is considered in control only 

if the points plotted on the chart lie inside the control limits. 

The probability of a Type I error equals the probability 

that the total number of defects, d in the sample is greater than 

or equal to the upper limit plus the probability that d is less 

than or equal to the lower control chart limit. For the case 

where the defects are generated by a Poisson process: 

(4-5a) 
x x °° exp (-nX-̂ ) (nX-̂ ) LCL exp(-nX-̂ ) (nX-̂ ) 

a - I ~, + I ~, 
x=UCL x ' x=0 *• 
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(4-15) 

(AQn) + A x + A 20 [ I p(x) + f1 p(x)] + A 3 [ [ pt ^lilll'^ 1 
UGL 0 V N-n9 (N) + I (n2)(p)(l-p) 2] 

n2=l 

where 

n-l UCL-1 k 

I I P(x)(l-p) P ; 
n2=l x=LCL+l 

UCL-1 N-n k 

b = I p(x) I (1-p) p ; 
x=LCL+l k=l 

UCL-1 
c = I p(x) ; 

x=LCL+l 

P(x) = probability function for the given distribution 



34 

The calculation of 3 was divided into three segments. The 

probability of a, b and c was calculated in the three segment 

respectively. 
(4-9a) 

a 6 X P [ " ( n " n 2 ) Xl" n2 X2 ] t(n-n2)X1 + n ^ ] * [l-p]npn2 
n2=l x=LCL+l x | 

The mean number of defects per unit depends on when the shift 

occurs. An example will best illustrate the point in question. 

Assume that the following conditions prevail: 

Xl = 5* X 2 = 1 0 ; n = 5 

If the shift to out-of-control occurs after the second unit 

is inspected; that is, n 2 = 3, then on an average the first two 

units will have means of 5 defects and the remaining three sample 

units will have a means of ten defects. Thus, the mean number of 

defects for the sample is (2)(5) + (3)(10) = 40. In the general 

case the mean number of defects in the sampled units is: 

(n - n 2) X-ĵ  + n 2 (X2) 

Applying the above equation to the probability function for 

the Poisson distribution we arrive at the first portion of equation 

(4-8a), that is 
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exp [-(n-n2) A^ - n 2A 2] [ (n-n2)Ai + n 2A 2] 

The remaining portion of the equation is easy. For instance 

assume n^ = 3 and N = 50. The first 47 units in the sampling 

interval must have been produced while the process was in control. 

The probability of this occurrence is equal to the probability of 

a shift not occurring (1-p) raised to the forty seventh power. 

The probability that a shift occurs after the production of the 

forty seventh unit and before the forty eighth is simply p. The 

product of these probabilities makes up the last terms in the 

equation. The logic behind the summation signs was discussed in 

connection with equation (4-8). 

UCL-1 exp (-nA2)(nA2)X N=n , 
b = I — ; I (1-p) P (4-9a) 

x=LCL+l x' k=l 

The mean number of defects per unit is equal to nA 2, since 

the shift to out-of-control must take place before sampling begins 

for equation (4-9) and (4-9a) to be significant. The last term in 

the equation 

N-n k 

I (1-P) P 
k=l 

represents the cumulative probability of a shift occurring after 
th 

the k item is produced in the current period. 
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UCL-1 exp (-nX 2)(nX 2) 

c = I ; PR(n_ = N) (4-10a) 
x=LCL+l x * Z 

The terms in equation (4-10a) have already been explained 

in the previous discussion. 

The last step to the development of an equation to calculate 

the probability of a Type II error when the underlying distribution 

of defects in a Poisson is to substitute equations (4-8a), ( 4 - 9 a ) , 

and (4-10a) into equation ( 4 - 1 2 ) . 

Equations ( 4 - 8 a ) , (4-9a) and (4-10a) can easily be 

transformed for cases where the underlying distribution of defects 

is not Poisson. The Poisson probability function is simply replaced 

by the distribution of interest in order to accomplish this feat. 

4.3 Computer M o d e l s 

Seven computer models were developed to aid in the analysis 

of the economic impact of distribution misspecification. The 

models can be classified into two categories, single and double 

distribution models. Four of the models are single distribution 

m o d e l s . They are the Poisson model, negative binomial model, 

weighted sum of two poissons model and the combination Poisson 

and negative binomial model. The underlying distribution of the 

occurrence of defects dictates the most appropriate model. For 

example, if the underlying distribution is negative binomial, 

then obviously the best model to choose would be the negative 
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binomial model. How much better the negative binomial model is 

than the Poisson model when the underlying distribution is 

negative binomial is analyzed for several cases in the next 

chapter. 

All the single distribution models feature three option 

features discussed at the end of this section. This makes them 

very versatile. Their applications range from finding the cost 

of a single inspection plan to the obtainment of optimal inspection 

plans and sensitivity analysis. 

Double distribution models are hybrid of two single distri

bution m o d e l s . Three hybrid models were developed, with the 

combination of: 

1) Poisson + Negative Binomial 

2) Poisson + Weighted Sum of Two Poissons 

3) Poisson + Combination Poisson and Negative Binomial 

The application of these models are two fold. First, they 

enable the analyst to compare results between the use of the Poisson 

distribution and the other model under similar conditions. Secondly, 

these models provide data on the effect of incorrectly assuming that 

the Poisson represents the underlying defect distribution. 

The double distribution models feature only the "ALL and 

Printer Plot" output options. They do not include the "Min Cost" 

output option. Because of this their use for optimization purposes 

is extremely limited. These output features are discussed in the 

next section. 
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4.3.1 Output 

The first two lines of output report input parameters. The 

first line consists of the range and incremental value of k, N and 

n that will be analyzed in the current run. Distribution and 

cost parameters are listed on the second line. The remainder of 

output depends upon the output options selected by the analyst. 

Most of the computer models feature three output options, 

the "All", "Min Cost" and "Printer Plot" option. For these models 

the analyst has the choice of utilizing one, two or all three of 

the output options. Some models, however, only have the "All" 

and "Printer Plot" options. 

The "All" option will produce the values of 

C , c N, c, B-p N, n, nX 1, LCL, UCL, k, STD, a, 3 

for every inspection plan analyzed during the run. C^ is the number 

assigned by the program to the output line. The other symbols have 

been defined in previous discussion and are also defined in the 

Glossary of Terms. 

The next output option is called the "Min Cost" feature. 

The initial value of the Min Cost is set by the analyst. An 

initial value of 2.0 was found to be satisfactory for the cases 

analyzed by the author. 

This feature operates as follows. The cost per unit of 

each plan is compared against the Min Cost value. If this cost 

is equal to or less than the Min Cost value it replaces the present 
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value of Min Cost and becomes the standard by which the following 

inspection plans are compared. Each time the Min Cost value is 

replaced the following data on the new "Min Cost" plan is printed 

out. 

MIN COST, C-j., c , c, Blt N, n, nA^ LCL, UCL, k, STD, a, 6 

The "Min Cost" at the beginning of the line indicates 

utilization of the Min Cost option. This option is very useful 

when conducting a grid search in order to find the minimum cost 

inspection plan and was exstensively utilized for that purpose 

throughout the project. 

The Printer Plot is the last ouput option. This option 

requires the use of subroutine USPLX from the IMS Library of 

programs provided through Computer Services at the Georgia 

Institute of Technology. 

The cost per unit for every inspection plan is plotted 

with the usage of this feature. The integer values on the ordinate 

axis corresponds to the number "Cj" assigned to each inspection 

plan by the internal counter of the models. In other words, if 

the Printer Plot and "ALL" features are utilized together the 

number assigned to each inspection plan by use of the "ALL" features 

corresponds to the integer value on the ordinate of the Printer Plot. 

A limit of 100 inspection plans plotted per graph is 

suggested. The Printer Plot can handle more points, however, every 

graph has the same width and it becomes increasingly difficult to 
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determine which point corresponds to the appropriate inspection 

plan beyond 100 points. Even with this limitation, the 

Printer Plot is very useful for the detection of trends and/or 

patterns in data. 
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CHAPTER V 

NUMERICAL ANALYSIS 

The optimal design of c-charts and u-charts will be 

investigated in this chapter. Situations where the Poisson 

distribution is incorrectly chosen to represent the distribution 

of defects is also analyzed. It was first assumed that the mean 

and variance of the defect distribution were approximately equal 

to the mean and variance of the assumed Poisson distribution. The 

occurrence of defects was assumed to fit the negative binomial 

distribution in the first situation and the weighted sum of two 

Poisson distribution and a combination of Poisson and negative 

binomial in the second and third situation, respectively. 

Results from this analysis are presented in the next five 

sections of this chapter. The last section of the chapter 

presents results from an analysis where the mean of the defect 

distribution is equal to that of the assumed Poisson, but its 

variance was significantly greater than that of the Poisson. 

5.1 Parameter Selection 

Five sets of parameters, each composed of values for 

A^, ^o' ^1' ̂ 2' ̂ 3' ^ w e r e u t m z e d t o analyze cases where 

the mean and variance of the defect distribution were approximately 

equal to the mean and variance of the assumed Poisson"'". A one 

1 
The choice to analyze five sets of parameters was based on the cost 
and availability of necessary resources. 
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quarter 2 designed experiment was utilized in order to gain insight 

into how these different parameters influence the cost of quality 

control. A low and high value were initially selected for each 

parameter. The selected values are displayed in Table 5.1. It 

is believed that the values selected are representative of cases 

frequently encounted in practice. 

Table 5.1. Parameter Values 

Parameter X^ X^ A^ A^ A^ A^ p 

Low Value 5.0 10.0 .10 2.0 150.0 1.0 .01 

High Value 7.0 15.0 .50 6.0 200.0 3.0 .03 

The generators utilized in the construction of the effect 
7-2 

and aliases structure for the 2 designed experiment were: 

P = ABCD Q=AEFG 

Q=BCDEFG 

The effect and aliases structure is summarized in Table 5.2. 

The experiment was run under twelve different inspection plans, 

where an inspection plan specifies the sample interval, N, sample 

size n and the half width (or width) of the control chart, k. The 

cost that resulted from the given set of parameters and inspection 

plans are displayed graphically in Figures 5.1 through 5.4. The 

inspection plan that was utilized in the given experimental run 

is listed at the top of the graphs. The values along the ordinate 
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Table 5.2. Effect and Alias Structure 

EFFECT ALIASES SYMBOL = PARAMETER 

1 1 ABCD AEFG BCDEFG A = Xl 2 A BCD EFG ABCDEFG J. 

3 B ACD ABEFG CDEFG B = 
X 9 4 AB CD BEFG ACDEFG 2 

5 C ABD ACEFG BDEFG C = Ao 6 AC BD CEFG ABDEFG 
Ao 

7 D ABC ADEFG BCEFG D = A l 8 AD BC DEFG ABDEFG 
A l 

9 E ABCDE AFG BCDFG E A, 
10 AE BCDE FG ABCDFG I 
11 BE ACDE ABFG CDFG F \ 12 ABE CDE BEF ACDEF J 
13 CE ABDE ACFG BDFG G - P 
14 ACE BDE CFG ABDEG 
15 BCE ADE ABCFG DFG 
16 DE ABCE ADFG BCFG 
17 F ABCDF AEG BCDEG 
18 AF BCDF EG ABCDEG 
19 BF ACDF ABEG CDEG 
20 ABF CDF BEG ACDEG 
21 CF ABDF ACEG BDEG 
22 BEF ACDEF ABG CDG 
23 DF ABCF ADEG BCEG 
24 BDF ACF ABDEG CEG 
25 BEF ACDEF ABG CDG 
26 G ABCDG AEF BCDEF 
27 EF ABCDEF AG BCDG 
28 BG ACDG ABEF CDEF 
29 CG ABDG ACEF BDEF 
30 DG ABCG ADEF BCEF 
31 ACG BDG CEF ABDEF 
32 ADG BCF DEG ABCEF 
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corresponds to the number assigned to each effect and its aliases 

listed in Table 5.2; for instance, point number 40 corresponds 

to effect number 8 (40-32=8). 

The five sets of parameter values chosen for analysis are 

presented in Table 5.3 and are circled in Figures 5.1 through 

5.4. 

Table 5.3. Cost Parameter Sets 

Parameter Value of Parameters 

Set # X1 X 2 A Q A A 2 A 3 p 

1 5.0 10.0 .10 2.0 150.0 1.0 .01 

2 7.0 10.0 .10 2.0 150.0 1.0 .01 

3 5.0 10.0 .10 2.0 150.0 1.0 .03 

4 5.0 10.0 .10 2.0 150.0 3.0 .01 

5 7.0 10.0 .10 2.0 150.0 3.0 .01 

The parameters are all at their low levels in the first set. 

One parameter is at its upper level in the second, third, and fourth 

parameter sets. 

The mean number of defects for the "in-control state", X-^, 

is at its upper level in the second set. Inspection cost is not 

always increased significantly by setting X ^ at its upper level. 

The majority of cases in Figure 5.1 and 5.3 indicate that an increase 

in X ^ by itself results in significant increases in cost. The 

opposite is true, however, in the majority of cases in Figures 5.2 
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Figure 5.1. Cost Versus Sample Plan Plot #1 
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Figure 5.2. Cost Versus Sample Plan Plot #2 
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Figure 5 .3 . Cost Versus Sample Plan Plot #3 
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Figure 5.4. Cost Versus Sample Plan Plot #4 
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and 5.4. The impact of increasing X^ to its upper level appears 

to depend mainly on the sample size of the inspection plan. Sample 

size is equal to 5 for the cases in Figures 5.1 and 5.3 and equal 

to 15 for the cases in Figures 5.2 and 5.4. 

The probability of a shift from the in-control state to 

the out-of-control state, p, and the cost of operating out-of-

control, A^, are the parameters at their upper level in the third 

and fourth parameter sets, respectively. The plots conclusively 

illustrate that a change in parameter A^ or p from their low value 

to their high value has a significant impact on the cost of 

inspection in the cases analyzed. The cost of operating out of 

control, A^, is set at $3,00 per unit in the parameter sets 49 

through 75, and at $1.00 per unit in all the other parameter 

sets. The probability of a shift, p, is set at .03 in the last 

21 parameter sets and is set at .01 in the first 75 sets. 

The set of parameters that generally resulted in the 

greatest inspection cost had X^ and A^ at their high levels. This 

fact is illustrated especially well in Figures 5.1 and 5.3. In 

these figures the three highest points correspond to the fifth 

parameter set where X^ and A^ are at their high levels. 

In summary, the parameter selection procedure was not 

intended to theoretically justify the selected sets of parameter 

values. The purpose was to enable the author to select five sets 

of parameter values in a logical manner: It did accomplish this 

objective. 
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Table 5.4. Distribution Parameter Set #1 

Distribution 

Poisson 

Parameters and Values 

A = 5.0000 

A = 7.0000 

A = 10.0000 

M ean Var. 

5.0000 5.0000 

7.0000 7.0000 

10.0000 10.0000 

Negative 

Binomial 

m = 95.000 

m = 133.000 

m = 190.000 

p = .950 

p = .950 

p = .950 

5.0000 5.2632 

7.0000 7.3684 

10.0000 10.5263 

Weight Sum 
of Two 
Poissons 

X = 5.040 

A = 7.056 

A = 10.080 

A 2 = 1.000; <j)=.990 4.9996 5.1612 

A 2 = 1.400; $=.990 6.9994 7.3161 

A 2 = 2.000; <j> = .990 9.9992 10.6455 

Combination A= 5.000 
Poisson 
Negative 
Binomial 

A=- 7.000 

A= 10.000 

m = 95.000 

m = 133.000 

m = 190.000 

p=.950 

p=.950 

p=.950 

<}>=.50 5.0000 5.1316 

(})=.50 7.0000 7.1842 

<j> = .50 10.0000 10.2632 

5.2 Distribution Parameter Selection 

Three sets of parameters had to be selected for each 

distribution to generate the three mean values of defects required 

in the cost parameter sets. The necessary mean values were 5.00, 

7.00 and 10.00. The parameters were selected such that the mean 

and variance of the distributions would be approximately equal. 

The properties of all the distributions, studied, except the Poisson, 

prevent the means and variances of these distributions from being 

exactly equal. A more detailed description of the distribution 
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models is provided in Appendix B. The parameters and their 

assigned values for each distribution, along with the resulting 

mean and variance are given in Table 5.4, 

5.3 Optimal Inspection Plans 

The optimal inspection plans were found through the 

application of a grid search technique. Grid search techniques 

are often employed to select the control chart parameters that 

minimize the objective function. Construction of a more 

efficient optimalization algorithm may be justified if regular 

application of the algorithm is necessary. 

The optimal inspection plans are presented in Tables 5.5 

through 5.9. The standard deviation of the assumed distribution 

and the probability of Type I and II errors associated with the 

inspection plans are also provided in the tables. A range of 

control chart widths exist in which the costs remain optimal. 

This results because the test statistic is a discrete random 

variable. For a more detailed explanation of this phenomena see 

(13). The range of these values is provided in column 8. The 

control chart limits, column 6 and 7, were made into integers, 

since the data is in discrete form. If the number of defects is 

equal or outside the control limits the process is considered out 

of statistical control. 

The optimal inspection plans are categorized according 

to the set of cost parameters for which they produce the optimal 

cost. For example, inspection plan set #1, Table 5.5 is optimal 

if cost parameter set #1, Table 5.3 is present. 



T a b l e 5 . 5 . Optimal I n s p e c t i o n Plan Set #1 

Model 

I n s p e c t i o n 
Cost Per 

Uni t 

Sampling Parameters 
(N) (N) 

Sample Sample 
I n t e r v a l S i z e 

C o n t r o l Chart Parameters 1/2 Width 
Lower Upper o f C o n t r o l 

Center C o n t r o l C o n t r o l Char ts In 
L ine L imi t Range L imi t Range S t d . Dev. 

Standard P r o b a b i l i t y 
D e v i a t i o n o f a 

o f Tes t Type I Type I I 
S t a t i s t i c Error Er ro r 

P o i s s o n .2629 27 3 5 . 0 0 0 0 14 56 3 . 3 9 5 .9161 .0008 .0355 

3 . 5 4 

N e g a t i v e 
Binomia l .2652 27 3 5 . 0 0 0 0 14 56 

3 . 3 0 

3 .45 
6 .0698 .0011 .0363 

Weight Sum 
o f Two .3118 
P o i s s o n s 

35 34 .9972 15 55 
2 . 9 1 

3 . 0 5 
6 .5509 .0115 .0305 

Combinat ion 
P o i s s o n and 
N e g a t i v e .2641 
Binomia l 

27 3 5 . 0 0 0 0 14 56 
3 . 3 4 

3 . 5 0 
5 .9934 .0009 .0359 

The c o n t r o l c h a r t l i m i t s were i n t e g e r i z e d s i n c e the data i s i n d i s c r e t e fo rm. I f t he number o f d e f e c t B i n the 
sample i a equa l t o o r o u t s i d e the c o n t r o l l i m i t s the p r o c e s s i s c o n s i d e r e d o u t - o f - c o n t r o l . 



Tab le 5 . 6 Optimal I n s p e c t i o n Plan Set #2 

Sampling Parameters C o n t r o l Chart Parameters 

Model 

I n s p e c t i o n 
Cos t Per 

I h i t 

(N) 
Sample 

I n t e r v a l 

(N) 
Sample 

S i z e 

Lower 
Center C o n t r o l 

L ine L imi t Range 

typper 
C o n t r o l 

L imi t Range 

1/2 Width 
o f C o n t r o l 

Char ts i n 
S t d . Dev. 

Standard 
D e v i a t i o n 

o f T e s t 
S t a t i s t i c 

P r o b a b i l i t y o f 
A 

Type I Type I I 
Er ror Er ror 

P o i s s o n .3540 34 16 1 1 2 . 0 0 0 0 80 144 2 .93 

3 . 0 2 

1 0 . 5 8 3 0 .0034 .0909 

N e g a t i v e 
Binomia l .3591 34 16 112 .0000 80 144 2 . 8 6 10 .8579 .0043 .0922 

2 . 9 4 

Weight 
Sum o f Two 
P o i s s o n s 

.3886 40 15 111 .9910 74 135 
2 . 2 6 

2 . 2 6 
13 .2759 .0145 .0815 

Combinat ion 
P o i s s o n and 
Nega t ive .3565 
Binomia l 

34 16 1 1 2 . 0 0 0 0 80 144 
2 . 9 0 

2 . 9 8 
10 .7214 .0038 .0916 



Table 5 . 7 . Optimal Inspection Plan Set #3 

Model 

Inspection 
Cost Per 

Unit 

Sampling Parameters 
(N) (N) 

Sample Sample 
Interval Size 

Control Chart Parameters 1/2 Width Standard 
Lower Upper of Control Deviation 

Center Control Control Charts in of Test 
Line Limit Range Limit Range Std. Dev. S t a t i s t i c 

Probabil i ty of 
A 

Type I Type I I 
Error Error 

Poisson .4499 17 30.0000 11 49 3 .29 5.4772 .0011 .0777 

3 .46 

Negative 
Binomial .4542 18 35.0000 14 56 3 .30 6.0698 .0011 .0760 

3 . 4 5 

Weight 
Sum of Two 
Poissons 

.5207 24 34.9972 15 55 2 .91 

3 . 0 5 

6.5509 .0115 .0595 

Combination 
Poisson and .4522 
Negative 
Binomial 

18 30.0000 11 49 
3 . 2 5 

3 .42 
5.5488 .0012 .0786 



Tab le 5 . 8 . Optimal I n s p e c t i o n Plan Set #4 

Model 

I n s p e c t i o n 
Cos t Per 

Unit 

Sampling P r o c e d u r e 
(N) (N) 

Sample Sample 
I n t e r v a l S i z e 

C o n t r o l Chart Parameters 1/2 Width 
Lower Upper o f C o n t r o l 

Center C o n t r o l C o n t r o l Charts i n 
L ine L imi t Range L imi t Range S t d . Dev. 

Standard P r o b a b i l i t y o f 
D e v i a t i o n A 
o f Tes t Type I Type I I 
S t a t i s t i c Er ror Er ror 

P o i s s o n .5083 15 3 0 . 0 0 0 0 12 48 3 . 1 1 5 .4772 .0019 .0317 

3 .28 

N e g a t i v e .5148 
Binomia l 

14 3 0 . 0 0 0 0 11 49 3 . 2 1 

3 .38 

5 .6195 .0014 .0356 

Weight 
Sum o f Two .5973 
P o i s s o n s 

18 29 .9976 12 48 
2 . 8 5 

3 . 0 0 
5 .9814 .0120 .0310 

Combinat ion 
P o i s s o n and 
Nega t ive .5119 
Binomia l 

15 3 0 . 0 0 0 0 12 48 3 .08 

3 .24 

5 .5488 / 0022 . 0 3 2 0 



T a b l e 5 . 9 . Optimal I n s p e c t i o n Plan Set #5 

Model 

I n s p e c t i o n 
Cos t Per 

Unit 

Sampling Parameters 
(N) (N) 

Sample Sample 
I n t e r v a l S i z e 

C o n t r o l Chart Parameters 1/2 Width 
Lower Upper o f C o n t r o l 

Center C o n t r o l C o n t r o l Char ts In 
L ine L imi t Range L imi t Range S td . Dev. 

Standard P r o b a b i l i t y o f 
D e v i a t i o n a 
o f Tes t Type I Type I I 
S t a t i s t i c Er ro r Er ror 

P o i s s o n .7338 17 13 9 1 . 0 0 0 0 63 119 2 . 8 4 9 .5394 .0046 .0885 

2 .93 

Nega t ive 
Binomia l 

. 7461 17 13 9 1 . 0 0 0 0 63 119 2 . 7 6 

2 . 8 6 

9 .7872 .0057 .0892 

Weight Sum 
o f Two 
P o i s s o n s 

.7979 22 14 97 .9922 70 126 
2 .14 

2 . 2 1 
12 .6517 .0167 .0777 

Combinat ion 
P o i s s o n and 
Nega t ive . 7400 
Binomia l 

17 13 9 1 . 0 0 0 0 63 119 
2 .84 

2 . 8 9 
9 .6641 .0052 .0888 
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The influence of the cost parameters on the cost of 

inspection for the optimal plans is similar to their impact on 

the non-optimal plans exhibited in Figures 5.1 through 5.4. The 

lowest inspection cost naturally occurs when all the cost 

parameters are at their low levels as was the case for Inspection 

Plan Set #1. The highest cost occurs for the inspection plans 

of set #5; where X, and are at their high levels. The impact 

of increasing X-p and A^ both to their upper level is well 

illustrated by Figures 5.1 and 5.3 and also by the fact that the 

inspection oosts exhibited in Table 5.9 are more than 33% 

higher than their counterparts in Table 5.8. 

Inspection cost for Inspection Plan Set #4, Table 5.8 

exhibit the second highest cost of the five sets analyzed. The 

cost of operating out-of-control, A^, was the only cost parameter 

at its upper level when optimal inspection plans were determined 

for Inspection Plan Set #4. The increase of parameter A^ to its 

upper level also significantly increased inspection cost for the 

plans illustrated in Figures 5.1 through 5.4. Inspection Plan 

Set y/3 and #2 ranked third and fourth, respectively, for highest 

inspection cost. 

The following list of observations pertain to only the 

inspection plans presented in Tables 5.5 through 5.9. 

1) The rank of the models in relationship to cost is 

independent of the cost parameters utilized. The 

inspection cost is always lowest for the Poisson model 
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for any given set of cost parameters. The combination 

Poisson and negative binomial model results in the 

second lowest cost followed by the negative binomial and 

weighted sum of two Poissons models respectively. 

The rank of the models in relationship to lowest 

variation parallels the cost rankings. The Poisson model 

ranks first for it exhibits the lowest variance, the 

combination Poisson and negative binomial and the weight 

sum of two Poissons rank second, third, and fourth 

respectively. 

Setting X^, at its upper level increases the sample 

interval and sample size by approximately the same number 

of units for all the models. 

Setting p at its upper level reduces the sample interval 

and sample size. The sample size is reduced from 7 to 6 

units for all models. The reduction in the sample interval 

ranges from 9 units for the Poisson model to 17 units for 

the weighted sum of two Poissons model. 

The sample interval and sample size are both reduced when 

is increased to its upper level. The sample size is 

reduced by one unit for all models. The magnitude of 

reduction in the sample interval varied from model to 

model. 

Setting both X^, and and A^ at their upper levels had the 

combined effect of reducing the sampling interval, while 
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increasing the sample size. 

7) The optimal sampling interval, for each set of cost 

parameters varied by one or less between the Poisson, 

negative binomial and combination Poisson and negative 

binomial models. The sampling interval for the weighted 

sum of two Poissons model was always greater than for the 

other models. 

8) The optimal sample sizes for each set of cost paramaters 

varied by one or less between all the models. 

5.4 Sensitivity Analysis 

The cost of inspection is dependent on the value of the four 

cost parameters and the chosen inspection plan. Inspection plans 

consist of a sample size, n, sample interval, N, and the half 

width (or full width) of the control chart, k. The sensitivity of 

inspection cost was first analyzed for each model under the five 

sets of cost parameters. Secondly, the difference in sensitivity 

between the models was analyzed for each set of cost parameters. 

Results from the investigation on the sensitivity of 

inspection cost given the Poisson model are displayed in Tables 

5.10 through 5.15. The sensitivity of the expected inspection 

cost due to deviation from the optimal inspection plan varies for 

each set of cost parameters. 

The first line of each Table gives the optimal inspection 

plan and corresponding cost for the assumed set of cost parameters. 

The remainder of the lines in Table 5.10 through 5.14 give the cost 
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Table 5.10. Sensitivity Analysis: Poisson Model and Cost Parameter 
Set #1 

K N n 

3.44 27 7 .2629 - -

3.44 27 4 .2955 .0326 12.40 

3.44 27 5 .2744 .0115 4.37 

3.44 27 6 .2637 .0008 .30 

3.44 27 8 .2649 .0020 ..76 

3.44 27 9 .2684 .0055 2.09 

3.44 27 10 .2730 .0101 3.84 

3.44 24 7 .2638 .0009 .34 

3.44 25 7 .2632 .0003 .11 

3.44 26 7 .2629 .0000 0 

3.44 28 7 .2632 .0003 .11 

3.44 29 7 .2637 .0008 .30 

3.44 30 7 .2644 .0015 .57 

3.32 27 7 .2631 .0002 .08 

3.36 27 7 .2631 .0002 .08 

3.40 27 7 .2629 .0000 0 

3.48 27 7 .2629 .0000 0 

3.52 27 7 .2629 .0000 0 

3.56 27 7 .2646 .0017 .65 

Percent 
Inspection Plan Inspection Cost Difference Difference 



61 

Table 5.11. Sensitivity Analysis: Poisson Model and Cost Parameter 
Set #2 

K N n 

3.00 34 16 .3540 - -

3.00 34 13 .3598 .0058 1.64 

3.00 34 14 .3560 .0020 .56 

3.00 34 15 .3543 .0003 .08 

3.00 34 17 .3547 .0007 .20 

3.00 34 18 .3563 .0023 .65 

3.00 34 19 .3585 .0045 1.27 

3.00 31 16 .3547 .0007 .20 

3.00 32 16 .3542 .0002 .06 

3.00 33 16 .3540 .0000 0.00 

3.00 35 16 .3541 .0001 .03 

3.00 36 16 .3544 .0004 .11 

3.00 37 16 .3549 .0009 .25 

2.88 34 16 .3546 .0006 .17 

2.92 34 16 .3546 .0006 .17 

2.96 34 16 .3540 .0000 0.00 

3.04 34 16 .3549 .0009 .25 

3.08 34 16 .3549 .0009 .25 

3.12 34 16 .3573 .0033 .93 

Percent 
Inspection Plan Inspection Cost Difference Difference 
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Table 5.12. Sensitivity Analysis: Poisson. Model and Cost Parameter 
Set #3 

K 

3.40 

N 

17 
n 

.4499 

3.40 

3.40 

3.40 

3.40 

3.40 

3.40 

17 

17 

17 

17 

17 

17 

,5513 

,4878 

,4544 

,4514 

4563 

4640 

1014 

0380 

0045 

0015 

0064 

0141 

22.54 

8.45 

1.00 

.33 

1.42 

3.13 

3.40 

3.40 

3.40 

3.40 

3.40 

3.40 

14 

15 

16 

18 

19 

20 

4563 

4528 

4508 

4500 

4509 

4524 

0064 

0029 

0009 

0001 

0010 

0025 

1.42 

.64 

.20 

.02 

.22 

.56 

3.28 

3.32 

3.36 

3.44 

3.48 

3.52 

17 

17 

17 

17 

17 

17 

4505 

4499 

4499 

4499 

4536 

4536 

0006 

0000 

0000 

0000 

0037 

0037 

.13 

0.00 

0.00 

0.00 

.82 

.82 

Percent 
Inspection Plan Inspection Cost Difference Difference 
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Table 5.13. Sensitivity Analysis: Poisson Model and Cost Parameter 
Set #4 

K N n 

3.20 15 6 .5083 - -

3.20 15 3 .6126 .1043 20.52 

3.20 15 4 .5412 .0329 6.48 

3.20 15 5 .5158 .0075 1.48 

3.20 15 7 .5145 .0062 1.22 

3.20 15 8 .5204 .0121 2.38 

3.20 15 9 .5318 .0235 4.62 

3.20 12 6 .5154 .0071 1.40 

3.20 13 6 .5107 .0024 4.47 

3.20 14 6 .5085 .0002 .04 

3.20 16 6 .5097 .0014 .28 

3.20 17 6 .5124 .0041 .81 

3.20 18 6 .5163 .0080 1.58 

3.08 15 6 .5142 .0059 1.16 

3.12 15 6 .5083 .0000 0.00 

3.16 15 6 .5083 .0000 0.00 

3.24 15 6 .5083 .0000 0.00 

3.28 15 6 .5083 .0000 0.00 

3.32 15 6 .5099 .0016 .31 

Percent 
Inspection Plan Inspection Cost Difference Difference 
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Table 5.14. Sensitivity Analysis: Poisson Model and Cost Parameter 
Set #5 

K N n 

2.88 17 13 .7338 - -

2.88 17 10 .7621 .0283 3.86 

2.88 17 11 .7449 .0111 1.51 

2.88 17 12 .7364 .0026 .35 

2.88 17 14 .7353 .0015 .20 

2.88 17 15 .7395 .0057 .78 

2.88 17 16 .7451 .0113 1.54 

2.88 14 13 .7413 .0075 1.02 

2.88 15 13 .7367 .0029 .40 

2.88 16 13 .7343 .0005 .07 

2.88 18 13 .7348 .0010 .14 

2.88 19 13 .7371 .0033 .45 

2.88 20 13 .7403 .0065 .89 

2.76 17 13 .7345 .0007 .10 

2.80 17 13 .7345 .0007 .10 

2.84 17 13 .7338 .0000 0.00 

2.92 17 13 .7338 .0000 0.00 

2.96 17 13 .7383 .0045 .61 

3.00 17 13 .7383 .0045 .61 

Percent 
Inspection Plan Inspection Cost Difference Difference 
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Table 5.15. Sensitivity Analysis: Poisson Model and Cost Parameter 
Set #3 

3.00 34 16 .3540 

3.00 31 13 .3579 .0039 1.10 

3.00 31 19 .3610 .0070 1.98 

3.00 37 13 .3631 .0091 2.57 

3.00 37 19 .3578 .0038 1.07 

2.88 31 16 .3560 .0020 .56 

3.12 31 16 .3570 .0030 .85 

2.88 37 16 .3550 .0010 .28 

3.12 37 16 .3591 .0051 1.44 

2.88 34 13 .3580 .0040 1.12 

2.88 34 49 .3598 .0058 1.63 

3.12 34 13 .3638 .0098 2.77 

3.12 34 19 .3584 .0044 1.24 

2.88 31 13 .3570 .003.0 .85 

2.88 31 19 .3628 .0088 2.49 

2.88 37 13 .3605 .0065 1.84 

2.88 37 19 .3588 .0038 1.07 

3.12 31 13 .3612 .0072 2.03 

3.12 31 19 .3605 .0065 1.84 

3.12 37 13 .3678 .0138 3.90 

3.12 37 19 .3581 .0041 1.16 

Percent 

Inspection Plan Inspection Cost Difference Difference 

K N n 
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of inspection when one of the inspection parameters are non-optimal 

and the other two parameters are set at their optimal values. Table 

5.15 gives results for when two and three parameters are non-optimal 

at the same time. 

Tables 5.10 through 5.15 indicate that the cost surfaces are 

most sensitive to changes in sample size. Thus, the shape of the 

cost surfaces are greatly dependent on the sample size. The cost 

surfaces become flatter in the vicinity of the optimum as sample 

size increases. Figure 5.5 displays the impact that deviating 

from the optimal sample size has on inspection cost. Departure of 

K from its optimal value has a step function effect on inspection 

cost. That is, there are ranges of K that have the same impact 

on inspection cost. Table 5.15 illustrates that the worst set of 

conditions is to underestimate sample size, n, and overestimate K 

and N. 

The same analysis just described for the Poisson model 

was also conducted for the negative binomial, weighted sum of 

two Poissons and combination Poisson, negative binomial models. 

Results of these analysis' are presented in Appendix C. The 

conclusions drawn from these analysis were similar to those just 

described for the Poisson model. 

Figures 5.6 through 5.10 illustrate the impact that the 

choice of the defect distribution had on the expected cost. No 

consistent pattern concerning the impact of the distribution model 

on the sensitivity of expected cost could be determined through 
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30 n 

K and N are fixed at their optimal values. The 
value of n deviates from its optimal values by 
the number of units indicated on the ordinate. 
The numbers at the end of the curves indicate the 
cost parameter set. 

No. of units from optimal 

Figure 5.5 Sensitivity Curves for Poisson Model 
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K and N are fixed at their optimal values. The 
value of n deviates from its optimal value by the 
value indicated on the ordinate axis. The letter(s) 
at the end of the curves indicate the model. 

20 1 

Figure 5.6* Model Sensitivity Using Cost Parameter Set #1 
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30 

25 1 

K and N are fixed at their optimal values, 
The values of n deviate from its optimal 
value by the number of units indicated on 
the ordinate axis. The letter(s) at the 
end of the curves indicate the model. 
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Figure 5.7. Model Sensitivity Using Cost Parameter Set #2 
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K and N are fixed at their optimal values. 
The value of n deviates from optimal value 
by the number of units indicated on the 
ordinate axis. The letter(s) at the end of 
the curves indicate the model. 

Optimal 
n 

Figure 5. 8. Model Sensitivity Using Cost Parameter Set #3 
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30 1 

25 

K and N are fixed at their optimal values. The 
value of n deviates from its optimal value by 
the number of units indicated on the ordinate 
axis. The letter(s) at the end of curves indi
cate the model. 

20 

15 

10 

5 1 

Figure 5.9. Model Sensitivity Using Cost Parameter Set #4 
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K and N are fixed at their optimal values. The 
value of n deviates from its optimal value by 
the number of units indicated on the ordinate 
axis. The letter(s) at the end of the curves* 

Optimal 
n 

Figure 5.10. Model Sensitivity Using Cost Parameter Set #5 
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analysis of these five figures. However, analysis of these figures 

reveals the cost is least sensitive when cost parameter sets #2 and 

#5 are assumed and that it is generally better to use a larger than 

optimal sample size than to use a smaller than optimal sample size, 

no matter which model is utilized. The optimal inspection plans 

that result when cost parameter sets #2 and #5 are assumed have 

the highest sample size. This indicated that the sensitivity of 

the expected inspection cost is strongly influenced by sample 

size, at least in the cases analyzed in this project. 

5.5 The Effect of Misspecifying the Distribution of the Occurrence 
of Data 

The effects of incorrectly assuming that the defects were 

generated by a Poisson process were analyzed in this section of 

the thesis. Three cases were analyzed: 

1) The Poisson was assumed when in actuality the defects were 

generated by a negative binomial process; 

2) The Poisson was assumed while in fact the defects were 

generated by the weighted sum of two Poisson processes. 

3) The Poisson was assumed when in actuality the defects 

were generated by two processes, one being Poisson, the 

other being negative binomial (combination Poisson and 

negative binomial). 

The double-distribution models were utilized to analyze these cases. 

The parameters utilized in the previous analysis were also used in 
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th i s i n v e s t i g a t i o n . 

The r e s u l t s of t h i s inves t igat ion are presented in Tables 

5 .16 through 5 . 2 0 and are summarized below. The cost of the 

optimal inspect ion plan when the correct defect d i s t r i b u t i o n i s 

assumed i s presented in the second column of the t a b l e s . The 

cost when the Poisson i s incorrec t ly assumed to represent the 

occurrence of de fec t s i s presented in the third column. The increase 

in cost and the percent increase in cost that r e s u l t s from incorrec t ly 

assuming the Poisson d i s t r ibut ion are presented in the for th and 

f i f t h columns, r e s p e c t i v e l y . 

1) No change in cost occurred when the underlying d i s t r i 

bution of defects was the combination of Poisson and 

negative binomial model and i t was incorrec t ly assumed 

to be Poisson. 

2) Only s l i g h t changes occurred when the underlying defect 

d i s t r i b u t i o n was the negative binomial model and the 

Poisson model was incorrec t ly assumed. The changes 

ranged from 0.000% to .155%. 

3) P o t e n t i a l l y s i g n i f i c a n t increases in, cost occurred when 

the Poisson model was incorrec t ly assumed to model the 

weighted sum of two poisson d i s t r ibut ion of d e f e c t s . 

The increases ranged from 1.260% to 2.977%. 



Table 5.16. Model Misspecification Analysis Using Cost Set #1 

Actual 
Defect 

Distribution 

Cost when the 
Correct Defect 
Distribution 
was Assumed 

Cost when the 
Poisson was 
Incorrectly 
Assumed 

Increase 
in 
Cost 

Percent 
Increase 

in 
Cost 

Poisson .2629 - - -

Negative 
Binomial 

.2652 .2653 .0001 .0377 

Weight Sum 
of Two 
Poissons 

.3118 .3119 .0081 2.5978 

Combination 
Poisson and 
Negative 
Binomial 

.2641 .2641 .0000 0.0000 



Table 5.17. Model Misspecification Analysis Using Cost Set #2 

Actual 
Defect 

Distribution 

Cost when the 
Correct Defect 
Distribution 
was Assumed 

Cost when the 
Poisson was 
Incorrectly 
Assumed 

Increase 
in 
Cost 

Percent 
Increase 

in 
Cost 

Poisson ,3540 - - -

Negative 
Binomial .3591 .3591 0.0000 0.0000 

Weight Sum 
of Two 
Poissons 

.3886 .3935 .0049 1.2609 

Combination 
Poisson and 
Negative 
Binomial 

.3565 .3565 0.0000 0.0000 



Table 5.18. Model Misspecification Analysis Using Cost Set #3 

Actual 
Defect 

Distribution 

Cost when the 
Correct Defect 
Distribution 
was Assumed 

Cost when the 
Poisson was 
Incorrectly 
Assumed 

Increase 
in 
Cost 

Percent 
Increase 

in 
Cost 

Poisson .4499 - - -

Negative 
Binomial .4542 .4545 .0003 .06605 

Weight Sum 
of Two 
Poissons 

.5201 .5362 .0155 2.9768 

Combination 
Poisson and 
Negative 
Binomial 

.4522 .4522 0.0000 0.0000 



Table 5.19. Model Misspecification Analysis Using Cost Set #4 

Actual 
Defect 

Distribution 

Cost when the 
Correct Defect 
Distribution 
was Assumed 

Cost when the 
Poisson was 
Incorrectly 
Assumed 

Increase 
in 
Cost 

Percent 
Increase 

in 
Cost 

Poisson .5083 - - -

Negative 
Binomial .5148 .5156 .0008 .1554 

Weight Sum 
of Two 
Poissons 

.5973 .6063 .0090 1.5068 

Combination 
Poisson and 
Negative 
Binomial 

.5119 .5119 0.0000 0.0000 



Table 5.20. Model Misspecif ication Analysis Using Cost Set #5 

Actual 
Defect 

Distribution 

Cost when the 
Correct Defect 
Distribution 
was Assumed 

Cost when the 
Poisson was 
Incorrectly 
Assumed 

Increase 
in 
Cost 

Percent 
Increase 

in 
Cost 

Poisson .7338 - - -

Negative 
Binomial .7461 .7461 0.0000 0.0000 

Weight Sum 
of Two 
Poissons 

.7979 .8083 .0104 1.3034 

Combination 
Poisson and 
Negative 
Binomial 

.7400 .7400 0.0000 .0000 
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4) The percent increase in cost appears to be strongly 

influenced by sample size. 

5) The rank of the models in relation to percent increase 

in cost is independent of the cost parameters utilized. 

The percentage of cost increase is always lowest for the 

combination Poisson, negative binomial model. The 

negative binomial model sometimes ties the combination 

Poisson, negative binomial model for the lowest 

percentage increase. The highest percentage increase 

in cost always occurs when the weighted sum of two 

Poissons is the underlying defect model. 

6) The rank of the models in relationship to lowest 

variance parallels the percentage increase cost rankings. 

This fact indicates that at least for the cases analyzed 

in this project, that the closer the variance is to 

equalling the mean, the less the impact of incorrectly 

assuming a Poisson process. 

5.6 Mean and Variance - Not Equal 

The analysis in the previous section illustrates that the 

closer the variance is to equalling the mean, the less is the 

impact on cost because of incorrectly assuming a Poisson process. 

In this section we analyzed cases where the mean of the defect 

distribution is equal to the mean of the assumed Poisson, and the 

variance of the defect distribution is significantly greater than 

the variance of the assumed Poisson. Tables 5.21 display the 



81 

parameter values utilized in this analysis. The parameter values 

assigned to X^, X^, A^, A^, A^, A^, and p, (Table 5.21) corresponds 

to parameter set #2 utilized in the previous section of this 

chapter. 

Table 5.21. Parameter Value Set #2 

Parameter X-̂  X 2 A^ A^ A^ A^ p 

Value 7.00 10.00 .10 2.00 150.00 1.00 .01 

The results of this investigation are provided in Tables 

5.22 through 5.28. The values of the distribution parameters 

utilized to obtain the results in each table are listed near 

the bottom of the page. The format of these tables is the same 

as the tables used in section 5.3. The reader will notice that 

three cost figures are shown in tables 5.23 and 5.27 for the case 

where the Poisson distribution was incorrectly assumed. For 

these particular situations small changes in the width of the 

control chart changes the cumulative probability of the negative 

binomial probability function which in turn alters the probability 

of a Type I and Type II errors (see column 11) which results in 

a different cost. Two major conclusions were drawn from this 

s tudy. 

1) The greater the difference between the variance and mean 

of the underlying distribution of the occurrence of 

defects, the greater is the percent increase in cost 

that results by incorrectly assuming that the under-



Table 5.22. Poisson 

Model 

Inspection Percent 
Cost Per of 

Unit Increase 

Sampling Parameters 
(N) (N) 

Sample Sample 
Interval Size 

Control Chart Parameters 
Lower Upper 

Center Control Control 
Line Limit Range Limit Range 

1/2 Width Std. Probability 
of Control Dev.of of A 
Charts in Test Type I Type II 

Std. Dev. Stat. Error Error 

Optimal 
Poisson 

.3540 34 16 112.0000 80 144 2.93 
3.02 

10.5830 .0034 .0909 

\klues of the distribution parameters for the: 

"in-control state" - A » 7.0; p = 7.0; o 2 = 7.0; 

"out-of-control state" - X = 10.0; u = 10.0; a2 = 10.0 

file:///klues


Table 5.23. Negative Binomial #1 

Sampling Parameters Control Chart Parameters 1/2 Width Standard Probability 
Inspection Percent (N) (N) Lower Upper of Control Deviation of A 
Cost Per of Sample Sample Center Control Control Charts in of Teat Type I Type II 

Model Unit Increase Interval Size Line Limit Range Limit Range Std. Dev Statistic Error Error 

Assumed 2.9300 2.93 .0147 .1008 
Poisson .4122 6.073 12.5219 
Actually 2.94-2.77 34 16 111.992 80 144 .0132 .1008 
Negative .4056 4.375 3.02 
Binomial 2.98-3.02 .0132 .1018 

.4065 4.606 

Optimum 2.90 
Negative .3886 35 19 133.000 93 173 13.6454 .0037 .1197 
Binomial 

2.92 

Values of the distribution parameters for the: 

"in-control state" k - ,7.50; p = .7143; y - 6.9995; o 2 - 9.7998 

"out-of-control state" - k - 25.00; p - .7143; y - 9.9993; o 2 - 13.9997 

1 
The increase in cost due to distribution misspecification depends on the width of the control chart. 

oo 
UJ 



Table 5.24. Negative Binomial #2 

Model 

Inspection Sampling Parameters 
Cost % (N) (N) 
Ber of Sample Sample 
Unit Inc. Interval Size 

Control Chart Parameters 1/2 Width Standard 
Lower Upper of Control Deviation 

Center Control Control Charts in of Test 
Line Limit Range Limit Range Std. Dev. Statistic 

Probability 
of A 

Type I Type II 
Error Error 

Assumed 
Poisson 
Negative 
Binomial 

.5235 20.7 34 16 112.0000 80 14 2.93 

3.02 

14.9666 .0377 .1120 

Optimum 
Negative .4336 41 24 168.0000 118 218 2.68 18.3303 .0076 .1400 
Binomial 

2.72 

Values of the distribution parameters for the: 

"in-control state" - k = 7.0; p - .50; u - 7.0; a 2 •= 14.0 

"out-of-control state" - k - 10.0; p = .50; u = 10.0; o 2 - 25.67 



Table 5.25. Weight Sum of Two Poissons ill 

Sampling Parameters Control Chart Parameters 1/2 Width Standard Probability 
Inspection Percent (N) (N) Lower Upper of Control Deviation of A 
Cost Per of Sample Sample Center Control Control Charts in of Test Type I Type II 

Model Unit Increase Interval Size Line Limit Range Limit Range Std. Dev. Statistic Error Error 

Assumed 
Poisson; .8104 39.412 34 16 112.0000 80 144 2.93 26.2298 .0416 .0436 
Actually 
Weight Sum 3.02 
of Two 
Poissons 

Optimum 
Weight Sum 
of Two .5813 87 17 119.0000 80 158 1.38 27.7354 .1035 .0398 
Poissons 

1.44 

Values of the distribution parameters for the: 

"in-control state" - X̂^ - 7.50; X 2 » 2.50; a = .90; y = 7.00; a 2 = 9.25 

"out-of-control state" - A. • 11.00; A 2 •= 1.00; a - .90; y = 10.00; a 2 - 19.00 

oo 
Ui 



Table 5.26. Weight Sum of Two Poissons //2 

Sampling Parameters Control Chart Parameters 1/2 Width Standard Probability 
Inspection Percent (N) (N) Lower Upper of Control Deviation of A 
Cost Per of Sample Sample Center Control Control Charts in of Test Type I Type II 

Model Unit Increase Interval Size Line Limit Range Limit Range Std. Dev. Statistic Error Error 

Assumed 
Poisson; 1.3439 80.535 34 16 111.9968 80 144 2.93 37.3122 .2288 .3027 
Weight 
Sum of 3.02 
Two 
Poissons 

Optimum 2.40 
Weight .7444 18 7 48.9986 7 91 17.1475 .0104 .4555 
Sum of 2.44 
Two 
Poissons 

Values of the distribution parameter for the: 

"in-control state" - - 8.00; X 2 - 2.00; a - .8333; u - 7.0; a 2 - 12.00 

"out-of-control state" - A 1 - 11.00; * 2 - 1.00; a - .8333; u - 10.0; a 2 « 25.67 

Co 



Table 5.27. Combination Poisson and Negative Binomial #1 

Sampling Parameters Control Chart Parameters 1/2 Width Standard Probability 
Inspection Percent (N) (N) Lower Upper of Control Deviation of A 
Cost Per of Sample Sample Center Control Control Charts in of Test Type I Type II 

Model Unit Increase Interval Size Line Limit Range Limit Range Std. Dev. Statistic Error Error 

Poisson; 2.9300 .0090 .0957 
Combination .3830 2.189 2.93 11.5930 
Poisson and 2.94-2.97 34 16 111.9968 80 144 
Negative .3797 1.606 3.02 .0083 .0957 
Binomial 3.0200 

.3802 1.739 .0083 .0962 

Combination 2.89 
Poisson and .3737 35 17 119.0000 84 153 11.9498 .0046 .1044 
Negative 
Binomial 2.92 

\&lues of the distribution parameters for the: 

"in-control state" - X *• 7.0; k = 17.50; p - .7143; a - .50; u - 6.9998; a 2 = 8.3998 

"out-of-control state" - X = 10.0; k = 25.00; p - .7143; a - .50; y =• 9.9997; o 2 - 11.9927 



Table 5.28. Combination Poisson and Negative Binomial #2 

Model 

Sampling Parameters 
Inspection Percent (N) (N) 
Cost Per of Sample Sample 

Unit Increase Interval Size 

Control Chart Parameters 1/2 Width Standard 
Lower Upper of Control Deviation 

Center Control Control Charts in o f T e s t 
Line Limit Range Limit Range Std. Dev. Statistic 

Probability 
of A 

Type I Type II 
Error Error 

Poisson; 
Combination 
Poisson and 
Negative 
Binomial 

,4384 7.662% 34 16 112.0000 80 144 
2.93 

3.02 
12.9615 .0205 .1011 

Combination 
Poisson and 2.90 
Negative .4072 38 21 147.0000 103 191 14.8492 .0063 .1232 
Binomial 2.96 

Values of the distribution parameters for the: 

"in-control state" - X « 7.0; k - 7.0; p = .50; o - .50; u - 7.0; a 2 = 10.50 

"out-of-control state" - X » 10.0; k » 10.0; p - .50; a - .50; u - 10.0; a2 * 15.00 

oo 
0 0 
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lying distribution is Poisson. The percent cost 

increase that resulted from incorrectly assuming the 

Poisson distribution to represent the defect distri

bution ranges from 0 to 7.662% for cases analyzed where 

the variance of the defect distribution was not more 

than 50% greater than its mean. Table 5.23 illustrates 

an example where the variance of the defect distribution 

(negative binomial) was approximately 40% greater than 

its mean. The percent cost increase ranges from 

4.375% to 6.073% depending on the width of the control 

chart. The range of 2.93 to 3.02 is the optimal 1/2 

width control chart width that results when the defect 

distribution is assumed to be Poisson. The percent 

increase in cost due to incorrectly assuming the Poisson 

distribution increased to 20.733% for the example 

illustrated in Table 5.24. The variance of the defect 

distribution was twice the value of its mean in this 

example. 

The cost of operating the quality control procedure may 

be significantly underestimated when the Poisson 

distribution is incorrectly assumed to model the defect 

distribution. Table 5.22 shows the results of an example 

where the optimal cost was found to be .3540 when the 

defect distribution was assumed to be Poisson. However, 
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if this assumption is incorrect and the defect 

distribution was negative binomial with the distribution 

parameters displayed in Table 5.24 the actual cost would 

be .5235 which is 47.88% greater than the cost found 

by assuming the Poisson distribution. 

The amount by which the actual cost of operating the quality 

control procedure is underestimated due to incorrectly assuming 

the Poisson distribution depends on the values of the cost 

parameters, as well as the defect distribution. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

Based on the research conducted, several conclusions 

may be drawn. The chapter number shown parenthetically after 

each conclusion indicates the location of supportive material. 

1) A practical methodology was developed that enables 

analysts to determine an appropriate mathematical model 

to represent the occurrence of defects (Chapter III). 

2) Four single distribution cost models for defects were 

developed and employed in this thesis. The models are as 

follows: (1) Poisson model, (2) Negative binomial model, 

(3) Weighted sum of two Poissons model, and (4) Combination 

Poisson, negative binomial model. Optimal inspection 

plans for these models can be obtained through use of a 

grid search procedure (Chapter IV). 

3) Three double-distribution models were also developed. 

These models have two applications. First they make 

it possible to quickly and easily compare results 

between the use of the Poisson model and the other 

single distribution models. Secondly, these models 

provide data on the effect of incorrectly assuming 

that the Poisson distribution represents the underlying 
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defect distribution (Chapter IV). 

4) The closer the variance and mean of the distribution 

of occurrence of defects are to being equal, the lower 

is the cost increase that results by incorrectly 

assuming a Poisson process. The increase in percent 

cost ranged from 0 to 7.662% for the cases analyzed 

where the difference between the mean and variance of 

the defect distribution was less than 50%"̂ . The 

percent increase in cost raises rapidly as the difference 

between the mean and variance of the distribution of the 

defects increases beyond 50%. 

5) The cost of operating the quality control procedure is 

underestimated when the Poisson distribution is 

incorrectly assumed to model a distribution of defects. 

The discrepancy between the actual cost of operation and 

that calculated when the Poisson distribution is incor

rectly assumed increases rapidly as the difference between 

the mean and variance of the defect distribution increases. 

6.2 Recommendations 

1) Additional cases utilizing the models developed in this 

thesis should be investigated to test the tentative 

conclusions that resulted from this thesis. One approach 

would be to vary the cost parameters in order to determine 

1 
Percent cost increase was found by calculating the cost when the 
Poisson distribution was incorrectly assumed and comparing this 
cost with the cost that results when we knew the defect distribution. 
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their impact on the percent cost increase. Another 

approach would be to hold the cost parameters constant 

and vary the inspection plan parameters. Different 

sets of distribution parameters could also be used. In 

any event there are an infinite number of cases in 

addition to those in this thesis that could be analyzed. 

A more efficient search technique would be a logical 

extension of the present models. 

Many well known discrete distributions were not 

analyzed in this thesis. Models patterned after those in 

this thesis could be easily developed to employ other 

discrete distributions. Work with these models could 

add to the field of knowledge concerning the impact of 

model misspecification. 

Another logical extension would be to analyze cases where 

distributions other than the Poisson were incorrectly 

assumed to represent the distribution of defects. 

The impact of model misspecification was only analyzed 

for optimal inspection plans in this thesis. The last 

recommended extension of the thesis is to analyze the 

impact of model misspecification on non-optimal inspection 

plans. A logical procedure would be to fix the control 

chart width at either 4 or 6 standard deviations. These 

widths are commonly employed in practice. Next determine 
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the optimal values for N and n given the fixed control 

chart width. At this point the investigation could be 

patterned after the investigation presented in this 

thesis. 
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APPENDIX A 

GLOSSARY OF TERMS 

A q - Variable cost of sampling or testing one item for the 
presence of a defect. 

A^ - Fixed cost of sampling. 

A 2 - Cost of a false alarm 

A^ - Cost per unit of operating out-of-control. 

- Expected number of units produced per period while in the 
out-of-control state. 

c - Total cost per period. 

c-Chart - Control chart for defects. 

Cj - number assigned by the internal counter of the computer 
models 

C^ - Cost per unit. 

d - Total number of defects iu the n items inspected. 

k - 1/2 width of the control chart in standard deviations. 

LCL - Lower control limit of the control chart 

n - Sample size. 

N - Sample interval. 

nA^ - Centerline of control chart 

p - Probability of a shift from the in-control state to the 
out-of-control state. 

p-Chart - Control chart for freaction defective. 

period - Equals sampling interval, N. 

STD - Standard deviation. 
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20) u-Chart - Control chart for defects per unit. 

21) UCL - Upper control limit of control chart. 

22) a - Probability of a Type I error 

23) 3 - Probability of a Type II error. 

24) X^ - Mean number of defects per unit while in the in-control 
state. 

25) X^ - Mean number of defects per unit while in the out-of-
control state 

26) ~ Probability of starting the period in the in-control state 

27) Y 2 ~ Probability of starting the period in the out-of-control 
state. 
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APPENDIX B 

DISTRIBUTIONS 

The probability function, generating function, and equations 

for calculating the mean and variance for the five distributions 

utilized in this thesis are summarized in Table Bl. A brief 

description follows for each distribution. 

The Poisson distribution may be used to represent the 

occurrence of independent events that take place at a constant 

rate. Most of the current cost models for defects assume that 

assignable causes occur according to a Poisson process. 

The negative binomial gives the probability that the 

m success occurs on the (m + x) trial where the probability 

of success in a single trial is P. This distribution is very 

often the first alternative when it is felt that a Poisson 

distribution is inadequate. While the negative binomial does 

not have the same flexibility as certain contagious distributions 

(with more than two assignable parameters) it often gives an 

adequate representation when the strict randomness requirements 

for the Poisson distribution are not approximated sufficiently 

close (18). 

The weighted sum of two Poisson and the combination Poisson 

and negative binomial distributions can arise when mixture problems 

are present. For additional information on these distributions 

consult (5), (8), (9), (10) and (18). 



Table Bl. Summary of Distributions 

Random 
Variable 
Name 

Probability 
Function 

Generating 
Function 

Mean 
( u ) 

Variance 
(a2) 

Range of 
Variables 

Parameter 
Values 

Poisson X x -X Id* e-X(l-z) X X x=0,l,2,... X > 0 

Negative 
Binomial 

(x+m -1) 
P (1-P) r p z r m(l-p) m(l-p) 

x=m,m+l... 0 < p < 1 
m=l,2,... 

Negative 
Binomial 

(x+m -1) 
P (1-P) |l-z(l-p)J P p z or 

P/P 

x=m,m+l... 0 < p < 1 
m=l,2,... 

Weighted 
Sum of 
Two 
Poissons 

a ( e " X l x i
X / x ! ) + 

(l-a)(e"X2 X 2
X/x!) 

[ e 1 ] x 
_X?(l-z) [e 2 ] 

(J)X1+(1-(},)X2 y[ l+(l-<}))X1-f(()X2] 

~ X1 X2 

x=0,l,2 X > 0 

0 < < f > < 1 

Combination 
Poisson and 
Negative 
Binomial 

(A)[ e"XXX/x!] + 

(1-A)(S+m-1) p m(l-p) S 

S 

[ e-x(l-z)] x 

r p z r 
CF> X + 

(l-<j,)(l-p)m 

CJ> X 2 + 

(1- ) ( k + l H l - p ) 2 m 

x-1,2,... 

S=m,m+1,... 

X > 0 

0 < p < 1 

0 < ( J » < 1 

m=l,2,.. . 

Combination 
Poisson and 
Negative 
Binomial 

(A)[ e"XXX/x!] + 

(1-A)(S+m-1) p m(l-p) S 

S [l-z(l-p)] p 2 
P 

+ u U - v O 

x-1,2,... 

S=m,m+1,... 

X > 0 

0 < p < 1 

0 < ( J » < 1 

m=l,2,.. . 



1 0 0 
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Sensitivity Analysis: Negative Binomial Model and Cost Parameter 
Set #1 

Inspection Plan 

K N 

3.36 

3.36 

3.36 

3.36 

3.36 

3.36 

3.36 

27 

27 

27 

27 

27 

27 

27 

n 
7 

4 

5 

6 

8 

9 

10 

Inspection Cost 

.2652 

.2991 

.2775 

.2667 

.2672 

.2701 

.2746 

Percent 
Difference Difference 

0339 

0123 

0015 

0020 

0049 

0094 

12.78 

4.64 

.57 

.75 

1.85 

3.54 

3.36 

3.36 

3.36 

3.36 

3.36 

3.36 

24 

25 

26 

28 

29 

30 

2663 

2656 

2653 

2655 

2660 

2666 

0011 

0004 

0001 

0003 

,0008 

,0014 

.41 

.15 

.04 

.11 

.30 

.53 

3.24 

3.28 

3.32 

3.40 

3.44 

3.48 

27 

27 

27 

27 

27 

27 

2661 

2661 

2652 

2652 

2652 

2665 

0009 

0009 

0000 

0000 

0000 

0013 

.34 

.34 

0.00 

.00 

.00 

.49 
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Sensitivity Analysis: Negative Binomial Model and Cost Parameter 
Set #2 

Inspection Plan Inspection Cost 
Percent 

K N n Difference Difference 

2.92 34 16 .3591 

2.92 34 13 .3653 .0062 1.73 

2.92 34 14 .3615 .0024 .67 

2.92 34 15 .3596 .0005 .14 

2.92 34 17 .3597 .0006 .17 

2.92 34 18 .3611 .0020 .56 

2.92 34 19 .3632 .0041 1.14 

2.92 31 16 .3601 .0010 .28 

2.92 32 16 .3596 .0005 .14 

2.92 33 16 .3592 .0001 .03 

2.92 35 16 .3592 .0001 ..03 

2.92 36 16 .3594 .0003 .08 

2.92 37 16 .3598 .0007 .19 

2.80 34 16 .3607 .0016 .45 

2.84 34 16 .3607 .0016 .45 

2.88 34 16 .3591 .0000 0.00 

2.96 34 16 .3593 .0002 .06 

3.00 34 16 .3593 .0002 .06 

3.04 34 16 .3610 .0019 -.53 
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Sensitivity Analysis: Negative Binomial Model and Cost Parameter 
Set #3 

Inspection Plan 

K N n 

3.36 18 

Percent 
Inspection Cost Difference Difference 

.4542 

3.36 

3.36 

3.36 

3.36 

3.36 

3.36 

18 

18 

18 

18 

18 

18 

4 

5 

6 

8 

9 

10 

.4960 

.4680 

.4545 

.4583 

.4642 

.4719 

0418 

,0138 

0003 

,0041 

0100 

0177 

9.20 

3.04 

.07 

.90 

2.20 

3.90 

3.36 

3.36 

3.36 

3.36 

3.36 

3.36 

15 

16 

17 

19 

20 

21 

4596 

,4566 

4549 

4543 

4551 

4566 

0054 

0024 

0007 

0001 

0009 

0024 

1.19 

.53 

.15 

.02 

.20 

.53 

3.24 

3.28 

3.32 

3.40 

3.44 

3.48 

18 

18 

18 

18 

18 

18 

4551 

4551 

4542 

4542 

4542 

4563 

0009 

0009 

0000 

0000 

0000 

0021 

.20 

.20 

0.00 

0.00 

0.00 

.46 
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Sensitivity Analysis: Negative Binomial Model and Cost Parameter 
Set # 4 

Inspection Plan 

K 

3.28 

N 

14 

Percent 
Inspection Cost Difference Difference 

5148 

3.28 

3.28 

3.28 

3.28 

3.28 

3.28 

14 

14 

14 

14 

14 

14 

6542 

5621 

5208 

5183 

5256 

5366 

1394 

0473 

0060 

0035 

0108 

0218 

27.08 

9.19 

1.17 

.68 

2.10 

4.23 

3.28 

3.28 

3.28 

3.28 

3.28 

3.28 

11 

12 

13 

15 

16 

17 

5270 

5200 

5161 

5153 

5175 

5209 

0122 

0052 

0013 

0005 

0027 

0061 

2.37 

1.01 

.25 

.10 

.52 

1.18 

3.16 

3.20 

3.24 

3.32 

3.36 

3.40 

14 

14 

14 

14 

14 

14 

5161 

5161 

5148 

5148 

5148 

5196 

0013 

0013 

0000 

0000 

0000 

0048 

.25 

.25 

0.00 

0.00 

0.00 

.93 
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Sensitivity Analysis: Negative Binomial Model and Cost Parameter 
Set #5 

K 

2.80 

N 

17 
n 
13 .7461 

2.80 

2.80 

2.80 

2.80 

2.80 

2.80 

17 

17 

17 

17 

17 

17 

10 

11 

12 

14 

15 

16 

7739 

7571 

7488 

7473 

7512 

7571 

0278 

0110 

0027 

0012 

0051 

0110 

3.73 

1.47 

.36 

.16 

.68 

1.47 

2.80 

2.80 

2.80 

2.80 

2.80 

2.80 

14 

15 

16 

18 

19 

20 

13 

13 

13 

13 

13 

13 

7552 

7499 

7471 

7467 

7486 

7516 

0091 

0038 

0010 

0006 

0025 

,0055 

1.22 

.51 

.13 

.08 

.34 

.74 

2.68 

2.72 

2.76 

2.84 

2.88 

2.92 

17 

17 

17 

17 

17 

17 

13 

13 

13 

13 

13 

13 

7494 

7494 

7461 

7461 

7484 

7484 

0033 

0033 

0000 

0000 

0023 

0023 

.44 

.44 

0.00 

0.00 

.31 

.31 

Percent 
Inspection Plan Inspection Cost Difference Difference 
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Sensitivity Analysis: Negative Binomial Model and Cost Parameter 
Set #2 

Inspection Plan 

K N n 

2.92 34 16 

Percent 
Inspection Cost Difference Difference 

.3591 

2.92 

2.92 

2.92 

2.92 

31 

31 

37 

37 

13 

19 

13 

19 

.3637 

.3659 

.3683 

.3622 

0046 

0068 

0092 

0031 

1.28 

1.89 

2.56 

.86 

2.80 

3.04 

2.80 

3.04 

31 

31 

37 

37 

16 

16 

16 

16 

3625 

3609 

3608 

3628 

0034 

0018 

0017 

0037 

.95 

.50 

.47 

1.03 

2.80 

2.80 

3.04 

3.04 

34 

34 

34 

34 

13 

19 

13 

19 

3646 

3652 

3684 

3623 

0055 

0061 

0093 

0032 

1.53 

1.70 

2.59 

.89 

2.80 

2.80 

2.80 

2.80 

3.04 

3.04 

3.04 

3.04 

31 

31 

37 

37 

31 

31 

37 

37 

13 

19 

13 

19 

13 

19 

13 

19 

3639 

3686 

3668 

3639 

3660 

3646 

3722 

3618 

0048 

0095 

0077 

0048 

0069 

0055 

0131 

0027 

1.34 

2.65 

2.14 

1.34 

1.92 

1.53 

3.65 

.75 
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K and N are fixed at their optimal values. 
The value of n deviates from its optimal 
value by the amount indicated on the ordinate. 

-3 -2 -1 Optimal +1 +2 +3 

Number of units from optimal 

Sensitivity Curves for Negative Binomial Model 
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Sensitivity Analysis: Weight Sum of Two Poissons Model and Cost 
Parameter Set #1 

K 

3.00 

N 

35 
n 

.3118 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

35 

35 

35 

35 

35 

35 

4 

5 

6 

8 

9 

10 

.3383 

.3219 

.3138 

.3126 

.3152 

.3182 

0265 

0101 

0020 

0008 

0034 

0064 

8.50 

3.24 

.64 

.26 

1.09 

2.05 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

32 

33 

34 

36 

37 

38 

3122 

3119 

3118 

3121 

3125 

0004 

0001 

0000 

0003 

,0007 

,13 

03 

00 

09 

,22 

2.88 

2.92 

2.96 

3.04 

3.08 

3.12 

35 

35 

35 

35 

35 

35 

3135 

3118 

3118 

3118 

3124 

,3124 

0017 

0000 

,0000 

0000 

,0006 

,0006 

55 

00 

00 

00 

,19 

,19 

Percent 
Inspection Plan Inspection Cost Difference Difference 
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Sensitivity Analysis: Weight Sum of Two Poissons Model and Cost 
Parameter Set #2 

Inspection Plan 

K N i 

2.26 40 15 

Percent 
Inspection Cost Difference Difference 

.3886 

2.26 

2.26 

2.26 

2.26 

2.26 

2.26 

40 

40 

40 

40 

40 

40 

12 

13 

14 

16 

17 

18 

.3995 

.3950 

.3918 

.3895 

.3897 

.3910 

0109 

0064 

0032 

0009 

0011 

0024 

2.80 

1.65 

.82 

.23 

.28 

.62 

2.26 

2.26 

2.26 

2.26 

2.26 

2.26 

37 

38 

39 

41 

42 

43 

15 

15 

15 

15 

15 

15 

3895 

3890 

3887 

3887 

3888 

3891 

,0009 

,0004 

0001 

,0001 

0002 

0005 

.23 

.10 

.03 

.03 

.05 

.13 

2.14 

2.18 

2.22 

2.30 

2.34 

2.38 

40 

40 

40 

40 

40 

40 

15 

15 

15 

15 

15 

15 

3919 

3919 

3902 

3904 

3922 

3922 

0033 

0033 

0016 

0018 

0036 

0036 

.85 

.85 

.41 

.46 

.93 

.93 
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Sensitivity Analysis: Weight Sum of Two Poissons Model and Cost 
Parameter Set #3 

Inspection Plan 

K N i 

3.00 24 

Percent 
Inspection Cost Difference Difference 

.5207 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

24 

24 

24 

24 

24 

24 

4 

5 

6 

8 

9 

10 

5529 

5324 

.5225 

,5207 

,5228 

,5273 

0322 

0117 

,0018 

0 

,0021 

,0066 

6.19 

2.25 

.35 

0 

.40 

1.27 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

21 

22 

23 

25 

26 

27 

5231 

5216 

5209 

5211 

5219 
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0024 

0009 

0002 

0004 

0012 

,0024 

.46 

.17 

.04 

.08 

.23 

.46 
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2.96 

3.04 

3.08 

3.12 

24 

24 

24 

24 

24 

24 

5230 

5207 

5207 

5207 

5216 

5216 

0023 

,0000 

,0000 

,0000 

,0009 

,0009 

.44 

0 

0 

0 

.17 

.17 
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Sensitivity Analysis: Weight Sum of Two Poissons Model and Cost 
Parameter Set #4 

K 

2.92 

N 

18 
n 

.5973 

2.92 

2.92 

2.92 

2.92 

2.92 

2.92 

18 

18 

18 

18 

18 

18 

6767 

6256 

6041 

5989 

6052 

6133 

0794 

0283 

0068 

0016 

0079 

,0160 

13.29 

4.74 

1.14 

.27 

1.32 

2.68 
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2.92 

2.92 
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2.92 

2.92 

15 

16 

17 

19 

20 

21 

6063 

6014 

5985 

5976 

5990 

6015 

0090 

0041 

0012 

0003 

0017 

0042 

1.51 

.69 

.20 

.05 

.28 

.70 

2.80 

2.84 

2.88 

2.96 

3.00 

3.04 

18 

18 

18 

18 

18 

18 

6011 
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5973 

5973 

5973 

6001 

0038 

0038 

0000 

0000 

,0000 

0028 

.64 

.64 

.00 

.00 

.00 

.47 

Percent 
Inspection Plan Inspection Cost Difference Difference 
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Sensitivity Analysis: Weight Sum of Two Poisson Models and Cost 
Parameter Set #5 

Inspection Plan 

K N n 

2.20 22 14 

Percent 
Inspection Cost Difference Difference 

.7979 
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22 

22 

22 

22 

22 

22 

11 

12 

13 

15 

16 

17 
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2.20 

2.20 
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2.20 

19 

20 

21 

23 

24 

25 

14 

14 

14 

14 

14 

14 
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.0054 
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.06 

.06 

.23 
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2.08 

2.12 

2.16 

2.24 

2.28 

2.32 

22 

22 

22 

22 

22 

22 
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14 

14 
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14 
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Sensitivity Analysis: Weight Sum of Two Poisson Models and Cost 
Parameter Set #2 

Inspection Plan 

K N n 

2.26 40 15 

Percent 
Inspection Cost Difference Difference 
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37 

43 
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12 

18 

12 

18 
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1.03 
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2.14 
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37 

43 

43 

15 

15 

15 

15 
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.95 
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2.14 

2.14 

2.38 
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40 

40 

40 

40 

12 

18 

12 

18 
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.4043 
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4.04 
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2.14 

2.14 

2.14 

2.38 

2.38 

2.38 

2.38 

37 

37 

43 

43 

37 

37 

43 

43 

12 

18 

12 

18 

12 

18 

12 

18 
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.4072 
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1.41 

3.50 

.59 

3.55 

1.29 

4.79 
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30 

25 I 

K and N are fixed at their optimal values. The 
value of n deviates from its optimal value by 
the value indicated on the ordinate. The number 
at the end of the curves indicate the cost 
parameter set. 

20 J 

15 J 

10 

51 

Optimal 

Number of Units from Optimal 

Sensitivity Curves for Weight Sum of Two Poissons 
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Sensitivity Analysis: Combination Poisson and Negative Binomial 
Model and Cost Parameter Set #2 

Inspection Plan 

K N n 

2.96 34 16 

Percent 
Inspection Cost Difference Difference 

.3565 

2.96 

2.96 

2.96 

2.96 

2.96 

2.96 

34 

34 

34 

34 

34 

34 

13 

14 

15 

17 

18 

19 
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3588 

3569 

3572 
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,3608 

0060 

0023 
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0007 

,0022 

,0043 

1.68 

.65 

.11 

.20 

.62 

1.21 

2.96 

2.96 

2.96 

2.96 

2.96 

2.96 

31 

32 

33 

35 

36 

37 

16 

16 

16 

16 

16 

16 

3574 

3569 

3566 

3566 

3569 

3574 

0009 

0004 

,0001 

,0001 

,0004 

,0009 

,25 

,11 

03 

03 

,11 

,25 

2.84 

2.88 

2.92 

3.00 

3.04 

3.08 

34 

34 

34 

34 

34 

34 

16 

16 

16 

16 

16 

16 

3577 

3577 

3565 

,3571 

,3571 

.3592 

0012 

0012 

0 

,0006 
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,0027 

34 

34 

0 

,17 

,17 

.76 
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Sensitivity Analysis: Combination Poisson and Negative Binomial 
Model and Cost Parameter Set #1 

Inspection Plan 

K N n 

3.40 27 

Percent 
Inspection Cost Difference Difference 

.2641 

3.40 

3.40 

3.40 

3.40 

3.40 

3.40 

27 

27 

27 

27 

27 

27 

4 

5 

6 

8 

9 

10 

2973 

2759 

2652 

2661 

2693 

2736 

0332 

0118 

0011 

0020 

0052 

0096 

12.57 

4.47 

.42 

.76 

1.97 

3.60 

3.40 

3.40 

3.40 

3.40 

3.40 

3.40 

24 

25 

26 

28 

29 

30 

2661 

2644 

2641 

2643 

2648 

2655 

0002 

0003 

0000 

0002 

0007 

0014 

.76 

.11 

0 

.08 

.27 

.53 

3.28 

3.32 

3.36 

3.44 

3.48 

3.52 

27 

27 

27 

27 

27 

27 

2646 

2646 

2641 

2641 

2641 

2656 

0005 

0005 

0 

0 

0 

,0015 

1.90 

1.90 

0 

0 

0 

.57 
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Sensitivity Analysis: Combination Poisson and Negative Binomial 
Model and Cost Parameter Set #3 

Inspection Plan 

K N n 

3.32 17 

Percent 
Inspection Cost Difference Difference 

.4522 

3.32 

3.32 

3.32 

3.32 

3.32 

3.32 

17 

17 

17 

17 

17 

17 

5278 

4789 

4586 

,4538 

4581 

4658 

0756 

0267 

0064 

0016 

0059 

0136 

16.72 

5.90 

1.42 

.35 

1.30 

3.01 

3.32 

3.32 

3.32 

3.32 

3.32 

3.32 

14 

15 

16 

18 

19 

20 

4589 

4553 

,4531 

4522 

,4531 

,4545 

0067 

0031 

0009 

0 

0009 

0023 

1.48 

.69 

.20 

0 

.20 

.51 

3.20 

3.24 

3.28 

3.36 

3.40 

3.44 

17 

17 

17 

17 

17 

17 

4536 
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4522 

4522 

,4522 

,4554 

0014 

0014 

0 

0 

0 

.31 

.31 

0 

0 

0 

.71 ,0032 
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Sensitivity Analysis: Combination Poisson and Negative Binomial 
Model and Cost Parameter Set #4 

Inspection Plan 

K N n 

3.16 15 

Percent 
Inspection Cost Difference Difference 

.5119 

3.16 

3.16 

3.16 

3.16 

3.16 

3.16 

15 

15 

15 

15 

15 

15 

6173 

5456 

5194 

5183 

5232 

5345 

.1054 

.0337 

.0075 

.0064 

.0113 

.0226 

20.59 

6.58 

1.47 

1.25 

2.21 

4.41 

3.16 

3.16 

3.16 

3.16 

3.16 

3.16 

12 

13 

14 

16 

17 

18 

5197 

5147 
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5132 

5159 

5196 

.0078 

.0028 

.0004 

.0013 

,0040 

.0077 

1.52 

.55 

.08 

.25 

.78 

1.50 

3.04 

3.08 

3.12 

3.20 

3.24 

3.28 

15 

15 

15 

15 

15 

15 
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5119 

5119 
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0 

0 

0 

0 

0007 

0 

0 

0 

0 

.14 
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Sensitiviy Analysis: Combination Poisson and Negative Binomial 
Model and Cost Parameter Set #5 

2.84 17 13 .7400 

2.84 17 10 .7680 .0280 3.78 

2.84 17 11 .7510 .0110 1.49 

2.84 17 12 .7426 .0026 .35 

2.84 17 14 .7413 .0013 .18 

2.84 17 15 .7453 .0053 .72 

2.84 17 16 .7514 .0114 1.54 

2.84 14 13 .7482 .0082 1.11 

2.84 15 13 .7433 .0033 .45 

2.84 16 13 .7407 .0007 .09 

2.84 18 13 .7408 .0008 .11 

2.84 19 13 .7428 .0028 .38 

2.84 20 13 .7460 .0060 .81 

2.72 17 13 .7420 .0020 .27 

2.76 17 13 .7420 .0020 .27 

2.80 17 13 .7400 0 0 

2.88 17 13 .7400 0 0 

2.92 17 13 .7434 .0034 .46 

2.96 17 13 .7434 .0034 .46 

Percent 
Inspection Plan Inspection Cost Difference Difference 

K N n 
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Sensitivity Analysis: Combination Poisson and Negative Binomial 
Model and Cost Parameter Set #2 

Inspection Plan 

K N n 

2.96 34 16 

Percent 
Inspection Cost Difference Difference 

.3565 
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2.96 
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37 

37 
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13 
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34 
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19 
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1.68 

2.69 
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2.84 

2.84 

2.84 
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3.08 

3.08 

31 

31 

37 

37 

31 

31 

37 

37 

13 

19 

13 

19 

13 

19 

13 

19 
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0040 
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2.88 
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1.35 
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1.68 

3.79 
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K and N are fixed at their optimal values. 
The value of n deviates from its optimal 
value by the number of units indicated on 
the ordinate. The numbers at the end of 
the curves indicate the cost parameter set. 

Number of units from optimal 

9 S J 

Sensitivity Curves for Combination Poisson and Negative Binomial 
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