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SUMMARY 

Selection of handling systems for warehouses is a complex task, 

as there are many factors and their interactions which must be con

sidered. The objective of this study is to establish means of evalu

ating the operation of both proposed and existing warehousing systems. 

Relationships are developed for space requirements and operating 

times for stacker crane, overhead crane, and fork truck systems. These 

relationships consider the dimensions of each unit load, stacking 

heights, aisle requirements, and the speed and maneuverability of each 

system. 

The study is theoretical and suffers from the lack of established 

standard times in maneuvering for stacker and overhead cranes. 

Since external contingencies weigh heavily in construction costs, 

so relationships between square footage or usable height and the cost 

of the structure are extremely complex. However, the study can provide 

an experienced practitioner a well defined approach to evaluating 

different alternatives. 
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CHAPTER I 

INTRODUCTION 

The concept of warehousing was born when some prehistoric 

creature, appetite sated, hid or buried an unfinished meal for later 

use. Thus the basic premise in warehousing was quite old when man 

appeared. No doubt caves were used for storage as well as habitation 

in human antiquity, and as the principles of farming were discovered, 

the principles of warehousing necessarily followed. 

Today's storage center owes its existence to its predecessors. 

A warehouse is often the best, sometimes the only method of solving 

fundamental problems created by irregular production or demand rates. 

The former is exemplified by farming, where the entire product is 

harvested in a relatively short time span once a year. The latter is 

represented by seasonal sporting goods, such as skiis and types of 

clothing. Warehouses are also useful for storing material near the 

area where it will be used. 

Background 

Although warehouses and inventories have been extant for a long 

time, very little was done in scientific inventory management until 30 

years ago when Wilson developed the first inventory control model. It 

is based on the assumptions that demand is constant over time and that 

the only costs associated with the inventory are ordering and holding 

costs. 
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In the time since Wilson's model appeared, there has been a 

proliferation of modes of analysis. Queueing theory, linear programming, 

and dynamic programming have been applied to the problems of inventory 

(14). The advent of the computer has encouraged use of more sophisti

cated and complex techniques to give far more realistic control of goods 

in storage, but all these models consider only the inputs and outputs 

of the system, and ignore completely methods of handling and storage. 

The only information these models develop for warehouse design is the 

quantity of a particular product which could be expected to be on hand 

at a given time. 

Definitions and Classifications 

There has been a rapid increase in the development of handling 

methods within the warehouse. In order to categorize these methods, 

the following definitions will be used: 

1. The automated warehouse is one in which goods are stored 

and/or retrieved by automatic remote controlled devices (8). An 

example of this type of warehouse is found in the Sara Lee installa

tion in Deerfield, Illinois (15). 

2. If the warehouse has manual storage but automatic selection 

and retrieval, it will be called a semi-automatic warehouse (Type I). 

This type is exemplified by the Colgate-Palmolive warehouses in Jersey 

City, Jeffersonville, Indiana, and Kansas City. 

3. A semi-automatic warehouse (Type II) is one in which they 

are to be stored by a programmed device such as a conveyor with auto

matic switching. Storing and retrieving is done with manually operated 
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equipment. The Consolidated Cigar Company's warehouse in Port Newark, 

New Jersey, is an example of this type. 

4. Other warehouses are operated by manual or manually controlled 

mechanized means. The former will be defined as manual warehouses and 

the latter as mechanized ones. 

Warehouses in which more than one method of operation is in use 

will not be considered. 

A unit load, hereafter called a unit, is a number of items or 

bulk material so arranged or restrained that the mass can be picked up 

or moved as a single object. An odd lot is a unit load which has been 

subdivided in some manner. 

The marshalling area is defined as the location in which unit 

loads may be broken down for odd lot orders, and is the area in which 

groups of unit loads are assembled for storage or shipment. 

There are three categories into which automated warehouses may 

be classified: 

1. Rack/'Conveyor. Material is loaded onto racks, generally of 

the gravity feed type, and some selection device, such as a remotely 

operated solenoid, allows one unit at a time to feed onto a conveyor 

which runs to the marshalling area. Colgate-Palmolive's warehouses 

are of this type. 

2. Pallet/Rack Stacker Retriever. This system handles one unit 

load or pallet load at a time. A stacker crane or some other type of 

retriever stores and collects the loads. The load can then be placed 

on a conveyor or automatic train for transportation to the marshalling 
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area. Sara Lee, the Aldmeda Naval Air Station, and the Peter A. Frasse 

warehouse in Philadelphia exemplify this type. 

A stacker crane (type 1) refers to an overhead crane with a 

stacker crane attachment. It can cross aisles whenever there is suffi

cient clearance to do so. 

A stacker crane (type 2) is supported by the storage racks or 

ground rails. It requires a transfer crane at the end of the aisles 

to change to another aisle. 

3. Overhead Crane. Items are selected by layers or unit load, 

depending on the type of holding attachment on the crane. In an auto

matic warehouse of this type, a vacuum system is used and it picks up 

one layer of boxes each trip. This warehouse is owned by a food 

distributor in the midwest, and was designed by Wiretyer's Engineered 

Handling Systems Division. 

In reference to handling equipment, manually controlled shall 

mean that the device is operated by a button, lever, switch, or pedal 

which causes the device to move or lift until such time as the button, 

lever, switch, or pedal is deactivated. 

Automatically controlled shall mean that the device is activated 

by a switch, lever, or computer which causes the device to move to a 

particular location and stop. 

Obj ective 

Valid comparison of the wide variety of equipment available for 

warehouses is extremely difficult. Although the choice can be simpli

fied by eliminating those types of equipment with characteristics 
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unsuitable for a particular application, measures of effectiveness 

for evaluating warehouse handling systems are needed. 

The objective of this study is to establish means of evaluating 

the operation of proposed and existing warehousing systems. Relation

ships for the total operating times, space requirements, and capacities 

of both existing and proposed warehousing systems will be developed. 

Method of Attack 

The following procedures will be used: 

1. Assuming that the maximum amounts of the various materials 

to be stored are known, a mathematical model will be structured to 

develop space requirements. This model will consider the individual 

items as assembled into units, and their dimensional characteristics. 

Weight will be considered as having a maximum allowable value per unit 

volume. The model will include the access required to approach and 

select each item. 

2. A second model will deal with the characteristics of the 

different operating systems to determine the capacity of goods they 

are capable of handling. It will be used to predict the turnover rate 

and the limits within which each system is capable of operating. 

3. The interrelation of these models will be investigated. 

Spatial requirements are dependent on the type of handling system 

involved, and the speed of the system is dependent on the dimensions 

of the building. 

4. Comparisons of warehouses utilizing stacker crane, overhead 

crane, and fork truck systems will be made. 
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Importance 

Integration of these models with existing inventory management 

techniques will give management quantitative principles of choice, 

enabling it to select the optimal system for its particular require

ments. They would enable equipment manufacturers to evaluate their 

system(s) before completing the design. This permits businesses to 

obtain and maintain clear perspective on actual costs of operating a 

total inventory system. 

In the face of steadily increasing competition both in this 

country and from abroad, manufacturers need more sophisticated controls 

to minimize operating costs. It is hoped that these models will become 

a useful tool in assisting them in their quest. 

Scope 

This study will examine the stacker crane, overhead crane, 

and fork truck systems on a theoretical basis. 

Since there are no automatic warehouses in the vicinity, an 

existing warehousing system will not be evaluated. The prime value 

of these models will be with proposed systems. 

This study is limited to the warehouse area proper. It will not 

consider the marshalling area where unit loads may be broken down. For 

this reason, the rack/conveyor system, which selects individual boxes, 

thus combining some of the aspects of the marshalling area with the 

storage area, will not be considered. 
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Assumptions 

This study begins where traditional inventory models end. It 

assumes that when and in what amount an item is needed is given. It is 

further assumed that the maximum quantities of items to be stored at 

any particular time are given. 

In order to develop mathematical models of the internal func

tioning of a warehouse, several simplifying assumptions are made to 

conform to realistic warehousing situations. 

In the storage area, only unit loads will be selected or 

deposited, and they will not be more than one deep. This is the case 

in the fully automatic warehouses such as Sara Lee's and the food 

distributor's which was designed by Wiretyer. 

Unit loads will be fairly similar in bulk. No restrictions as 

to size and shape are made, but similar things should be grouped 

together to make effective use of the equipment. Sheet metal would be 

stored in one area, eggs in another. 

Fragile materials or other materials which require special 

handling are assumed to be packed in such a manner as to permit normal 

handling. 

All items are assumed to have uniformity of dimension in the 

vertical plane. For example, a cone on a pallet is assumed to have 

the dimensions of a cube. If it was not on the pallet it would have 

the dimensions of a cylinder. 

The warehouse management is assumed to have no control over 

packing the product, which arrives assembled into unit loads. Quite 
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significant savings can be realized if the product is a box and it can 

be folded or nested in some manner (9). Considerations of this type 

are extremely important in saving space. However, the models shall 

take the unit load, whatever its dimensions, as essentially unalterable. 
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CHAPTER II 

LITERATURE SURVEY 

Although much has been written about inventory management, and 

many magazines deal almost exclusively with the types of equipment used 

in materials handling, very little has been written about quantitative 

methods for comparing different handling systems. 

G. L. Almond's doctoral dissertation at Ohio State University 

(1) provides historical perspective in warehouse development and the 

services they perform. It discusses the changes that have improved the 

warehousing function since World War II. It also discusses conditions 

necessary for automation: steady volume, a relatively small variety 

of packages, and a market which permits amortization of the system in 

four or five years. Unfortunately, Almond ceased gathering information 

for his dissertation in 1959, and thus he did not cover later develop

ments, such as automatic stacker crane systems. 

A few authors have concerned themselves with space utilization 

within the warehouse. In 1962, Joseph E. Wiltrakis published his V-

Spatial formula which establishes, in 20-odd factors, a method for 

"unlocking space economics." It is primarily concerned with reducing 

the effective size of the unit load, by such techniques as nesting. 

However, the model fails to provide an adequate measure of comparison 

between different equipment types. 
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Herbert Thornton attempted to optimize the space of a warehouse 

which uses fork trucks. His primary concerns were aisle width, clear

ance between pallets, and the angle of the pallet to the aisle center 

line (13). 

J. B. Hemmi's thesis at the Georgia Institute of Technology has 

provided some useful information in evaluating fork truck performance 

in terms of space requirements. It proves that there is a highly sig

nificant difference between many different types of pallet arrangements 

if there is a large number of pallets in the warehouse (6). 

Two articles dealt with the time involved of a handling system 

in a warehouse. Roy Lave and Hamdy Taha developed a program for simu

lating overhead crane operations in material handling situations. They 

divided the crane cycle into six events and used event oriented simu

lation, showing an approach to structuring a material handling opera

tion (7). 

Bazaraa's thesis at the Georgia Institute of Technology presents 

an interesting approach to establishing the degree of mechanization of 

handling equipment. It develops factors in the material, such as 

quantity and weight, and in the move, such as distance and frequency. 

He uses these factors to relate the different levels of mechanization 

for material handling equipment with a graphic technique (2). 
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CHAPTER III 

SPACE REQUIREMENTS 

Development of a model to predict spatial requirements is the 

first step toward an economic model capable of predicting costs. The 

spatial model is quite useful in its own right for determining the size 

of a proposed warehouse. 

This analysis is based on a known maximum number of units of 

each type of product item which will be on hand at any time. 

Let n.(t) be the number of units of product i on hand at time 1 

t, where t is some future time. Then the total number of units expected 

to be on hand is ) n.(t). 
. I 

I 

Height Establishment 

Let H^ denote the required (used) height in the building. It is 

a function of the heights of the various types of unit loads, tu , a 

pallet or rack allowance, p, the number of units in the stack, k. , and 

possibly an allowance, 8^, for overhead handling equipment. Thus, 

H i = (h i+p)k i + 6 (1) 

is the height required by a stack of k^ unit loads of product type i. 

Let H be the maximum clear height, i.e. 
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H" = max(H.) 
i 

This would then determine the required height throughout the building. 

H must be selected to minimize the amount of unutilized space subject 

to the limitations of the equipment considered. In other words, H* 

cannot have a value exceeding the capabilities of the equipment type. 

Determination of the optimal H depends on the choice of the number of 

units in a stack of product i. 

Different types of unit loads must be considered. Although 

there may be a great many different items to be stored, there will be 

far fewer variations in size once the items have been packed and 

assembled into unit loads. For instance, an appliance manufacturer 

might make 20 different models of washing machines, but most are 

approximately the same size, and once they are packed there would 

probably be no more than two or three different sizes to contend with. 

He might make dozens of different kinds of small appliances, but if 

they are packed and assembled on a standard pallet to make up a unit 

load, height will be the only variable, and its variation will be 

small. Therefore, it is felt that this problem will not be difficult 

to solve in practice. 
A 

A practitioner might find a safety factor in H desirable if it 

was felt that the height of the units might increase during the 

expected life of the building. H could be determined by considering 

the anticipated height of the product at some future time. 
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Floor Area Determination 

Floor area requirements are dependent on many factors. These 

shall be introduced on a progressive basis, beginning with the number 

of stacks. 

Number of Stacks 

At any time t, the number of stacks required for product i will 

be 

~ . * 

_ i _ 

This term represents the smallest integer larger than n^(t)/k^, and 

hereafter is denoted by cu(t). Fractional remnants are considered as 

one stack because stacking different kinds of unit loads on top of one 

another is not permissible unless racks are used. The total number of 

stacks in the building at time t is £a^(t). 

Cross Sectional Areas of Units 

Let a^ represent the cross sectional area of a unit of type i. 

A rectangular shape permits maximum utilization of storage. All other 

shapes waste some space and a factor, s^, must be applied to increase 

the required amount of space to a rectangle. Let 1^ and w^ represent 

the effective length and width, respectively (Figure 1), which create 

the smallest possible rectangle which bounds a^. Length is always 

along the aisle and width is cross aisle. 
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Figure 1. Illustration of Shape Parameters 

The shape factor is simple to derive in common geometric shapes. 

For a circle, s^ is equal to .786 (4/TT). For a triangle, s is equal to 

.500. 

Nesting of Units 

Odd shapes might permit nesting. Another factor, e^, is neces

sary to encompass this contingency. The nesting factor is applied to 

reduce the total area required, A^ (Figure 2). At this point, estimated 

area requirements are: 

a.a.(t) l.w.a.(t) 

I _L-i or I - L i J : (2) 
. e. s. . e. 
I l l 1 1 
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e = 1.07 (circles) 

e = 2.00 (triangles) 

Figure 2. Illustration of Nesting 

Row Width 

If unit loads have different widths they still must be aligned 

along an aisle, and actual required width, w^ of any row, r, is equal 

to width of the widest unit load in the row. The relationship is: 

w^ = max(w^ product type i stored in row r). (3) 

If random storage is desired or composition of rows is subject to change 

over time, it is necessary to use: 

w = max(w.). (4) 
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Clearance Between Stacks 

To this point no provision has been made for clearance between 

stacks of unit loads. Clearance is necessary for getting unit loads 

in and out of storage locations. The clearance factor, Q^* i-s 

dependent upon the type of handling equipment. Now the area required 

is: 

_w"a.(t) l.w'V(t) (l. + 9_)w a. (t) Z 1 r 1 1 v 1 2 1 , . + I or I (5) . e. . e. . e. 
1 1 1 1 l l 

It is possible for this formula to be slightly inaccurate: 

it assumes a clearance for each stack, and thus there would be an extra 

one if racks were not used or if one row was not against a wall. This 

inaccuracy is regarded as negligible. 

Aisle Width 

Aisle width, W , depends on the type of equipment used. Aisles 
c i 

are necessary for access in every case with the exception of the over

head crane. In order to keep the expression consistent, W^ will be 

used for overhead cranes, but it will represent the clearance, 9^, 

along the line the aisle would have been on. Since unit loads cannot 

be back to back, there is in effect an "aisle" of width 0^ for every 

row, and hence 

W (for overhead cranes) = 26 0 (6) a 3 

See Figure M- for illustration. 
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Figure 3. Warehouse Layout, Fixed Path Equipment 
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Figure 4. Warehouse Layout, Overhead Crane 

Warehouse Layout 

In a logically organized warehouse, the marshalling area will be 

at one or both ends of the storage rows, and cross aisles will only be 

useful for minimizing time in storage to storage moves (Figures 3 and 4). 

The other effect of cross aisles is to increase the amount of space 

required to store the same quantity of goods. Therefore, cross aisles 

are disallowed, and the area required is: 

A l ( t ) = ? 
(l.+0o)w a.(t) (l.+60)W a.(t) l 2 l l 2 a l + 

or 

A]_(t) = I (l1+e2)ai(t) 

* W w _a 
e. 2 
l 

(7) 
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Utilized area, k 9 is equal to 

A 2 = I a i a i ( t ) ^ i 

Dimensions of the Building 

So floor utilization at any time t is equal to k^/k^ and is the 

percent of square footage utilized. 

Total cube required, Q^, is equal to H A^. Actual utilized 

cube, Q , is equal to £ (a^n^tu). Cubic utilization is equal to Q^/ 
i 

and represents the percent of cube utilized. 

It is advantageous at this point for the practitioner to deter

mine the dimensions of the building. If the number of aisles is equal 

to j, the width of the building is (w +W /2)2j. The number of rows, 
c l 

2j, can be varied to give various configurations, as long as 2j is 

even to avoid half aisles. Support placement, or bay size, can be 

determined at this time. 

The marshalling area should be considered. If it is assumed 

to have the same width as the storage area, its length can be added to 

the length of the storage area, and the final building dimensions can 

be established. Note that the main (cross) aisle is considered as part 

of the marshalling area (Figure 8). 

Variations Over Time 

It is entirely possible that the demand for any product i will 

vary over time. The purpose of a warehouse is to permit economic lot 

size manufacturing, to smooth production rates, to provide remote 
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storage facilities, or any combination of the foregoing. The amount of 

product i on hand at any time t is equal to the integral of the ware

house input rate, e^(x) minus the integral of the demand rate, 6^(x). 

The relationship is: 

t t 
n.(t) = / £.(x)dx - / 6.(x)dx (9) 

1 0 1 0 1 

If demand for a product is subject to seasonal fluctuations and 

input is steady, then the number of units of product i will be at a 

maximum when the increasing demand rate equals the input rate (Figure 

5) at T. 

QJ l 
^ I 

* I I 
T Time o 

Figure 5. Effect of Seasonal Demand Variations 

The area required in the warehouse at any time is dependent on 

the £n^(t). Thus, if the amount of one product to be stored at any 

time is increasing while another is decreasing at the same time, the 

total area required might be approximately the same (Figure 6). 
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n(Product l)t 

n(Product 2)t 

Time 

Figure 6. Contraseasonal Products on Hand 

If new products are anticipated or more of the same products 

might be stored in the warehouse at some time in the future, a decision 

must be made as to how much additional space will be required. If the 

amount of different product types, n^, can be considered as a set of 

independent random variables having mean E[n^(t)] and variance V[n^(t)], 

then the expected value of A^(t) is 

(l i +6 2) w 
e. 

l 

W 
E[n.(t)] (10) 

and the variance is 

( 1 i + 9 2 ) 

T 
w 
e. 

l 

V[n.(t)] (11) 

With this information a band of confidence can be established (Figure 

7) for projected storage requirements. 
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CHAPTER IV 

TIME REQUIREMENTS 

The next concern is the development of a model to delineate the 

time required for particular types of handling equipment to complete a 

cycle of operation. In this formulation it is assumed that either a 

storage or retrieval will be performed on a single cycle, not both. 

A cycle of operation consists of selection or deposition of the unit 

load by the handling equipment, travel to a particular storage location, 

deposition or selection, and return to a marshalling location. It is 

assumed that there are as many marshalling locations as there are 

storage rows, 2j, and that these locations are each the same fixed 

distance, D , from the egress of the storage aisles and opposite each 

particular row, as shown in Figure 8. 

The total time, T , to perform a cycle is equal to the sum of 

the elemental times in performing a selection, a deposition, a travel 

from and a travel to. Thus, the average cycle time, T , is equal to 

the sum of the elemental time averages. Therefore, each of the 

elemental times shall be analyzed, and their averages established. 

They may be added to give the cycle average. 

Simultaneous Operation 

Due to differences in operating characteristics of equipment, 

it will be necessary to make further assumptions. Since an auto

matically controlled device is going to a programmable or predetermined 
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Figure 8. Fixed Path Warehouse Layout and Typical Path 

location, it can easily perform simultaneous operations. The operator 

of a manually controlled device must visually search for the storage 

location and thus requires a high level of skill to perform simultaneous 
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maneuvers. To illustrate, an ordinary fork truck does not usually 

position its forks until it has pivoted to pick up or deposit a load. 

On the other hand, an automatic stacker crane positions its forks as it 

travels down the aisle. Although a fork truck can perform simultaneous 

operations, Eaton who has made comprehensive studies of fork truck 

operations, feel that performing operations separately is more repre

sentative of average operator capability. 

In analyzing manual material handling operations, it will be 

assumed that the elements of the cycle of operation are being performed 

in a non-simultaneous step-by-step sequence. The stacker crane and 

fork truck will be assumed to use a step-by-step sequence, and the 

overhead crane will be using simultaneous operations in moving to and 

from storage locations. 

Empirically-Determined Operation Times 

All travel time is essentially a function of the distance 

involved and the rate at which equipment travels. Other factors, such 

as turns negotiated, stopping and starting, and inclines are elements 

whose times must be calculated by observation. But since these maneu

vers are relatively independent of the particular warehouse, general 

times may be derived. The aisle will be assumed to be wide enough to 

permit normal and constant speeds. 

It is obvious that it is rather difficult to observe elements 

in a proposed warehouse. However, the elements are largely independent 

of the layout and can be obtained from similar operations in existing 

warehouses. 
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Average Time for Selection and Deposition 

Selection and deposition times are primarily a function of 

equipment. For instance, most fork trucks must turn perpendicular to 

the storage aisle in order to lift the unit load. Stacker cranes pivot 

on their trolley to position their forks, and overhead cranes generally 

grasp their load from above and lift it above other stacks to transport 

it. Each of the different types of equipment requires separate evalua

tion in selection and deposition. Since the time of these phases is 

highly dependent on the skill of the operator, empirical data will be 

needed. 

Height of Life 

One exception in selection and deposition time which may be 

evaluated on a basis of distance involved is the height of the lift to 

be made. The overhead crane's sequence of operation is reversed from 

that of the fork truck and stacker crane in that it lowers, selects, 

and lifts while the others lift, select, and lower. This makes no 

difference in the storage area if the overhead crane can pick the unit 

from the top. 

But in the marshalling area where it is assumed that unit loads 

are only one high, it is necessary for the overhead crane to lower its 

load from a height which cleared all the storage stacks to the floor, 

while other equipment types simply deposit theirs. 

If it is assumed that rates of lifting and lowering with a load 

or without are the same and are constant, the time to raise and lower, 

T^, is equal to twice the height of the lift, D^, times the rate of 

lifting and lowering, G . That is, 



27 

T 1 = 2(D 1)(G 1). (12) 

The average time is 

11 = 2(D 1)(G 1), (13) 

with 

I (hi+p)(k.-l)ai(t) 
D = ^ (14) 

2 I ct.(t) . i 
I 

If h. is the same for all unit loads, it follows that k. will l I 

be the same for all unit loads and thus, 

5 i = (h+pKk-i) ( 1 5 ) 

In the marshalling area it is assumed that the units load will 

be placed at a height corresponding to the carrying height, which is 

effectively zero. However, the overhead crane will have to lower its 

load to ground level. In an actual case it might be advantageous to 

have the marshalling area somewhat elevated to minimize this aspect 

of crane handling time and to permit use of gravity feeds. The model 

for the overhead crane, however, will be structured to use ground level. 

Therefore, the time Involved, T^ j is equal to: 

T = 2(h"-6 )G (for overhead cranes only) (16) 
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Maneuvering and Selection 

It is assumed that maneuvering and selection take the same time 

regardless of location. The time to maneuver equipment into position 

and back out, T^, and the time to pick or grasp the load, or deposit 

same, T^, are functions of equipment and possibly operator skill, and 

must be determined empirically. 

Therefore, total selection and deposition time, T,_, for stacker 

cranes and fork trucks on one cycle is equal to: 

T 5 = 2(T 3+T 4) + 2G 1D 1 (stacker cranes and fork trucks only) (17) 

For overhead cranes, T̂_ is equal to: 

T 5 = 2T 4 + 2G 1D 1 + 2(H"-6 )G (overhead cranes only) (18) 

or, 

T 5 = 2[T 4 + G 1(D 1+H" - e i ) ] (overhead cranes only). (19) 

Average Travel Time for Fixed Path Equipment 

Since the rate of travel for any piece of equipment is given, 

the travel time can be defined by defining the distances traveled. 

Determination of the average distance, broken down into elemental 

averages, will determine the average time. The total distance to be 

traveled on any one cycle is equal to the distance from a particular 

marshalling location to a particular storage location and back to a 
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possibly different marshalling location. This may be described in more 

detail by considering the layout used (Figure 8). For fixed path 

equipment, the total distance in a cycle is equal to the sum of the 

distance from the marshalling area to the main aisle, D , the distance 
m 

along the main aisle, D , the distance down a storage aisle, D , and 
a s 

these distances back to a possibly different marshalling location. 

D is defined as constant due to the characteristics of the marshalling m 
area, so it will be the same going and coming. Obviously, D g will also 

be the same going and coming on any particular cycle. D . is the out-
cl 1 

going distance along the main aisle. D is defined as incoming. See 
cl A 

Figure 9 for illustration of a typical path. The cycle distance, D , 

is equal to: 

D q = 2D m + 2D g + D + D a 2 (fixed path equipment only) (20) 

Average Storage Aisle Distance Traveled 

The average distance down the storage aisle, D , is the length 

of the aisle divided by two: 

( i 1 + e 2 ) a i ( t ) 
D g = \ ——; (fixed path equipment only) (21) 
s ^ e^3 

Average Main Aisle Distance Traveled 

An expression for the average value of D requires a more com-
cl 

plex development. An informal procedure will be used. There are j 
A 

aisles and marshalling locations and they are (2w +W ) apart (Figure 8) 
cl 
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Let b equal (2w +W ). The distance from aisle 1, the outside right a 

aisle, to the other aisles is b, 2b, 3b, (j-l)b, respectively. 

Since trips down any aisle are assumed equally likely, over a large 

number of cycles it would be expected that the same number of trips 

would be made down each aisle and an average value can be developed 

by considering all the possible combinations, adding the distances 

of these combinations together, and dividing by the total number of 

combinations. Starting from aisle 1, the total distance would be: 

o + b + 2b + 3b ... + (j-l)b = (1/2)j(j-1)b. (22) 

Similarly, from aisle 2, the total distance would be: 

b + 0 + b + 2b ... + (j-2)b = b + (l/2)(j-l)(j-2)b, (23) 

and from aisle 3: 

2b + b + 0 + b + 2b ... + (j-3)b = 3b + (1/2)(j-2)(j-3)b, (24) 

and from aisle y, with y = l,2,3,...,j: 

(y-l)b ... + b + 0 + b + ... + (j-y)b = (25) 

*5{y(y-l) + (j-y)(j-y+l)}b. 
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Summing this over all aisles, the expression is: 

I | Cy(y- l )+(j-y)(j-y+D] 
y=l 

and this expression reduces to: 

f I (y 2-y+: 2-yi +:-y: +y^-y) = 7 I (2y2-2y-2yj+j2+j) 
y 

: : : : : 
|[2Xy2.2Xj-2Xyj + I j 2

+ I j] 
y y y y y 

(26) 

(j+l)j(2j+l) -j(j+l)-j 2(j+l)+j 3+j 2 

| (2j 3+j 2
+2j 2+j-3j 2-3j) 

|(2j 3-2j) 

j ( j 2 - D b 

.2 Since there were i combinations, the average for D n or D n is J to al a2 

_ (fixed path 
D = D = [(: -l)b/3j] = (: -l)(2w"+W )/3j . equipment (27) a_L az a N only) 
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Time for Turning, Stopping and Starting 

The time for a turn, T r, and stopping and starting time, T_, 
D 7 

are functions of the equipment and operator and must be determined 

empirically. The equipment's speed along the main aisle or laterally 

is G , the speed down the storage aisle is G . It is assumed that the a s 
direction of a turn makes no significant difference in time. 

turns on a cycle is equal to the number of turns on all possible trips 

times the expectation that that number of turns will be made. If half 

the cycle is considered, either incoming or outgoing, there are two 

possibilities. There will be no turns if the marshalling location is 

on the same aisle and there will be two turns if the marshalling loca

tion is on a different aisle. The probability that the two are the 

same is 1/j and the probability that they are different is (j-l)j. 

The expected number of turns is therefore equal to: 

Since this describes half the cycle and the two parts of the cycle are 

independent, the expected number of turns for the total cycle, C, is: 

The number of turns is equal to C. The expected number of 

0(l/j)+2(j-l)/j=2(j-l)/j (28) 

(29) 
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Summary for Fixed Path Equipment 

Total travel time, T , is equal to: 

T Q = (2D +2D +D _+D _)G + CT_ + 2T„ (for fixed path (30) o m s al az a b / _. N equipment only) 

For fixed path equipment, the total cycle time, T , is equal 

to: 

T = 2(T_+T„) + 2G D, + (2D +2D +D ,+D _)G + CT r + 2T^ (31) c 3 4 1 1 m s a l a 2 a 6 7 

For fixed path equipment, the average cycle time, T , is equal to 

T = 2(T + T ) + 2G nD n + 2(0^+0 +D )G + 4(j-l/j)T„ + 2T„ (32) 
C O H J_ J_ in S clj_ cl D / 

where D^ is given by Equation 14, D g is given by Equation 21, and, 

D n = D n is given by Equation 27. al a2 

Average Time for Automatic Overhead Crane 

Determination of average times for the automatic overhead crane 

is similar to the fixed path analysis, except for the consideration of 

simultaneous operation. Only the areas which differ will be analyzed. 

The crane can move in two directions simultaneously (see Figure 9). 

It can move up or down the bay at rate G g while moving across the bay 

at rate G . The travel time up or down the bay, T , is equal to the a s 
distance involved, D , divided by the rate G g. Similarly, the travel 
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Storage Area 

Figure 9. Illustration of Path of Overhead Crane 
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time across, T , is equal to the distance across D , divided by G . 
a a a 

The total time T , to travel to or from any marshalling location y, 

to a storage location is equal to the maximum of the two: 

T n = max(T ,T ) (33) y a s 

It is assumed that (1^+8^) is the same for each storage location 

throughout the warehouse, and this distance, x , is obtained by calcu

lating the average value of (l.+6 0). Let x equal (w*+W /2), and the 
± 2 a a 

warehouse contains a number of locations of length x and width x . 
to s a 

Let x identify a particular storage location in the warehouse 
7 2 a.(t) 

with y = 1,2,3,...,2j , and z = 1,2,3,...,-^ . 

The term y also designates the marshalling location. Let y^ 

and y^ designate the starting and finishing rows, on a trip to or from 

a storage location. 

Then the time to travel to or from a storage location is: 

Tg = max 
(y, -y.c)x zx + D 
b Jf a s m G ' G 

a s 
(34) 

In order to determine the expected time for Tg, T , it is neces
sary to compute T and T for all possibilities, select the greater in 

a s 

each instance, sum the maxima together, and divide by the number of 

possibilities, which is 
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2 (a.(t)) 
4j — — , or 2j a i(t). 

Summary for the Overhead Crane Cycle 

For the overhead crane total cycle time is equal to: 

T c = T 5 + 2T g, (35) 

or 

T c = 2T 4 t (D1+H-9)G1 + 2T g + 2T y (36) 

The average total cycle time, f , is equal to: 

f c = 2T 4 + (D^H-0 )G + 2T g + 2T , (37) 

where is given by Equation 14 and T g would be established as 

described. 

Multiple Equipment in Warehouse 

All discussion thus far has ignored the possibility of more 

than one piece of machinery in operation simultaneously in the ware

house. The models developed are valid as long as each piece operates 

in areas restricted to other pieces. In a practical sense, this would 

be the only way to operate a stacker crane system--conceivable using 

one crane per aisle in a high volume operation. Any overhead crane 

would be severely restricted in operating with another crane in the 
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same bay unless each operated in one half of the bay. The fork truck, 

least sophisticated and therefore most flexible, suffers from no such 

problems. If the aisles are of sufficient width, they could pass at 

will. (It might be possible to operate multiple trucks in a warehouse 

with only a slight increase in operating time.) If aisles do not 

permit passing a dispatching system must be developed to prevent trucks 

from going down the same aisle. 

Since differences in operating time averages due to interference 

are directly dependent on operating methods, such as dispatching, this 

effect must be evaluated empirically. 

Estimations of Variance of Cycle Time 

The variance of a set of numbers is equal to the sum of the 

squares of the differences of the numbers from their mean divided by 

the size of the set, if each number is equally likely to occur. 

Therefore, it is possible to give expressions for variances of all 

time elements for which expected times were computed. Since it is 

assumed that the time elements are independent, the different elements 

are additive. 

Fixed Path Equipment Variance Estimation 

Assuming that speeds are constant permits relating the variances 
2 

of the time elements to the distances. Accordingly, a^, is the distance 
2 . . . . variance m lifting and lowering, a is the distance variance m travel-a 

2 . . . 

m g down the main aisle, and is the distance variance m traveling 

down the storage aisle. There is no variance in picking or depositing 

a load in the marshalling area or in traveling from the main aisle to 
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the marshalling area. Maneuvering the equipment into position and 
2 

backing it out again has a variance of a^. Time for picking or 
2 

depositing the load has a variance of a . The variance for turning 
2 2 time is a and for stopping and starting is a . 

2 
The total variance, a Q, for a complete cycle for fixed path 

o 
equipment is equal to: 

°8 = 4 G1°1 + 2 G a ( a a + a s } + 2 ( a 3 + a 4 + a 7 > + t+(l-l/j)og (38) 

Overhead Crane Variance Estimation 

For overhead cranes, lifting and lowering distance variance is 

the same as fixed path equipment. The maneuvering time variance is 
2 . . . 

zero. Picking or depositing variance is . Travel time variance is 
2 . . . . . 2 

a . Stopping and starting time variance is o . 
2 

The total variance for overhead crane travel time, Og, is equal 
to : 

2 9 9 9 9 2 
°8 = 4 G1°1 + 2 ( a 4 + 0 y a i ) ( 3 9 ) 

Uses of Estimates of Mean and Variance in Cycle Time 

If the probability distribution of cycle time is known, then 

queueing theory or simulation method may be used to compute certain 

methods of warehouse system effectiveness. For example, it may seem 

reasonable to assume service (cycle) times are M-Erlang. Then the 

following can be developed : knowing the mean and variance of the 
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cycle time, the parameter M (for an M-Erlang distribution) can be 

determined as follows: 

M = 
[f ]' c (40) 

But, in itself, the distribution of cycle times is inadequate, 

for no account has been taken of demand. It is demand, the rate of 

arrivals into the system, together with cycle time, that determines 

waiting time. The sum of waiting time and cycle time establishes the 

time in the system. 

Assuming Poisson arrivals of units with aggregate mean A and an 

Erlang distribution of service times, the queue properties can be 

specified. For a single servicing station: 

The average queue time = 
(Time spent waiting 
for service) 

M+l 
l2M; 

AT 

T 
- X 

(41) 

The average time in the system 
(Time in the queue plus time 
being serviced) 

Average queue length = 

M+l 
2M 

XT 

- 3 - 1 - x 
+ T 

M+l 
2M 

A2T 

- L l - X 

(42) 

(43) 
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Average number of units 
in the system = 

M+l 
2M 

2-
X T 

- X 
+ XT (44) 
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CHAPTER V 

ILLUSTRATIVE EXAMPLE 

This example is structured to indicate a path which a practi

tioner could use to compare different types of material handling 

systems in a warehouse. It assumes a certain amount of expertise on 

the part of the practitioner and the availability of needed factors. 

A manufacturer makes four different items, which are packed 

into boxes and assembled on three different size pallets; 40 x 40, 

48 x 40 and 48 x 48 (dimensions in inches unless noted). 

The equations can be used for many different types of pallets 

although in an actual situation items would probably be assembled on 

standard size pallets with height the only variable. Even this would 

not be variable if racks were used. If racks are not used, there must 

be at least two stacks for product in order to permit cycling merchan

dise . 

There are three different heights of the unit loads, (bu+p): 

48, 64, and 72. At peak inventory the unit distribution has been 

established to be: 

40 x 40 x 48 - 2000 units (n ) 

48 x 40 x 64 - 900 units (n 2) 

48 x 40 x 72 - 1000 units (n ) 

48 x 48 x 72 - 2500 units (n^) 
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Clear Height Determination 

In order to determine clear height in the building, the follow

ing relationships must be considered: 

H l = ( h i + p ) k l w i t h ( h i + P } = 4 ' 

H 2 = (h 2+p)k 2 with (h2+p) = 5 1/3' 

H 3 = H 4 = (h 3+p)k 3 with (h3+p) = 6' 

The lowest common multiples for H^ and H 3 are 24' and 48'. This 

makes k^ = 6 or 12 and k 3 = k^ = 4 or 8 and k 2 must be 4 or 9. 

The following possibilities are feasible for H* : H<: = 24, 

24 + 6, 48 or 48 + 6. Since the stacker crane under consideration is 

Type 2, and heights over 40' are impractical for this type of overhead 

crane system, (48+0) is eliminated. Judgement determines that the 

overhead crane system (0) will use H* = 2 4 + 0 ; the stacker crane 

system(s) will use H* = 48; and the fork truck system (F) will use 

H* =24. No other possibilities will be considered. 

No product design changes are anticipated in the future which 

will effect the dimensionality of the units. 

Floor Area Determination 

The number of stacks required at time t is as follows (assuming 

no first in-first out requirement) 



334 or 167 

a 2(t) 225 or 100 

a 3(t) 25 0 or 12 5 

a 4(t) = 625 or 312 

Since the unit loads are rectangular s^ and e^ are equal to 1. 

w* = 4'. Three-inch clearance is necessary for fork trucks and stacker 

cranes; 12 inches for overhead crane. The fork truck under considera

tion requires 8-foot aisles, the stacker crane required 6-foot aisles, 

and the overhead crane requires 10 feet of clearance in the overhead. 

The area required for the fork truck system (F) with a 24-foot 

clear height is: 

The area required for the stacker crane with 48 feet of clear 

height is: 

A (t) = £(l.+.25)a.(t)(4 +8/2) 
i 

AAt) = [(3.33+.25)334 + (225+250+625 )(4. 00+. 25 )]8 

A (t) = 46,968 square feet (F) 

A (t) = £(!.+.25)a.(t)(4+6/2) 
i 
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A 1(t) = [(3.33+.25)167 + (100+125+312)(4.00+.25)]7 

A (t) = 20,090 square feet (S) 

The area required for the overhead crane system with a clear 

height of 34 feet is: 

A l ( t ) = I ( V 1 ) a5 ( t ) ( 4 + 1 ) 

i 

A (t) = [(3.33+1)334 + (225+250+625)(4+1)]5 

A 1(t) = 33,225 square feet (0) 

The cubic footage required is 1,127,232 for the fork truck 

system, 964,320 for the stacker crane system, and 1,129,650 for the 

overhead crane system. 

Based on the expertise of the practitioner, it is decided to 

add a 20 per cent allowance for future expansion, so square footage 

is 56,000 for the fork truck, 24,000 for the stacker crane, and 40,000 

for the overhead crane. 

Establishing Dimensions 

The length and width of the building can be determined at this 

point. Width of the building is equal to (2W*+W )j, so 
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(2W"+W )j(length) = square footage. 

16j (length) = 56,000 (F), so j can be 14, and the length is 

250 ft., the width is 224 ft. 

14j (length) = 24,000 (S), so j can be 10 and the length is 

171 ft., the width is 140 ft. 

lOj (length) = 40,000 (0), so j can be 10 and the length is 400 

ft., the width is 100 ft. 

An additional 20 ft. will be added to the length of each build

ing for the marshalling area. 

The following empirical times and rates have been obtained for 

Time Estimations 

the fork truck: 

G 1 .030 min./ft. 

T = . 
4 

300 min. 

T = 
6 

.055 min. 

T 7 .020 min. 

G = a .0024 min./ft. 

So, for fork trucks: 

T = .640 + .06D 1 + .0024(40+2D +2D ) + .055C c a 
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The following items have been calculated: 

D 2 = 9.07 ft. 

D = 125 ft. 
s 

D = 74.3 ft. 
a 

So, the expected cycle time for the fork truck system is: 

f = .640 + .06(9.07) + .0024(40+250+149) + (.055)4(1 - 1/14) c 

T"c = 2.44 min. /cycle (F) 

The following empirical times and rates have been obtained for 

the stacker crane : 

G^ = .015 min./ft. 

T 3 + T^ = .150 min. 

T r = .060 min. 
6 

T ? = .020 min. 

G = .0020 min./ft. 
a 

D = 20 ft. 
m 

So, f for stacker cranes is: 
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f = .290 + .03B~ + .002(2D +2D~~+2D~~) + .10C 
c 1 m s a 

The following items are calculated: 

B~ = 21.H ft. 

IT" = 86 ft. 
s 

D~~ = 46.2 ft. 
a 

The expected cycle time for the stacker crane system is: 

T~~ = .290 + .03(21.4) + (HO+172 + 92) .002 + .40(1-1/10) c 

T~~ = 1.89 min/cycle (S) c 

The following empirical times and rates have been obtained for 

the overhead crane : 

G = .0025 min/ft. 
EL 

G = .0020 min/ft. 
s 

G 1 = .025 min/ft. 

T^ = .300 min. 

T ? = .020 min. 

So T_ for overhead cranes is: 
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T = .16 + (D,+24).050 + 2Exp(T ) 
c i y 

The following data can be calculated: 

by = 9 • 07 ft. 

~ = max(T ,T ) = max(.0025D ,.0020(D +D )) y a' s a s m 

If the operation was sequential, = 33 ft. and (D g+D m) = 

220 ft. would establish T~ = T~ + T~~ - (.08 2+.44) = .52 min. Since it 
y a s 

is not sequential, the expected time for T must be between .44 and 

.52. This means that an approximate time can be obtained by averaging 

these two extremes: 

T~~ = .44 + 1.65 + (.44 to .52) + .04, c ' 

so 

T~~ = 2.77 min. (0) 
c 

It is interesting to note that the overhead crane spends most 

of its time in lifting and lowering. If it was possible to place an 

elevated platform in the marshalling area so the crane need only 

deposit the load, T c would be reduced to 1.57 (0). 

This highlights the advantage of sequential operation. So 

reconsidering the stacker crane and considering it capable of lifting 
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and lowering while traveling, 

T~~ = .700 + max(Gn,D~,2(D +D +D )G ) (S) c 1' 1 m a s a 

T~~ = 1.29 to 1.89 = 1.59 (S) 
c 

Now three possible alternatives have been evaluated. Others 

can be dealt with just as simply. From this example, it can be seen 

that the stacker crane possesses a significant advantage in its 

ability to stack to much greater heights than the fork truck or the 

overhead crane. The former is limited by the visual position of the 

operator and the need for counterbalancing. Counterbalancing also 

limits the potential benefit in building fork trucks which can lift 

higher. This requires a larger counterweight and therefore would need 

wider aisles to maneuver adequately. The wider aisles offset the 

benefit of the higher lift. 

The overhead crane's limitation in stacking height is directly 

dependent on the strength and weight of the products it would be hand

ling. Its major benefit, traveling from point to point without the 

use of aisles, seems more amenable to a manufacturing rather than a 

storage environment. 

In a warehouse of any size, span width, which is equal to the 

width of the building (2 +W )j, becomes a limiting factor. An overhead 
w a 

crane warehouse necessarily becomes more tunnel like as the storage 

requirement grows. 
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Serious cost tradeoffs would probably be made between the 

stacker crane and the fork truck. The stacker crane costs more than a 

fork truck and it requires more expensive support to recognize its 

potential. Racks are almost mandatory, and overhead support certainly 

is. These costs would probably be more than compensated for by 

reduced square footage requirements. 

In this example, the stacker crane is a winner. It can operate 

faster with less total investment. In reality, this situation could 

easily be altered, not only by special circumstances, but by using more 

than one fork truck to compare against the stacker crane. If inter

ference among trucks is minimal, such that the expected cycle time for 

fork trucks does not become significantly higher, then it becomes 

necessary to consider demand and evaluate the queues for both systems 

in order to establish the expected time for each. 
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CHAPTER VI 

CONCLUSIONS 

It is felt that a properly done feasibility study for proposed 

material handling systems use these models or simplifications of them, 

since they represent the only formal structuring this problem has 

received. The study could be for a complete new warehouse, a new 

handling system, an expansion of existing facilities, or an analysis 

of an existing system. 

These equations provide means for a systematic approach to 

analyze a material handling system once inventories have been defined. 

They give the practitioner tools needed to depict alternatives and 

evaluate effects. 

Since the models were developed on a theoretical basis, there 

is an obvious need for validation before the results can be used with 

confidence. Despite this weakness, the models are still useful in 

comparative studies; and it is in evaluating possible configurations 

that they are most valuable. 

Substantial elements of the times are dependent upon empirical 

data. The only empirical data readily available is the 1954 fork truck 

study by Yale S Towne (now Eaton, Yale S Towne), excepting manufacturers' 

specifications in speeds and load capacity. The equations do not pro

vide all the answers: the practitioner must have a certain amount of 

expertise to obtain plausible results. 
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The time models are flexible since the elemental averages are 

separable. Alternate configurations in layout and equipment can be 

simply resolved. For instance, if a belt onveyor was added to a 

fork truck system with the belt running the length of the main aisle 

and into the marshalling area, its effect would be to shorten the 

effective cycle by the time it would take the fork truck to run into 

and out of the marshalling area (2D G ) and the time used in turning 
to m a 

up and down the main aisle (CT^). The elemental averages are extremely 

useful in analyzing which part of the operation is taking the most 

significant portion of time. 

Complex configurations can be analyzed by evaluating segments 

of the warehouse as complete studies. The segments can be combined by 

multiplying them by their percentage of activity and adding. If 

storage is completely random, the percentage of activity is solely 

dependent on the ratio of units in each segment. If not, it also 

depends on the relative popularity of each. 

Each system and subsystem must be evaluated separately and 

completely to develop comparisons. There is no preliminary point at 

which the models point out inferior systems. It is, of course, possible 

for external factors to reduce the number of choices. 

Some of the equations developed are extremely cumbersome and 

were ignored in the example. Although it is feasible to program these 

models for a computer, it is not felt to be practicable at this time, 

since there are many areas where an unprogrammable decision must be 

made. 



53 

The equations do not get beyond the marshalling area. Although 

this was deliberate to avoid decisions concerning delivery systems 

which should be more specifically tailored to the type of operation, 

these factors must be considered in designing the total system. 

No variations or effects are considered significant from weight 

or dimensionality. 

Multiple handling devices are not considered, since interactive 

effects are difficult to evaluate. If interaction can be eliminated 

by scheduling or zoning, the system can be evaluated as before. 

Recommendations 

There are several areas related to this study which would expand 

the usefulness of the tools it provides. Foremost is the need for 

empirical data in maneuvering operations with stacker and overhead 

cranes. Gathering these data would also permit validation of the 

models. 

The effects of interaction of equipment should be studied so 

multiple handling systems can be evaluated. It seems more logical to 

compare two or three fork trucks against one stacker crane. 

Decision rules should be developed for judgemental decisions, 

such as how high to stack, so complete computer programs can be 

written. 

Cost comparisons of the systems should be developed. Although 

there is little relationship between cost of building and cubic footage 

or usable height, typical building costs for each system could be 



established. The cost of power, maintenance and labor must be 

considered. 

Marshalling areas should be studied and models developed 

order to obtain the complete model for a warehouse. 
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GLOSSARY OF TERMS 

A line over a term represents the average of that term. 

A^(t) Total area required 

A^ Utilized area 

a^ Cross sectional area of a unit of product i 

b 2w- + W 
a 

c Number of turns 

D Distance along main aisle a 
D D outgoing al a 
D _ D_ incoming a2 a b 

D Distance from main aisle to marshalling area m 
D Cycle distance 

0 J 

D Distance from main aisle to storage location along storage 
aisle 

D Height of lift 

e^ Nesting factor of product i 

E[n.(t)] Expected value of n. in t 1 1 

(F) A designator for fork truck systems 

G Reciprocal of speed along main aisle 

G g Reciprocal of speed down storage aisle 

G^ Reciprocal of speed in lifting and lowering 

h^ Height of a unit of product i 

H. (h.+p)k. + 9 
1 I R I 
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H* max(H.) 
1 

i Designator for type of product 

j Number of aisles 

1^ The effective length of a unit of product i 

Number of units in a stack of product i 

M Number designating the member of the Erlang family 

n^(t) Number of units of the i types of product on hand at time t 

(0) Designator for overhead crane system 

p Pallet or rack allowance 

Total cube required 

Utilized cube 

r Number of rows 

(S) Designator for stacker crane system 

Shape factor 

t Time 

T^ Travel time across bay (0) 

T c Total cycle time 

T^ Time up or down bay (0) 
T max(T ,T ) y a' s 
T Q A point in time at which increasing demand rate equals input 

T^ Time to raise and lower 

T 2 2(H*-6 1)G 1 (0) 

T^ Time to maneuver into position and back out 

T^ Time to pick or grasp 

T_ Total selection and deposition time b 



Time for a turn 

Time to stop and start 

Total travel time 

Variance of n. over t 1 

Width of aisles (storage and main) 

Width of unit of product i 

max (W.) 
1 

1 
max (W. in row r) 
i 

Designation of starting row 
Designation of finishing row 

Smallest integer larger than n.(t)/k. 
i i 

Mean of poisson arrival rate 

Warehouse demand rate 

Warehouse input rate 

Clearance factor in overhead 
W /2-Aisle clearance for overhead cranes a 

Time variance in traveling main aisle 

Time variance in traveling storage aisle 

Time variance in traveling in bay (0) 

Time variance in lifting and lowering 

Time variance in maneuvering into position 

Time variance in picking or depositing 

Time variance in turning 



Time variance 

Time variance 

Time variance 

in turning 

in stopping and start in] 

in total cycle 
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