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SUMMARY

We present a variational method for unfolding of the cortex based on a user-chosen

point of view as an alternative to more traditional global flattening methods, which incur

more distortion around the region of interest. Our approach involves three novel contribu-

tions. The first is an energy function and its corresponding gradient flow to measure the

average visibility of a region of interest of a surface from a given viewpoint. The second is

an additional energy function and flow designed to preserve the 3D topology of the evolv-

ing surface. This latter contribution receives significant focus in this thesis as it is crucial to

obtain the desired unfolding effect derived from the first energy functional and flow. With-

out it, the resulting topology changes render the unconstrained evolution uninteresting for

the purpose of cortical visualization, exploration, and inspection. The third is a method that

dramatically improves the computational speed of the 3D topology-preservation approach

by creating a tree structure of the triangulated surface and using a recursion technique.

x



CHAPTER 1

INTRODUCTION

In this work we present a novel algorithm that maximizes the visibility of a triangulated

surface with respect to a fixed external viewpoint by evolving the surface locally. We

propose an energy that measures the visibility of a surface with respect to a viewpoint

and then we evolve the surface by a gradient along the proposed energy. The result is

a continuous unfolding of the surface with respect to the user’s external viewpoint that

allows the user to view the deeper self-occluded structures of the surface.

Our approach involves three novel contributions. The first is an energy function and

its corresponding gradient flow to measure the average visibility of a region of interest on

a surface from a given viewpoint. The second is an additional energy function and flow

designed to preserve the 3D topology of the evolving surface. This latter contribution is

crucial to obtain the desired unfolding effect derived from the first energy function and flow.

Without it, the resulting topology changes render the unconstrained evolution uninteresting

for the purpose of visualization, exploration, and inspection. The third is a method that

dramatically improves the computational speed of the 3D topology-preservation approach

by creating a tree structure of the 3D triangulated surface and using a recursion technique.

The proposed approach for visibility maximization could have several applications in

the area of medical imaging. For instance, it could be used in human brain mapping to

unfold a specific part of the cerebral cortex while introducing little distortion or to visually

explore and validate the deep sulcul structures extracted by cortical surface segmentation

algorithms. In addition, the proposed approach may also have a number applications in

computer graphics. For example, it could be used for the visualization of complicated

surfaces at a specific area and for the visual inspection of texture mappings onto com-

plex geometries. Moreover, our novel 3D topology-preservation approach may be useful

for applications not related to visibility maximization. For instance, in medical imaging,

topology preservation is often used in evolution models for the purpose of segmentation.



This thesis is organized as follows. In Chapter 2 we briefly discuss the history of both

the visibility and the surface flattening problem. Some of their main applications are pre-

sented together with some of the most recent works in these areas. In Chapter 3 we present

the results of research we have done on partial differential equations (PDEs) techniques

for cortical shape analysis. Besides having important applications in some areas of med-

ical imaging, these techniques served as the starting point when we first considered the

visibility-maximization problem. In Chapter 4, for the sake of simplicity and better insight

into the 3D case, we describe our framework for visibility maximization in 2D (i.e., planar

contours viewed from an external point by someone positioned in the same plane). We

also discuss in this chapter part of our initial investigation on the visibility-maximization

problem, including the maximization of the visibility of a surface with respect to another

surface. In Chapter 5 we extend our viewpoint-based visibility-maximization approach in

a straight-forward manner to the more relevant 3D case and show simulations on both syn-

thetically generated triangulated surfaces as well as triangulated surfaces extracted from

segmentations of real data (cerebral cortex). In this chapter we also present a novel 3D

topology-preservation method, which is crucial for our visibility application. Finally, in

Chapter 6 we provide a summary of our contributions and discuss future work.
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CHAPTER 2

ORIGIN AND HISTORY OF THE PROBLEM

Visibility-maximizing flows have never been attempted before. As a result, we cannot

provide or discuss any previous work truly related to the main focus of this thesis. Nev-

ertheless, in this chapter we present a brief introduction to both visibility computation and

surface flattening, which are in some degree related to our work.

2.1 Visibility

In the more general definition of visibility, two points are considered to be mutually visible

if the line segment that connects them is not occluded. Therefore, the problem of visibility

consists of finding the point or set of points that is visible from another point or set of

points.

A wide variety of visibility-related problems appear in many different research areas

such as computer graphics, computer vision, computational geometry, and robotics, just to

mention a few [1]. Applications of visibility include shadow computations [2], rendering

[3], etching [4], object recognition [5], and many others.

The visibility problem has been of particular interest in computer graphics since the

early days of the field. For instance, the classical problem of hidden surface removal (HSR),

also called visible surface determination (VSD), is to determine which parts of an object

are invisible from a given point, called the viewpoint, so that they need not be rendered,

thereby reducing the number computations necessary to process the given object [6].

A number of HSR algorithms were developed in the late ’60s and early ’70s [7, 8].

Some of these algorithms, such as the one proposed by Arvo and Kirk [9], use a technique

called ray shooting to compute visibility along a single ray. This approach computes the

first intersection of a given ray with an object in the scene. Ray shooting is still used today

in global illumination methods [10].
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Another HSR algorithm, called the z-buffer, was proposed by Catmull [11, 12]. The

z-buffer has been very popular and, together with its later variations, is commonly used

today in interactive applications because of its simplicity and robustness [10]. In Catmull’s

algorithm a depth value is stored for each pixel of the image. If the point being scan-

converted is not farther from the viewer than the point whose depth is currently in the

z-buffer, then the new point’s depth replaces the old value.

The construction of the visibility map is another type of visibility from a point problem

[13]. It is used to describe the topology of the view of the scene. One of its applications

includes visibility culling, a technique used to reject, in a fast way, invisible parts of the

object being viewed before the actual HSR algorithm is applied. Accordingly, the compu-

tational cost of processing the image is reduced since just an estimate of the visible surface

has to be analyzed. Several algorithms such as those in [14, 15, 16, 17] have been proposed

to produce efficient visibility culling.

Visibility has also been used in mesh simplification algorithms so that the polygon

count of a model can be reduced while maintaining the overall shape and appearance of the

model, thus reducing the model storage cost and later processing time [18]. In the work

proposed by Zhang and Turk [18], the visibility of a point in the surface of an object is

computed as the weighted percentage of the cameras, in a surrounding sphere of cameras

(camera space), from which the point is visible. The dot products between the viewing

directions and the surface normal at the point are used to weight the camera space. This

visibility measure is then used in a mesh simplification procedure.

Sethian [19] presented a novel idea to determine whether a point in the scene is visible

from a given point by using the minimal geodesic distance between the points, that is the

length of the shortest path between the two points in the presence of obstacles. In Sethian’s

approach, the geodesic distance, which is computed by solving the Eikonal equation, is

compared to the Euclidean distance and visibility is determined by how numerically close

those distances are. This approach may be suitable for applications in which the surfaces

4



are implicitly represented. However, Tsitsiklis [20] showed that Sethian’s approach can be

very expensive, computationally speaking, and prone to problems of accuracy.

Another novel approach for computing visibility within an implicit framework was pre-

sented by Tsai et al. [21]. In this approach, which was a continuation of the work in [22],

the surface of the objects in the scene are represented as the zero level set of a function and

the visibility problem is formulated as a boundary value problem for a first-order partial

differential equation in such a way that a proposed algorithm is able to construct the inter-

face separating the visible parts from the invisible ones. The approach is then extended to

the case in which the source of light moves and the dynamics of shadow boundaries are

analyzed.

Because of the ever increasing amount of information of 3D models, most classical

visibility algorithms are not suitable for real-time applications. As a result, new approaches

in different areas, such as those in [1, 14, 23, 24, 25, 26, 27], have been developed over the

years to overcome this problem.

A number of excellent surveys on visibility and its application have been published

[1, 8, 10, 28, 29] to which we refer the reader for a comprehensive treatment of the visibility

phenomenon.

2.2 Surface Flattening

Surface flattening is a procedure in which a 3D surface is mapped into a 2D plane for the

purpose of visualization and study of the given surface. If the mapping is carried out by

simply projecting the 3D surface onto a viewing plane, then some parts of the surface would

hide others, which would not be desirable. Instead, surface flattening attempts to unfold

the 3D surface in such a way that the result can be presented in a single planar image.

The origin of the surface-flattening problem dates back to a time long before comput-

ers were invented. It had to do with the making of footwear and clothing and was, of
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course, solved manually [30]. Nowadays, surface flattening is present in a number of in-

dustries and, because of its many applications, is widely studied in several fields such as

computational geometry, computer graphics, cartography, computer-aided design (CAD),

and medical imaging.

In the textile and footwear industry, for example, surface flattening is used to generate

2D patterns from the 3D clothing. These 2D patterns are expected to produce the original

3D shape once they are sewn together. In fact, one of the first works in surface flattening

was proposed by Darwill et al. [31] and is related to shoe manufacturing.

Another field where surface flattening has been used for a long time is cartography,

where flattening of the sphere is the main problem. Several different methods have been

proposed to solve this problem [32, 33]. Some of them focus on preserving angles, while

others focus on preserving distances.

In addition, surface flattening has become very popular in medical imaging because it

can help to detect anatomic abnormalities. For example, several surface algorithms [34,

35, 36] have been proposed to flatten the computer tomographic (CT) images of the colon

surface onto the plane so that polyps, the precursors of cancer, can be detected. Another

application was proposed by Angenent et al. [37], where a technique is presented to flatten

the brain to a sphere so that its geometry can be studied.

In general, most 3D surfaces are non-developable, that is, they cannot be flattened with-

out deformations or cuts. As a result, surface flattening algorithms have to preserve dis-

tances and angles as much as possible to minimize distortion. Some surfaces, however,

are developable and, consequently, they can be flattened (unfolded) without any distortion.

Faux and Pratt [38] showed that a surface is developable when its Gaussian curvature is

zero everywhere.

Many different algorithms have been proposed to flatten developable surfaces [39, 40,

41]. In fact, the first algorithms proposed in the area were tailored to solve this particular

problem. This is a natural result because the origin of the problem comes from the manual
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flattening of this type of surface. Other algorithms, such as those in [42, 43, 44], have been

proposed to generate developable surfaces so that the resulting flattened surface has little

distortion. Even though these proposed algorithms may differ in the approach they use, in

all of them the user has to input two directions and a flattening origin [30].

Another group of algorithms has been proposed to address the issue of flattening non-

developable surfaces. Unlike those tailored to the flattening of developable surfaces, these

algorithms produce a piecewise flattening. This is the case in [45, 46, 47]. In these ap-

proaches the unfolding is stopped if the distortion error is considered unacceptable. In such

cases the algorithm is restarted from another point in the 3D surface.

Regardless of the type of 3D surface to be flattened, surface flattening algorithms may

differ in the actual approach they use. For instance, in the works of Ma and Lin [48] and

Schartz et al. [49] an optimization technique is used to minimize a global metric that

takes into consideration the geodesic distance between each point and its direct neighbors.

This technique, however, has the problem of offering no control on the distribution of the

remaining distortions. Other works, such as those by Bennis et al. [45] and Zigelman et

al. in [50], use texture mapping for surface flattening. In the particular case of the work

of Bennis et al., the flattening of a region grows around an isoparametric curve selected

by hand until a fixed distortion threshold is reached. Then, the isoparametric curves in

the surfaces are mapped onto curves in the texture plane in such a way that the geodesic

curvature at sample points are preserved. One of the disadvantages of this technique is the

generation of surface cuts, which are undesired for the purpose of visualization. Another

disadvantage is that distances are not preserved in the flattened surface.

Surface flattening can also be carried out by surface parameterization. In this approach

the 3D surface is decomposed into discrete patches that are later piecewise mapped into

a 2D plane in such a way that the distortions are minimized via a linear or a non-linear

solver. Several methods that use this approach have been proposed [51, 52, 53, 54, 55, 56].

The main difference between them is the way in which they measure and minimize the
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distortions introduced by the parameterization [57]. Some of these proposed approaches,

such as those proposed by Haker et al. [54] and Levy et al. [55], use conformal mapping.

Among the advantages of using conformal maps is their angle-preserving property, which

allows the preservation of the local shape. Another advantage is that they are stable and

easy to compute. On the other hand, conformal maps have the disadvantage of sometimes

creating a lot of distortion [45].

Another technique for surface flattening is called curved planar reformation [58, 59, 60].

This simple technique extracts and then flattens a developable ruled surface. This approach

has the problem of introducing discontinuities at the junction of two ruled surfaces, espe-

cially if the 3D surface is highly convoluted [61].

An interesting flattening method for triangulated surfaces was presented by Zhong and

Xu [57]. In this approach, winged triangles that share the same edge are unfolded by a

wrapping force field. The surface is then forced to collide with a given plane once most

winged triangle pairs have been unfolded. Unlike many other surface-flattening methods,

this one does not need a one-to-one mapping procedure to obtain the initial flat panel.

Hermosillo et al. [62] proposed normalized mean curvature flows together with a track-

ing framework that can be used to unfold the cerebral cortex via level set methods. This

work, which is the the 3D extension of the work by Sapiro and Tannenbaum [63], provides

the smoothing of a closed surface without shrinkage.

Several surface flattening methods that evolve a surface for the purpose of visualization

have been proposed in the past. However, as we have mentioned, traditional surface flat-

tening techniques are global, with no dependence on the user’s viewpoint external to the

surface itself, and most of these global techniques (with a few notable exceptions such as

[62, 57]) do not produce an evolution of the surface itself that can be interactively halted

as soon the desired level of visibility is achieved (which typically does not require a full

flattening of the surface). As such, because of both the global nature and the full flattening

effects of traditional techniques, much more distortion is incurred than necessary, espe-
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cially if the user is interested in viewing only a localized part of the surface. Recently, a

more general approach for surface unfolding was proposed by Pons et al. [64] in which an

application-specific normal motion is used to evolve a cortical surface while a tangential

motion is used to preserve its area.

Surface flattening has become a very active field and novel approaches [65, 66, 67] are

often proposed. They offer new methods or improvement of old methods to perform flat-

tening as well as to control distortion. The works in [30, 61] provide an excellent overview

of the different surface-flattening approaches.
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CHAPTER 3

PRELIMINARY PDE TECHNIQUES FOR CORTICAL
SHAPE ANALYSIS

In this chapter we include part of the research we have done on cortical shape analysis.

Specifically, we present novel techniques for the computation of correspondences between

annular surfaces and for the representation of a surface via harmonic embedding. These

results, which we published in [68, 84, 70], have important applications in some areas of

medical imaging. They also served as the starting point for our initial consideration of the

visibility-maximization problem.

3.1 Correspondence Between Annular Tissues

Many parts of the human body have an annular tissue structure composed of two or more

quasi-homogeneous tissues nested within one another. For example, the cerebral cortex

is composed of gray matter “sandwiched” between white matter on the inside and cere-

brospinal fluid on the outside [71, 72, 73, 74]. Another example is the left ventricular

myocardium, which is intrinsically annular when viewed from cross-section images such

as those obtained using magnetic resonance imaging (MRI) or computed tomography (CT)

[75, 76].

A variety of methods have been described and used to compute correspondences within

annular regions. Most methods are ad hoc, often manually assisted, and have accuracies

that are highly dependent on the boundary shapes and on the person analyzing the images.

Jones et al. [77] proposed an approach based on solving Laplace’s equation in the annular

region and defining unique correspondence trajectories running between the boundaries on

lines orthogonal to equipotential contours. This approach yields unique correspondences

without paradoxes (see [78, 79]), and provides a strong initial basis for making correspon-

dence and gridding of annular regions unique, accurate, and repeatable. The approach by
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Figure 3.1: Inner and outer boundaries of tissue region R and a correspondence trajectory.

Jones et al. is Lagrangian, meaning that paths from one boundary to the other are explicitly

traced (using numerical integration of the gradient field of Laplace’s solution). Yezzi and

Prince [78, 79] later proposed an Eulerian approach in which partial differential equations

are solved for the desired correspondences, thereby avoiding the explicit construction or

tracing of any correspondence trajectory.

Let R ⊂ Rn for n = 2,3 be a spatial region with a simply connected inner boundary

∂0R and outer boundary ∂1R (see Fig. 3.1). These boundaries have a sub-voxel resolution

and are usually given as level set representations of some given functions. Now, let u be

a harmonic function in R such that u(∂0R) = 0 and u(∂1R) = 1. The normalized gradient

vector field of u coincides with the tangent vector field of the correspondence trajectories

and is given by −→T =5u/u. Figure 3.2 shows the harmonic interpolant u and the tangent

vector field −→T corresponding to the annulus between a circle and an ellipse.

There exist several numerical methods that can be used to compute the harmonic inter-

polant u given by ∆u = 0 and subject to u(∂0R) = 0 and u(∂1R) = 1, where ∆ is the Laplace

operator [80]. In [70] we adapted the method called harmonic embedding proposed by Duci

et al. [81] to our needs by expressing u as the linear combination of a strategically-chosen

set of harmonic functions than can be easily computed. Results show that highly accurate

harmonic functions can be obtained by using this novel technique.
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Figure 3.2: Synthetic annular region between and ellipse and a circle. (a) Region. (b)
Harmonic interpolant. (c) Tangent field.

It is often useful to find the corresponding boundary points, that is, the points x0 ∈ ∂0R

and x1 ∈ ∂1R such that the correspondence trajectory going from x0 to x1 passes through

x (see Fig. 3.1). Since the correspondence trajectories have the property that they do not

intersect each other, there is only a pair of points, x0 and x1, satisfying this condition.

Having unique corresponding boundary points in both ∂0R and ∂1R for every grid point in

R allows the generation of anatomically shaped discrete grids within the tissue region that,

among other applications, can be used to subdivide the annular tissue, to create a mesh

for finite element analysis, and to elaborate coordinates in which determined functions can

be reported [79, 82]. Since for a given x in R the corresponding boundary points are just

the intersections of the constructed trajectory with the inner and the outer boundaries of

R, they are readily computed using the Lagrangian approach. However, this approach is

computationally intensive, especially when images are large or three dimensional. That is

why Yezzi and Prince [79] proposed a novel method to compute correspondences within

an Eulerian framework. We now elaborate on this extension.

Let φ0 : Rn → Rn and φ1 : Rn → Rn be defined as the correspondence functions that

map x ∈ R to the inner and outer boundaries of R, respectively. One of the two condi-

tions that both φ0 and φ1 must satisfy is that they must remain constant along the corre-

spondence trajectories, implying that their directional derivatives vanish along the direc-

tion given by −→T . For n = 3, we can expand the correspondence functions as follows:

φ0(x) =
(
φ x

0(x),φ y
0(x),φ z

0(x)
)

and φ1(x) =
(
φ x

1(x),φ y
1(x),φ z

1(x)
)
. Since all of these func-

12



tions must remain constant along the direction given by −→T , we have φ
j

i ·
−→T = 0 for i = 0,1

and j = x,y,z, which can be rewritten in a more compact form as (5φ0)
−→T = (5φ1)

−→T = 0

where 5φ0 and 5φ1 denote the Jacobian matrices of φ0 and φ1, respectively. In addition,

each correspondence function must map a point on its own boundary to itself as well, which

yields another set of conditions, given by φ0(x) = x ∀x ∈ ∂0R and φ1(x) = x ∀x ∈ ∂1R. As

shown by Yezzi and Prince [79], φ0 and φ1 can be computed by using upwind schemes.

Specifically, for ∆x = ∆y = ∆z = 1 the resulting finite difference equations are

φ0[i, j,k] =
|Tx|φ0[i∓1, j,k]+

∣∣Ty
∣∣φ0[i, j∓1,k]+ |Tz|φ0[i, j,k∓1]

|Tx|+
∣∣Ty
∣∣+ |Tz|

(3.1)

and

φ1[i, j,k] =
|Tx|φ1[i±1, j,k]+

∣∣Ty
∣∣φ1[i, j±1,k]+ |Tz|φ1[i, j,k±1]

|Tx|+
∣∣Ty
∣∣+ |Tz|

, (3.2)

where the terms i±1, j±1, and k±1 are as defined in

i±1 =

 i+1, Tx > 0

i−1, Tx < 0
, j±1 =

 j +1, Ty > 0

j−1, Ty < 0
, k±1 =

 k +1, Tz > 0

k−1, Tz < 0
. (3.3)

These difference equations can be efficiently solved if an iterative algorithm is used, as

shown in [78].

The main advantage of the Eulerian approach for correspondences is its computational

speed - several times faster than the Lagrangian approach [78, 79]. On the other hand, the

Eulerian approach does not yield the highly accurate results that the Lagrangian approach

yields. This is mainly due to two factors. First, in the Eulerian PDE approach for corre-

spondences there is a loss of precision when setting up the boundary conditions for φ0 and

φ1, as grid points are set up to be equal to their coordinate positions. This is mostly the

case because both the inner and the outer boundaries exist at an inter-pixel level and rarely

contain a grid point.
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We may encounter another problem when solving (3.1) and (3.2) as well. Careful ex-

amination of (3.1) and (3.2) reveals that the computed values of φ0 and φ1 at x are convex

combinations of φ0 and φ1 at grid points that are neighbors of x. Therefore, it is possible

for x to be mapped either far outside the boundary or far inside the boundary, depending on

the boundary’s curvature. This problem can be quite severe, especially for objects having

highly detailed boundaries. The maps computed this way do not have pixel accuracy, much

less the sub-pixel that is sometimes required in applications.

In [68] we create a natural way to blend the Lagrangian and Eulerian PDE approaches

so that the resulting method yields more accurate results than the Eulerian PDE approach

while requiring less computation time than the Lagrangian approach. In our approach we

modify the previous Eulerian approach to obtain a new hybrid algorithm with prescribable

accuracy and the minimal possible sacrifice in speed.

The first step to increase the accuracy of the Eulerian PDE approach is to improve the

boundary conditions of the PDEs involved. We do this by using the Lagrangian approach

to compute the values of φ0 at the grid points of R located immediately next to the inner

boundary. Similarly, we use the Lagrangian approach to compute the values of φ1 at grid

points immediately next to the outer boundary. Once we have computed these values, we

use the Eulerian PDE approach to solve for φ0, and φ1 at the remaining grid points. In

doing so, not only do we obtain more accurate values near the boundaries, but also we

avoid propagating larger computational errors throughout the whole region R. Since these

grid points are at most one grid away from the boundary, the explicit computation of their

correspondence trajectories does not require extensive computations.

Once the initial conditions for the Eulerian approach have been improved, the next step

is to guarantee that points be mapped as closely as desired to the boundaries. This can

be done by making some changes to the order transversal algorithm proposed in [78]. In

this algorithm points are visited in the order that they are reached by the correspondence

trajectories as they flow away from the known boundary. As a result, only one full sweep
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through the grid points in R is required to solve for φ0, followed by one other sweep, but in

a different direction, for φ1.

Let λ be a chosen tolerance constant. As we will explain shortly, λ will provide a means

to control the precision of the proposed hybrid approach. In the 2-D case, when comput-

ing φα [i, j] (where a could be either 0 or 1) the idea consists of obtaining first the distance

between the initially calculated values of φα [i±1, j] and φα [i, j±1]. If this distance is less

than λ , then we can assume that their correspondence trajectories do not diverge a lot as

they approach the boundary and that the error accumulation is small, resulting in a very

good precision. If, however, the distance is equal to or larger than λ , then we will need to

compute φα [i, j] using another technique. One thing we can do is just use the Lagrangian

approach and follow the correspondence trajectory for this particular grid point until we

reach the corresponding boundary. By doing so, we are taking full advantage of the La-

grangian approach and getting an accurate value. However, a faster way would be to follow

the correspondence trajectory until it reaches a horizontal or vertical line between two grid

points that have already been solved such that the distance between the two boundary maps

is less than the tolerance λ . If they are close enough, we use the linear interpolation implicit

in the discretized Eulerian PDE approach to estimate the value of φα [i, j] at that point (since

φα is constant along the correspondence trajectories, this is the value of φα at the original

grid point); otherwise, we continue following the trajectory and doing the same procedure

until we find two correspondences that are close enough according to the desired tolerance.

This procedure is shown in the algorithm in Appendix A. The algorithm for computing φ1

is almost the same as above with minimal differences as specified in [84].

Figure 3.3 shows some correspondence trajectories as well as a some generated grids for

a myocardial MR image, evidencing the need to form curved correspondence trajectories

in some parts of the annular region.

Besides computing correspondences at the same time and in a very fast way, the hybrid

Eulerian-Lagrangian approach has two more important advantages. First, it terminates
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Figure 3.3: Myocardial from a short-axis MR image. (a) Endocardial and epicardial con-
tours. (b) Tangent field. (c) Boundary correspondences for some selected points. (d)
Generated grids.

automatically so we do not have to keep testing for convergence. And second, the desired

tolerance λ gives us a way to control the accuracy of the computed values. If λ is very

large, the hybrid Eulerian-Lagrangian approach will be nothing more than the Eulerian

PDE approach with improved initial conditions, whereas if λ is 0, the hybrid Eulerian-

Lagrangian approach will yield the same results as the Lagrangian approach.

3.2 Harmonic Embedding

In the previous part of this work the definition of correspondences for an annular region R

was based on the gradient flow of a harmonic interpolant u that is equal to 0 in the inner

boundary ∂0R and equal to 1 in the outer boundary ∂1R. Therefore, the more accurate the

estimation of u is, the better the estimations of correspondences are going to be. When

computing its values, the harmonic function u can be approximated by just assigning 1s

to the grid points on or outside ∂1R and 0s to the grid points on or inside ∂0R and then

solving iteratively for grid points inside R using any appropriate iterative method such as

Gauss, Gauss-Seidel, and Multigrid. This approach has the advantage of being fast and

easy to implement. On the other hand, its main disadvantage is that the resulting harmonic

function is most of the time different from 1 on the given outer boundary and different

from 0 on the given inner boundary because those boundaries are typically inter-pixel. As

a result, the harmonic function computed in this manner is slightly different from the one

we really wish to find. We may overcome this problem by adapting the technique proposed
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by Duci et al. [81], called harmonic embedding, to our specific needs. This work has

already been presented in [84, 70] and is summarized below.

Let P0 =
{

p0,i
}

i=1,...,m be the set of grid points in the inner boundary ∂0R or just next

to it, but not in R. Similarly, let P1 =
{

p1, j
}

j=1,...,n be the set of grid points in the outer

boundary ∂1R or just next to it, but not in R. In addition, let P be the set of all grid points

located in R. We now define a basis of harmonic functions, u0,i and u1, j, satisfying the

following conditions:


∆ui, j(x,y) = 0, f or (x,y) ∈ P

ui, j(x,y) = 1, f or (x,y) = pi,, j

ui, j(x,y) = 0, f or all other P0 and P1

. (3.4)

Both u0,i and u1, j can be easily solved using any iterative procedure such as those previously

mentioned. Now, let u be a linear combination of these basis functions, i.e.,

u =
m

∑
i=1

α0,iu0,i +
n

∑
j=1

α1, ju1, j, (3.5)

where αi, j ∈ R. By construction, u is harmonic because it is a linear combination of har-

monic functions. So, the problem now consists of finding the appropriate coefficients αi, j

so that u(∂0R) = 0 and u(∂1R) = 1. This can be done offline by the gradient descent

procedure described in [81].

The harmonic embedding representation can be easily extended to 3D contours within

a spherical annulus, as shown in Figs. 3.4 and 3.5, where the 3D evolutions from the

initial estimates to the target contours are depicted. The harmonic embedding representa-

tion has many others applications. Figure 3.6 shows the average shape obtained by just

averaging the coefficients. In addition, convex combinations of the harmonic embedding

representations can be easily computed by just doing a weighted average of the coefficients

to continuously interpolate between the two shapes (Fig. 3.7).
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Figure 3.4: Evolution of an initial estimate to the minimum of the set-symmetric difference
that is used to find the best harmonic embedding. (a) Initial contour estimate. (b)-(e)
Evolutions. (f) Target contour.

Figure 3.5: Evolution of an initial estimate to the minimum of the set-symmetric difference
that is used to find the best harmonic embedding. (a) Initial contour estimate. (b)-(e)
Evolutions. (f) Target contour.
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Figure 3.6: Average shape between (left) and (right) computed by averaging (center) the
corresponding coefficients.

Figure 3.7: Convex combinations of the two harmonic embedding representations shown
in (top left) and in (bottom right).
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CHAPTER 4

PDE TECHNIQUES FOR VISIBILITY
MAXIMIZATION

The object of this work is to create an algorithm that maximizes the visibility of a

surface with respect to a fixed external viewpoint by evolving the surface locally in a con-

venient way. Indeed, we propose a novel energy that measures the visibility of a surface

with respect to a fixed viewpoint and then we evolve the surface by a gradient descent along

the proposed energy. One would expect that the most immediate act would be an evolution

of the surface that would allow one to see the parts of the surface that are immediately oc-

cluded by the surface itself. Consequently, this work would be suitable for the exploration

and visualization of complicated surfaces.

Even though the real applications of our approach are in 3D, this chapter is focused

only on 2D visibility maximization so that we can get a better insight into the 3D case,

which is described in the next chapter.

This chapter is divided into two sections. In the first section we describe some of

the first approaches we tried for visibility maximization. Specifically, we show how we

changed from trying to maximize the visibility of a contour with respect to another contour

to trying to maximize the visibility of a contour with respect to a fixed viewpoint. In the

second section we describe our viewpoint-based visibility-maximization approach for the

case of polygons and differentiable contours. We cover in detail the geometric constraints

that are needed for our proposed approach to work properly. We conclude the chapter by

presenting several simulation results that we have already published in [83, 84].

4.1 Visibility Maximization

Initially, our goal was to maximize the global visibility of a contour, that is, we wanted

to evolve the contour so that it becomes more visible from another surface. To do this,
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Figure 4.8: Visibility with respect to a viewing circumference.

we first found a way to measure the visibility of a point in a contour. Then, we created

an energy representing the sum of the values of the visibility of each point in the surface.

Accordingly, we expected that the maximization of this energy would have an unfolding

effect of the given contour.

Consider Fig. 4.8, where a contour C is located inside a viewing circumference. The

figure shows the arc in the viewing circumference from which the point a in C is visible. If

we find the corresponding visible arc for other points in C, such as points b and c, then we

will notice that some points can be viewed from a larger arc in the viewing circumference

than others. This is natural because we cannot expect the length of the viewing arc to be

the same for each point in C. In fact, that just occurs when C is also a circumference.

We can define the visibility of C with respect to a viewing circumference as the sum

of the lengths of the visible arc for each point in the contour. It can be maximized by

minimizing the region of the viewing circumference from which each point in C is not

visible. That is, the global visibility of C with respect to the viewing circumference can be

maximized by minimizing the following energy :

E(C) = r
∮

C

∮
C,ŝ6=s

1− C(s) · (C(ŝ)−C(s))√
‖C(ŝ)−C(s)‖2 r2− (C(s)T J C(ŝ))2

 (C(ŝ)−C(s))T JT Cŝ(ŝ)
‖C(ŝ)−C(s)‖2 dŝds, (4.6)
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where s is the arclength parameter, J is the 2D rotation matrix, and r is the radius of the

viewing circumference. Unfortunately, the gradient flow along this energy is the curvature

times a constant. Therefore, the evolution of a contour based on this energy will just smooth

the contour, not unfold it.

Another approach for maximizing the global visibility of a contour is depicted in Fig.

4.9. This figure shows the occluding part of a contour C for a given point a. Accordingly,

the occluding part (i.e., the part of the contour that goes from point b to point c) is blocking

point a from being visible from other parts of the contour. For each point in C, the occluding

part, if any, is defined by two extreme points (points b and c in this case). In first one (point

b), the viewing direction coming from point a forms a 0 degree angle with the tangent of

C at point a. On the other hand, in the second point (c), the viewing direction coming from

point a is orthogonal to the inner unit normal of C at the point c.

Let us define the energy

E(C) =
∮

C

∮
C,ŝ 6=s

H((C(ŝ)−C(s))T JT Cŝ(ŝ))H((C(ŝ)−C(s))T J Cs(s))dŝds, (4.7)

where H is the Heaviside function, J Cs(s) is the outward unit normal in C(s), and JT Cŝ(ŝ)

is the inward unit normal at C(ŝ). It is easy to verify that for each point C(s) the integrand

above is equal to 1 on the corresponding occluding part. Accordingly, this energy measures

the global visibility of the contour. Thus, minimizing it would make a contour more visible

as it would become convex. However, it would not unfold a complex contour.

Now, instead of trying to maximize the global visibility of a surface, we may want

to maximize its visibility from a fixed viewpoint. The application of something like this

would be for visualization. That is, instead of trying of generically make the complete

surface more visible from an unknown viewpoint, we would evolve the surface locally

so that its visibility with respect to a fixed point is maximized. This is depicted in Fig.

4.10. This figure shows the parts of the contour C that are visible from the viewpoint P.
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Figure 4.9: Self visibility minimization.

Specifically, the parts of C going from pointa to point c, from point d to point e, and from

point f to point b are the only ones that are visible from P. In the next section, we propose

a method that evolves the surface locally so that the visibility of C from P is maximized. In

this approach, the occluding parts of the contour move away to make visible other parts of

the contour.

4.2 New Visibility Energy Functional for Viewpoint-based

Unfolding: The Flux Model

The problem of maximizing the visibility of a contour with respect to a fixed viewpoint

can be thought of as the problem of maximizing the flux of light that is being absorbed or

received by a contour. From this perspective, we assume that the rays of light emitted by

the viewpoint are neither reflected nor diffracted by the contour. Accordingly, a point is

considered to be visible from the viewpoint if the line segment between the point and the

viewpoint does not intersect the contour.

In Fig. 4.11 the contour C is absorbing the light coming from the viewpoint P, which is

acting as the source of light. The part of C that goes from point a to point b and contains the

points c, d, e, f, and g is absorbing all the rays coming from P. From now on, we will refer
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Figure 4.10: Visibility with respect to a point.

Figure 4.11: Visibility of a contour with respect to a viewpoint P.
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to this region as the region of interest of the contour. In the figure we have used a natural

criteria for choosing this region by finding the two points of C that are intersected by the

extremities of the viewing region and then selecting the portion of C that passes through

these two points. This procedure can be done automatically, but it is out of the scope of

this work.

In the proposed flux model the objective is to evolve the region of interest of the contour

in such a way that the average flux it receives is maximized. In order to do this, we first

need a way to quantify the amount of flux received at any point in the contour. For instance,

in Fig. 4.11 both points g and f receive light from P. However, we might argue that points

in the neighborhood of point g are receiving more light than points in the neighborhood

of point f. This occurs because the rays arriving at point g are almost perpendicular to the

contour, whereas the rays arriving at point f are almost tangent to the contour.

We define the flux at any point in the contour as the Euclidean dot product between the

unit ray that is coming from the viewpoint and the inward unit normal of the contour at the

given point (see Fig. 4.12). Accordingly, the value of the flux at any point will always be

between−1 and 1. This approach provides a physical interpretation of how any point in the

contour is illuminated. If a point is illuminated, that is, if it is visible from the viewpoint, a

positive flux indicates the degree of perpendicularity of the incoming ray. For instance, in

Fig. 4.11 the flux at point g is greater than the one at point c because the ray of light is more

perpendicular to the contour at the former than it is at the latter. On the other hand, if a point

is not receiving any light because the ray is being blocked by the contour, a positive flux

indicates how perpendicular the ray will come in if the part of the contour that is blocking

the ray moves away. This is the case of point e in Fig. 4.11, because even though the point

does not receive any light, it has a positive flux. When a point has a negative flux, like point

d in Fig. 4.11, it means that the point is not receiving any light. The more negative the

flux, the more the point will have to move to receive light. Figure 4.13 shows flux values at

different points on the region of interest.
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Figure 4.12: Computation of the flux of a point on a contour with respect to a viewpoint P.

Figure 4.13: Flux value at different points on the region of interest.
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This flux definition is very similar to the one proposed by Zhang and Turk [18]. In

the definition proposed by Zhang and Turk, the flux is the product of the inner product as

defined in the previous paragraph and a characteristic function that is 1 when a point is vis-

ible and 0 otherwise. In other words, the flux is positive for all the points that receive light

from the viewpoint and 0 otherwise. Consequently, Zhang’s definition of flux tells exactly

which points of the contour are visible and which ones are occluded from the viewpoint.

However, as we will see later, our definition is more appropriate for our purpose because,

among other things, we do not have to deal with all the discontinuities of having Heaviside

functions.

The average flux, which we call E2D(C), can be computed by integrating the flux at all

the points in the region of interest of the given contour and then dividing by the total length.

That is,

E2D(C) =
1
L

∫ L

0

(C(s)−P)
‖C(s)−P‖

·N(s)ds, (4.8)

where L is the length of region of interest of the contour C. From now on, we will use the

terms “average flux” and “average visibility” interchangeably.

If instead of using our flux definition in (4.8) we use the one in [18], we will get the

exact average visibility that the region of interest of the contour is receiving (see Fig. 4.14).

However, if we take into consideration that any point that is not visible and still has a

positive flux by necessity has to have a corresponding point with negative flux (see the case

of points e and d in Fig. 4.11), then the expression in (4.8) would be a good estimate of the

real average visibility.

We need to point out a very important feature of the energy in (4.8). If we evolve the

contour according to the gradient ascent along this energy, the points where the flux is

negative would be forced to move in such a way that the flux they receive increases. By

doing so, these points would make visible other points that have positive flux, but are not
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Figure 4.14: Example of a region with average visibility equal to 0.4.

visible from the viewpoint. This would generate the unfolding motion we are looking for.

This effect would not occur if we use the Heaviside function as in [18] because points that

are not visible simply have zero flux.

Since the flux at any point can be at most equal to 1, E2D(C) also has a maximum of 1.

This would occur when the viewing surface coincides with an arc of a circumference that

has the viewpoint P as its center. In this case, the rays coming from the viewpoint would

have the same direction as the inward unit normal at each point and, consequently, the flux

at any point of the region of interest of the contour would be equal to 1. Moreover, in this

case all points would have the same flux. Therefore, maximizing the average visibility will,

by itself, promote an equal distribution of light along the region of interest of the contour.

Using the Calculus of Variations we show in Appendix B that the gradient ascent for

the energy in (4.8) is

Ct =
1
L

(
κ(s)E2D(C)+

1
‖C(s)−P‖

)
N(s), (4.9)
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where κ(s) is the curvature of C at the point C(s). This gradient shows that the problem

is well-posed and that we can use our model to maximize the visibility of piece of contour

only if the initial average visibility with respect to P is positive (otherwise a backwards heat

flow results).

4.2.1 Polygon Case

Now consider a polygon whose region of interest has N edges with ordered vertexes vi ∈R2

for i ∈ Zn = {1,2, . . . ,N +1} and let |Ci| be length of the edge Ci that goes from vi to vi+1

(see Fig. 4.15). For this case the energy (4.8) that measures the average flux received by a

region of interest of a differentiable contour can be rewritten as

E2D,P =
1

LT

N

∑
i=1

E2D,i, (4.10)

where LT = |C1|+ ...+ |CN | is the length of the region of interest and E2D,i is the total flux

received by the edge Ci. In particular, E2D,i can be computed as follows:

E2D,i =
∫ |Ci|

0

(
vi + s (vi+1−vi)

|Ci| −P
)T

JT (vi+1−vi)
|Ci|∥∥∥vi + s (vi+1−vi)

|Ci| −P
∥∥∥ ds

=
∫ |Ci|

0

(vi−P)T JT (vi+1−vi)

|Ci|
∥∥∥vi + s (vi+1−vi)

|Ci| −P
∥∥∥ ds

=
γi

|Ci|
[ln(|Ci|+βi +‖vi+1−P‖)− ln(βi +‖vi−P‖)] , (4.11)

where

γi = (vi−P)T JT (vi+1−vi) , (4.12)

βi =
(vi+1−vi) · (vi−P)

|Ci|
, (4.13)

and J =

 0 1

−1 0

 is the 2D rotation matrix.

30



Figure 4.15: Visibility of a polygon with respect to a viewpoint P.

The value of E2D,i depends on how the rays coming from the viewpoint P are aligned

with the corresponding unit inward unit normals. For instance, if the middle point between

vi and vi+1 and the value of |Ci| remains constant, the maximum value for E2D,i would be

achieved when the ray coming from P forms a zero degree angle with the unit inward unit

normal at the middle point. This is depicted in Fig. 4.16, where E2D,i is greater when the

edge Ci is positioned as in (a) than when it is positioned as in (b).

Taking the derivative of E2D,P with respect to the vertex vk, we get

∂E2D,P

∂vk
= − 1

L2
T

N

∑
i=1

E2D,i
∂LT

∂vk
+

1
LT

(
∂E2D,k

∂vk
+

∂E2D,k−1

∂vk

)
= − 1

LT

(
1

LT

N

∑
i=1

E2D,i

)(
vk−vk+1

|Ck|
+

vk−vk−1

|Ck−1|

)T

+
1

LT

(
∂E2D,k

∂vk
+

∂E2D,k−1

∂vk

)
, (4.14)

because the edges Ck and Ck−1 as well as the energies E2D,k and E2D,k−1 are the only

expressions in E2D,P that depend on the value of vk. The partial derivatives of E2D,k and
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Figure 4.16: The total flux received by edge Ci is greater in (a) than in (b) because the rays
coming from P are more aligned with the corresponding inward unit normals in (a) than
they are in (b).

E2D,k−1 with respect to vk are too long to include here. They are presented in Appendix C.

It follows that the motion of the vertexes to maximize the average visibility in (4.10) can

be computed by

dvk

dt
= µ2D

∂E2D,P

∂vk
, (4.15)

where µ2D is a positive constant, k ∈ {1, ...,N +1} , and t denotes an artificial time variable.

Since the region of interest of the polygon goes from v1 to vN+1, the value of the partial

derivative of E2D,k−1 with respect to vk is zero for k = 1. Similarly, the value of the partial

derivative of E2D,k with respect to vk is also zero for k = N +1.

4.2.2 Topology Preservation

When we evolve the vertexes of the region of interest of a polygon according to (4.15) to

maximize the average visibility we have to make sure that the topology of the polygon does

not change. In other words, we have to ensure that during the evolution the edges of the

polygon do not intersect each other. To do this, we have to use a topology-preservation
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method.

Several topology-preservation methods have been proposed in the past. Hans et al. [86,

87] presented a technique to prevent topology changes when the active contour evolution

is implemented via Level Sets Methods. In this work, changes in topology at grid points

are detected by deriving a condition based on the configuration of the level set function in

a small neighborhood of the grid points. This method has the disadvantage of being highly

dependent on the grid spacing used in the level set function. In addition, when this method

is used the resulting motion may be abrupt and look unnatural.

Unal et al. [88] proposed another approach for topology preservation for active poly-

gons. In this work, it is assumed that the polygon consists of a uniform charge distributed

along its perimeter. Each vertex is then moved in the direction of the electrostatic force,

which is computed numerically. Even though this method may prevent some topology

changes, it does not prevent two adjacent sides from touching. Moreover, the flow is unsta-

ble as the number of vertexes increases and the length of the segments decreases [88].

Sundaramoorthi and Yezzi [85] have proposed a robust topology-preservation technique

in which a special geometric flow is added to the original image-based curve evolution to

avoid intersections. This geometric flow, which is derived from the minimization of an

energy based on electrostatic principles, affects significantly the original evolution only

when the contour is close to a change in topology. Unlike a curvature regularizer, when

the regularizer proposed in [85] is applied to a point the resulting force depends globally

on all other points of the curve. This technique, which is based on the work in [89, 90],

has the advantage over the one proposed in [86, 87] of changing the original evolution in

a gradual manner. Moreover, it is not restricted to level sets and can be used on any active

contour implementation. Because of its robustness, the topology-preservation method on

[85] is the one we use to preserve the topology of the evolving polygon. Furthermore, in

the next chapter we extend it to three dimensions so that we could use it for our visibility-

maximization application. In the following paragraphs we briefly present Sundaramoorthi
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and Yezzi’s approach for topology preservation. We refer the reader to [85] for more details.

Let C ∈ R2 be a twice-differentiable contour of length L and let E2D,R be the energy of

an uniform charge distributed along C defined by

E2D,R(C) =
1
2

∫ ∫
C×C

(
1

‖C(s)−C(ŝ)‖
− 1

dC(s, ŝ)

)
dŝds, (4.16)

where dC(s, ŝ), the geodesic distance along the curve C from point C(s) to point C(ŝ),

is use to eliminate the infinite component of the first term, thereby making the energy

finite. However the gradient of this energy has the property of still becoming infinitely

large whenever the curve becomes close to self-intersection.

Using the Calculus of Variations, it is shown in [85] that the gradient of is given by

R2D(s) = lim
ε→0+

[∫
BC(ε,s)

C(s)−C(ŝ)

‖C(s)−C(ŝ)‖3 ·N(s)dŝ

+
∫

BC(ε,s)

dŝ
‖C(s)−C(ŝ)‖

κ(s)− ln
(

L
2ε

)
κ(s)

]
N(s), (4.17)

where BC(ε,s) = {C(s) : dC(s, ŝ) > ε} represents the set of all points in C except for those

within a small neighborhood of C(s), and κ(s) and N(s) represent the curvature and the

inward unit normal of C at the point C(s), respectively. The first term in (4.17) can be

regarded as the projection of the electric vector field of the charge distribution at the point

C(s) onto the inward unit normal N(s). On the other hand, the second term can be regarded

as the electrostatic potential of the charge distribution at the point C(s).

Now, let us suppose that C is evolved according to the image-based flow Ct,original(s)

that is uniformly bounded. Sundaramoorthi and Yezzi [5] show that if the flow R2D(s)

in (4.17) is added to Ct,original(s), then the topology of C will be preserved during the

evolution. That is, the resulting flow

Ct,new(s) = Ct,original(s)+ µR R2D(s), (4.18)
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where t is an artificial time variable and µR is a positive constant, preserves the topology

of C. Moreover, since (4.17) is a geometric flow, this method for topology preservation is

suitable for both parametric particle-based and level set implementations.

For the case of a polygon such as the one in Fig. 4.15, (4.16) becomes

E2D,R(P) = 2∑
i

(|Ci| ln |Ci|− |Ci|)+
1
2 ∑

i 6= j

∫ ∫
Ci×C j

dŝds∥∥Ci(s)−C j(s)
∥∥ , (4.19)

where the first term results from taking just the finite part of the integral
∫ ∫

C×C
dŝds

‖C(s)−C(ŝ)‖

and discarding the infinite component. Like the energy for the differentiable contour case

(4.16), the gradient of this energy only becomes infinitely large when the polygon ap-

proaches a topology change.

Let R2D,k(t) be the gradient descend flow of (4.19) for vertex vk at time t that is com-

puted by the procedure outlined in [85] and let (dvk/dt)original be an original image-based

vertex flow such as the one in (4.15). Sundaramoorthi and Yezzi show that the new vertex

flow (
dvk

dt

)
new

=
(

dvk

dt

)
original

+ µR R2D,k(t), (4.20)

has the property of preserving the topology of P during the evolution.

4.2.3 Length Constraints

If we evolve the vertexes of a polygon according to (4.20) we will notice that the length

of some edges is going to increase while the length of others is going to decrease. This

undesired effect occurs because the length of an edge affects the average flux the edge is

receiving.

We can consider the unconstrained gradient in (4.20) as having two components: one

that changes the length of an edge and the other that keeps it constant. If we keep only

the part of the gradient that does not change the length of the edges, the result would be a

more dramatic evolution in which the visible parts of the contour are going to be forced to
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move away so that the invisible parts become visible. This behavior would be very useful

for navigating and explorating complicated surfaces.

However, it is not necessary to constrain the length of all the edges of a polygon. In

fact, if we do that, it could affect how the region of interest of the contour evolves. This,

of course, is undesirable. Instead, we only constrain the length of the edges in the region

of interest of the contour. Since we are not evolving vertexes outside the region of interest,

the result will be that the extreme edges, C0 and CN+1 in Fig. (4.15), are the only edges for

which the length is allowed to change.

Using a similar technique as those employed in [91, 92, 93], we can constrain the length

of the edges in the visible part of the contour as follows. For each of the edges in the visible

contour we will have a constraint. That is, we will have the following N constraints:

‖vi−vi+1‖2− l2
i = 0, ∀i ∈ {1, ...,N} . (4.21)

Taking the derivative with respect to time of this expression we get Jvt = 0, where vt =

d
dt

[
vT

1 ...vT
N+1
]T and J is the Jacobian matrix given by

J =



(v1−v2)
T −(v1−v2)

T 0 · · · 0

0 (v2−v3)
T · · · 0

...
... . . . ...

0 0 · · · (vN−vN+1)
T −(vN−vN+1)

T


. (4.22)

Now, let gu be the vector of the unconstrained gradient flow of the polygon obtained by

applying (4.20) to each vertex in the region of interest of the contour. First, we find the

minimum norm solution x to the system Jx = Jgu and then we subtract it from the original

unconstrained gradient gu so that Jvt = 0. We will use Lagrange multipliers to solve this

constraint-minimization problem. Let us define F = xT x + λ T (Jx−Jgu), where λ is the

vector of Lagrange multipliers. If we set to 0 the partial derivative of F with respect to
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x and then solve for x, we would get x = JT l, where l = −1
2λ . Substituting this result in

the system for which we want to find the minimum norm solution, we get JJT l = Jgu.

From here we can solve l using the conjugate gradient method because the matrix JJT is

symmetric positive definite. Finally, we can compute the constrained gradient gc using

gc = gu−JT l. (4.23)

4.2.4 Simulation Results

We now present several simulation results that show the effectiveness of the proposed re-

search on polygons. In all the simulations, the value of µ2D in (4.15) was set to 1000.

Also, the coefficient µR for the topology-preserving force in (4.20) was set to 0.02. Even

though the regions of interest of the polygons are the same ones as the ones depicted in the

figures below, the actual viewpoints are positioned much farther away from the polygons

than the ones presented in the figures. Unless otherwise stated, all the simulations were run

until convergence. In addition, all the simulations were performed in C++ on a 2.52-GHz

Pentium IV computer running Windows.

Figure 4.17 depicts the evolution of a given polygon when the viewpoint is positioned

as shown. The visible part of this polygon has 19 edges with a total length of 416 pixels.

As can be seen in the figure, initially most of the visible part of the contour was occluded.

In fact, the initial average visibility and the variance of the flux were equal to 0.21 and 0.39,

respectively.

As the polygon evolved, more and more portions became visible until the point where

nothing was occluded in the visible part of the polygon. Indeed, the final average visibility

was virtually equal to 1 and the variance of the flux was equal to 0. The computational

time for this simulation was about 1.50 seconds, with 0.70 seconds resulting from the

computation of the forces for the topology preservation. Also, the final length of the visible

part of the contour was 418.79 pixels, which implies that the edge lengths were preserved
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Figure 4.17: Visibility maximization for an intricate polygon.
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as expected.

Another simulation result is presented in Fig. 4.18 for a 34-edge polygon that is more

convoluted than the one in Fig. 4.17. Initially the polygon had an average visibility of

just 0.17 with a variance of the flux of 0.69. These values are reasonable considering how

convoluted the polygon is. As the proposed algorithm was applied, the polygon unfolded to

make visible sections that previously were not visible. Again, at the end of the simulation

the average visibility was almost equal to 1, whereas the variance of the flux was almost

0. The total length of the visible part of the polygon changed from 723.70 pixels at the

beginning of the simulation to 727.60 pixels at the end of the simulation; therefore it was

virtually preserved. The computational time was about 40 seconds, from which a total of

36 seconds was due to the computation of the topology-preserving forces.

The importance of length preservation can be inferred from the results shown in Fig.

4.19. In this case the proposed approach was applied to the same polygon as the one in

Fig. 4.18, but this time without enforcing length constraints. The result was that the visible

part of the contour shrank itself conveniently to increase the average visibility. Indeed,

the length of the visible region decreased from 723.70 pixels to just 205.41 pixels as the

number of vertexes decreased from 34 to 13 and the average visibility increased from 0.17

to almost 1. As a result, even though the visibility was maximized, we did not get the

unfolding effect that would allow us to see the occluded sections in the visible part of the

contour.

An interesting result that shows the importance of the topology-preserving forces is

presented in Fig. 4.20. In this simulation we applied the proposed algorithm without the

topology-preserving forces to the highly convoluted polygon of Fig. 4.18. Results show

that the edges started to intersect each other after a few iterations. The changes in topology

were even greater as the number of iterations increased. Comparing this result to the one in

Fig. 4.18 shows the importance of having topology preservation. In the future we plan to

reduce the number of computations required to compute the topology-preserving forces.
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Figure 4.18: Visibility maximization for a highly convoluted polygon.
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Figure 4.19: Visibility maximization of a polygon without length preservation.

Figure 4.20: Visibility maximization of a polygon without topology preservation. (a) Initial
polygon. (b) Polygon after 10 iterations. (c) Polygon after 100 iterations.
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The simulation results we have presented show how effective the proposed approach

can be at maximizing the average visibility of a polygon with respect to a viewpoint. Re-

sults also show that in some cases, such as the one in Fig. 4.18, the evolution can be very

dramatic because of the low initial visibility. This effect can have many useful applications

in computer graphics as well as in medical imaging.
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CHAPTER 5

3D VISIBILITY MAXIMIZATION AND APPLICATION
TO CORTICAL SHAPE UNFOLDING

In this chapter we extend our approach for 2D visibility maximization presented in the

previous chapter to triangulated surfaces. That is, given a convoluted surface and an user-

chosen’s external viewpoint, our approach evolves the surface in such a way that it allows

the user to view the deeper, self-occluded structures of the surface. Our approach has the

advantage of producing little distortion in the specific region of interest as well as allowing

the user to interactively determine the exact level of desired unfolding.

The proposed approach for viewpoint-based visibility maximization can have several

applications in the area of medical imaging. For instance, it can be used in human brain

mapping to unfold a specific part of the cerebral cortex while introducing little distortion

or to visually explore and validate the deep sulcul structures extracted by cortical surface

segmentation algorithms. In addition, it can have a number of applications in computer

graphics. For example, it can be used for the visualization of complicated surfaces and for

the visual inspection of texture mappings onto complex geometries.

The content of this chapter, which we have already submitted for publication in [98],

is divided into six sections. In the first section we formulate our approach for visibility

maximization for the case of differentiable surfaces. Then, in Section 2, we reformulate it

for the case of triangulated surfaces. In Section 3 we extend the 2D topology-preservation

method proposed by Sundaramoorthi and Yezzi [85] to triangulated surfaces. In Section

4 we propose an algorithm that improves the computational speed of the 3D topology-

preservation method described in Section 3 by using a tree structure of the triangulated

surface and a recursion technique. In Section 5 we show how we can preserve the area of

each one of the triangular faces during the evolution by efficiently solving a linear system

of equations. Finally, in Section 6, we present simulations on both synthetically created

surfaces as well as cortical surfaces extracted from real data.
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Figure 5.21: Visibility of a region of interest Sv on a 3D surface S with respect to an external
viewpoint P.

5.1 Differentiable Surface Case

The variational approach to maximize the visibility of a contour with respect to a viewpoint

that we presented in the previous chapter can be easily extended to 3D. That is, we can use

a similar approach to maximize the visibility of a surface with respect to a viewpoint.

Let S be a twice-differentiable surface and let Sv be a user-chosen region of interest on

S that the user would like to unfold for visualization (see Fig. 5.21). We can write the 3D

version of the 2D visibility energy in (4.8) as follows:

E3D(Sv) =
1

ASv

∫ ∫
Sv

S−P
‖S−P‖

·NdS, (5.24)

where ASv is the area of Sv, S ∈ R3 is a point in the surface, and N ∈ R3 is the inward unit

normal at S. Accordingly, E3D(Sv) represents the average visibility of Sv with respect to

the viewpoint P ∈ R3 .

If we evolve Sv according to the gradient ascent of (5.24), then the points where the flux

is negative would be forced to move in such a way that the flux they receive increases and

becomes positive. By doing so, these points would make visible other points that already

have a positive flux, but are not visible from P. This would generate the unfolding motion

we are looking for.
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Using the Calculus of Variations, it is shown in Appendix B.3 that a maximizing gradi-

ent flow for (5.24) is given by

St =
1

ASv

(
H(S)E3D (Sv)+

1
‖S−P‖

)
N, (5.25)

where H(S) represents the mean curvature of Sv at the point S. Like in the 2D case, this

result gives us the main formulation in case we want to implement the proposed method

for differentiable contours. In addition, it provides us with a mathematical criterion that

tells us which part of the surface we can unfold. Specifically, this stability condition is that

we must choose the portion Sv of the surface to have a positive initial average visibility

with respect to P. This may be done by enlarging or reducing the initial region Sv until this

condition is satisfied. As the surface unfolds, the average visibility of Sv would increase,

thereby allowing a user to select a smaller subset of Sv at later stages.

5.2 Triangulated Surface Case

Let S be now a triangulated surface and let Sv be a region of interest of S containing N

triangular faces Si, each one with area ASi . By applying (5.24) to Sv we obtain that the

average visibility of Sv, which we call E3D,P, is

E3D,P (Sv) =
1

ASv

N

∑
i=1

E3D,i, (5.26)

where ASv = AS1 + . . .+ASN is the total area of Sv and E3D,i represents the total flux received

by the triangular face Si. Accordingly, E3D,i is

E3D,i =
∫ ∫

Si

Si−P
‖Si−P‖

·Ni dSi, (5.27)

where Si is a point in Si and Ni is the unit inward normal of the triangular face.
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If va, vb, and vc are the vertexes of Si and they are ordered counterclockwise as in Fig.

5.22, then Ni is given by

Ni =− (vb−va)× (vc−va)
‖(vb−va)× (vc−va)‖

, (5.28)

where × is the cross product operator. Furthermore, if we parameterized Si by using

Si(u,v) = va +u(vb−va)+ v(vc−va) (5.29)

for u ∈ [0,1] and v ∈ [0,1−u], then it is shown in Appendix B.4 that (5.27) becomes

E3D,i =
α

lac

∫ 1

0
ln
(

l2
ac(1−u)+β + γ lac

β +δ lac

)
du, (5.30)

for

lac = ‖va−vc‖ , (5.31)

α =−(va−P) · [(vb−va)× (vc−va)] , (5.32)

β = (vc−va)((1−u)va +uvb−P) , (5.33)

γ = ‖uvb +(1−u)vc−P‖ , (5.34)

and

δ = ‖(1−u)va +uvb−P‖ . (5.35)

Taking the derivative of the total flux E3D,i received by the triangular face Si in (5.30)

with respect the vertex va we get

∂E3D,i

∂va
=

1
lac

∫ 1

0
ln
(

l2
ac(1−u)+β + γ lac

β +δ lac

)
du
(

∂α

∂va
− α

l2
ac

(va−vc)
)

(5.36)

+
α

lac

∫ 1

0


(

2(1−u)+ γ

lac

)
(va−vc)+ ∂β

∂va

l2
ac(1−u)+β + γ lac

−
∂β

∂va
+ lac

∂δ

∂va
+ δ

lac
(va−vc)

β +δ lac

du,
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Figure 5.22: Sample triangular face Si of a triangulated surface S.

where the partial derivatives of α, β , and δ with respect to va can be obtained from (5.32),

(5.33), and (5.35), respectively (see Appendix B.4). On the other hand, if we take the

derivative of the average visibility of Sv (5.26) with respect to va we obtain

∂E3D,P(Sv)
∂va

=
1

ASv

N

∑
i=1

(
∂E3D,i

∂va
−E3D,P(Sv)

∂Ai

∂va

)
. (5.37)

Using this result we have that the vertex motion for va that maximizes the average visibility

of Sv with respect to the viewpoint P is given by

dva

dt
= µ3D

∂E3D,P

∂va
, (5.38)

where µ3D is a positive constant. As it was shown in the previous section, this vertex motion

is stable as long as Sv has a positive average visibility with respect to the viewpoint P at the

beginning of the evolution.

Like in the 2D case, topology changes can occur while evolving the region of interest

Sv using just (5.38). These changes occur when two triangular faces intersect each other.

To overcome this issue we have developed a 3D version of the work of Sundaramoorthi

and Yezzi [85]. The resulting topology-preservation method is more robust than other

proposed techniques such as the one by Slabaugh and Unal [94]. The details of this method

have already been published in [83] and are the focus the next section.
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5.3 Topology Preservation

Active surfaces, the 3D version of active contours, comprise one of the primary tools for

medical image segmentation. In most medical imaging applications, the topology of the

object to be segmented is known in advance. As such, a number of researchers have en-

deavored to incorporate various topology-preserving constraints into their evolution models

for the purpose of segmentation. Some authors such as Han et al. [86, 87], in their work

on cortical segmentation, have proposed discrete representation dependent constraints that

kick in at the moment and at the location where a topology change is about to occur in

order to enforce the original topology. As we saw in the previous chapter, Sundaramoorthi

and Yezzi [85] recently introduced a variational method for topology preservation in ac-

tive contours based on knot energies [89, 90]. Other variational approaches for topology

preservation are found in the work by Shi and Karl [95], which only favors the repulsion of

different connected components of the evolving curves, and in the work of Alexandrov and

Santosa [96] and the recent work of Le Guyader and Vese [97], both of which are designed

specifically for Level Set Methods.

Topology-preservation methods can also be applied to active polyhedron, that is, a poly-

hedral surface whose vertexes evolve to minimize some energy functional. In this sense,

Slabaugh and Unal [94] have proposed a 3D extension of the work in [88] by adding an

electric force to each vertex flow. This force is computed by creating an electric field that

goes to infinity as a vertex moves towards the surface. Unfortunately, this method does

not guarantee topology preservation between non-adjacent triangular faces and becomes

unstable as the triangulated surface becomes finer.

For many applications, the manner in which the topology constraints are introduced is

often unimportant since only the final configuration of the contour matters. Here, however,

we consider an application of cortical unfolding in which the evolution itself is important

to the end user who will typically wish to stop the unfolding process at any given time

to obtain the desired level of unfolding. Therefore, the nature of the topology preserva-
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tion should go hand-in-hand with the desired unfolding evolution and not yield undesirable

transient geometric configurations that are often common when using mere topology en-

forcement.

The extension of the global knot-energy based topology regularizers proposed in [85] to

three dimensions is conceptually straight-forward, but mathematically and computationally

much more involved than the original 2D formulation. However, our effort seems to have

been well justified since these types of topology-preserving energies are ideally suited to

our cortical unfolding application. The resulting evolution forces, on their own, induce

an unfolding effect that tends to drive the initial cortical surface towards a final spherical

configuration that globally minimizes most knot energies (see [90] for the case of curves).

This renders a very natural and visually pleasing global unfolding effect.

The 2D topology-preservation energy in (4.19) can be extended to 3D as follows. Let S

be a triangulated surface with N triangular faces. We define the 3D topology-preservation

energy as

E3D,R =
N

∑
i=1

N

∑
j=1, j 6=i

E3D,Ri, j , (5.39)

where E3D,Ri, jrepresents the electrostatic energy between the triangular face Si with ver-

texes va, vb, and vc and the triangular face S j with vertexes vâ, vb̂, and vĉ. More specifically,

E3D,Ri, j is defined by

E3D,Ri, j =
∫ ∫

Si×S j

1∥∥Si−S j
∥∥2 dSi dS j. (5.40)

Accordingly, like in the 2D case, the gradient of the proposed energy in (5.39) becomes

infinitely large when any two triangular faces become infinitely close. Thus preventing

topology changes in the evolving triangulated surface.

Taking the derivative of E3D,R in (5.39) with respect to the vertex va of Si gives us

∂E3D,R

∂va
=

N

∑
i=1

N

∑
j=1, j 6=i

∂E3D,Ri, j

∂va
. (5.41)
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Furthermore, if we use the parameterization (5.29) for the triangular face Si and the param-

eterization

S j(u,v) = vâ + û
(
vb̂−vâ

)
+ v̂(vĉ−vâ) (5.42)

for the triangular face S j with û ∈ [0,1] and v̂ ∈ [0,1− û], then it is shown in Appendix B.5

that, when Si and S j are non-adjacent, the derivative of E3D,Ri, j with respect to va in (5.41)

becomes

∂E3D,Ri, j

∂va
= −2A j

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

dv̂dûdvdu

‖S(u,v)−S(û, v̂)‖2
∂

∂va
[(vc−vb)×va]

T Ni

−8Ai A j

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0
(1−u− v)

S(u,v)−S(û, v̂)
‖S(u,v)−S(û, v̂)‖4 dv̂dûdvdu. (5.43)

If Si and S j are adjacent (i.e., they have at least a vertex in common), then the derivative

of E3D,Ri, j with respect to va is different from (5.43) (only if va is one of the shared vertexes.

It is shown in Appendix B.5 that in this case we have

∂E3D,Ri, j

∂va
= −2A j

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

dv̂dûdvdu

‖S(u,v)−S(û, v̂)‖2
∂

∂va
[(vc−vb)×va]

T Ni

−2Ai

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

dv̂dûdvdu

‖S(u,v)−S(û, v̂)‖2
∂

∂va

[(
vĉ−vb̂

)
×va

]T N j (5.44)

−8Ai A j

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0
(û+ v̂−u− v)

S(u,v)−S(û, v̂)
‖S(u,v)−S(û, v̂)‖4 dv̂dûdvdu.

Although the computation of (5.43) implies the numerical solution of quadruple inte-

grals, we can reduce the number of computations by solving (5.43) explicitly only when

the two triangular faces Si and S j are close enough, that is, when they are within a certain

thresholded distance from each other, which is when (5.43) matters the most. On the other

hand, when Si and S j are not considered to be close enough we can use their centroids

to estimate (5.40) instead. This will make the derivative with respect to va much simpler

than the expression in (5.43). Specifically , if S̄i and S̄ j are the centroids of Si and S j,
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respectively, then it is shown in Appendix B.5 that (5.43) could be approximated by

∂E3D,Ri, j

∂va
= −1

2
A j

1∥∥(va +vb +vc)−
(
vâ +vb̂ +vĉ

)∥∥2
∂

∂va
[(vc−vb)×va]

T Ni

−2
3

Ai A j
S̄i− S̄ j∥∥S̄i− S̄ j

∥∥4 . (5.45)

Using these results together with those of the previous section, we have that the topology-

preserving vertex motion that maximizes the average visibility (5.26) of the region of in-

terest Sv with respect to the viewpoint P is given

dva

dt
= µ3D

∂E3D,P

∂va
+ µR

∂E3D,R

∂va
, (5.46)

where µ3D and µR are positive constants.

5.4 Recursive Computational Implementation for Topol-

ogy Preservation

The topology-preservation method presented in the previous section is very robust, but at

the same time is very expensive as it involves a significant amount of computations for each

possible pair of triangular faces of the evolving surface. That is, we have to compute the

topology-preserving forces for the vertexes of each triangular face with respect to the entire

surface. Even if use (5.45) to compute the topology-preserving forces when the triangular

faces are far apart, the resulting number of computations would still be large, especially

considering that 3D triangulated surfaces usually have thousands of triangular faces.

We could increase the speed of the computation of the topology-preserving forces of

a triangular face with respect to the rest of the surface by somehow grouping triangular

faces that are far away and then using (5.45) to estimate the topology-preserving forces

with respect to groups of triangular faces that are considered single units. A natural way
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of doing this grouping is by creating a tree data structure, where each node of the tree

represents a group of triangular faces and has a unique identification number, a centroid,

an area, a list of neighbor nodes, a list of the identification number of its child nodes,

and the identification number of its parent node. We can then use a recursion technique to

approximate the topology-preserving forces for each triangular face of the evolving surface.

We can create a tree data structure by grouping neighbor nodes (i.e., nodes that share

at least one vertex) two at a time, prioritizing those neighbor nodes that are closer to each

other. Every time we merge two nodes we then create a new parent node whose area is the

total area of its child nodes and whose centroid is the weighted average of the centroids of

its child nodes. A more detailed explanation of the merging process is described below
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Merging Algorithm

1. Set all triangular faces as nodes, assign them a unique node identification number,

and store the corresponding centroids and areas in each node. Tag all the nodes as

UNMERGED. This set of nodes form the bottommost level of the tree.

2. For each node tagged as UNMERGED, find the UNMERGED nodes that are neigh-

bors and store their node identification numbers in the list of neighbor nodes.

3. Compute the distance between each node and each one of its neighbors and add the

information to a heap sorted by the distances.

4. Grab the pair of neighbor nodes from the top of the current heap, that is, the two clos-

est neighbors. If any of the nodes is tagged as MERGED, then go to Step 4, otherwise

tag them as MERGED and merge them by creating a parent node whose area is the

sum of the two node areas and whose centroid is the weighted average of the two

centroids. Create a list of child nodes in the parent node and store the parent identifi-

cation number in each of the child nodes. Tag the parent node as UNMERGED. Go

to Step 4.

5. Create a new heap sorted by distances with the elements of the previous heap that

have one node tagged as UNMERGED.

6. Grab the pair of neighbor nodes from the top of new heap and add the node tagged

as UNMERGED to the list of child nodes of the parent node of the node tagged as

MERGED. Tag the UNMERGED node as MERGED and update the area, the cen-

troid, and the list of child nodes of the parent node. Store the number identification

of the parent node in the child node. Stop if the number of UNMERGED nodes is

equal to one; else go to Step 2.

Storing the parent identification number in its child nodes is very useful when finding the

neighbor nodes in Step 2. That is, if we want to find neighbors of a parent node we just need
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to find the neighbors its child nodes. Then, the identification number of the parent nodes of

those neighbors are the identification numbers of the neighbors of the given parent node.

Figure 5.23(a) depicts a tree structure for a surface containing nine triangular faces. As

can be seen, in the bottommost level of the tree we have the original nine triangular faces

of the surface. After going from Step 1 to Step 6 we have the first level of new parent nodes

(nodes 10 to 13). We can see that even though most of the parent nodes have only two

child nodes, it is still possible to have more child nodes. That is the case of node 11, which

has three child nodes (nodes 3 to 5). The reason for this is that even though we want to

have two child nodes per parent node, this is not always possible due to the structure of the

triangulation of the surface. After going from Step 1 to Step 6 another time we have only

two new parent nodes (nodes 14 and 15). Finally, after going from Step 1 to Step 6 for the

last time, the algorithm produces only one new parent node, node 16, which is called the

root node. It comprises all the triangular faces of the surface.

We can exploit the tree structure for the estimation of the topology-preserving forces

by using recursion as follows. Say for instance that we want to compute the topology-

preserving forces for the vertexes of a particular triangular face with respect to a node that

does not contain the triangular face and that has two or more child nodes and many more

nodes below it. One thing we can do is to estimate the topology-preserving forces by using

(5.45) and the centroids and areas of both the triangular face and the parent node. We can

do exactly the same thing with each one of the child nodes. We can then compare the

results to determine whether or not more accuracy is needed. If the average relative error

of the result obtained using only the parent node with respect to the sum of the results

obtained by using each child node is less than or equal to some chosen value, then we

can consider the approximation to be good enough and, as a result, we can assume that the

sum the topology-preserving forces with respect to the child nodes is a good approximation

of the topology-preserving forces with respect to all the triangular faces below the parent

node. If instead, the average relative error is greater than the chosen value, then we have to
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Figure 5.23: Changes in the tree structure. (a) Original tree structure. (b) - (c) Resulting
tree structures when computing the topology-preserving forces with respect to the nodes 1,
4, and 6, respectively.

repeat the procedure again with each one of the child nodes, where this time they would be

considered as parent nodes of some other child nodes.

This recursion technique gives us a very powerful resource as we are estimating topology-

preserving forces with respect to a group of triangular faces at a time instead of a single

triangular face at a time. Moreover, it automatically decides when more accuracy is needed.

We can also increase the accuracy of the computation of the topology-preserving forces

by explicitly computing them when they matter the most, that is, when two triangular faces

are very close or when and they are neighbors. For those cases we would use (5.43) and

(5.44) as needed. The resulting algorithm, which is fast and at the same time accurate, is

described in more detail below.
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Fast Algorithm to Compute Topology-Preserving Forces

For each triangular face of the surface do the following:

1. Tag all nodes in the tree as UNVISITED, except for the selected triangular face,

which is in the bottommost level of the tree.

2. For each one of the nodes in the bottommost level of the tree that are within a thresh-

olded distance from the selected triangular face or are neighbors of the selected trian-

gular face compute the accurate topology-preserving forces for its vertexes by using

(5.43) and (5.44), respectively. Tag those nodes as VISITED.

3. For each one of the nodes tagged as VISITED follow their paths up to the root node,

the topmost node, and tag as VISITED all the parent nodes in the paths.

4. Select the UNVISITED node with the highest identification number and compute

the topology-preserving forces for the vertexes of the selected triangular face with

respect to this node and all the nodes below it by using recursion and the estimation

formula in (5.45). Add the results to the overall topology-preserving forces for the

vertexes of the selected triangular face. Tag all these nodes as VISITED.

5. Stop if all nodes are tagged as VISITED; else go to Step 4.

Figure 5.23 shows several examples of how this algorithm works. In Fig. 5.23(b) it is

shown the resulting tree when computing the topology-preserving forces of the surface

with respect to node 1, which is shown in gray. In this case we just need to compute the

topology-preserving forces accurately once, for node 2, which is the only neighbor node

that node 1 has. We then have to use recursion to compute the topology-preserving forces

starting with node 15. Of course, in the case of node 11, it makes more sense just to

compute the topology-preserving forces with respect to each of the nodes 3, 4, and 5 by

using (5.45). Figs. 5.23(c) and 5.23(d) show the resulting tree structures when node 4 and
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node 6 are selected. As can be seen, different tree structures can result. However, they can

be easily obtained from Fig. 5.23(a) by deleting the nodes that are in the paths from the

neighbor nodes of the selected node to the root node (node 16) and from the nodes that are

close enough to the selected node to the root node.

As it is going to be seen in the last section of this chapter, the improvement in speed by

using a tree structure and a recursion technique can be enormous.

5.5 Area Preservation

For a region of interest Sv on a triangulated surface S to have an average visibility equal to

1 with respect to a viewpoint, it has to have a visibility equal to 1 at every point of each one

of its triangular faces. Similar to the 2D polygon case, it is easy to see that this only occurs

when all triangular faces collapse to a single point. To overcome this problem we need to

maximize the average visibility and, at the same time, maintain the area of each one of the

triangular faces of Sv constant. This can be done by applying the same technique we used

in the previous chapter to preserve the lengths of the evolving polygon. That is, for the

evolution we will only use the component of the gradient that does not change the area. As

we mentioned in Chapter 4, a similar technique has been employed before in [91, 92, 93].

We described it below for our specific case.

Let Ψ = {v1, . . . ,vM} be the ordered set of the M vertexes of Sv. To maintain a constant

area for each of the N triangular faces Si of Sv during the evolution we need to satisfy the

following N constraints:

1
2

∥∥(vi,b−vi,a
)
× (vi,c−vi,a)

∥∥2−A2
i = 0, (5.47)

where i = {1, . . . ,N} and vi,a, vi,b, and vi,c represent the corresponding vertexes of Si in Ψ.
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Using Lagrange multipliers one can obtain

Vt,c = Vt,u− JT l, (5.48)

where Vt,u is the vector of unconstrained gradient flow obtained by applying (5.46) to each

vertex of Sv, J is the Jacobian matrix of the N constraints in (5.47), Vt,c is the vector of

constrained gradient flow that we will use to evolve Sv, and l is the minimum norm solution

vector to the system

JJT l = JVt,u. (5.49)

Since the matrix JJT is symmetric positive definite, then (5.49) can be quickly computed

using the conjugate gradient method. Moreover, since J is sparse (i.e., most of its elements

are equal to zero), the matrix multiplication JJT can be computed and stored efficiently.

5.6 Application to Cortical Unfolding

In this section we present some simulation results that show how the proposed approach

for visibility maximization can be used for local unfolding.

Figure 5.24 depicts the evolution of a 3D synthetic surface when the visibility is maxi-

mized and, at the same time, the topology is preserved. The initial visibility of this surface

was 0.2, whereas by the end of the simulation it was very close to 1.

Topology preservation plays a very important role when the surface for which the visi-

bility is going to be maximized is very convoluted. This is the case of the evolution shown

in Fig. 5.25, where a region of a cortex is evolved over 150 iterations so that the visi-

bility with respect to a viewpoint located just in front of the region is maximized. This

region consisted of about 1,500 triangular faces. Using the method of topology preserva-

tion as described in Section 3 took about 20 minutes per iteration on a 2.53 GHz computer

running Windows. However, using the fast algorithm described in Section 4 reduced the
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Figure 5.24: Unfolding of a synthetic triangulated surface using the proposed visibility-
maximization approach.

computational time to just 5 second per iteration.

Figures 5.26 and 5.27 show additional evolutions in which one can clearly see how the

selected regions unfold to become more visible from the external viewpoints.
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Figure 5.25: Unfolding of a region of a cortex using visibility maximization.

Figure 5.26: Unfolding of a region on the right side of a cortex.
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Figure 5.27: Unfolding of a region of a cortex where one can clearly see how the surface
unfolds.
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CHAPTER 6

CONCLUSION

We have presented the novel idea of visibility maximization by defining a viewpoint-

based visibility energy and creating a three dimensional generalization of knot-energy type

forces for topology preservation. Simulation results show that the gradient flow of these

combined energy terms yields a useful localized unfolding of triangulated surfaces spe-

cially tailored to the user’s viewpoint. We believe this method, compared with more tradi-

tional global flattening techniques, may be very useful for more customized inspection of

3D surfaces, such as cortical surface segmentations.

The fact that visibility maximization is a new concept leaves the door open to new

applications and extensions of the proposed approach. For instance, the idea of visibility

maximization with respect to a viewpoint can be easily extended to visibility maximization

with respect to a line or even to a surface by simply adding a line or surface integral to our

original visibility formulation.

Besides creating a robust method for 3D topology preservation that can be used for

many others active polyhedron applications beyond visibility maximization, we have also

been able to make a significant increase in computational speed for the proposed 3D

topology-preservation method by using a tree structure and a recursion technique. This

makes the proposed method more suitable for real-time applications.

There is still room for improvement in terms of speed for the proposed visibility-

maximization approach. For example, we could use a method similar to the one we used

to speed up the computation of the topology-preserving forces to speed up the computa-

tion of the visibility-maximizing forces. In addition, it is possible that a different merging

algorithm to create the tree structure could improve the speed of the topology-preservation

approach. Moreover, the use of adaptive time steps could improve the speed of the conver-

gence of the evolving surface.
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APPENDIX A: HYBRID EULERIAN-LAGRANGIAN

ALGORITHM

63



Hybrid Eulerian-Lagrangian Algorithm to compute φ0

1. Initially tag all grid points in R as UNVISITED.

2. Use the Lagrangian approach to compute the values of φ0 at grid points in R adjacent

to the boundary ∂0R (grid points with at least 1 neighbor outside R) and re-tag them

as SOLVED.

3. Use (3.1) to compute the value of φ0 at grid points in R next to the points already

tagged as SOLVED, tag them as VISITED, and put them into a heap sorted by the

values of u.

4. Grab the grid point from the top of the current heap of VISITED points (i.e., the grid

point with the smallest value of u). Remove this point from the heap and tag it as

SOLVED.

5. If the distance between the correspondence values of φ0 at the neighboring grid points

used in (6) is less than the desired tolerance λ , then compute φ0 using (3.1) and go

to Step 7.

6. Follow the correspondence trajectory at the current grid point until it intersects the

horizontal or vertical grid line between two grid points tagged as SOLVED and lo-

cated 1 cell away from each other. If the distance between the values of φ0 at these

new grid points is greater than or equal to λ , then go to Step 6, else compute φ0 using

linear interpolation and assign the resulting value to φ0 of the original grid point of

Step 5.

7. Update the values of φ0 using (3.1) for whichever neighbors of this grid point are not

yet tagged as SOLVED. If any of these neighbors are currently tagged as UNVIS-

ITED, re-tag them as VISITED and add them to the current heap of VISITED grid

points.
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8. Stop if all points in R have been tagged SOLVED, else go to Step 4.
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APPENDIX B: DERIVATIONS
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B.1 Gradient Ascent for the Average Visibility Energy of a 2D

Differentiable Contour

Let C be a twice-differentiable contour and let P be a viewpoint located outside C. We

define the average visibility of a region of interest of C with respect to P as

E2D(C) =
1
L

∫ L

0

C(s)−P
‖C(s)−P‖

·N(s)ds, (50)

where N(s) is the inward unit normal of C at C(s) and where we have assumed that the

region of interest has length L. Taking the derivative with respect to time t of this energy

we get

E
′
2D(C) =

d
dt

[
1
L

∫ L

0

C(s)−P
‖C(s)−P‖

·N(s)ds
]

=
∫ L

0

C(s)−P
‖C(s)−P‖

·N(s)ds
d
dt

1
L

+
1
L

d
dt

∫ L

0

C(s)−P
‖C(s)−P‖

·N(s)ds

= − 1
L2

∫ L

0

C(s)−P
‖C(s)−P‖

·N(s)ds
dL
dt

+
1
L

d
dt

∫ L

0

C(s)−P
‖C(s)−P‖

· JT Cs(s)ds

= −1
L

E2D(C)
d
dt

∫ L

0
ds+

1
L

d
dt

∫ 1

0

C(p)−P
‖C(p)−P‖

· JT Cp(p)d p

=
1
L

E2D(C)
∫ L

0
Ct(s) ·κ(s)N(s)ds+

1
L

∫ 1

0

(
C(p)−P
‖C(p)−P‖

)
t
· JT Cp(p)

+
C(p)−P
‖C(p)−P‖

· JT Ct p(p)d p,

where J is the inversion matrix and E2D(C) is the average visibility as defined in (50). Now,

using integration by parts, and taking into consideration that Ct is zero at the boundary

points of the region of interest, we get

E
′
2D(C) =

1
L

E2D(C)
∫ L

0
Ct(s) ·κ(s)N(s)ds

+
1
L

∫ 1

0

1
‖C(p)−P‖

[
Ct(p)−

(
Ct(p) · C(p)−P

‖C(p)−P‖

)
C(p)−P
‖C(p)−P‖

]
· JT Cp(p)d p
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−1
L

∫ 1

0

(
C(p)−P
‖C(p)−P‖

)
p
· JT Ct(p)d p

=
1
L

E2D(C)
∫ L

0
Ct(s) ·κ(s)N(s)ds

+
1
L

∫ 1

0

1
‖C(p)−P‖

(
Ct(p) · J (C(p)−P)

‖C(p)−P‖

)
J (C(p)−P)
‖C(p)−P‖

· JT Cp(p)d p

−1
L

∫ 1

0

1
‖C(p)−P‖

[
Cp(p)−

(
Cp(p) · C(p)−P

‖C(p)−P‖

)
C(p)−P
‖C(p)−P‖

]
· JT Ct(p)d p,

where we have used the fact that the unit vectors C(p)−P
‖C(p)−P‖ and J(C(p)−P)

‖C(p)−P‖ form an orthogonal

basis. Rearranging terms, we obtain

E
′
2D(C) =

1
L

E2D(C)
∫ L

0
Ct(s) ·κ(s)N(s)ds

−1
L

∫ L

0
Ct(s) ·

1
‖C(s)−P‖

(
C(s)−P
‖C(s)−P‖

·Cs(s)
)

J (C(s)−P)
‖C(s)−P‖

ds

−1
L

∫ 1

0

1
‖C(p)−P‖

(
Cp(p) · J (C(p)−P)

‖C(p)−P‖

)
J (C(p)−P)
‖C(p)−P‖

· JT Ct(p)d p

=
1
L

E2D(C)
∫ L

0
Ct(s) ·κ(s)N(s)ds

−1
L

∫ L

0
Ct(s) ·

1
‖C(s)−P‖

(
Cs(s) ·

C(s)−P
‖C(s)−P‖

)
J (C(s)−P)
‖C(s)−P‖

ds

+
1
L

∫ L

0

1
‖C(s)−P‖

(
C(s)−P
‖C(s)−P‖

·Ct(s)
)

J (C(s)−P)
‖C(s)−P‖

·Cs(s)ds

=
1
L

E2D(C)
∫ L

0
Ct(s) ·κ(s)N(s)ds

−1
L

∫ L

0
Ct(s) ·

1
‖C(s)−P‖

(
Cs(s) ·

C(s)−P
‖C(s)−P‖

)
J (C(s)−P)
‖C(s)−P‖

ds

+
1
L

∫ L

0
Ct(s) ·

1
‖C(s)−P‖

(
Cs(s) ·

J (C(s)−P)
‖C(s)−P‖

)
C(s)−P
‖C(s)−P‖

ds.

Continuing we get

E
′
2D(C) =

1
L

E2D(C)
∫ L

0
Ct(s) ·κ(s)N(s)ds

+
1
L

∫ L

0
Ct(s) ·

1
‖C(s)−P‖

[(
Cs(s) ·

J (C(s)−P)
‖C(s)−P‖

)
C(s)−P
‖C(s)−P‖
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−
(

Cs(s) ·
C(s)−P
‖C(s)−P‖

)
J (C(s)−P)
‖C(s)−P‖

]
ds

=
1
L

E2D(C)
∫ L

0
Ct(s) ·κ(s)N(s)ds+

1
L

∫ L

0
Ct(s) ·

1
‖C(s)−P‖

JT Cs(s)ds

=
∫ L

0

〈
Ct(s),

1
L

(
κ(s)E2D(C)+

1
‖C(s)−P‖

)
N(s)

〉
ds.

Therefore, the gradient flow that maximizes the average visibility of the region of interest

of the contour C with respect to the viewpoint P is

Ct(s) =
1
L

(
κ(s)E2D(C)+

1
‖C(s)−P‖

)
N(s). (51)

Since P is located outside C, ‖C(s)−P‖ is nonzero as long as the evolving contour does

not touch P.
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B.2 Derivatives Used in the Flux Model

Partial derivatives of the energies E2D,k and E2D,k−1 with respect to the vertex vk:

∂E2D,k

∂vk
=

1
|Ck|

[ln(|Ck|+βk +‖vk+1−P‖)− ln(βk +‖vk−P‖)]
(

∂γk

∂vk

− γk

|Ck|2
(vk−vk+1)

T

)

+
γk

|Ck|

[
1

|Ck|+βk +‖vk+1−P‖

(
1
|Ck|

(vk−vk+1)
T +

∂βk

∂vk

)
− 1

βk +‖vk−P‖

(
∂βk

∂vk
+

(vk−P)T

‖vk−P‖

)]
(52)

∂E2D,k−1

∂vk
=

1
|Ck−1|

[ln(|Ck−1|+βk−1 +‖vk−P‖)− ln(βk−1 +‖vk−1−P‖)]
(

∂γk−1

∂vk

− γk−1

|Ck−1|2
(vk−vk−1)

T

)

+
γk−1

|Ck−1|2

[
1

|Ck−1|+βk−1 +‖vk−P‖

(
1
|Ck−1|

(vk−vk−1)
T +

∂βk−1

∂vk
+

(vk−P)T

‖vk−P‖

)

− 1
βk−1 +‖vk−1−P‖

(
∂βk−1

∂vk

)]
(53)

Auxiliary Derivatives:

∂βk

∂vk
=

∂

∂vk

(vk+1−vk)
T (vk−P)

|Ck|
=− βk

|Ck|2
(vk−vk+1)

T +
(vk+1−2vk +P)T

|Ck|

∂βk−1

∂vk
=

∂

∂vk

(vk−vk−1)
T (vk−1−P)

|Ck−1|
=− βk−1

|Ck−1|2
(vk−vk−1)

T +
(vk−1−P)T

|Ck−1|
∂γk

∂vk
=

∂

∂vk

[
(vk−P)T JT (vk+1−vk)

]
= (vk+1−P)T J

∂γk−1

∂vk
=

∂

∂vk

[
(vk−1−P)T JT (vk−vk−1)

]
= (vk−1−P)T JT
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B.3 Gradient Ascent for the Average Visibility Energy of a 3D

Differentiable Surface

Let S be a twice-differentiable surface of area A and let P be a viewpoint located outside

S. We define the average visibility of S with respect to P as

E3D(S) =
1
A

∫ ∫
S

S−P
‖S−P‖

·NdS, (54)

where N is the inward unit normal at the surface point S. Let u ∈ [0,1] and v ∈ [0,1]

be parameterization variables over which the integral above will be evaluated. Using this

parameterization (54) becomes

E3D(S) =
1
A

∫ 1

0

∫ 1

0

S(u,v)−P
‖S(u,v)−P‖

· Sv×Su

‖Sv×Su‖
‖Su×Sv‖ dudv

=
1
A

∫ 1

0

∫ 1

0

S(u,v)−P
‖S(u,v)−P‖

· (Sv×Su) dudv. (55)

Taking the derivative of (55) with respect to time we get

E
′
3D(S) =

d
dt

[
1
A

∫ 1

0

∫ 1

0

S(u,v)−P
‖S(u,v)−P‖

· (Sv×Su) dudv
]

=
∫ 1

0

∫ 1

0

S(u,v)−P
‖S(u,v)−P‖

· (Sv×Su) dudv
d
dt

1
A

+
1
A

∫ 1

0

∫ 1

0

d
dt

[
S(u,v)−P
‖S(u,v)−P‖

· (Sv×Su)
]

dudv

= − 1
A2

∫ 1

0

∫ 1

0

S(u,v)−P
‖S(u,v)−P‖

· (Sv×Su) dudv
d
dt

A

+
1
A

∫ 1

0

∫ 1

0

[(
S(u,v)−P
‖S(u,v)−P‖

)
t
· (Sv×Su)+

S(u,v)−P
‖S(u,v)−P‖

· (Sv×Su)t

]
dudv

= −E3D(S)
A

d
dt

∫ ∫
S

dS +
1
A

∫ 1

0

∫ 1

0

1
‖S(u,v)−P‖

[
St
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−
(

St ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

]
· (Sv×Su) dudv

+
1
A

∫ 1

0

∫ 1

0

S(u,v)−P
‖S(u,v)−P‖

· (Svt ×Su +Sv×Sut) dudv

= −E3D(S)
A

∫ 1

0

∫ 1

0

d
dt
‖Su×Sv‖ dudv+

1
A

∫ 1

0

∫ 1

0

1
‖S(u,v)−P‖

[
St

−
(

St ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

]
· (Sv×Su) dudv

+
1
A

∫ 1

0

∫ 1

0

S(u,v)−P
‖S(u,v)−P‖

· (Svt ×Su) dudv

+
1
A

∫ 1

0

∫ 1

0

S(u,v)−P
‖S(u,v)−P‖

· (Sv×Sut) dudv

= −E3D(S)
A

∫ 1

0

∫ 1

0

(Su×Sv) · (Sut ×Sv +Su×Svt)
‖Su×Sv‖

dudv

+
1
A

∫ 1

0

∫ 1

0

1
‖S(u,v)−P‖

[
St

−
(

St ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

]
· (Sv×Su) dudv

+
1
A

∫ 1

0

∫ 1

0

(
Su×

S(u,v)−P
‖S(u,v)−P‖

)
·Stv dudv

− 1
A

∫ 1

0

∫ 1

0

(
Sv×

S(u,v)−P
‖S(u,v)−P‖

)
·Stu dudv. (56)

Now using integration by parts in (56) and then simplifying we obtain

E
′
3D(S) =

E3D(S)
A

∫ 1

0

∫ 1

0
St ·
(

Sv×
Su×Sv

‖Su×Sv‖

)
u

dudv

+
E3D(S)

A

∫ 1

0

∫ 1

0
St ·
(

Su×Sv

‖Su×Sv‖
×Su

)
v

dudv+
1
A

∫ 1

0

∫ 1

0

1
‖S(u,v)−P‖

[
St

−
(

St ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

]
· (Sv×Su) dudv

− 1
A

∫ 1

0

∫ 1

0
St ·
[

Suv×
S(u,v)−P
‖S(u,v)−P‖

+Su×
(

S(u,v)−P
‖S(u,v)−P‖

)
v

]
dudv

+
1
A

∫ 1

0

∫ 1

0
St ·
[

Svu×
S(u,v)−P
‖S(u,v)−P‖

+Sv×
(

S(u,v)−P
‖S(u,v)−P‖

)
u

]
dudv

=
E3D

A

∫ 1

0

∫ 1

0
St ·
[

Svu×
Su×Sv

‖Su×Sv‖
+Sv×

(
Su×Sv

‖Su×Sv‖

)
u

]
dudv
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+
E3D

A

∫ 1

0

∫ 1

0
St ·
[

Su×Sv

‖Su×Sv‖
×Suv +

(
Su×Sv

‖Su×Sv‖

)
v
×Su

]
dudv

+
1
A

∫ 1

0

∫ 1

0

1
‖S(u,v)−P‖

[
St

−
(

St ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

]
· (Sv×Su) dudv

− 1
A

∫ 1

0

∫ 1

0
St ·
[

Su×
(

S(u,v)−P
‖S(u,v)−P‖

)
v

]
dudv

+
1
A

∫ 1

0

∫ 1

0
St ·
[

Sv×
(

S(u,v)−P
‖S(u,v)−P‖

)
u

]
dudv

=
E3D(S)

A

∫ 1

0

∫ 1

0
St ·
[

Sv×
(

Su×Sv

‖Su×Sv‖

)
u
−Su×

(
Su×Sv

‖Su×Sv‖

)
v

]
dudv

+
1
A

∫ 1

0

∫ 1

0

1
‖S(u,v)−P‖

[
St

−
(

St ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

]
· (Sv×Su) dudv

− 1
A

∫ 1

0

∫ 1

0
St ·
{

Su×
1

‖S(u,v)−P‖

[
Sv

−
(

Sv ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

]}
dudv

+
1
A

∫ 1

0

∫ 1

0
St ·
{

Sv×
1

‖S(u,v)−P‖

[
Su

−
(

Su ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

]}
dudv

=
E3D(S)

A

∫ 1

0

∫ 1

0
St ·
{

Sv×
1

‖Su×Sv‖

[
(Su×Sv)u

−
(

(Su×Sv)u ·
Su×Sv

‖Su×Sv‖

)
Su×Sv

‖Su×Sv‖

]}
dudv

−E3D(S)
A

∫ 1

0

∫ 1

0
St ·
{

Su×
1

‖Su×Sv‖

[
(Su×Sv)v

−
(

(Su×Sv)v ·
Su×Sv

‖Su×Sv‖

)
Su×Sv

‖Su×Sv‖

]}
dudv

+
1
A

∫ 1

0

∫ 1

0

1
‖S(u,v)−P‖

St · (Sv×Su) dudv

− 1
A

∫ 1

0

∫ 1

0

1
‖S(u,v)−P‖

(
St ·

S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

· (Sv×Su) dudv

− 1
A

∫ 1

0

∫ 1

0

1
‖S(u,v)−P‖

St · (Su×Sv) dudv

+
1
A

∫ 1

0

∫ 1

0

1
‖S(u,v)−P‖

St ·
[(

Sv ·
S(u,v)−P
‖S(u,v)−P‖

)
Su×

S(u,v)−P
‖S(u,v)−P‖

]
dudv
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+
1
A

∫ 1

0

∫ 1

0

1
‖S(u,v)−P‖

St · (Sv×Su) dudv (57)

− 1
A

∫ 1

0

∫ 1

0

1
‖S(u,v)−P‖

St ·
[(

Su ·
S(u,v)−P
‖S(u,v)−P‖

)
Sv×

S(u,v)−P
‖S(u,v)−P‖

]
dudv.

Taking into consideration that we can decompose the vectors (Su×Sv)u and (Su×Sv)v as

a linear combination of the orthogonal set of unit vectors
{

Su
‖Su‖ ,

Sv
‖Sv‖ ,

Su×Sv
‖Su×Sv‖

}
, it follows

that:

E
′
3D(S) =

E3D(S)
A

∫ 1

0

∫ 1

0
St ·
{

Sv×
1

‖Su×Sv‖

[(
(Su×Sv)u ·

Su

‖Su‖

)
Su

‖Su‖

+
(

(Su×Sv)u ·
Sv

‖Sv‖

)
Sv

‖Sv‖

]}
dudv

−E3D(S)
A

∫ 1

0

∫ 1

0
St ·
{

Su×
1

‖Su×Sv‖

[(
(Su×Sv)v ·

Su

‖Su‖

)
Su

‖Su‖

+
(

(Su×Sv)v ·
Sv

‖Sv‖

)
Sv

‖Sv‖

]}
dudv

+
3
A

∫ 1

0

∫ 1

0

1
‖S(u,v)−P‖

St · (Sv×Su) dudv

− 1
A

∫ 1

0

∫ 1

0

1
‖S(u,v)−P‖

St ·
{[

(Sv×Su) ·
S(u,v)−P
‖S(u,v)−P‖

]
S(u,v)−P
‖S(u,v)−P‖

}
dudv

+
1
A

∫ 1

0

∫ 1

0

1
‖S(u,v)−P‖

St ·
[

Su×
(

Sv ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

]
dudv

− 1
A

∫ 1

0

∫ 1

0

1
‖S(u,v)−P‖

St ·
[

Sv×
(

Su ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

]
dudv

=
E3D(S)

A

∫ 1

0

∫ 1

0
St ·

(
(Su×Sv)u ·

Su

‖Su‖2

)
Sv×Su

‖Su×Sv‖
dudv

+
E3D(S)

A

∫ 1

0

∫ 1

0
St ·

(
(Su×Sv)v ·

Sv

‖Sv‖2

)
Sv×Su

‖Su×Sv‖
dudv

+
1
A

∫ 1

0

∫ 1

0

〈
St ,

1
‖S(u,v)−P‖

{
3(Sv×Su)

−
[
(Sv×Su) ·

S(u,v)−P
‖S(u,v)−P‖

]
S(u,v)−P
‖S(u,v)−P‖

+Su×
(

Sv ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

−Sv×
(

Su ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

}〉
dudv

74



=
E3D(S)

A

∫ 1

0

∫ 1

0
St ·

(
(Suu×Sv +Su×Svu) ·

Su

‖Su‖2

)
Sv×Su

‖Su×Sv‖
dudv

+
E3D(S)

A

∫ 1

0

∫ 1

0
St ·

(
(Suv×Sv +Su×Svv) ·

Sv

‖Sv‖2

)
Sv×Su

‖Su×Sv‖
dudv

+
1
A

∫ 1

0

∫ 1

0

〈
St ,

1
‖S(u,v)−P‖

{
3(Sv×Su)

−
[
(Sv×Su) ·

S(u,v)−P
‖S(u,v)−P‖

]
S(u,v)−P
‖S(u,v)−P‖

+Su×
(

Sv ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

−Sv×
(

Su ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

}〉
dudv. (58)

Since (Su×Svu) ·Su = (Su×Su) ·Svu = 0 and (Suv×Sv) ·Sv =−(Sv×Sv) ·Suv = 0, we

obtain

E
′
3D(S) =

E3D(S)
A

∫ 1

0

∫ 1

0
St ·

(
(Suu×Sv) ·

Su

‖Su‖2 +(Su×Svv) ·
Sv

‖Sv‖2

)
Sv×Su

‖Su×Sv‖
dudv

+
1
A

∫ 1

0

∫ 1

0

〈
St ,

1
‖S(u,v)−P‖

{
3(Sv×Su)

−
[
(Sv×Su) ·

S(u,v)−P
‖S(u,v)−P‖

]
S(u,v)−P
‖S(u,v)−P‖

+Su×
(

Sv ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

−Sv×
(

Su ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

}〉
dudv

=
E3D(S)

A

∫ 1

0

∫ 1

0
St ·

(
Suu

‖Su‖2 · (Sv×Su)+
Svv

‖Sv‖2 · (Sv×Su)

)
Sv×Su

‖Su×Sv‖
dudv

+
1
A

∫ 1

0

∫ 1

0

〈
St ,

1
‖S(u,v)−P‖

{
3(Sv×Su)

−
[
(Sv×Su) ·

S(u,v)−P
‖S(u,v)−P‖

]
S(u,v)−P
‖S(u,v)−P‖

+Su×
(

Sv ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

−Sv×
(

Su ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

}〉
dudv. (59)
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Continuing we get

E
′
3D(S) =

E3D(S)
A

∫ 1

0

∫ 1

0
St ·

[(
Suu

‖Su‖2 +
Svv

‖Sv‖2

)
· Sv×Su

‖Su×Sv‖

]
Sv×Su

‖Su×Sv‖
‖Su×Sv‖ dudv

+
1
A

∫ 1

0

∫ 1

0

〈
St ,

1
‖S(u,v)−P‖

{
3(Sv×Su)

−
[
(Sv×Su) ·

S(u,v)−P
‖S(u,v)−P‖

]
S(u,v)−P
‖S(u,v)−P‖

+Su×
(

Sv ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

−Sv×
(

Su ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

}〉
dudv.

=
E3D(S)

A

∫ 1

0

∫ 1

0
St · (κu +κv)

Sv×Su

‖Su×Sv‖
‖Su×Sv‖ dudv

+
1
A

∫ 1

0

∫ 1

0

〈
St ,

1
‖S(u,v)−P‖

{
3(Sv×Su)

−
[
(Sv×Su) ·

S(u,v)−P
‖S(u,v)−P‖

]
S(u,v)−P
‖S(u,v)−P‖

+Su×
(

Sv ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

−Sv×
(

Su ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

}〉
dudv.

=
1
A

∫ ∫
S
〈St ,2H(S)E3D(S)N〉 dS

+
1
A

∫ 1

0

∫ 1

0

〈
St ,

1
‖S(u,v)−P‖

{
3(Sv×Su)

−
[
(Sv×Su) ·

S(u,v)−P
‖S(u,v)−P‖

]
S(u,v)−P
‖S(u,v)−P‖

+Su×
(

Sv ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

−Sv×
(

Su ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

}〉
dudv, (60)

where H(S) is the mean curvature at S.

In order to further simplify the last two lines in (60) we need to do an additional anal-

ysis. Let a,b ∈ R3 be unit vectors such that the set {a,b,c} form an orthogonal basis with
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c = S(u,v)−P
‖S(u,v)−P‖ . We can then express the the vectors Su, Sv as

Su = (Su ·a)a+(Su ·b)b+(Su · c)c (61)

and

Sv = (Sv ·a)a+(Sv ·b)b+(Sv · c)c. (62)

Now, let us choose a and b such that a×b = c, then b× c = a and c×a = b. Using these

results we can express the terms in (60) as functions of a, b, and c as follows:

Sv×Su = [(Sv ·a)a+(Sv ·b)b+(Sv · c)c]× [(Su ·a)a+(Su ·b)b+(Su · c)c]

= [(Sv ·b)(Su · c)− (Sv · c)(Su ·b)]a+[(Sv · c)(Su ·a)− (Sv ·a)(Su · c)]b

+[(Sv ·a)(Su ·b)− (Sv ·b)(Su ·a)]c, (63)

[
(Sv×Su) ·

S(u,v)−P
‖S(u,v)−P‖

]
S(u,v)−P
‖S(u,v)−P‖

= ((Sv×Su) · c)c

= [(Sv ·a)(Su ·b)− (Sv ·b)(Su ·a)]c, (64)

Su×
(

Sv ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

= Su× (Sv · c)c

= [(Su ·a)a+(Su ·b)b+(Su · c)c]× (Sv · c)c

= (Su ·b)(Sv · c)a− (Su ·a)(Sv · c)b, (65)

and

Sv×
(

Su ·
S(u,v)−P
‖S(u,v)−P‖

)
S(u,v)−P
‖S(u,v)−P‖

= Sv× (Su · c)c

= [(Sv ·a)a+(Sv ·b)b+(Sv · c)c]× (Su · c)c

= (Sv ·b)(Su · c)a− (Sv ·a)(Su · c)b. (66)
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Now, we can simplify (60) as shown below

E
′
3D(S) =

1
A

∫ ∫
S
〈St ,2H(S)E3D(S)N〉 dS

+
1
A

∫ 1

0

∫ 1

0

〈
St ,

1
‖S(u,v)−P‖

{3 [(Sv ·b)(Su · c)− (Sv · c)(Su ·b)]a

+3 [(Sv · c)(Su ·a)− (Sv ·a)(Su · c)]b+3 [(Sv ·a)(Su ·b)− (Sv ·b)(Su ·a)]c

− [(Sv ·a)(Su ·b)− (Sv ·b)(Su ·a)]c+(Su ·b)(Sv · c)a− (Su ·a)(Sv · c)b

−(Sv ·b)(Su · c)a+(Sv ·a)(Su · c)b}〉 dudv

=
1
A

∫ ∫
S
〈St ,2H(S)E3D(S)N〉 dS

+
1
A

∫ 1

0

∫ 1

0

〈
St ,

1
‖S(u,v)−P‖

{2 [(Sv ·b)(Su · c)− (Sv · c)(Su ·b)]a

+2 [(Sv · c)(Su ·a)− (Sv ·a)(Su · c)]b

+2 [(Sv ·a)(Su ·b)− (Sv ·b)(Su ·a)]c}〉 dudv

=
1
A

∫ ∫
S
〈St ,2H(S)E3D(S)N〉 dS +

1
ASv

∫ 1

0

∫ 1

0

〈
St ,2

Sv×Su

‖S(u,v)−P‖

〉
dudv

=
1
A

∫ ∫
S
〈St ,2H(S)E3D(S)N〉 dS

+
1
A

∫ 1

0

∫ 1

0

〈
St ,

2
‖S(u,v)−P‖

Sv×Su

‖Sv×Su‖

〉
‖Sv×Su‖ dudv

=
1
A

∫ ∫
S
〈St ,2H(S)E3D(S)N〉 dS +

1
ASv

∫ ∫
Sv

〈
St ,

2
‖S−P‖

N
〉

dS

=
∫ ∫

S

〈
St ,

2
A

(
H(S)E3D(S)+

1
‖S−P‖

)
N
〉

dS. (67)

Therefore, a gradient flow that maximizes the average visibility of the surface S with respect

to the viewpoint P is

St =
1
A

(
H(S)E3D(S)+

1
‖S−P‖

)
N. (68)
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Since P is located outside S, then ‖S−P‖ is nonzero as long as the evolving contour does

not touch P. Moreover, this gradient flow is stable if the initial value of the average visibil-

ity, E3D, is positive.
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B.4 Visibility of a Triangular Face

Let va, vb, and vc be the vertexes of the triangular face Si of area Ai in a given trian-

gulated surface. Let also assume that the vertexes are ordered counterclockwise so that the

inward unit normal of Si could be computed without ambiguity (see Fig. 5.22). It follows

that the inward unit normal at every point in Si can be computed by

Ni = − (vb−va)× (vc−va)
‖(vb−va)× (vc−va)‖

= − va×vb +vb×vc +vc×va

‖va×vb +vb×vc +vc×va‖
, (69)

where × is the cross product operator.

The total visibility E3D,i of the triangular face Si with respect to the viewpoint P can be

written as the surface integral

E3D,i =
∫ ∫

Si

(C(s)−P)
‖C(s)−P‖

·Ni dS. (70)

We can parameterize the triangular face Si as

Si(u,v) = va +u(vb−va)+ v(vc−va) , (71)

for u ∈ [0,1] and v ∈ [0,1−u]. Using this parameterization, (70) becomes

E3D,i =
∫ 1

0

∫ 1−u

0

va +u(vb−va)+ v(vc−va)−P
‖va +u(vb−va)+ v(vc−va)−P‖

·Ni

∥∥∥∥∂Si

∂u
× ∂Si

∂v

∥∥∥∥dvdu

=
∫ 1

0

∫ 1−u

0

va−P
‖va +u(vb−va)+ v(vc−va)−P‖

·Ni ‖(vb−va)× (vc−va)‖dvdu (72)

= −
∫ 1

0

∫ 1−u

0

(va−P) · ((vb−va)× (vc−va))√
l2
acv2 +2(vc−va) · (va +u(vb−va)−P)v+‖va +u(vb−va)−P‖2

dvdu,
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where lac = ‖va−vc‖ . Continuing we get

E3D,i = −(va−P) · ((vb−va)× (vc−va))
lac

∫ 1

0

[
ln
(

lacv+
(vc−va) · (va +u(vb−va)−P)

lac

+‖va +u(vb−va)+ v(vc−va)−P‖
)]1−u

0

=
α

lac

∫ 1

0
ln
(

lac(1−u)+
β

lac
+ γ

)
− ln

(
β

lac
+δ

)
du

=
α

lac

∫ 1

0
ln
(

l2
ac(1−u)+β + γ lac

β +δ lac

)
du, (73)

for α = −(va−P) · (va×vb +vb×vc +vc×va), β = (vc−va) · ((1−u)va +uvb−P),

γ = ‖uvb +(1−u)vc−P‖, and δ = ‖(1−u)va +uvb−P‖.

Taking the derivative of (73) with respect to the vertex va we get

∂E3D,i

∂va
=

∂

∂va

[
α

lac

∫ 1

0
ln
(

l2
ac(1−u)+β + γ lac

β +δ lac

)
du
]

=
∫ 1

0
ln
(

l2
ac(1−u)+β + γ lac

β +δ lac

)
du

∂

∂va

[
α

lac

]
+

α

lac

∂

∂va

∫ 1

0
ln
(

l2
ac(1−u)+β + γ lac

β +δ lac

)
du

=
∫ 1

0
ln
(

l2
ac(1−u)+β + γ lac

β +δ lac

)
du
(

1
lac

∂α

∂va
− α

l3
ac

(va−vc)
)

+
α

lac

∫ 1

0

(
β +δ lac

l2
ac(1−u)+β + γ lac

)
∂

∂va

[
l2
ac(1−u)+β + γ lac

β +δ lac

]
du

=
1

lac

∫ 1

0
ln
(

l2
ac(1−u)+β + γ lac

β +δ lac

)
du
(

∂α

∂va
− α

l2
ac

(va−vc)
)

+
α

lac

∫ 1

0

(
β +δ lac

l2
ac(1−u)+β + γ lac

)
(

2(1−u)+ γ

lac

)
(va−vc)+ ∂β

∂va

β +δ lac

− l2
ac(1−u)+β + γ lac

(β +δ lac)
2

(
∂β

∂va
+ lac

∂δ

∂va
+

δ

lac
(va−vc)

))
du

=
1

lac

∫ 1

0
ln
(

l2
ac(1−u)+β + γ lac

β +δ lac

)
du
(

∂α

∂va
− α

l2
ac

(va−vc)
)
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+
α

lac

∫ 1

0


(

2(1−u)+ γ

lac

)
(va−vc)+ ∂β

∂va

l2
ac(1−u)+β + γ lac

−
∂β

∂va
+ lac

∂δ

∂va
+ δ

lac
(va−vc)

β +δ lac

du, (74)

where the partial derivatives of α , β , and δ with respect to va can be easily obtained as

follows:

∂α

∂va
=

∂

∂va
[−(va−P) · (va×vb +vb×vc +vc×va)]

= −
(

((vb−va)× (vc−va))+
∂

∂va
[(vc−vb)×va]

T (va−P)
)

(75)

∂β

∂va
=

∂

∂va
[(vc−va) · ((1−u)va +uvb−P)]

= (1−u)(vc−va)− ((1−u)va +uvb−P)

= −(2(1−u)va +uvb− (1−u)vc−P) (76)

∂δ

∂va
=

∂

∂va
‖(1−u)va +uvb−P‖

=
(1−u)

δ
((1−u)va +uvb−P) . (77)
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B.5 3D Topology Preservation

Non-Adjacent Triangular Faces

Let Si and S j be two non-adjacent triangular faces of a triangulated surface with set of

vertexes {va,vb,vc} and
{

vâ,vb̂,vĉ
}

, respectively. The minimization of the energy

E3D,Ri, j =
∫ ∫

Si×S j

1∥∥Si−S j
∥∥2 dSi dS j (78)

would avoid intersections between the two non-adjacent triangular faces, therefore prevent-

ing topology changes during the evolution of the surface

If we use the parameterizations

S(u,v) = va +u(vb−va)+ v(vc−va) (79)

S(û, v̂) = vâ + û
(
vb̂−vâ

)
+ v̂(vĉ−vâ) (80)

where u ∈ [0,1], v ∈ [0,1−u] and û ∈ [0,1], v̂ ∈ [0,1−u], then (78) becomes

E3D,Ri, j =
∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

‖Su×Sv‖‖Sû×Sv̂‖
‖S(u,v)−S(û, v̂)‖2 dv̂dûdvdu

=
∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

‖(vb−va)× (vc−va)‖
∥∥(vb̂−vâ

)
× (vĉ−vâ)

∥∥
‖S(u,v)−S(û, v̂)‖2 dv̂dûdvdu

= 4Ai A j

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

1

‖S(u,v)−S(û, v̂)‖2 dv̂dûdvdu. (81)

Now taking the derivative with respect to va of the expression above we get

∂E3D,Ri, j

∂va
=

∂

∂va

[
4Ai A j

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

1

‖S(u,v)−S(û, v̂)‖2 dv̂dûdvdu

]

= 2A j

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

dv̂dûdvdu

‖S(u,v)−S(û, v̂)‖2
∂

∂va
‖(vb−va)× (vc−va)‖

+4Ai A j

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

∂

∂va

dv̂dûdvdu

‖(1−u− v)va +uvb + vvc−S(û, v̂)‖2

= −2A j

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

dv̂dûdvdu

‖S(u,v)−S(û, v̂)‖2
∂

∂va
[(vc−vb)×va]

T Ni

83



−8Ai A j

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0
(1−u− v)

S(u,v)−S(û, v̂)
‖S(u,v)−S(û, v̂)‖4 dv̂dûdvdu, (82)

where Ni is the inward unit normal of the triangular face Si.

Non-Adjacent Triangular Faces (Approximation)

When two non-adjacent triangular faces are far apart we can approximate (81) to reduce

the number of computations. One way to do this is by using the centroids of each triangular

face in (78). That is,

E3D,Ri, j = 4Ai A j

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

1∥∥S̄i− S̄ j
∥∥2 dv̂dûdvdu

=
4Ai A j∥∥S̄i− S̄ j

∥∥2

∫ 1

0

∫ 1−u

0
dvdu

∫ 1

0

∫ 1−û

0
dv̂dû

=
Ai A j∥∥S̄i− S̄ j

∥∥2 . (83)

Therefore we have

∂E3D,Ri, j

∂va
=

∂

∂va

Ai A j∥∥S̄i− S̄ j
∥∥2

=
1
2

A j∥∥S̄i− S̄ j
∥∥2

∂

∂va
‖(vb−va)× (vc−va)‖

−2
3

Ai A j
S̄i− S̄ j∥∥S̄i− S̄ j

∥∥4

= −1
2

A j
1∥∥(va +vb +vc)−
(
vâ +vb̂ +vĉ

)∥∥2
∂

∂va
[(vc−vb)×va]

T Ni

−2
3

Ai A j
S̄i− S̄ j∥∥S̄i− S̄ j

∥∥4 . (84)

Adjacent Triangular Faces

Let Si and S j be two adjacent triangular faces with set of vertexes {va,vb,vc} and{
va,vb̂,vĉ

}
, respectively. Thus Si and S j have va as a common vertex. If we use the

parameterizations

S(u,v) = va +u(vb−va)+ v(vc−va) (85)
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S(û, v̂) = va + û
(
vb̂−va

)
+ v̂(vĉ−va) , (86)

where u ∈ [0,1], v ∈ [0,1−u] and û ∈ [0,1], v̂ ∈ [0,1−u], then (78) becomes

E3D,Ri, j =
∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

‖Su×Sv‖‖Sû×Sv̂‖
‖S(u,v)−S(û, v̂)‖2 dv̂dûdvdu

=
∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

‖(vb−va)× (vc−va)‖
∥∥(vb̂−va

)
× (vĉ−va)

∥∥
‖S(u,v)−S(û, v̂)‖2 dv̂dûdvdu

= 4Ai A j

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

1

‖S(u,v)−S(û, v̂)‖2 dv̂dûdvdu. (87)

Now taking the derivative with respect to va of the expression above we get

∂E3D,Ri, j

∂va
=

∂

∂va

[
4Ai A j

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

1

‖S(u,v)−S(û, v̂)‖2 dv̂dûdvdu

]

= 2A j

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

dv̂dûdvdu

‖S(u,v)−S(û, v̂)‖2
∂

∂va
‖(vb−va)× (vc−va)‖

+2Ai

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

dv̂dûdvdu

‖S(u,v)−S(û, v̂)‖2
∂

∂va

∥∥(vb̂−va
)
× (vĉ−va)

∥∥
+4Ai A j

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

∂

∂va

dv̂dûdvdu

‖(û+ v̂−u− v)va +uvb + vvc− ûvb− v̂vc‖2

= −2A j

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

dv̂dûdvdu

‖S(u,v)−S(û, v̂)‖2
∂

∂va
[(vc−vb)×va]

T Ni

−2Ai

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0

dv̂dûdvdu

‖S(u,v)−S(û, v̂)‖2
∂

∂va

[(
vĉ−vb̂

)
×va

]T N j

−8Ai A j

∫ 1

0

∫ 1−u

0

∫ 1

0

∫ 1−û

0
(û+ v̂−u− v)

S(u,v)−S(û, v̂)
‖S(u,v)−S(û, v̂)‖4 dv̂dûdvdu, (88)

where N j is the inward unit normal of the triangular face S j.
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