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SUMMARY

We derive a lower bound for the Wehrl entropy in the setting of SU(1, 1). For

asymptotically high values of the quantum number k, this bound coincides with the

analogue of the Lieb-Wehrl conjecture for SU(1, 1) coherent states. The bound on the

entropy is proved via a sharp norm bound. The norm bound is deduced by using an

interesting identity for Fisher information of SU(1, 1) coherent state transforms on the

hyperbolic plane H
2 and a new family of sharp Sobolev inequalities on H

2. To prove

the sharpness of our Sobolev inequality, we need to first prove a uniqueness theorem

for solutions of a semi-linear Poisson equation (which is actually the Euler-Lagrange

equation for the variational problem associated with our sharp Sobolev inequality)

on H2. Uniqueness theorems proved for similar semi-linear equations in the past do

not apply here and the new features of our proof are of independent interest, as are

some of the consequences we derive from the new family of Sobolev inequalities. We

also prove Fisher information identities for the groups SU(n, 1) and SU(n, n).

vii



CHAPTER I

INTRODUCTION

Let M be a Riemannian manifold with volume element dM. For a probability density

ρ on M, that is, a non-negative measurable function on M with
∫

M
ρdM = 1, its

entropy, if it exists, is defined as:

S(ρ) = −
∫

M

ρ ln ρ dM. (1.1)

Thus defined, the entropy of a density ρ can be thought of as a measure of its

“concentration”. If some part of the mass of ρ is very nearly concentrated in a multiple

of a Dirac mass, then S(ρ) may be very negative. We shall be mainly interested in the

case in which M is the phase space of some classical system, so that, in particular,

M is a symplectic manifold. In that case, we shall refer to ρ as a classical density,

and S(ρ) as its classical entropy.

The uncertainty principle limits the extent of possible concentration in phase

space: for instance, it prevents both the momentum variables p and the configuration

variables q in a canonical phase space, from taking on well-defined values at the same

time. A quantum mechanical density ρQ is a non-negative operator on the Hilbert

space H, which is the state space of the quantum system, having unit trace. Then

the quantum entropy (or von Neumann entropy) of ρQ is defined by

SQ(ρQ) = −Tr ρQ ln ρQ . (1.2)

Since all of the eigenvalues of ρQ lie in the interval [0, 1], it is clear that

SQ(ρQ) ≥ 0 . (1.3)

As Wehrl emphasized [Weh], when one considers a quantum system and its corre-

sponding classical analogue, not all of the classical probability densities on the phase
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space M can correspond to physical densities for the quantum system, and one might

expect a lower bound on the classical entropy of those probability densities that do

correspond to actual quantum states.

There is a natural way to make the correspondence between quantum states and

classical probability densities on phase space, which goes back to Schrödinger. It is

based on the coherent state transform, which is an isometry L from the quantum state

space H into L2(M), the Hilbert space of square integrable functions on the classical

phase space M. Since it is an isometry, if ψ is any unit vector in H, ρψ = |Lψ|2 is

a probability density on M. Wehrl [Weh] proposed defining the classical entropy of

a quantum state ψ in this way (note the the corresponding density matrix has rank

one, and hence the von Neumann entropy would be zero, for a “pure state”). The

Wehrl entropy is defined in terms of the coherent states for the quantum system and

is bounded below by the quantum entropy. It has several physically desirable features

such as monotonicity, strong subadditivity, and of course, positivity (see [Weh], [Lie]).

Wehrl identified the class of probability densities arising through the coherent

state transform as the class of quantum mechanically significant probability densities

on M, and conjectured that corresponding to (1.3), there should be a lower bound

on S(|Lψ|2) as ψ ranges over the unit sphere in H.

Specifically, if H is L2(R, dx), so that the classical phase space is R
2 with its usual

symplectic and Riemannian structure, Wehrl conjectured that the lower bound on

S(|Lψ|2) is attained when ψ is a minimal uncertainty state ψmin, also known as a

Glauber coherent state. That is:

inf
‖ψ‖H=1

S(|Lψ|2) = S(|Lψmin|2) . (1.4)

This was proved by Lieb [Lie] . There is a natural analogue of the Wehrl conjecture

for other state spaces and other coherent state transforms. Lieb generalized the Wehrl

conjecture to the SU(2) coherent states, for which the corresponding classical phase

space is S2, the two-dimensional sphere, with its usual Riemannian and symplectic
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structure. The analogues of the Glauber coherent states in this case are the Bloch

coherent states generated by least weight vectors in the various unitary representations

of SU(2), indexed by the half integer quantum number j and Lieb conjectured the

analogue of (1.4) for the SU(2) coherent state transform.

Although Lieb’s conjecture for SU(2) is still open, it has attracted the attention

of a number of researchers, and much progress has been made. The various unitary

representations of SU(2) are indexed by a half integer j, which is the quantum number

in this context; for each such j there is a coherent state transform, and hence a

conjectured lower bound of the Wehrl entropy. The bound is trivial for j = 1/2, in

which case every state is a Bloch coherent state, but is already non trivial for j = 1.

Schupp [Sch] proved the conjecture for j = 1 and j = 3/2. Later Bodmann [Bod]

proved a result which may be seen as complementary to Schupp’s result; he deduced

a lower bound for the Wehrl entropy of SU(2) coherent states, for which the high

spin asymptotics coincided with Lieb’s conjecture up to, but not including, terms of

first and higher orders in the inverse of spin quantum number j.

Bodmann did this by proving a sharp Lp bound on the range of the coherent state

transform. This led to a proof of an analogue of Lieb’s conjecture for certain Renyi

entropies (cf. [Gnu]) : for any p > 1 and any classical density ρ, define

Sp(ρ) =
1

p− 1
ln (‖ρ‖p) , (1.5)

where ‖ρ‖p is the Lp norm of ρ. Then it is easy to see that, if it exists,

lim
p→1

Sp(ρ) = S(ρ) .

Bodmann derived his bound on Renyi entropies from a Sobolev type inequality and

a Fisher information identity, which is another type of concentration bound on the

range of the coherent state transform. The Fisher information I(ρ) of a probabilty

density ρ on M is defined by

I(ρ) =

∫

M

|∇ ln ρ|2ρ dM = 4

∫

M

|∇√
ρ|2 dM .
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For the Glauber coherent state transform, Carlen [Car] had proved that all classical

densities on R2 arising through the coherent state transform had the same finite value

of the Fisher information. He then used that together with the logarithmic Sobolev

inequality (cf. [Gro1]) to give a new proof of Wehrl’s conjecture, and to show that the

lower bound in (1.4) is attained only for Glauber coherent states. Bodmann proved

an analogue of Carlen’s result for Fisher information, and used this, together with

a sharp Sobolev inequality, instead of the sharp logarithmic Sobolev inequality, to

obtain his Renyi information bounds.

In this thesis, we investigate the analogue of the Lieb-Wehrl conjecture for

SU(1, 1). The representations of SU(1, 1) belonging to a discrete series, are labeled

by a half-integer k, the relevant quantum number in this context. While the classi-

cal phase space for SU(2) is the sphere S2, for SU(1, 1) the classical phase space is

H
2, the hyperbolic plane (cf. [Per]). It is natural to conjecture that, here too, the

coherent states generated by the least-weight vector of the representation provide a

lower bound on the entropy, as in Lieb’s conjecture for SU(2). We prove that this

is indeed asymptotically true, in the semi-classical limit. To obtain these results,

we prove a number of theorems concerning analysis in H2 that are of independent

interest. Specifically, we prove a new sharp Sobolev inequality, and a sharpened

energy–entropy inequality in H
2. The Sobolev inequality is

‖f‖qq +
4

kq(kq − 2)

∫

|∇|f |q/2|2dν ≥
(

2k − 1

kq − 1

)(

kp− 1

2k − 1

)q/p(
kq − 1

kq − 2

)

‖f‖qp,

where p = q+1/k, q ≥ 2, kq > 2 and the measure dν is a constant times the standard

measure on H2, obtained from the Poincaré metric; we determine all of the cases of

equality.

To prove the sharpness of our Sobolev inequality we need to prove and use a

uniqueness result for radial solutions of a semi-linear Poisson equation on the hyper-

bolic plane. The nature of this equation on H2 is substantially different from that of

similar equations which have been investigated in the past. The methods developed
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here may well be useful for other uniqueness problems.

We then prove the following Fisher information identity:

∫

|∇|Lψ|q/2|2dν =
1

4
kq

∫

|Lψ|qdν,

where q is a positive number such that kq > 2.

The sharp Sobolev inequality and the Fisher information identity allow us to prove

an Lp norm estimate a la Bodmann. This norm estimate is used to deduce a lower

bound for the Wehrl entropy of coherent state transforms via a convexity argument,

and the result is:

S(|Lψ(ζ)|2) ≥ 2k ln

(

1 +
1

2k − 1

)

.

It is seen that for high values (this gives us the semi-classical limit) of the quantum

number k, this lower bound coincides with the analogue of the Lieb-Wehrl conjecture,

up to but not including terms of first and higher order in k−1.

The methods used to bound the entropy also serve to produce a new, sharpened

energy–entropy inequality for functions on H2. An energy–entropy inequality is an

inequality of the form

−S(ρ) ≤ ΦM (I(ρ)), (1.6)

for some function Φ. Since the Fisher information can be expressed in terms of an

energy integral as shown above, the entropy-energy terminology is natural. For a

given Riemannian manifold M, the entropy–energy problem is to determine the least

function Φ : R+ → R for which (1.6) is true.

For example, in the case M = R2, the optimal Φ is known:

−S(ρ) ≤ ln

(

4

πe
I(ρ)

)

.
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Equality is achieved when ρ is an isotropic Gaussian function. For an appropriate

choice of the variance of the Gaussian, I(ρ) can take on any value, and this inequality

is sharp for all values of I(ρ). That is,

ΦR2(t) = ln

(

4

πe
t

)

.

There has been much investigation of entropy-energy inequalities for various Rie-

mannian manifolds (see [Bec1], [Bec2], [Heb], [Rot] for example). Though there has

been significant progress, many questions are still open.

In the case of H
2 , Beckner proved [Bec2] that the entropy–energy inequality for

H2 holds with the same Φ as in R2. That is,

ΦH2(t) ≤ ΦR2(t),

for all t. This result is asymptotically sharp in the sense that

lim
t→0

ΦH2(t)

ΦR2(t)
= 1 ,

however, ΦH2(t) < ΦR2(t). We shall give a sharpened estimate on ΦH2(t).

It is interesting to observe how sharp bounds on the Fisher information of coherent

state transforms can lead to sharp Sobolev type inequalities in a larger function space,

which can then be used to derive entropy–energy inequalities on various symplectic

Riemannian manifolds that are classical phase spaces, e.g., the sphere and the hyper-

bolic plane. These manifolds are determined by the groups for which we construct

the coherent states. It seems natural to ask: for which other groups having unitary

irreducible representations in spaces of holomorphic functions, can one obtain bounds

on the Fisher information of the coherent state transforms and formulate analogues of

the Lieb-Wehrl conjecture? Although this is a problem we are working on right now,

we can prove a Fisher information identity for the groups SU(n, 1) and SU(n, n).

In the next chapter we give a short description of a discrete representation of

SU(1, 1) and define the associated coherent states and coherent state transform.

6



Given any quantum state ψ, we denote its coherent state transform by Lψ(ζ), where

the complex number ζ is used to label the coherent states. We show that these co-

herent state transforms are actually probability amplitudes on the hyperbolic plane.

We also state the analogue of the Lieb-Wehrl conjecture in this setting.

Chapter 3 contains the proof of the lower bound for the Wehrl entropy for SU(1, 1),

and the results leading up to it. Here we prove Fisher information identity for the

coherent state transforms, and the sharp Sobolev inequality. Chapter 4 contains the

sharpened entropy–energy inequality for H2, and chapter 5 contains our uniqueness

proof. Finally, in chapter 6 we construct coherent state transforms for the group

SU(p, q) and prove Fisher information identities for the groups SU(n, 1) and SU(n, n).
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CHAPTER II

REPRESENTATION OF THE GROUP SU(1,1) AND THE

CONSTRUCTION OF COHERENT STATES

The group SU(1, 1) consists of unimodular 2 × 2 complex matrices which leave the

Hermitian form |z1|2 − |z2|2 invariant. These matrices can be parametrized by a pair

of complex numbers, α, β as follows:

g =







α β

β̄ ᾱ






, |α|2 − |β|2 = 1.

One can define a new variable z =
z2
z1

and describe the action of the element g ∈

SU(1, 1) on C1 as:

z −→ zg =
αz + β̄

βz + ᾱ
.

However, the group action on C1 is not transitive; in fact the complex plane is

foliated into three orbits, namely, i) the interior of the unit disk, ii) the boundary of

the unit disk, and, iii) the complement of the closed unit disk in the complex plane.

We shall work with one of the two discrete series of representations of SU(1, 1),

in the space of functions that are defined and analytical in the unit disc. The Lie

algebra for SU(1, 1) has three generators as its basis elements, which we call K0, K1

and K2 following Perelomov. The commutation relations satisfied are:

[K1, K2] = −iK0, [K2, K0] = iK1, [K0, K1] = iK2.

Thus, in two dimensions K0 = σ3/2, K1,2 = ±iσ2,1/2 would be the generators.

There is one Casimir operator given by: Ĉ = −K2
0 +K2

1 +K2
2 . So for any irreducible

representation the operator is a multiple of the identity and we write:

8



Ĉ = k(1 − k)Î .

Thus, a particular irreducible representation of SU(1, 1) is labeled by a single

number k [Per]. For the discrete series this number takes on discrete half-integral

values, k = 1/2, 1, 3/2, ... (cf. [Bar], [Per]). Let us call a particular representation

T k(g). simultaneous eigenvectors of the Casimir operator Ĉ and K0 to be the basis

vectors. We use Dirac’s bra-ket notation and denote these vectors by |k, µ〉 where µ

denotes the eigenvalue corresponding to K0 and

K0|k, µ〉 = µ|k, µ〉.

Here µ = k +m, where, for the positive discrete series of representations, m is either

zero or any positive integer [Bar] (the representations are infinite-dimensional). We

consider a realization of T k(g) in the space Gk of functions f(z) which are analytic

inside the unit circle and have finite L2-norm with respect to the invariant density

d̟k(z) = 2k−1
π

(1 − |z|2)2k−2d2z [Bar], i.e.,:

2k − 1

π

∫

D

|f(z)|2(1 − |z|2)2k−2d2z <∞, D = {z : |z| < 1}.

The pre-factor
2k − 1

π
is chosen so that we have (f, g)k =

∫

D

f(z)g(z)d̟k(z) ≡ 1

when f ≡ 1 and g ≡ 1, where (f, g)k denotes the inner product of f and g in this

representation. The group action on Gk in the multiplier representation T k(g) is given

by [Bar]:

T k(g)f(z) = (βz + ᾱ)−2kf(zg), zg =
αz + β̄

βz + ᾱ
.

Now let us observe that:

1 − |zg|2 = |βz + α|−2(1 − |z|2) and, Jg(z) = |βz + α|−2,

where Jg(z) denotes the Jacobian determinant of the transformation g. Taking inner

products with respect to the invariant density d̟k(z), we see that, for two functions

9



f1(z), f2(z), we have:

(

T k(g)f1, T
k(g)f2

)

k
=

∫

D

T k(g)f1(z)T
k(g)f2(z)d̟k(z)

=
2k − 1

π

∫

D

(β̄z̄ + α)−2kf1(zg)(βz + ᾱ)−2kf2(zg)(1 − |z|2)2k−2d2z

=
2k − 1

π

∫

D

|βz + α|−4kf1(zg)f2(zg)|βz + α|4k(1 − |zg|)2k−2d2zg

= (f1, f2)k

Thus, the operators T k(g) with the group action defined as above furnish a unitary

and irreducible representation of SU(1, 1).

To construct the coherent states we choose, as the stability group, subgroup H of

diagonal matrices of the form h =







eiθ/2 0

0 e−iθ/2






. Then any matrix in a coset gH

can be represented in the following form:

g
n

=







cosh τ
2

sinh τ
2
e−iφ

sinh τ
2
eiφ cosh τ

2






.

The factor space G/H is realized as the unit disk {ζ : |ζ | < 1}, or equivalently, as the

hyperbolic plane H2 = {n : |n|2 = n2
0 − n2

1 − n2
2 = 1, n0 > 0} [Per] via the following

correspondence:

n0 = cosh
τ

2
, n1 = sinh

τ

2
cosφ, n2 = sinh

τ

2
sin φ and ζ = tanh

τ

2
eiφ.

An element of G/H determines a hyperbolic rotation and in two dimensions, we have

the following decomposition:

g
n

=







cosh τ
2

sinh τ
2
e−iφ

sinh τ
2
eiφ cosh τ

2







=







1 tanh τ
2
e−iφ

0 1













1
cosh τ

2

0

0 cosh τ
2













1 0

tanh τ
2
eiφ 1







= exp

(

1

2
ζσ+

)

exp

(

1

2
ησ3

)

exp

(

1

2
ζ̄σ−

)

,

10



where ζ = tanh τ
2
e−iφ and η = 2 ln cosh τ

2
. As mentioned before, K0 =

σ3/2, K1,2 = ±iσ2,1/2 in two dimensions. Hence for a hyperbolic rotation

parametrized by τ and φ, in the representation T k, we have:

T k(g
n
) = exp (ζK+) exp (ηK0) exp

(

−ζ̄K−

)

,

where ζ = tanh τ
2
e−iφ and η = −2 ln cosh τ

2
, as before, and K± = (K1 ± iK2). We

will use this expression for the operator T k(g
n
), to construct the coherent states.

Now, in Gk the generators act as first order differential operators. An element of

SU(1, 1) generated by K1 is given by:

u = exp (−σ1τ/2) = cosh
τ

2
1 − sinh

τ

2
σ1

=







cosh τ
2

− sinh τ
2

− sinh τ
2

cosh τ
2






,

where 1 is the identity operator. Thus, in the representation T k, the action of the

generator K1 on a function f would be given by:

K1f(z) = −i. d
dτ
T k(u)f(z)|τ=0

= −i d

dτ

[

(− sinh
τ

2
z + cosh

τ

2
)−2kf

(− sinh τ
2

+ cosh τ
2
z

− sinh τ
2
z + cosh τ

2

)]∣

∣

∣

∣

τ=0

= −i
(

kzf(z) − 1

2
(1 − z2)

df(z)

dz

)

In a similar manner it can be seen that:

K2f(z) = −1

2
(1 + z2)

df(z)

dz
− kzf(z) and K0f(z) = z

df(z)

dz
+ kf(z).

From the form of K0 it is clear that its eigenfunctions, are monomials in z. We

denote these basis vectors spanning the representation space by |k, k +m〉, where m

is a nonnegative integer (cf. [Per]). Normalized with respect to the measure d̟k(z)

these eigenvectors are written:

|k, k +m〉 =

(

Γ(m+ 2k)

m!Γ(2k)

)
1

2

zm. (2.1)
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To construct the coherent states let us choose the least-weight vector |k, k〉 in Fk. The

reason behind this particular choice is that the dispersion of the Casimir operator is

minimal with respect to |k, k〉. The stationary subgroup for this state is the subgroup

H of diagonal matrices, as mentioned before.

We let these operators act on the chosen least-weight vector |k, k〉 to obtain an

expression for the coherent states in the orthonormal basis (cf. [Per]):

T k(g
n
)|k, k〉 = exp (ζK+) exp

(

ln(1 − |ζ |2)K0

)

exp
(

−ζ̄K−

)

|k, k〉

= exp (ζK+) (1 − |ζ |2)k|k, k〉

= (1 − |ζ |2)k
∞
∑

m=0

(

Γ(m+ 2k)

m!Γ(2k)

)
1

2

ζm|k, k +m〉,

where we have expanded the exponential in the second line and used the fact that:

(K+)m|k, k〉 =

(

m!Γ(2k +m)

Γ(2k)

)1/2

|k, k +m〉.

Represented as above, the coherent states are parametrized by a complex number ζ

on the unit disk or equivalently, by two real parameters τ and φ on the hyperbolic H2.

In what follows, we shall denote the coherent state corresponding to a particular ζ

by |ζ〉. If we now choose any arbitrary normalized vector |ψ〉 =
∑∞

m=0 am|k,m〉, then

we can define its coherent state transform Lψ(ζ) via the following inner product:

Lψ(ζ) = 〈ψ|ζ〉 = (1 − |ζ |2)k
∞
∑

m=0

(

Γ(m+ 2k)

m!Γ(2k)

)
1

2

āmζ
m. (2.2)

Evidently Lψ(ζ) is a function on the unit disk and so the coherent state trans-

form maps unit vectors in our representation space Gk into functions on the unit

disk, which vanish at the boundary of the disk. This mapping becomes an isom-

etry if we equip the unit disk with the L2-metric corresponding to the measure:

dν(ζ) =

(

2k − 1

π

1

(1 − |ζ |2)2

)

d2ζ . Note that dν(ζ) is just

(

2k − 1

4π

)

times the stan-

dard measure on the unit disk, that is, the measure dµ(ζ) =

(

4

(1 − |ζ |2)2

)

d2ζ , ob-

tained from the Poincaré metric on the disk. With inner product defined in the usual

12



way with respect to the measure dν(ζ), the space of the coherent state transforms

described above is a Hilbert space [Bar]. We call this space Fk. The transform L is

thus an analogue of the Bargmann-Segal transform for the Glauber coherent states

based on the Heisenberg group. Since |ψ〉 is a unit vector in our representation space

Gk, its coherent state transform Lψ(ζ) is a probability amplitude on the unit disk.

Thus, Fk is a space of probability amplitudes on the unit disk. We can now think

about the Wehrl entropy S(|Lψ(ζ)|2) associated with the coherent state transform

Lψ(ζ). If the unit vector |ψ〉 happens to be the ground state (which, we note, is also

a coherent state), we can easily compute that: S(|Lψ(ζ)coherent|2) =
2k

2k − 1
. Due to

invariance under SU(1, 1), this means that the entropy would be the same for any

other coherent state. The analogue of the Lieb-Wehrl conjecture for SU(1, 1) coherent

states would then be:

Conjecture 2.0.1. For all Lψ(ζ) ∈ Fk, the Wehrl entropy is bounded below by:

S(|Lψ(ζ)|2) ≥ 2k

2k − 1
. (2.3)

13



CHAPTER III

THE ENTROPY BOUND AND RELATED RESULTS

In this section we first present a useful Fisher information identity for functions in

Fk, that relates the q-norm (for all positive q such that kq > 2) of a function to

the L2-norm of the associated gradient. We then prove a sharp Sobolev inequality

for functions in a larger function space H, defined to be the space of bounded non-

constant functions f ∈ W 1,2(D) on the unit disk which vanish at the boundary; the

norms here are computed with respect to the measure dν(ζ). Next, we prove a sharp

norm estimate for functions in Fk (note that Fk is a subspace of H) by converting the

gradient norm of |f |q/2 that appears in our sharp Sobolev inequality, into the Lq-norm

of the function f , via the Fisher information identity. This sharp norm estimate is

then used to derive a lower bound on the entropy of functions in Fk.

The variational problem associated with our sharp Sobolev inequality in the func-

tion space H, naturally leads us to an Euler-Lagrange equation which is actually a

semi-linear Poisson equation on the unit disk. We reduce the Euler-Lagrange equation

to an ordinary differential equation by using radially symmetric decreasing rearrange-

ments of functions. To prove the sharpness of the Sobolev inequality we need to prove

that the ground state solution, that is to say, the solution that decays to zero at the

boundary of the disk, is unique. Since the proof is somewhat involved, we present a

detailed analysis of the Euler-Lagrange equation and relevant results in section 5.

3.1 A Fisher Information Identity

The Fisher information of a probability density function is a measure of its concen-

tration. In this subsection we prove a Fisher information identity for functions in

Fk.

14



Theorem 3.1.1. For Lψ(ζ) in Fk the following identity holds:

∫

|∇|Lψ(ζ)|q/2|2dν(ζ) =
1

4
kq

∫

|Lψ(ζ)|qdν(ζ),

where q is a positive number such that kq > 2.

Proof. Using the expression (2.2) for the coherent state transforms in Fk, we can

write:

|Lψ(ζ)|q/2 = (1 − |ζ |2)kq/2
∣

∣

∣

∣

∣

∞
∑

m=0

(

Γ(m+ 2k)

m!Γ(2k)

)
1

2

āmζ
m

∣

∣

∣

∣

∣

q/2

= (1 − |ζ |2)kq/2|Φ(ζ)|q/2,

where Φ(ζ) is holomorphic in ζ . Thus Φ(ζ) satisfies the Cauchy-Riemann equations

on the unit disk/hyperbolic plane. Let us do our computations in terms of the radial

variable τ and the angular variable φ on the two-dimensional hyperbolic plane. The

gradient is then given by: ∇ =

(

∂

∂τ
,

1

sinh τ

∂

∂φ

)

.

A brief computation yields the following Cauchy-Riemann equations for an ana-

lytic function Φ = u+ iv on the hyperbolic plane:

∂u

∂τ
=

1

sinh τ

∂v

∂φ
,

∂u

∂φ
= − sinh τ

∂v

∂τ
.

Using these two equations we obtain the following:

∇u · ∇v =
∂u

∂τ

∂v

∂τ
+

1

sinh2 τ

∂u

∂φ

∂v

∂φ
= 0

|∇u|2 = |∂u
∂τ

|2 +
1

sinh2 τ
|∂u
∂φ

|2

= |∂v
∂τ

|2 +
1

sinh2 τ
|∂v
∂φ

|2

= |∇v|2.

We now compute some results for the non-holomorphic pre-factor (1− |ζ |2)kq/2 in

the expression for the coherent state transforms:

∇(1 − |ζ |2)kq/2 =

(

∂

∂τ
,

1

sinh τ

∂

∂φ

)

(1 − tanh2 τ

2
)kq/2 =

(

−kq
2

tanh
τ

2
sech kq τ

2
, 0

)

,
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and,

△(1 − |ζ |2)kq/2 =

(

∂2

∂τ 2
+ coth τ

∂

∂τ

)

(

1 − tanh2 τ

2

)kq/2

=

(

kq

2

)2

tanh2 τ

2
sech kq τ

2
− kq

2
sech kq τ

2
.

As for |Φ|q/2, the Cauchy-Riemann equations for Φ guarantee that:

△|Φ|q

= △(u2 + v2)q/2

= ∇ ·
(q

2
(u2 + v2)

q

2
−1(2u∇u+ 2v∇v)

)

= q
[

(q − 2)(u2 + v2)
q

2
−2(u∇u+ v∇v) · (u∇u+ v∇v)

+(u2 + v2)
q

2
−1∇ · (u∇u+ v∇v)

]

= q
[

(q − 2)(u2 + v2)
q

2
−2
(

u2|∇u|2 + v2|∇v|2
)

+(u2 + v2)
q

2
−1
(

|∇u|2 + |∇v|2 + u△u+ v△v
)

]

= q2(u2 + v2)
q

2
−1|∇u|2

= 4|∇|Φ|q/2|2.

Thus:

|∇|Lψ(ζ)|q/2|2

= (1 − |ζ |2)kq|∇|Φ|q/2|2

+|∇(1 − |ζ |2)kq/2|2|Φ|q + 2(1 − |ζ |2)kq/2∇(1 − |ζ |2)kq/2 · |Φ|q/2∇|Φ|q/2

= (1 − |ζ |2)kq|∇|Φ|q/2|2 +
1

4
|Φ|q(1 − |ζ |2)−kq|∇(1 − |ζ |2)kq|2

+
1

2
∇(1 − |ζ |2)kq · ∇|Φ|q

= (1 − |ζ |2)kq|∇|Φ|q/2|2 +
1

4
|Φ|q

(

△(1 − |ζ |2)kq + kq(1 − |ζ |2)kq
)

+
1

2

(

∇ · ((1 − |ζ |2)kq∇|Φ|q) − (1 − |ζ |2)kq△|Φ|q
)

.

We notice that the divergence term, when integrated with respect to the invariant

measure dν(ζ) =

(

2k − 1

π

1

(1 − |ζ |2)2

)

yields a vanishing surface integral for kq > 2.
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Also,

1

4
|Φ|2△(1 − |ζ |2)kq =

1

4

(

∇ · (|Φ|2∇(1 − |ζ |2)kq) −∇|Φ|2 · ∇(1 − |ζ |2)kq
)

.

We can ignore the divergence terms coming from the expression above again by the

same logic as before and write

1

4

∫

|Φ|q△(1 − |ζ |2)kqdν(ζ) =
1

4

∫

(1 − |ζ |2)kq△|Φ|qdν(ζ).

Putting these all together we finally arrive at:

∫

|∇|Lψ(ζ)|q/2|2dν(ζ) =

∫

(1 − |ζ |2)kq
(

|∇|Φ|q/2|2 − 1

4
△|Φ|q

)

dν(ζ)

+
1

4
kq

∫

|Φ|q(1 − |ζ |2)kqdν(ζ).

The first term on the right hand side in the equation above, vanishes due to analyticity

of Φ as we have already shown, yielding the following identity:

∫

|∇|Lψ(ζ)|q/2|2dν(ζ) =
1

4
kq

∫

|Lψ(ζ)|qdν(ζ).

3.2 A Sharp Sobolev inequality and a Norm Estimate

We now prove a sharp Sobolev inequality for functions in H.

Theorem 3.2.1. For all functions in H the following inequality holds:

‖f‖qq +
4

kq(kq − 2)

∫

|∇|f |q/2|2dν(ζ) ≥
(

2k − 1

kq − 1

)(

kp− 1

2k − 1

)q/p(
kq − 1

kq − 2

)

‖f‖qp ,(3.1)

where p = q + 1/k, q ≥ 2, kq > 2 and the norms are computed with respect to the

measure dν(ζ); equality is obtained only when the function f comes from a coherent

state.

Proof. Proving Theorem 3.2 is equivalent to showing that the infimum of the func-

tional

I[f ] =
‖f‖qq + 4

kq(kq−2)

∫

|∇|f |q/2|2dν(ζ)
(

kq−1
kq−2

)

‖f‖qp
,
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is

(

2k − 1

kq − 1

)(

kp− 1

2k − 1

)q/p

. Since we are in the function space H, the existence of the

infimum is obvious. Let us take a minimizing sequence {fn}. We can now perform

a radially symmetric decreasing rearrangement (cf.[Bae1],[Bae2]), since the gradient

norm can only decrease under such a rearrangement while the other norms in the

functional stay constant. So each function in the minimizing sequence is replaced by

its decreasing rearrangement. Functions in the new sequence {f ∗
n} thus obtained also

have bounded norms and gradient norms. The sequence being monotone and bounded

we can use Helly’s principle to obtain a convergent subsequence. Since the functions

are in W 1,2, the convergence is in the s-norm, for all finite s, by Rellich-Kondrashov

theorem. We thus need to show that in a class of radially symmetric solutions the

minimizer is unique. The minimizer satisfies the following Euler-Lagrange equation

for our optimization problem:

△u+ kq(kq − 2)(γu1+ 2

kq − u) = 0 , (3.2)

where u = |f |q/2, △ is the Laplacian on the hyperbolic plane (or, equivalently, the

unit disk), γ > 0 is fixed by choosing the p-norm of the function f . It is readily seen

that this Euler-Lagrange equation is solved by the coherent state: f = A(1 − |ζ |2)k

where A is a constant determined by fixing the p-norm. Since we are dealing with

radial functions only, (3.2) is equivalent to an ordinary differential equation. We now

refer to section 5, where we prove in detail that there is only one solution of this ODE,

in the space of radially symmetric functions on the unit disk, which decays to zero at

the boundary of the disk (or, equivalently, decays to zero as the radial coordinate on

the hyperbolic plane tends to infinity). On the basis of this uniqueness result we can

conclude that the coherent state f = A(1 − |ζ |2)k is indeed the unique solution and

hence furnishes the infimum.

This sharp Sobolev inequality, coupled with our Fisher information identity, yields
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the following corollary:

Corollary 3.2.2. For all functions in Fk the following inequality holds:

||f ||qq ≥
(

2k − 1

kq − 1

)(

kp− 1

2k − 1

)q/p

||f ||qp , (3.3)

where q ≥ 2; equality is obtained if and only if the function f is a coherent state.

Proof. The Fisher information identity for functions in Fk tells us:

∫

|∇|f |q/2|2dν(ζ) =
1

4
kq

∫

|f |qdν(ζ).

We can thus re-write the left hand side of (3.1) as:

‖f‖qq +
4

kq(kq − 2)

∫

‖∇|f |q/2|2dν(ζ) =

(

kq − 1

kq − 2

)

‖f‖qq.

So now our sharp Sobolev inequality yields the following norm estimate for functions

in Fk:

‖f‖qq ≥
(

2k − 1

kq − 1

)(

kp− 1

2k − 1

)q/p

‖f‖qp.

3.3 A Lower Bound for the Wehrl Entropy of functions in

Fk

We now derive a lower bound for the entropy of functions in Fk.

Theorem 3.3.1. The Wehrl entropy associated with Lψ(ζ) ∈ Fk has a lower bound

given by:

S(|Lψ(ζ)|2) ≥ 2k ln

(

1 +
1

2k − 1

)

. (3.4)

Proof. Let us define, for any function f , ϕ(p) = ln ||f ||pp = ln
∫

|f |p. Then, we have:

S(|f |2) = −2

∫

|f |2 ln |f | = −2ϕ′(2),
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if ||f ||2 = 1. By logarithmic convexity of the p-norm:

−2ϕ′(2) ≥ −2kϕ

(

2 +
1

k

)

.

If we now set q = 2, p = 2 +
1

k
in Corollary 3.3, we have:

‖Lψ(ζ)‖2+ 1

k

2+ 1

k

≤
(

2k − 1

2k

)

,

since ‖Lψ(ζ)‖2
2 = 1, by definition. This implies, in Fk:

ϕ

(

2 +
1

k

)

≤ ln

(

2k − 1

2k

)

.

Thus:

−2ϕ′(2) ≥ −2kϕ

(

2 +
1

k

)

or, S(|Lψ(ζ)|2) ≥ 2k ln

(

1 +
1

2k − 1

)

.

A comparison between (2.3) and (3.4) shows that the estimate obtained above

has the conjectured high-spin asymptotics up to, but not including, first and higher

order terms in (k−1) because ln

(

1 +
1

2k − 1

)

= 2k

(

1

2k − 1
− 1

2

1

(2k − 1)2
+ ...

)

. In

fact this is completely analogous to the lower bound Bodmann [Bod] obtained for

coherent state transforms on the sphere S
2.
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CHAPTER IV

ENTROPY-ENERGY INEQUALITIES ON THE

HYPERBOLIC PLANE H2

We say a Riemannian manifold M with measure dM admits a logarithmic Sobolev

inequality with constant C if:

∫

M

|f |2 ln |f |2dM ≤ C

∫

M

|∇f |2dM for all f such that

∫

M

|f |2dM = 1. (4.1)

Since the Fisher information associated with a function is often regarded as an “en-

ergy”, one can say that logarithmic Sobolev inequalities give a bound on the entropy

of a function f in terms of its energy E(f) =

∫

M

|∇|f ||2dM.

Even if C is the best possible constant in (4.1), this is only one of a whole family

of sharp inequalities, and in many applications, use of the whole family leads to more

incisive results.

To obtain this family of inequalities, one must determine, for each A > 0, the

least value of B for which

∫

M

|f |2 ln |f |2dM ≤ A

∫

M

|∇f |2dM +B for all f such that

∫

M

|f |2dM = 1 (4.2)

is true. Call this optimal choice B(A). If one then defines an increasing concave

function Φ through

Φ(t) = inf
A>0

{ At+B(A)} ,

one has
∫

M

|f |2 ln |f |2dM ≤ Φ(E(f))

for all f with

∫

M

|f |2dM = 1.
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Conversely, given the optimal function Φ(t), B(A) can be recovered: It is just the

y–intercept of the tangent line to y = Φ(t) at the value of t for which Φ′(t) = A.

Thus, determining an optimal entropy energy inequality is essentially equivalent

to solving an “AB” type problem in the sense of Hebey [Heb]: obviously, if (4.2)

holds for some A (that is, if, given some A, one can find a constant B such that

(4.2) is valid), then it holds for all A′ ≥ A. Similarly, if (4.2) is valid for some B, it

remains valid for all B′ ≥ B. Thus, it is natural to ask: what is the smallest constant

A (or B) for which one can find a constant B (respectively, A) such that inequality

(4.2) holds? In fact, these questions arise naturally whenever one has a Sobolev-type

inequality on a Riemannian manifold [Heb]. The smallest A for which (4.2) holds

is called the first best constant while the smallest such B is called the second best

constant with respect to the inequality (4.2). Given any Sobolev-type inequality on

some Riemannian manifold, Hebey associated two parallel research programs with

the notion of best constants. The A-part of the program gives priority to the first

best constant while the B-part is concerned with the second best constant.

On R2, the optimal entropy–energy function ΦR2(t) is given by

ΦR2(t) = ln

(

1

πe
t

)

.

Thus:

∫

R2

|f |2 ln |f |2 ≤ ln

(

1

πe
E(f)

)

.

Equality is achieved when f is an isotropic Gaussian function. For an appropriate

choice of the variance of the Gaussian, the energy E(f) can take any value, so this

inequality is sharp for all values of E(f).

In the case of H
2 , Beckner proved [Bec2] that the entropy has the same bound

as in R2, i.e.,

∫

H2

|f |2 ln |f |2 ≤ ln

(

1

πe
E(f)

)

.
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In other words,

ΦH2 ≤ ΦR2 .

This result is asymptotically sharp for small t as explained in the introduction.

However, the inequality is actually strict, and significantly so, for large t. Here we

prove an improved bound:

For t > 0, define Φ⋆(t) by

Φ⋆(t) = inf
k∈N

{

1

2
ln

[

(

2k − 2

2k − 1

)2k+1(
2k − 1

2k

)2k (
2k − 1

4π

)(

1 +
1

k(k − 1)
t

)2k+1
]}

.

Notice that this is an infimum over a a family of increasing, concave functions. As

such, it is increasing and concave.

While we cannot explicitly evaluate the infimum that defines Φ⋆(t), we have the

following result:

Theorem 4.0.2. For all t > 0,

ΦH2 ≤ Φ⋆(t) < ΦR2 .

Proof. We start from the sharp Sobolev inequality proved in Theorem 3.2, re-written

in terms of the standard measure derived from the Poincaré metric. Recall that the

measures dµ and dν are related via: dν =
2k − 1

4π
dµ.

If we rescale f in inequality (3.1) so as to make it L2-normalized in the measure

dµ and rewrite the inequality with respect to dµ, we get:

∫

f pdµ ≤
(

kq − 1

2k − 1

)p/q (
2k − 1

kp− 1

)(

kq − 2

kq − 1

)p/q (
2k − 1

4π

)p−q/q [∫

f qdµ

+
4

kq(kq − 2)

∫

|∇f q/2|2dµ
]p/q

.

Putting q = 2, p = 2 +1/k and using the logarithmic convexity of the p-norm as in

the proof of theorem 3.4, we obtain the following estimate:
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∫

f 2 ln fdµ ≤ 1

2
ln

[

(

2k − 2

2k − 1

)2k+1(
2k − 1

2k

)2k

(4.3)

×
(

2k − 1

4π

)(

1 +
1

k(k − 1)

∫

|∇f |2dµ
)2k+1

]

.

Since this holds for every k, we get an entropy–energy inequality by taking the

infimum over k, and this amounts to the inequality ΦH2 ≤ Φ⋆(t).

It remains to show that Φ⋆(t) < ΦR2 . We shall do this using the equivalent A–

B form of the inequality. To make the tangent line computation and subsequent

comparison with ΦR2 , and hence Beckner’s estimate, we note that, (4.3) implies:

∫

f 2 ln f 2dµ ≤ 2k ln

(

k − 1

k

)

+ ln

(

k − 1

2π

)

+
2k + 1

k(k − 1)

∫

|∇f |2dµ. (4.4)

Now Beckner’s inequality [Bec2] on the upper half plane is:
∫

|f |2 ln |f |dµ ≤ 1

2
ln

[

1

πe

∫

|∇|f ||2dµ
]

. (4.5)

Since the logarithm is a concave function of its argument,
ln x− ln x0

x− x0
<

1

x0
, where

x > x0. If we put x =

∫

|∇f |2dµ in (4.5), we obtain the following inequality:

∫

f 2 ln f 2dµ ≤ 1

x0

∫

|∇f |2dµ+ ln x0 − ln π − 2. (4.6)

Inequalities (4.4) and (4.6) have the form

∫

f 2 ln f 2dµ ≤ Cǫ + ǫ

∫

|∇f |2dµ. We

would like to see how the values for the intercept Cǫ compare for a given value of the

slope ǫ. Let Cx0
and Ck denote the intercepts for the inequalities parametrized by x0

and k respectively. Now, to make the comparison let us put
1

x0

=
2k + 1

k(k − 1)
. Then,

for this value of x0 we have:

Cx0
= ln x0 − ln π − 2 = ln k + ln(k − 1) − ln(2k + 1) − ln π − 2

= − ln

(

1 +
1

2k

)

− ln 2π − 2 + ln(k − 1)

= −
[

1

2k
+

1

2

(

1

2k

)2

+ ...

]

+ ln(k − 1) − ln 2π − 2.
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On the other hand:

Ck = 2k ln

(

k − 1

k

)

+ ln

(

k − 1

2π

)

= ln(k − 1) − ln 2π − 2 − 1

k
− 2

3

(

1

k

)2

− 1

2

(

1

k

)3

− ... .

Thus, for x0 =
k(k − 1)

2k + 1
, we have: Cx0

− Ck =
1

2k
+

13

24

1

k2
+ .... This means that

the logarithmic Sobolev inequality (4.4) actually gives an improvement on Beckner’s

inequality (4.6) as regards the second best constant and Φ⋆(t) < ΦR2 .

Another way to see the extent to which Φ⋆ is a better estimate of ΦH2 than is ΦR2

is to use them both to estimate the entropy of our coherent state transforms, since

for these, E(f) =
k

2
>
k(k − 1)

2k + 1
.

Inserting the value E(f) =
k

2
into ΦR2 we obtain, using Beckner’s estimate with

respect to the measure dν(ζ):

−
∫

|f |2 ln |f |2dν ≥ 1 − ln

(

2k

2k − 1

)

,

while inserting this value into Φ⋆ (with respect to measure dν(ζ)) yields the marginally

better bound (3.4).
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CHAPTER V

THE UNIQUENESS THEOREM

As shown in section 3.2 of chapter 3, the Fisher information identity leads to a sharp

Sobolev inequality. In order to prove the sharpness of this Sobolev inequality, we

must show that the Euler-Lagrange equation (that is, equation (3.2)) corresponding

to this variational problem, has a unique ground state solution. In this chapter we

study equation (3.2) written in terms of the radial hyperbolic coordinate. Similar

equations in Rn have been investigated in the past (cf. [Pel1], [Pel2], [McLe] and

[Kwo]). Our case is significantly different and here we adapt the methods described

in [Kwo] to the hyperbolic setting.

We investigate the question of uniqueness of ground state solution of the equation

u′′ + coth τu′ + h(u) = 0. (5.1)

where τ ∈ (0,∞) on the two-dimensional hyperbolic plane. The function h(u) is given

by: h(u) = ãu1+ 2

kq − b̃u, where b̃ = kq(kq − 2) and ã = γkq(kq − 2). The boundary

conditions on the solutions of interest are: limτ−→∞ u(τ) = 0 and u′(0) = 0. There
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exist three points ξ0, ξ1 and ξ2 in (0,∞) such that:

∫ ξ0

u=0

h(u)du = 0;

∫ v

u=0

h(u)du < 0 for v < ξ0 and

∫ v

u=0

h(u)du > 0 for v > ξ0.

h(ξ1) = 0; h(u) < 0 if u < ξ1 and h(u) > 0 if u > ξ1.

h′(ξ2) = 0; h′(u) < 0 if u < ξ2 and h′(u) > 0 if u > ξ2.

u

f(
u

)

(0,0)
>

^

Figure 1: The function h(u)

Following [McLe] and [Kwo], let us consider u as a function of the initial value

α and τ , and study, in stead of the boundary value problem mentioned above, the

following initial value problem:

u′′ + coth τu′ + h(u) = 0, (5.2)

u(0) = α > 0, u′(0) = 0.

We first divide the set of solutions into three mutually disjoint subsets, namely:
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1. Solutions that have a zero at some finite τ . We call the corresponding set of

initial values N . We denote the finite zero as b(α).

2. Positive solutions that satisfy limτ→∞ u(τ) = 0. We call the set of initial values

G in this case.

3. Solutions that remain positive and do not belong to case 2. We let P denote

the set of initial values for such solutions.

For a particular solution u ∈ G ∪ N , we let τ1 denote the zero of h(u), that is

to say, u(τ1) = ξ1 (it is possible to define this point uniquely because, as we shall

show momentarily, solutions u ∈ G ∪N are monotone). Our subsequent results rely

heavily on Sturm’s comparison theorem (as mentioned in [lemma 1, [Kwo]] and also

in chapter X, page 229 of [Inc]) and a few important corollaries that we state below.

Consider two second order differential equations:

U ′′(x) + f(x)U ′(x) + g(x)U(x) = 0, x ∈ (a, b) (5.3)

V ′′(x) + f(x)V ′(x) +G(x)V (x) = 0, x ∈ (a, b) (5.4)

Suppose that (5.3) has solutions that do not vanish in a neighborhood of point b.

Then the largest neighborhood of b, (c, b), on which there exists a solution of (5.3)

without any zero, is called the disconjugacy interval of (5.3). Sturm’s theorem implies

that no non-trivial solution can have more than one zero in (c, b). A corollary (lemma

6, [Kwo]) of Sturm’s theorem is: if (c,∞) is the discongugacy interval of (5.3), as

defined above, then every solution of (5.3) with a zero in (c,∞) is unboounded. We

also have another very useful corollary (lemma 3, [Kwo]) of Sturm’s theorem: if the

equations (5.3) and (5.4) satisfy the comparison condition G(x) ≥ g(x), U is not

identically equal to V in any neighborhood of b and there exists a solution V of (5.4)

with a largest zero at ρ ∈ (a, b), then the disconjugacy interval of (5.3) is a strict

superset of (ρ, b).
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We are now ready to state and prove our results. But first let us briefly outline

our strategy in a few steps, since the proof of uniqueness is rather involved:

1. The first two lemmas state well-known facts about the structure of the sets N ,

P and G. As we increase α from 0 we first have solutions in P . Since the

arguments are exactly similar to those used for the Euclidean case in [Kwo], we

refer to the relevant lemmas in [Kwo], in stead of reiterating the proofs.

2. Next we study the variation w of a solution u ∈ G∪N with respect to its initial

value. Lemma 5.4 states that w has to change sign before the point u = ξ1.

The proof of uniqueness depends crucially on the properties of w. Lemma 5.5

shows that if, for α ∈ G limτ−→∞w(α, τ) = −∞, then a right neighborhood

of α belongs to N . Also, if α ∈ N and w(α, b(α)) < 0, then a neighborhood

of α belongs to N as well. Suppose these hypotheses are indeed true. As we

continuously increase α, we shall first have solutions in P . The right boundary

point will belong to G. If the corresponding α satisfies the hypothesis of lemma

5.5, then a right neighborhood of the corresponding α will be in N . Then, if

for all α ∈ N , w(α, b(α)) < 0, we would continue to remain in N as we increase

α further. Thus the proof of uniqueness of the ground state will be complete.

Hence we just need to prove that for α ∈ G, limτ−→∞w(α, τ) = −∞, while for

α ∈ N , w(α, b(α)) < 0. In fact, if we can prove that w has only one zero for

initial values in G ∪ N and w is unbounded for initial values in G, uniqueness

will be guaranteed. Initial values satisfying these two conditions are called strict

admissible.

3. To prove that w can have no more than one zero and that it is unbounded, we

construct a comparison function v for w.The zero of w is then shown to belong

to the disconjugacy interval of the differential equation satisfied by w, which

in turn implies unboundedness of w. The idea of constructing a comparison
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function like this was used in [Kwo] to prove uniqueness of positive solutions

of a semi-linear Poisson equation in a bounded or unbounded annular region in

Rn, for n > 1. It is in this crucial step, right after lemma 5.5 in this paper, that

our proof of uniqueness differs from that of [Kwo]. This happens because we are

dealing with a semi-linear Poisson equation on the hyperbolic plane H2. The

difference in geometry manifests itself in the form of the comparison function

and, more importantly, in the subsequent analysis. Proofs of lemma 5.6 through

lemma 5.8 are thus specific to the hyperbolic case. As we go along we point out

these differences in detail.

The main result of this section is:

Theorem 5.0.3. The initial value α ∈ G ∪N is strictly admissible.

Let us construct an “energy” function corresponding to (5.2):

E(τ) =
u′2(τ)

2
+
ãu2+ 2

kq

2 + 2
kq

− b̃u2

2
.

It is readily seen that E ′(τ) = − coth τu′2(τ) ≤ 0. Thus E is a non-increasing

function of τ .

Lemma 5.0.4. The set (0, ξ0] of initial values belongs to the set P. [lemma 8, [Kwo]]

For solutions in N , the function E decreases to a positive constant while for

solutions in G, E(∞) = 0. This fact leads us to the following lemma:

Lemma 5.0.5. If u ∈ G ∪ N , then u′(τ) < 0 in (0, b(α)) (if u ∈ b(α)) or (0,∞) (if

u ∈ G). [lemma 11, [Kwo]]

The fact that the sets N and P are open subsets of (0,∞) [lemma 13, [Kwo];

lemma 1.1, [Ber]] is crucial but easy to observe.
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We concern ourselves only with solutions that are either in G or in N . Let us

define: w = w(τ, α) =
∂u

∂α

∣

∣

∣

∣

τ,α

. We study the function w for such solutions. First of

all let us note that w = 0 means two nearby solutions (i.e. solutions having nearby

initial values) can intersect.

Evidently w satisfies the following equation (the derivatives are taken with respect

to τ):

w′′ + coth τw′ + h′(u)w = 0 (5.5)

w(0) = 1, w′(0) = 0.

We first prove that w has its first zero before ξ1.

Lemma 5.0.6. For u ∈ G ∪N , w has to change sign before ξ1. [lemma 17, [Kwo]]

Following Kwong, we call the initial value α ∈ G strictly admissible if the corre-

sponding w(α, τ) has only one zero in (0,∞) and limτ−→∞w(α, τ) = −∞. We call

the initial value α ∈ N strictly admissible if the corresponding w(α, τ) has only one

zero in (0,∞) and w(α, b(α)) < 0.

It is easy to see that if for a particular α ∈ N , w(b(α)) =
∂u

∂α
(b(α), α) < 0, then

in a right neighborhood of α, b(α) is a strictly decreasing function of α and thus that

neighborhood belongs to N .

Lemma 5.0.7. If for α ∈ G, limτ−→∞w(α, τ) = −∞, in particular if w(α, τ) is

strictly admissible, then there exists a right neighborhood of α that belongs to N .

[lemma 19, [Kwo]]

We now need to prove that every initial value α ∈ G ∪ N is strictly admissible.

The strategy is to construct a comparison function v(τ) (to be compared with w),

which has the following properties:

1. v(τ) has only one zero in (0,∞).

and
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2. v(τ) is a strict Sturm majorant of w(α, τ) in both (0, ρ) and (ρ,∞), where ρ is

the first zero of w(α, τ).

If we are able to construct such a function, then by property (2) the zero of v

occurs before that of w and by property (1) w cannot have another zero in (0, b(α)).

Here b(α) is the zero of the solution u ∈ G∪N . If u ∈ G then b(α) is to be interpreted

as the point τ = ∞. If b(α) is finite then of course the corresponding u is in N and

w(α, b(α)) < 0, i.e., α is strictly admissible. On the other hand if b(α) = ∞, w has

a zero in the disconjugacy interval of v, and hence in the disconjugacy interval of

the differential equation satisfied by w itself. This happens because w being a strict

Sturm minorant of v in (0,∞), the disconjugacy interval of (5.3) is bigger than that

of the differential equation satisfied by v. This means w is unbounded. Hence the

corresponding α is strictly admissible.

It is helpful to first construct an auxiliary function θ(τ) and then use it to deduce

that v has the necessary properties described above. In the Euclidean case [Kwo],

the auxiliary function θ(r) is given by: θ(r) = −ru
′(r)

u(r)
. For the hyperbolic case we

define the auxiliary function for all solutions u ∈ G ∪N as:

θ(τ) =
− sinh τu′(τ)

u(τ)
. (5.6)

The auxiliary functions and the comparison functions in the Euclidean and hyper-

bolic cases have different forms but similar properties. Thus lemmas that follow are

basically hyperbolic analogues of lemmas proved by Kwong in the Euclidean case.

The function θ(τ) is obviously continuous in (0,∞) for u ∈ G; for u ∈ N θ(τ) is

continuous in (0, b(α)) where b(α) is the zero of u(α).

Lemma 5.0.8. For solutions u ∈ G∪N , θ(0) = 0 and limτ−→b(α) θ(τ) = ∞. If u ∈ N

b(α) is interpreted to be the zero of u and if u ∈ G, b(α) = ∞.

Proof. The first claim is easy to verify since for all u ∈ G ∪ N , u′(0) = 0; since

u′(τ) < 0, θ(τ) > 0 in (0,∞).
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For u ∈ N , u′(b(α)) 6= 0 and the second assertion of the lemma automatically

follows.

Let us consider the case: u ∈ G.

Let R = −u
′

u
.

Then R ≥ 0 and R′ = −u
′′

u
+
u′2

u2
= R2 − R coth τ +

h(u)

u
.

Now we know that lim
τ−→∞

h(u)

u
= −b̃. We assert that for large values of τ we would

always have: R(τ) >

√

b̃

2
. If not, then R(τ) ≤

√

b̃

2
for some τ . Then:

R′(τ) = R2 − coth τR +
h(u)

u
< R2 +

h(u)

u
≤ − b̃

2
.

Thus R′ will remain strictly and hugely negative eventually causing R to change

sign.

Thus −u
′(τ)

u(τ)
>

√

b̃

2
for large values of τ . This in turn means limτ−→∞ θ(τ) =

∞.

We next define the comparison function vβ(τ) = sinh τu′ + βu (in the Euclidean

case it is defined as vβ(r) = ru′(r) + βu(r)) . It is readily seen that vβ(τ) = (<,>)0

if and only if θ intersects (is above, is below) the straight line y(τ) = β. Also, vβ(τ)

is tangent to the τ -axis at some point τ̂ if and only if θ(τ) is tangent to the straight

line y(τ) = β at τ̂ .

The function vβ(τ) satisfies the following differential equation:

v′′ + coth τv′ + h′(u)v = Φ(τ) = β(uh′(u) − h(u)) − 2 cosh τh(u) (5.7)

v(0) > 0, v′(0) = 0
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Now,

Φ = β (uh′(u) − h(u)) − 2 cosh τh(u)

= β

[

ã

(

1 +
2

kq

)

u1+ 2

kq − b̃u− ãu1+ 2

kq + b̃u

]

− 2 cosh τh(u)

=
2

kq
βãu1+ 2

kq − 2 cosh τh(u).

It is not really obvious that one can choose a β such that Φ has only one zero

and the position of that zero has a continuous dependence on β. However our next

lemma proves that this can indeed be achieved.

Lemma 5.0.9. There exists some β̄ such that for 0 < β < β̄ the function Φ(u, τ) has

only one zero, say at τ = σ in (0,∞) such that:

Φ(u, τ) < 0 for τ < σ

Φ(u, τ) > 0 for τ > σ.

The point σ is a continuous monotone function of β.

Proof. First, we note that Φ(τ) > 0 in [τ1,∞) by definition; so its zeros must be

concentrated in (0, τ1). At a zero of the function Φ we have:

2

kq
βãu1+ 2

kq = 2 cosh τh(u).

Thus at Φ = 0 we have:

Φ′ = β
2

kq
ã

(

1 +
2

kq

)

u
2

kqu′ − 2 sinh τh(u) − 2 cosh τh′(u)u′

=

(

1 +
2

kq

)

u′
2

kq
βãu

2

kq − 2 sinh τh(u) − 2 cosh τh′(u)u′

=

(

1 +
2

kq

)

2 cosh τh(u)

u
u′ − 2 cosh τh′(u)u′ − 2 sinh τh(u)

=
2u′ cosh τ

u

[(

1 +
2

kq

)

h(u) − uh′(u)

]

− 2 sinh τh(u).
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So, if at Φ = 0, Φ′ > 0, then:

2u′ cosh τ

u

[(

1 +
2

kq

)

h(u) − uh′(u)

]

> 2 sinh τh(u)

or , − 2b̃

kq
u′ > tanh τh(u),

which in turn implies

2b̃

kq
(− sinh τu′) > sinh τ tanh τh(u) (5.8)

Similarly if Φ′ < 0 at Φ = 0, then:

2b̃

kq
(− sinh τu′) < sinh τ tanh τh(u). (5.9)

Now the differential equation (5.2) satisfied by u can be rewritten as:

(− sinh τu′)′ = sinh τh(u).

If at the first zero of the function Φ(τ), Φ′(τ) > 0 then inequality (5.8) holds at

that point and we also know that the left hand side of the inequality is positive and

increasing at the rate

(

2b̃

kq
(− sinh τu′)

)′

=
2b̃

kq
sinh τh(u). As for the right hand side,

we have, in the interval (0, τ1):

(sinh τ tanh τh(u))′ = sinh τh(u) + sinh τsech2τh(u) + sinh τ tanh τh′(u)u′ < 2 sinh τh(u).

The inequality above holds because h′(u) > 0 in (0, τ1) and u′ < 0. Since in our case

2b̃

kq
= 2(kq − 2) and k is chosen so that kq > 1, it turns out that

2b̃

kq
sinh τh(u) >

2 sinh τh(u). This in turn implies that the left hand side of (5.8) increases more

rapidly than the right hand side. So if inequality (5.8) holds at some point in (0, τ1)

then it prevails at all subsequent points in this interval. We can thus conclude that

if Φ(0) < 0, then Φ(τ) can have only one zero in (0, τ1).

Now for a particular solution having initial value α ,Φ(τ = 0) =
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β (αf ′(α) − f(α))− 2f(α). Putting in the specific form of h(u) we obtain the condi-

tion that Φ(τ) has a negative initial value:

β

kq
ãα1+2/kq < ãα1+2/kq − b̃α

or, β < kq

[

1 − b̃

ãα2/kq

]

.

We let β̄ denote the upper limit set on β by the condition above. Then for β ∈ (0, β̄),

the function Φ(τ) has a negative initial value and consequently only one zero in (0, τ1).

We denote that zero by σ.

Let us now find out how σ depends on β. We have:

ãβ

kq
= cosh σ

f(u(σ))

u(σ)1+2/kq
.

Evidently then β depends continuously on σ. Also:

β ′(σ) =
kq

ã
u−1−2/kq

[

2b̃

kq
u′(σ) cosh σ + h(u) sinh σ

]

.

Now for β ∈ (0, β̄), (5.8) holds at σ, as proved before. Thus
[

2b̃

kq
u′(σ) cosh σ + h(u) sinh σ

]

< 0, and hence β ′(σ) < 0 for all β in this range.

This means there exists a continuous inverse function in a neighborhood of β(σ).

Thus σ depends continuously on β. In fact σ is a decreasing function of β. When

β = 0 the only zero of Φ(τ) is at τ1. As we increase β the zero shifts continuously to

the left.

Let ρβ be the first zero of vβ(τ) (we do not yet know how many zeros v can have).

Then for β = 0, ρ = 0. As we increase β, ρβ moves to the right. In order to prove

that we can control β such that ρβ and σβ can be made to coincide, we need to show

that ρβ continuously depends on β. We first show that actually, given any β, vβ(τ)

can have only one zero and then prove the continuous dependence of that zero on the

parameter β.

Lemma 5.0.10. The function vβ(τ) has only one zero in (0,∞).
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Proof. In the interval [0, τ1],

(− sinh τu′(τ))′ = h(u) sinh τ ≥ 0.

Thus (− sinh τu′(τ)) is non-decreasing in [0, τ1]. Since u(τ) is decreasing, θ(τ) =

− sinh τu′(τ)

u(τ)
is non-decreasing in [0, τ1]. Thus for any β it can intersect the straight

line y(τ) = β no more than once in this interval and the corresponding vβ(τ) can

have at most one zero.

Since limτ−→∞ θ(τ) = ∞, if θ(τ) is not non-decreasing in the entire interval

(τ1,∞), then it has to have local minima. Suppose the lowest of all such minima

occurs at ω and has height β0. Then in (ω,∞), vβ0
(τ) is negative and has a double

zero at ω. Also vβ0
(τ) satisfies the following differential inequality in (ω,∞):

v′′ + coth τv′ + h′(u)v ≥ 0.

But this is impossible (since, if v satisfies the second-order differential equation above,

then it cannot have a double zero; cf. lemma 5, [Kwo]).

Thus we conclude that θ(τ) is non-decreasing in (0,∞), which in turn implies that

for any value of β, vβ(τ) can have only one zero in (0,∞).

To prove that one can choose β such that ρβ = σβ it is sufficient to show that ρβ

as a function of β does not have any discontinuity in (0, τ1). Since vβ has a zero at ρβ

if and only if θ intersects the straight line y(τ) = β at τ = ρβ, we just need to show

θ′(ρβ) 6= 0. As shown in the preceding lemma, θ′(τ) > 0 in (0, τ1). As we increase

β, the height of the horizontal straight line y(τ) = β increases. This results in a

continuous shift of the point of intersection ρβ to the right. Thus we can conclude

that in (0, τ1) ρβ is a continuous increasing function of β. For β = 0, ρ = 0 and

σ = τ1. When we increase β, ρβ moves continuously to the right even as σβ shifts

continuously to the left until it is at the origin τ = 0 for β = β̄, as shown before. It

follows that there exists a β0 ∈ (0, β̄) for which we would have: ρβ0
= σβ0

. Let us

then fix the parameter β by choosing that value β0.
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We are now in a position to prove Theorem 5.1.

Proof. Let us use vβ0
(τ) as a comparison function for w(τ). The differential equations

to be compared are:

w′′ + coth τw′ + h′(u)w = 0

w(0) = 1, w′(0) = 0,

and

v′′ + coth τv′ +

[

h′(u) − Φ(τ)

v

]

v = 0

v(0) > 0, v′(0) = 0.

Since in (0, ρ), Φ < 0 and v > 0 the coefficient of v is larger than that of w. Thus v

is a strict Sturm majorant of w and its zero ρ occurs before the first zero of w, say

c. But at c, Φ > 0 and v < 0, thus the coefficient of v is still larger than that of w.

Moreover, since w(c) = 0,
w′(c)

w(c)
= +∞ and

w′(c)

w(c)
>
v′(c)

v(c)
. Thus v again is a strict

Sturm majorant of w. But v does not have a zero in [c,∞). Then w cannot have a

zero in this interval either. So if u ∈ N then w(b(α)) < 0 and α is strictly admissible.

Let us consider the case u ∈ G now. Evidently, c belongs to the disconjugacy interval

of (5.7). Since v is a strict Sturm majorant of w in (0,∞), the disconjugacy interval

of (5.5) is a superset of the disconjugacy interval of (5.7). Thus w has a zero in

the disconjugacy interval of the differential equation it satisfies. Hence it must be

unbounded.

Thus for u ∈ G∪N the corresponding initial value is strictly admissible (and this

ensures uniqueness of the corresponding solution, as shown before).

38



CHAPTER VI

COHERENT STATE TRANSFORMS FOR THE GROUP

SU(P,Q) AND FISHER INFORMATION IDENTITIES FOR

SU(N, 1) AND SU(N,N)

In this chapter, we prove analogs of the Fisher information identity proved in the

case of SU(1, 1), for the groups SU(n, 1) and SU(n, n). We mainly follow the con-

struction of coherent states given in [Mon]. We first obtain an expression for coherent

state transforms for the group SU(p, q) for generic p and q. The representations for

SU(p, q) are constructed on “generalized unit disks” . To obtain the formulae for

the metric tensors and differential operators on these domains, we follow [Sto], [Hua]

and [Mit]. We then prove two new, interesting Fisher information identities for the

groups SU(n, 1) and SU(n, n).

Let us consider the realization of the group SU(p, q) as the group of automor-

phisms of domain D, defined to be the space of p× q complex matrices Z satisfying:

Iq − Z†Z > 0,

where Iq is the q × q identity matrix. We write an element of SU(p, q) as:

g =







A B

C D






,

where A,B,C and D are p×p, p× q, q×p and q× q matrices respectively, such that:

AA† − BB† = Ip, AC† = BD†, DD† − CC† = Iq.

Throughout this note we will use the symbols A′, Ā and A† to denote the transpose,

complex conjugate and conjugate transpose, respectively, of the matrix A. Let us
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choose any point Z of D. Consider the following action of a group element g of

SU(p, q):

(

Z ′ Iq

)







A B

C D






=

(

Z ′A+ C Z ′B +D

)

.

We now define:






Zg

Iq






=

(

Z ′A + C Z ′B +D

)′

(B′Z +D′)−1.

Thus, we say that the group SU(p, q) acts on D according to the formula:

Z −→ Z.g = (A′Z + C ′)(B′Z +D′)−1.

With its action on D defined thus, SU(p, q) indeed is the automorphism group of D.

To verify this, we note that:

Iq − Z†
gZg =







Zg

Iq







†





−Ip 0

0 Iq













Zg

Iq







= ((B′Z +D′)†)−1







A′Z + C ′

B′Z +D′







†





−Ip 0

0 Iq













A′Z + C ′

B′Z +D′






(B′Z +D′)−1

= ((B′Z +D′)†)−1







Z

Iq







†





A′ C ′

B′ D′







†





−Ip 0

0 Iq













A′ C ′

B′ D′













Z

Iq







×(B′Z +D′)−1

= ((B′Z +D′)†)−1(Iq − Z†Z)(B′Z +D′)−1.

The quantity in the last line is positive definite because (Iq−Z†Z) is positive definite.

We now need to determine the invariant measure on D. We know the following

invariant measure exists:

dµ(z) = ρ(z, z̄)

j=p,q=k
∏

j=1,k=1

dxjkdyjk, z = (z11, z12, ....., zpq) ∈ D,
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where zjk = xjk + iyjk, for j = 1, 2, ..., p, k = 1, 2, ..., q. For our case, z would be a

point in the pq-dimensional domain D (so the point z is the matrix Z).

Let Jg(z) denote the Determinant of the Jacobian matrix for the transformation

z −→ zg. The invariance of the measure dµ(z) implies:

ρ(zg, zg) = |Jg(z)|−2ρ(z, z̄).

We use the normalization condition ρ(0, 0) = 1. Let Jg1,z(0) be the Jacobian deter-

minant for the transformation that translates the origin to the point z. Then we

have:

ρ(z, z̄) = |Jg1,z(0)|−2ρ(0, 0).

Then:

ρ(zg, zg) = |Jg,zg(z)|−2ρ(z, z̄)

= |Jg,zg(z)|−2|Jg1,z(0)|−2ρ(0, 0)

Again:

ρ(zg, zg) = |Jg2,zg(0)|−2ρ(0, 0).

Thus,

|Jg,zg(z)| = |Jg1,z(0)|−1|Jg2,zg(0)|. (6.1)

Equation 6.1 implies that in order to obtain the expressions for Jg,zg(z) and ρ(z, z̄) it

suffices to compute only Jg(0).

Let us calculate the Jacobian determinants for the transformation z −→ zg. Recall

that:

Z1 = Z.g = (A′Z + C ′)(B′Z +D′)−1, i.e., Z1(B
′Z +D′) = (A′Z + C ′).

Differentiating the last equality at the origin (i.e. the point Z = 0), we get:

dZ1D
′ = (A′ − C ′(D′)−1B′)dZ.
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To determine the Jacobian determinant, let us think of Z as a pq-dimensional vector

(z11, z12, ..., zpq). Of course, to every matrix Z ∈ D, we can associate such a point

uniquely. The transformation matrices would then be pq× pq. For example the p× p

matrix (A′ − C ′(D′)−1B′) would be represented as a pq × pq block-diagonal matrix

where each block is the p× p matrix (A′ − C ′(D′)−1B′) and there are q such blocks.

Similarly, the matrix D′ is represented by a pq×pq block-diagonal matrix, where each

of the p blocks is the q × q matrix D′. Then, we have:

Jg,zg(0) = [det (A−BD−1C)]q[det (D)]−p.

But,

[det (A− BD−1C)] = det







A B

C D






(det D)−1 = (det D)−1.

The last step follows because

det







A B

C D






= 1.

Thus:

Jg,zg(0) = [det D]−(p+q).

It is easily seen that the general transformation that translates Z −→ 0 has the

form:

g =







A1 0

0 D1













Ip −Z̄

−Z ′ Iq






,

where

A†
1A1 = (Ip − Z̄Z ′)−1, D†

1D1 = (Iq − Z ′Z̄)−1.

This in turn means that:

ρ(z, z̄) = [det D1]
2(p+q) = [det (Iq − Z ′Z̄)−1]p+q = [det [(Iq − Z†Z)]]−(p+q).
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Similarly,

Jg,zg(z) = |Jg1,z(0)|−1Jg2,zg(0) = [det D1]
p+q[det D2]

−(p+q),

where Jg2,zg(0) = [det D2]
−(p+q). Now, since

Iq − Z†
gZg = ((B′Z +D′)†)−1(Iq − Z†Z)(B′Z +D′)−1,

we can take the determinant of both sides, and obtain:

[det (Iq − Z†
gZg)][det (Iq − Z†Z)]−1 = [|det (B′Z +D′)|]−2.

Thus:

Jg,zg(z) = [det D1]
p+q[det D2]

−(p+q)

= [det (Iq − Z†
gZg)

−1]−(p+q)/2[det (Iq − Z†Z)−1](p+q)/2

= [|det (B′Z +D′)|]−(p+q).

Now let us consider an irreducible representation (cf. [Mon] and [Per]) of SU(p, q)

in the space of holomorphic functions on the domain D, where the group action is

defined as:

Tgψ(z) = [Jg,zg(z)]
kψ(zg),

where k is an integral positive number. Let us introduce the norm of a function

according to the formula

||ψ||2k =

∫

|ψ(z)|2dµk(z).

Unitarity of the representation then fixes the measure dµk(z) as:

dµk(z) = [ρ(z, z̄)]−kdµ(z).

So, we consider the representation of SU(p, q) in the space Fk of holomorphic func-

tions on the domain D, that have finite norm with respect to the measure dµk. Let

us choose the function ψ0 ≡ 1 as the ‘least-weight vector’ which would generate the
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coherent states. Clearly, the stability group for this function is S(U(p) × U(q)), an

element of which has the form






U1 0

0 U2






,

where U1 ∈ U(p), U2 ∈ U(q) and (det U1)(det U2) = 1. Let us choose a transfor-

mation g on the state ψ0(z), which takes a point ζ ∈ D to the origin and has the

form

g = Uζ̃ =







U1 0

0 U2













Ip −ζ̄

−ζ ′ Iq






.

Thus the matrix ζ̃ belongs to a left coset of SU(p, q) by S(U(p)×U(q)), and all such

cosets are labeled by points in D. If we take a member of one such coset labeled by

ζ and let it act on our ‘least-weight’ vector ψ0(z), we get:

ψζ(z) = T kζ ψ0(z) = [Jζ(z)]
k

= [det(Iq − ζ†Z)]−(p+q)kN(ζ),

where N(ζ) is the normalization factor which is easily seen to be N(ζ) = [det (Iq −

ζ†ζ)](p+q)k/2. Thus the coherent states are given by:

ψζ =
[det (Iq − ζ†ζ)](p+q)k/2

[det(Iq − ζ†Z)](p+q)k
.

Now, in the holomorphic, irreducible, unitary representations of SU(p, q) the or-

thonormal basis functions are properly normalized homogeneous polynomials in the

entries zij of the matrix Z, where 1 ≤ i ≤ p, 1 ≤ j ≤ q. Thus, given a unit vector

φ(z) =
∑

[m]

a[m]z
[m], where [m] denotes a multi-index, such that z[m] = zm1

11 z
m2

12 ... Evi-

dently, the inner product of φ(z) and ψζ(z), with respect to the measure dµk(z), is a

function of the following form:

< ψζ(z)|φ(z) >= Lφ(ζ) = [det (Iq − ζ†ζ)](p+q)k/2Φ(ζ̄),
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where Φ is holomorphic in ζ̄. These coherent state transforms are normalized with

respect to the norm

dν(ζ) = Nk[det(Iq − ζ†ζ)]−(p+q)
∏

j,k

dζjkdζ̄jk,

where Nk is the appropriate normalization factor.

6.1 A Fisher Information Identity for SU(n, 1) coherent

states:

Let us now consider the special case of SU(n, 1). The complex bounded domain in

this case is the unit ball in Cn. The expressions obtained above, for the Bergman

kernel ρ(z, z̄), the invariant measure and the form of coherent states become easier

to explicitly compute. Bergman’s kernel in this case, is given by:

ρ(z, z̄) = [det(Iq − Z†Z)]−(n+1) =

(

1 −
∑

k

|zk|2
)−(n+1)

.

The metric tensor is then obtained as:

hlj =
∂2

∂zl∂z̄j
ln ρ(z, z̄) = −(n + 1)

∂

∂zl

( −zj
1 −

∑

k |zk|2
)

=
(n+ 1)

(1 −
∑

k |zk|2)2

[(

1 −
∑

k

|zk|2
)

δij + z̄lzj

]

.

It is easy to see that the inverse of the metric tensor is given by:

hlj =
1

(n+ 1)

(

1 −
∑

k

|zk|2
)

[δlj − z̄lzj ] .

We are now in a position to compute the Laplacian ∆, given by:

∆ =
2

h

∑

l,j

[

∂

∂z̄l

(

hhij
∂

∂zj

)

+
∂

∂zl

(

hh̄lj
∂

∂z̄j

)]

,
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where h = det (hlj). It is easy to compute that:

∑

i

∂

∂z̄l
(hhlj)

=
∑

i

∂

∂z̄i

[

(n + 1)n−1(δlj − z̄lzj)(1 −
∑

k

|zk|2)−n
]

=
∑

i

(n+ 1)n−1

[

−zj(1 −
∑

k

|zk|2)−n + n(δlj − z̄lzj)(1 −
∑

k

|zk|2)−n−1zi

]

= (n+ 1)n−1(1 −
∑

k

|zk|2)−n−1

[

nzj(1 − |zj |2) − nzj(1 − |zj |2) − n
∑

l,l 6=j

|zl|2zj + nzj
∑

k,k 6=j

|zk|2
]

= 0.

A similar computation shows that
∑

i
∂
∂zl

(hh̄lj) = 0. Thus, the Laplacian contains no

linear term and is given by:

∆ =
2

h

∑

l,j

[

∂

∂z̄l

(

hhlj
∂

∂zj

)

+
∂

∂zl

(

hh̄lj
∂

∂z̄j

)]

=
2

h

∑

l,j

(

hhlj
∂2

∂z̄l∂zj
+ hh̄lj

∂2

∂zl∂z̄j

)

.

Since the metric tensor h is hermitian, we have, for any function U(z, z̄), which is

twice continuously differentiable in its arguments:

∆U = 4
∑

l,j

hlj
∂2

∂z̄l∂zj
U.

We define the gradient and inner product as follows, for real-valued functions f

and g:

∇f · ∇g = 2
∑

l,j

hlj
[

∂f

∂z̄l

∂g

∂zj
+
∂g

∂z̄l

∂f

∂zj

]

.

We can now prove a Fisher Information Identity for coherent state transforms of the

group SU(n, 1). In what follows, we use ζ to denote a point in the open unit ball in

Cn.
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Theorem 6.1.1. For SU(n, 1) coherent transforms Lψ(ζ) the following identity

holds:

∫

|∇|Lψ(ζ)|q/2|2dν(ζ) =
1

4
kq

∫

|Lψ(ζ)|qdν(ζ),

where q is a positive number such that kq > 2.

Proof. We first notice that:

∂

∂ζ̄l
e−

kq

4
lnρ = −kq

4
e−

kq

4
lnρ

(

∂ ln ρ

∂ζ̄l

)

.

Thus,
∂2

∂ζj∂ζ̄l
e−

kq

4
lnρ =

(

kq

4

)2

e−
kq

4
ln ρ

(

∂

∂ζj
ln ρ

)(

∂

∂ζ̄l
ln ρ

)

− kq

4
e−

kq

4
ln ρ ∂2

∂ζj∂ζ̄l
ln ρ

= 4

(

∂

∂ζj
ρ

−kq

8

)(

∂

∂ζ̄l
ρ

−kq

8

)

− kq

4
ρ−

kq

4 hjl.

Multiplying both sides by 4hlj and summing over l, j we get:

4
∑

l,j

hlj
∂2

∂ζ̄l∂ζj
ρ−

kq

4 = ∆ρ−
kq

4

=
∑

l,j

[

−kqρ− kq

4 hljhjl + 16hlj

(

∂

∂ζj
ρ

−kq

8

)(

∂

∂ζ̄i
ρ

−kq

8

)]

= −kqρ− kq

4 + 4|∇ρ− kq

8 |2.

We know that a coherent state transform has the form:

Lφ(ζ) = ρ−
k
2 Φ(ζ),

where Φ is holomorphic in each of the variables ζl. This means, Φ can be represented

as: Φ = u + iv, where u and v are real functions which obey the Cauchy-Riemann

equations such that, for any particular duplet ζl = (xl, yl), ζj = (xj , yj) we have:

∂u

∂xl
=
∂v

∂yl
,

∂u

∂xj
=

∂v

∂yj
,

∂u

∂yl
= − ∂v

∂xl
,

∂u

∂yj
= − ∂v

∂xj
.

Thus:
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∂2

∂z̄l∂zj
u =

∂2

∂z̄l∂zj
v = 0.

It is easy to see that the Cauchy-Riemann equations imply:

∆u = ∆v = 0 , |∇u|2 = |∇v|2 and ∇u · ∇v = 0.

Thus:

|∇|Φ|q|2 = |∇(u2 + v2)q/2|2

= q2(u2 + v2)q−2
[

u2|∇u|2 + v2|∇v|2 + 2uv∇u · ∇v
]

= q2(u2 + v2)q−1|∇u|2.

A similar computation shows,

∆|Φ|q = q2|Φ|q−2|∇u|2 = 4|∇|Φ|q/2|2.

Thus:

∫

|∇|Lφ(ζ)|q/2|2Nkdν(ζ) = Nk

∫

|∇ρ−kq/4|Φ|q/2|2dν(ζ)

=
1

4

∫

[

∆ρ−kq/2 + 2kqρ−kq/2
]

|Φ|qNkdν(ζ)

+
1

4

∫

ρ−kq/2∆|Φ|qNkdν(ζ)

+
1

2

∫

(

∇ ·
(

ρ−kq/2∇|Φ|q
)

− ρ−kq/2∆|Φ|q
)

Nkdν(ζ)

=
1

2
kq

∫

ρ−kq/2|Φ|qNkdν(ζ).

Here we have made use of the fact that the divergence term in the third line vanishes,

when integrated with respect to the measure dν(z), for kq > 2.

Thus, we obtain:

∫

|∇|Lφ(ζ)|q/2|2Nkdν(ζ) =
1

4
kq

∫

|Lφ(ζ)|qdν(ζ).
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6.2 A Fisher Information Identity for SU(n,n) coherent

states:

In case of SU(n, n), the complex bounded domain is the generalized unit disk in Cn2

.

The metric is given by:

ds2 =
∑

i,j,k,l

hijkldZijdZ̄kl,

where

hijkl = −2n
∂2

∂Zij∂Zkl

ln det(I − Z†Z),

where Z† and Z are n× n nonsingular matrices such that I − Z†Z > 0. Thus:

∑

i,j,k,l

hijkldZijdZkl = −2n
∑

i,j,k,l

∂2

∂Zij∂Zkl

ln det(I − Z†Z)dZijdZkl

= −2n
∑

i,j

∂

∂Zij

[

∂̄(ln det(I − Z†Z))
]

dZij

= −2n
∑

i,j

∂

∂Zij

[

1

det(I − Z†Z)
∂̄ det(I − Z†Z)

]

dZij.

Now, for any nonsingular matrix A:

∂̄(det A) = Tr((adjointA)∂̄A) = det ATr(A−1∂̄A),

where Tr denotes the trace. Thus we can write:

∑

i,j

∂

∂Zij

[

1

det(I − Z†Z)
∂̄ det(I − Z†Z)

]

dZij

= ∂
[

−Tr
(

(I − Z†Z)−1∂̄(Z†Z)
)]

= −∂
[

Tr
(

dZ†Z(I − Z†Z)−1
)]

= −Tr
[

∂
(

dZ†Z(I − Z†Z)−1
)]

= −Tr
[

dZ†dZ(I − Z†Z)−1 + dZ†Z(I − Z†Z)−1Z†dZ(I − Z†Z)−1
]

= −Tr
[

dZ†
(

I + Z(I − Z†Z)−1Z†
)

dZ(I − Z†Z)−1
]

.
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We now notice that:

(

I + Z(I − Z†Z)−1Z†
)

= (I − ZZ†)−1.

Thus, we have:

hijkldZijdZkl = (2n)Tr
[

dZ†(I − ZZ†)−1dZ(I − Z†Z)−1
]

,

and

ds2 = 2n dZ†
ij((I − ZZ†)−1)jkdZkl((I − Z†Z)−1)li,

where the subscripts denote matrix elements and repeated indices are summed over.

Thus:

hijkl = 2n((I − ZZ†)−1)ki((I − Z†Z)−1)jl.

It is easy to see that, since hijklh
ijpq = δpkδ

q
l , by definition, where repeated indices are

summed over, we have the following expression for hijkl:

hijkl =
1

2n
(I − Z†Z)lj(I − ZZ†)ik.

Then the Laplacian for any real-valued function V is given by:

∆V =
2

h

∑

ijkl

[

∂

∂Zkl

(

hhijkl
∂V

∂Zij

)

+
∂

∂Zkl

(

hh̄ijkl
∂V

∂Z ij

)]

=
4

h
Re

[

∂

∂Zkl

(

hhijkl
∂V

∂Zij

)]

,

where h = det hijkl. We note that, since the metric is given as the direct product of

two matrices,

h =
(

det ((I − ZZ†)
)−n (

det ((I − Z†Z)
)−n

=
(

det ((I − Z†Z)
)−2n

.

Let us now evaluate the part L(∆V ) of the Laplacian of V , that contains only linear

terms. We have:

L(∆V ) = 4
(

det ((I − ZZ†)
)2n

Re

[(

∂

∂Z ij

hhijkl
)

∂V

∂Zkl

]

.
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Now:

2n

[(

∂

∂Zkl

hhijkl
)

∂V

∂Zij

]

(6.2)

=

[

∂

∂Zkl

(

det(I − Z†Z)
)−2n

]

(I − Z†Z)lj(I − ZZ†)ik
∂V

∂Zij

+
(

det(I − Z†Z)
)−2n

[

∂

∂Zkl

(I − Z†Z)lj(I − ZZ†)ik

]

∂V

∂Zij
.

In what follows we will not use Einstein’s convention of summation over repeated

indices, rather we will show the summations explicitly, for clarity. We have:

∂̄ det(I − Z†Z) = −det(I − Z†Z)Tr
(

(I − Z†Z)−1∂̄(Z†Z)
)

,

which implies,

∂

∂Zkl

det(I − Z†Z) = −det(I − Z†Z)
∑

p,q,r

[

((I − Z†Z)−1)pq
∂Z†

qr

∂Zkl

Zrp

]

= −det(I − Z†Z)
∑

p,q,r

[

((I − Z†Z)−1)pqδkrδlqZrp
]

= −det(I − Z†Z)
∑

p

[

((I − Z†Z)−1)plZkp
]

.

Thus:

∑

ijkl

(

∂

∂Zkl

(

det(I − Z†Z)
)−2n

)

(I − Z†Z)lj(I − ZZ†)ik
∂V

∂Zij

= (2n)det(I − Z†Z)−2n
∑

i,j,p,k,l

Zkp((I − Z†Z)−1)pl(I − Z†Z)lj(I − ZZ†)ik
∂V

∂Zij

= (2n)det(I − Z†Z)−2n
∑

i,j,p,k

Zkpδpj(I − ZZ†)ik
∂V

∂Zij

= (2n)det(I − Z†Z)−2n
∑

i,j,k

(I − ZZ†)ikZkj
∂V

∂Zij

= (2n)det(I − Z†Z)−2nTr

[

(I − ZZ†)Z

(

∂V

∂Zij

)′]

,
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where

(

∂V

∂Zij

)′

denotes the transpose of the matrix

(

∂V

∂Zij

)

. Now:

(

det(I − Z†Z)
)−2n∑

ijkl

[

∂

∂Zkl

(I − Z†Z)lj(I − ZZ†)ik

]

∂V

∂Zij

= −
(

det(I − Z†Z)
)−2n∑

ijkl

[

Zkj(I − ZZ†)ik
∂V

∂Zij
+ (I − Z†Z)ljZil

∂V

∂Zij

]

= −n
(

det(I − Z†Z)
)−2n∑

ij

[

(

(I − ZZ†)Z
)

ij

∂V

∂Zij
+
(

Z(I − Z†Z)
)

ij

∂V

∂Zij

]

= −2n
(

det(I − Z†Z)
)−2n

Tr

[

Z(I − Z†Z)

(

∂V

∂Zij

)′]

.

Hence, referring back to equation 6.2 we can see that:

[(

∂

∂Zkl

hhijkl
)

∂V

∂Zij

]

= 0,

with summation over repeated indices and this, in turn implies

L(∆V ) = 0.

Thus the Laplacian of a real-valued function is given by:

∆V = hijkl
∂2

∂Zkl∂Zij
V.

We define the inner product of the gradients of two real-valued functions u and v

as:

∇u · ∇v = 2hijkl
[

∂u

∂Zkl

∂v

∂Zij
+

∂v

∂Zkl

∂u

∂Zij

]

.

Now we prove a Fisher information identity for SU(n, n) coherent states. As in

the case of SU(n, 1), in what follows, we denote a point inside the generalized unit

disk, by ζ .

Theorem 6.2.1. For SU(n, n) coherent transforms Lψ(ζ), the following identity

holds:

∫

|∇|Lψ(ζ)|q/2|2dν(ζ) =
1

4
kq

∫

|Lψ(ζ)|qdν(ζ),

where q is a positive number such that kq > 2.
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Proof. We first notice that:

∂e−
kq

4
lnρ

∂ζ lm
= −kq

4
e−

kq

4
lnρ

(

∂ ln ρ

∂ζ lm

)

.

Thus:

∂2

∂ζjk∂ζ lm
e−

kq

4
ln ρ

= −kq
4

∂

∂ζjk

[

e−
kq

4
ln ρ

(

∂ ln ρ

∂ζ lm

)]

=

(

kq

4

)2

e−
kq

4
lnρ

(

∂ ln ρ

∂ζjk

)(

∂ ln ρ

∂ζ lm

)

− kq

4
e−

kq

4
ln ρ

(

∂2 ln ρ

∂ζjk∂ζ lm

)

=

(

kq

4

)2

e−
kq

4
lnρ

(

∂ ln ρ

∂ζjk

)(

∂ ln ρ

∂ζ lm

)

− kq

4
e−

kq

4
ln ρhjklm.

Multiplying both sides by 4hjklm, we obtain:

△ρ−kq

4 = 4hjklm
∂2

∂ζjk∂ζ lm
e−

kq

4
lnρ

= 16hjklm

(

∂ρ−
kq

8

∂ζjk

)(

∂ρ−
kq

8

∂ζ lm

)

− kqρ−
kq

4 .

Thus:

△ρ−kq

4 = 4|∇ρ− kq

8 |2 − kqρ−
kq

4 . (6.3)

We know that a coherent state transform has the form:

Lφ(ζ) = ρ−
k
2 Φ(ζ),

where Φ is holomorphic in each of the variables ζlm. This means, Φ can be represented

as: Φ = u + iv, where u and v are real functions which obey the Cauchy-Riemann

equations such that, for any particular duplet ζlm = (xlm, ylm), ζjk = (xjk, yjk) we

have:

∂u

∂xlm
=

∂v

∂ylm
,

∂u

∂xjk
=

∂v

∂yjk
,

∂u

∂ylm
= − ∂v

∂xlm
,

∂u

∂yjk
= − ∂v

∂xjk
.
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As in the previous case (for SU(n, 1)), the Cauchy-Riemann equations guarantee that:

|∇u|2 = |∇v|2 , ∇u · ∇v = 0 and, △u = △v = 0.

Hence: Thus:

|∇|Φ|q|2 = |∇(u2 + v2)q/2|2

= q2(u2 + v2)q−2
[

u2|∇u|2 + v2|∇v|2 + 2uv∇u · ∇v
]

= q2(u2 + v2)q−1|∇u|2.

Also,

∆|Φ|q = q2|Φ|q−2|∇u|2 = 4|∇|Φ|q/2|2. (6.4)

Thus:
∫

|∇|Lφ(ζ)|q/2|2Nkdν(ζ)

=

∫

||Φ|q/2∇ρ− kq

4 + ρ−
kq

4 ∇|Φ|q/2|2dν(ζ)

=

∫

|Φ|q|∇ρ− kq

4 |2dν(ζ) +

∫

ρ−
kq

2 |∇|Φ|q|2dν(ζ)

+
1

2

∫

∇ ·
(

ρ−
kq

2 ∇|Φ|q
)

dν(ζ) − 1

2

∫

ρ−
kq

2 △|Φ|qdν(ζ)

=
1

4

∫

ρ
−kq

2 |Φ|qdν(ζ),

Here we have made use of the fact that the divergence term in the fourth line vanishes,

when integrated with respect to the measure dν(z), for kq > 2. This implies:
∫

|∇|Lψ(ζ)|q/2|2dν(ζ) =
1

4
kq

∫

|Lψ(ζ)|qdν(ζ).

A Remark about Future Research: Our results regarding the coherent state

transforms for the groups SU(n, 1) and SU(n, n) suggest the possibility of deriving

sharp Sobolev inequalities on the unit ball in Cn and the generalized unit disk in Cn2

.

Exploring this is a significant part of our plan for future research.
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