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SUMMARY 

 

 Wood fiber materials are hydrophilic which resulting in absorbing moisture and 

water easily.  The solution for solving the problem is to increase the wood fiber 

hydrophobicity by modifying the wood fiber surface.  The common surface treatments to 

increase the wood fiber hydrophobicity are sizing treatments or surface barrier coatings.  

Although paper sizing can increase the hydrophobicity of paper products, the water proof 

efficiency is not high enough for package applications.  Barrier coating is one of the most 

important approaches for manufacturing high water resistance paper containers.  

However, the thick coating layer results in high coating cost and poor paper recyclability. 

 Superhydrophobic surfaces indicate the surfaces with water contact angle larger 

than 150o.  Compared with regular hydrophobic surfaces, superhydrophobic surfaces are 

with much higher anti-wetting property and better self-cleaning property.  

Superhydrophobic surfaces are usually prepared by combining an appropriate surface 

roughness with a hydrophobic material, since the hydrophobicity of a surface is 

determined by its chemical composition and topography.   

In this study, a superhydrophobic paper was developed by layer-by-layer 

deposition of cationic polymer, poly(diallyldimethylammonium chloride) (poly-

DADMAC) and negative charged silica particles followed with a fluorination treatment 

by chemical vapor deposition of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (POTS).  

The prepared superhydrophobic paper products have the following characteristics: 

1. Excellent anti-wetting property. 

2. High moisture resistance. 



 xii

3. High water resistance. 

4. Anti-biological contamination.  
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CHAPTER 1 

INTRODUCTION 

 

 Wood fibers are typical hydrophilic natural materials.  With biodegradability, 

recyclability, and low cost, wood fibers have been widely used as package materials.  The 

problem of using wood fiber material in packaging is its hydrophilicity resulting in high 

water and moisture absorption.  The solution to solve the problem is to increase the wood 

fiber hydrophobicity.  Hydrophobic substances are difficult to wet.  The more 

hydrophobic a substance is, the more spherical the water bead and the higher the water 

contact angle.  Once the hydrophobicity of wood fiber materials is increased, the anti-

wetting property can be improved.  Therefore, the hydrophobic wood fiber materials can 

be used to pack meat, fish, fruit, milk, and drinks fresh; the water-repellent wood fiber 

packages can also prevent the medicines from wetting; and the decomposable wood fiber 

products satisfy the green issue of the environment.  The usual surface treatments to 

increase the wood fiber hydrophobicity are sizing treatments or barrier coatings. 

1.1  The Use of Sizing Treatment on Paper/Linerboard Surface 

 The purpose of sizing treatment is to enable paper products to resist penetration 

by fluids and increase the hydrophobicity of surface.  The treatment also provides better 

surface characteristics and improves certain physical properties of the paper sheet, such 

as surface strength and internal bond.  Two basic methods of sizing are available to the 

papermaking: internal sizing and surface sizing.  These are used either as sole treatments 

or in combination.  Internal sizing utilizes rosin or other chemicals to reduce the rate of 

water penetration by reducing the surface energy, and thus the water contact angle.  
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Surface sizing typically utilized starch particles to fill in the surface voids in the sheets, 

reducing pore radius and therefore the rate of liquid penetration.   

1.1.1  Internal Sizing Treatment on Paper/Linerboard Surface 

 Internal sizing can be achieved by using wet-end additives.  The action of a wet-

end sizing agent is to provide the fiber surfaces with a hydrophobic coating that 

discourages aqueous liquids from moving extensively.  The traditional wet-end sizing 

agent is a modified rosin, most often in a saponified form to make it water soluble.  Rosin 

size is usually shipped to the paper mill as a high-solids thick paste and is diluted through 

an emulsifier for metering into the stock.  Natural rosin is the amber-colored resin 

obtained from southern pines.  Formerly, it is tapped from growing trees or extracted 

from stumps.  Now, more commonly, it is processed from tall oil.  Rosin is an 

amphipathic material, meaning that it has both hydrophilic and hydrophobic parts.  To 

provide good sizing, it is essential that the hydrophobic parts are oriented outward.  In 

practice, the rosin is precipitated onto the fibers by the action of alum as an oriented 

monolayer of aluminum resinate molecules. 

 Rosins, along with wax emulsions, are sometimes categorized as non-reactive 

sizes.  Their retention is dependent primarily on precipitate particle size and electrostatic 

attraction to cellulose.  Also, they depend on the drying process to promote flow and 

coverage of the fiber surface.  But, they do not react chemically with fibers. 

 Corresponding to the movement from traditional acidic papermaking toward a 

neutral or alkaline wet end, there is a trend toward greater use of synthetic sizing agents 

which react chemically with cellulose hydroxyl groups to form stable ester linkage.  

These chemicals were introduced to paper industry in the 1950s and provided the first 
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opportunity to manufacture sized paper in an alum-free environment.  Alkyl ketene dimer 

was the first commercially available reactive size and is still the most widely used.  

Acrylic stearic anhydride sizes (derived from fatty acids) and alkenyl succinic anhydride 

(derived from petroleum) are more reactive and have more selective applications. 

1.1.2  Surface Sizing Treatment on Paper/Linerboard Surface 

 Surface sizing is most commonly applied on machine at a station between dryer 

sections, which is referred to as the size press.  For board grades, sizing solutions may be 

applied at the machine calendar stack.  The most common material used in surface sizing 

solution is starch, either cooked or in a modified form.  Starch is a carbohydrate 

synthesized in corn, tapioca, potato, and other plants by polymerization of dextrose units.  

The polymer exists in two forms: a linear structure of about 500 units and a branched 

structure of several thousand units.  When an aqueous suspension is heated, the water is 

able to penetrate the granules and causes them to swell, producing a gelatinized solution.   

Wax emulsions or special resins are often added to the starch solution.   

 Sizing solution is commonly applied within a two roll nip; hence the term, size 

press.  The traditional size press configurations are categorized as vertical, horizontal, or 

inclined.  In each case, the objective is to flood the entering nip with sizing solution; the 

paper absorbs some of the solution and the balance is removed in the nip.  The overflow 

solution is collected in a pan below the press and recirculated back to the nip.  The 

retention time of the sheet in the pond and nip of the size press is very brief, and 

consequently, the operation must be carefully controlled to ensure that the requisite 

amount of solids is absorbed uniformly across the sheet.  At the same time, the amount of 
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water absorption should be minimized so that the stream requirement for subsequent 

drying is maintained at the lowest level.  

 There are two basic mechanisms for incorporating starch solutions into the sheet 

at the size press.  The first one is the ability of the sheet at the size press; the second one 

is the amount of solution film passing through the nip and the manner in which the paper 

and roll surfaces separate.  Factors that favor greater absorption are low solution viscosity, 

high solution temperature, low machine speed, high sheet moisture, high sheet porosity, 

and low level of internal sizing.  The factors favoring greater film thickness include high 

sheet roughness and low nip pressure.   

 Although the wood fiber sizing treatments can resist penetration by fluids and 

increase the hydrophobicity of wood fiber based products, the water proof efficiency is 

not high enough for food and drink package applications.   

1.2  The Use of Barrier Coating on Paper/Linerboard Surface 

 Wood fiber based substrates such as paper, are widely used in packaging 

operations.  Paper, however, has a very poor resistance to penetration by water vapor, 

gases, oil, solvents, and greases.  To improve the water vapor barrier resistance, paper has 

been coated with a variety of substances.  Barrier coating is one of the most important 

approaches for manufacturing high water resistance wood fiber containers.  The most 

common paper coating is wax.  While wax coated paper has good water vapor barrier 

resistance in a smooth or uncreased condition, it has poor resistance after it is ceased.  

Apparently the brittleness of the wax is so great that ceasing causes it to fracture and 

break thereby providing many areas through which water vapor can pass with little or no 

resistance.  
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1.2.1  The Use of Coater in Barrier Coating 

 Barrier coating operations can be applied on-machine or off-machine.  Strong 

arguments can be made for each method, and debate continues within the industry as to 

the relative merits and cost-effectiveness of the two approaches.  Generally, on-machine 

coating is most feasible where the application is light to moderate and the quality 

requirements are not too exacting.  The barrier coatings are usually applied off-machine 

as part of a converting operation.   

 The barrier coatings can be applied by single-sided coaters, as well as a good 

selection of equipment for simultaneous two-sided application.  Some paper products 

require coating only on one side of the sheet; a one-sided application is generally easier 

to control and simplifies the subsequent drying operation.  Many two-sided coated grades 

are produced utilizing two coating stations with dryers in between.  A wide variety of 

equipment is used to apply barrier coating.  The major kinds of coaters used in the 

industries are introduced as follows.  

Massey Print Roll Coater 

 The first on-machine coating is carried out using equipment adapted from the size 

press.  In the Massey print roll coater, the rolls that smooth out the coating mixture and 

spread it evenly by the time it reaches the two large applicator rolls.  Typically, one or 

more of the metering rolls oscillate.  The pressure is varied between rolls to control the 

amount of coating transferred. 

Air-Knife Coater 

 In the air-knife coater, the sheet picks up the coating mixture from an applicator 

roll running in a trough.  The sheet then passes over a backing roll, where a sharp jet of 
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air impinges on the sheet, evening out the coating layer and blowing off the excess.  In 

the design, it is vital that the air jet be oriented at the correct angle and be of uniform 

intensity across the entire width of the machine. 

Rod Coater 

 For the rod coater, the sheet picks up the coating mixture from an applicator roll.  

Here, the doctoring and smoothing function is performed by a small diameter roll or wire 

wound rod which rotates in the opposite direction to the travel of the web.  Since web 

tension is used to maintain pressure against the rod, this coating method is generally 

limited to heavier weight products that can withstand the tensile loading. 

Blade Coater 

 Since their introduction in the 1950s, blade coaters have undergone extensive 

development, and a large number of designs are currently being employed.  In all cases, 

the web is given a generous application of coating mixture, and the excess is removed by 

using a metal blade.  In some designs, the blade tip is beveled at the same angle as the 

blade orientation; and the tip rides on a thin film of coating and performs the metering 

and smoothing function.  In other designs, the blade is very thin and is flexed against the 

web.  Generally, the so-called bent-blade designs allow higher coat weights and are less 

prone toward scratching.  In all cases, the angle and pressure of the blade against the 

metal or rubber-covered backing roll determine the weight of coating retained by the 

sheet. 
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Puddle Coater 

 One of the earliest blade coaters was the pond or puddle coater.  In more recent 

designs, the blade is separate from the applicator, leading to the designation of trailing 

blade coater.  Recent variants are the inverted coater and the vacuum blade coater.  

Designs which coat both sides at the same time are the Billbalde coater and the opposed-

blade coater. 

Cast Coater 

 A specialized off-machine technique known as cast coating is used to produce 

paper of exceptional gloss and smoothness.  Here the wet coated paper is pressed into 

contact with a large-diameter, highly-glazed cylinder during the drying phase.  Great care 

must be taken at all steps of the process.  The base sheet must be fairly porous so that 

water vapor given off during the drying of the coating can pass through it.  The binder 

must have the ability to adhere to the hot chrome surface when wet, and then when dry, 

to separate without picking or plucking. 

Extrusion Coater 

 The extrusion coater is used primarily for plastic coatings.  Here, the heated resin 

is extruded through a slot as a hot viscous film which is combined with the paper between 

a pair of rolls.  The combining operation takes place so rapidly that a permanent bond is 

created between the plastic film and the paper.  A group of barrier coatings known as hot 

melt coatings have gained wide acceptance in recent years.  These coatings consist of 

mixtures of polyolefins and wax-like materials that have excellent barrier properties at 

low thickness levels.  Hot melts are usually too viscous for conventional coater 

equipment, but not viscous enough for the extrusion coater.  Consequently, special 
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equipment has been developed, such as the curtain coating is pumped into the die slot 

from which it is discharged vertically downward in the form of a falling film or curtain.  

The sheet is passed through the curtain at high speed and the coating is deposited directly 

on the surface, where it solidified by cooling.   

1.2.2  The Use of Chemicals in Barrier Coating 

 In the 1800s, animal glue was widely used as an adhesive in paper coatings.  In 

the 1900s, animal glue was largely replaced by casein.  Casein, used initially in the 

halftone printing process, forms a tough film and can be treated with formaldehyde to 

provide water resistance [1,2].  Casein is used in many high quality coatings for offset 

printing where water resistance, high gloss, and toughness of surface is desired.  A wide 

variety of chemicals are used to apply barrier coating.  The major kinds of chemicals used 

in the industries are introduced as follows. 

Starch and Modified Starch Coating 

 In the 1900s, it was found that starch and modified starches can be used in a wide 

range of applications for coated paper in the low cost publication field where water 

resistance is a major requirement.  Huang and co-workers reported that the starch in 

coatings applied to paper or paperboard, used in packaging detergents containing a 

persalt, is treated with a cross-linking agent to prevent water penetration and 

discoloration of the paper and paperboard due to oxidative degradation of carbohydrate 

materials to colored products [3-5].  The cross-linking agent serves to tie up functional 

groups of the carbohydrate materials such as cellulose in the paperboard and starch 

materials on and in the paperboard which may otherwise be oxidized by the release of 
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hydrogen peroxide from the persalt.  The preferred cross-linking agents are melamine-

formaldehyde and urea- formaldehyde resins.  

 In some applications, Kelly and co-workers reported that starch could be cross-

linked using urea or glyoxal to impart water proofing properties [6-7].  Paper coating 

compositions are provided containing urea or glyoxal, starch as a binder.  Exemplary of 

these compositions is a fluid dispersion of clay in aqueous medium containing starch and 

form about 2 to 10 % based on the weight of the starch of a latent insolubilizer for the 

starch.  The latent insolubilizer is the reaction product of urea and glyoxal at a mole 

ration of from about 0.5 to 0.75 mol of urea to 1.0 mol of glyoxal.  These compositions 

cure at low temperature, are stable, and provide coatings which possess high water 

resistance. 

Water-Soluble Polyvinyl Alcohol Emulsion Coating 

 In the 1970s, many synthetic water-based systems had been developed.  Polyvinyl 

alcohol provides strong durable coatings with good optical properties.  Many researches 

and development activities had been devoted to emulsion type coatings [8,9].  Emulsions 

are low viscosity systems affording high solids content, easy handling, and less water to 

evaporate in the dryers than with the common natural binders.  Increased gloss, better ink 

holdout, improved water resistance, and more flexibility are also obtained with these 

emulsion systems which are commonly used in combination with starch and casein.   

 It also has found that the water resistance, especially resistance to hot water, low 

moisture absorption, and good fatness to washing of water-soluble PVA containing paper 

having water-dissolving temperature of 95 oC or below can be remarkable improved by 

treating the paper below 40 oC with a solution which has been prepared by the addition of 
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titanium tetrachloride to water, or a solution made by dissolving in a mineral acid 

precipitate which has been prepared by adding titanium tetrachloride to water, and then 

adding ammonia [10]. 

Styrene-Butadiene Latex Coating 

 In the 1970s, Braidich and co-workers reported that an improved latex paper 

coating composition was found by taking the latex of a copolymer prepared from a 

substitute or unsubstituted mono-vinyl aromatic hydrocarbon monomer, an aliphatic 

conjugated diene hydrocarbon monomer and an unsaturated monomer or dicarboxylic 

acid monomer, reacting most of the carboxyl groups in the copolymer with an epoxide 

after the latex preparation, then mixing the resulting latex with another colloidal water-

dispersible polymer and other coating ingredients to yield an improved paper coating 

composition [11].  That is, the use of a modified carboxylated polymer latex wherein a 

large percentage of the carboxyl groups are modified to a nonionic form results in a latex 

having improved compatibility with both the other colloidal water-dispersible polymer 

and filler, and having a sought-after characteristic of high water resistance as well as 

cross-linking ability. 

 Styrene-butadiene, primarily used in publication grade papers, was the first 

successful emulsion type product used in paper coating [12].  The improved carboxylic 

latex is produced by copolymerizing in an emulsion system comprising a synthetic 

emulsifier.  Chich and co-workers found that improved paper coating compositions could 

be prepared from a latex composition comprising a mixture of styrene and butadiene 

[13,14].  The latex paper coating which has good porosity to permit rapid drying without 

blistering and resistance to water and moisture during the coating process. 
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Acrylic Latex Coating 

 Acrylics are commonly used as coatings on paperboard for food packaging due to 

their water resistance and low residual odor.  High gloss and good ink holdout are typical 

properties of the acrylics which contribute to print quality in these relatively expensive 

coatings.  The paper coating compositions containing, as binder, mixtures of (a) emulsion 

polymers of major amounts of mono-vinyl aromatic monomers, (b) emulsion polymers of 

major amounts of acrylates or methacrylate, and (c) emulsion polymers prepared in two 

stages from mono-vinyl aromatic monomers and acrylates or methacrylates.  These 

compositions are particularly suitable for the manufacture of art paper if the amounts of 

polymerized units of mono-vinyl aromatic monomers and acrylates or methacrylates in 

the polymers (a), (b), and (c) together are such that a random copolymer containing the 

quantities of these monomers has a glass temperature of between -20 oC and 30 oC [15]. 

Polyethylene and Ethylene Copolymer Coating 

 Polyvinyl acetate provides good moisture resistance, good grease resistance, and 

responds well to calendaring operations to produce a glossy surface.  For food containers, 

a number of barrier coatings have been developed, including polyethylene [16], 

microcrystalline wax [17], and ethylene-vinyl acetate copolymers [18].  In general, these 

materials improve the durability and film strength, raise the softening point, and increase 

the gloss and heat-seal properties.    

Polyvinylidene Chloride Emulsion Coating 

 In the 1980s, polyvinylidene chloride emulsion coatings with the capability to 

provide high solids systems of minimum viscosity with excellent barrier properties was 

found by Demol and co-workers [19].  The coating for supports which confers to such 
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supports a high impermeability to water, water vapor, gases, greases, oils, etc., can be 

produces by employing at least 2 copolymers of vinylidene, which copolymers have 

different compositions and natures.  The use of water-based coating, hot melts, and for 

some specialty uses solvent-based vehicles for paper coating continues to be an area of 

extensive research and development activity as systems are developed to meet the 

increasingly restrictive demands of pollution control, health regulations, and energy 

consumption. 

Polyolefin Coating 

 In the 1990s, a water resistant corrugated paperboard material was prepared 

wherein the paperboard components were each coated on both sides with a thermoplastic 

polyolefin film which acted as a water barrier and a water resistant adhesive for bonding 

the components together.  The corrugated medium is also pretreated with an internal size 

treatment to prevent edge wicking, and for the purpose of corrugating rolls are preheated 

to a temperature slightly less than the melting point of the thermoplastic polyolefin film 

while a lubricating material is simultaneously applied to either the corrugating rolls or the 

medium at the corrugating nip [20]. 

 Thus it may be stated that the novelty in the process as regards the product 

produced lies in the use of thermoplastic polyolefin coating of at least 20 µm thick on 

both sides of both the medium and the linerboard, in combination with a surface 

treatment to the corrugating medium.  Since corrugating medium is normally untreated, 

to enable the medium to pick up the usual starch adhesive when forming conventional 

corrugated paperboard, the mere fact of applying a surface treatment to the corrugating 
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medium itself, according to the process represents a departure from the conventional 

manufacture of corrugated paperboard. 

 Recently, with regard to the barrier coating layer formation, a wide range of other 

candidates are available, such as nanocomposites [21,22], ceramics [23], metals [24], and 

sol-gel coating layers [25,26], etc..  The conventional barrier has been developed based 

on the extrusion products of a range of polymers, such as wax, polyethylene, and 

poly(ethyl terephthalate) [27,28], etc.. 

1.2.3  The Drying of Barrier Coatings 

 Drying of the barrier coating also plays another important role in preparing water-

proofing paper products.  Sometimes, conventional steam cylinder methods are used for 

the drying of coatings.  More often, other methods must be used to avoid disturbing the 

coating film.  The two methods employed most often are hot air impingement and infra-

red drying. 

 High-velocity convective hoods placed over conventional steam cylinders are a 

popular method of drying single sided coatings.  Tunnel-drying is another approach, 

suitable for both single and double coated sheets.  In the method, the air temperature is 

controlled to suit the drying requirements and speed of the machine, while the paper is 

carried through the tunnel on rollers, supported on foils, or held up by air impingement.  

A complete on-machine coating system consisting of two single-sided coated stations 

followed their respective dryers.  Off-machine coating system is similar to on-machine 

one. 

 An infra-red emitter (usually gas-fired) provides a compact, high-intensity heat 

source which transfers its energy without any physical contact, ideal for the drying of 



 14

coatings.  However, since the infra-red radiation unit supplies only a source of heat, air 

must also be provided to carry away the moisture evaporated from the coatings.  Some 

drying units, therefore, combine infra-red and air-impingement principles for more 

efficient operation.  

1.2.4  The Surface Properties of Coated Paper 

 The surface properties of the raw stock influence the formation of the coated layer 

in two ways.  Surface roughness has a significant impact on the coating thickness 

uniformity; while surface absorptivity determines the composition of the actual coating 

layer.  When the coating first contacts the paper surface, capillary forces within the sheet 

structure cause a movement of water-soluble components into the smaller pores of the 

sheet, leaving behind at the surface (by filtration action) a formulation richer in pigment 

particles. 

 The type and amount of binder in the coating formulation has a pronounced effect 

on coating structure because it influences the rate of fluid penetration into the raw stock, 

the degree of filling between pigment particles, and the rate of drying.  The basic 

structure of the coating layer is more fundamentally related to the size and shape of the 

pigment particles, and the degree of packing.  Additives in the coating mix will normally 

determine the flexibility of the dried adhesive and the subsequent reorientation of 

pigment particles during supercalendering. 

 The air-knife coater tends to deposit a uniform layer that follows the contours of 

the base sheet.  The roll coater provides good coverage, but patterning defect are 

introduced from the film-splitting.  Blade coating results in good filling in the surface 

valleys, but the uniformity of coating layer thickness is sacrificed to obtain increased 
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smoothness.  Each coating process forms a somewhat different layer; hence, some 

coating operations employ multiple coating steps to combine the advantages of two or 

more methods. 

 The effects of drying conditions on coating structure can be significant.  If the 

coating dries too quickly, those areas with a thicker deposit or a slower rate of absorption 

will retain a higher proportion of adhesive.  And thereby yield a different coating 

structure.  As the speed of the coating operation increases, and the time interval between 

application and drying becomes shorter, this problem can be more severe. 

 During drying, a considerable amount of shrinkage occurs in the thickness of the 

coating layer.  The extent of shrinkage is mainly a function of the solids content of the 

initial dispersion, but is also affected by the shape of the pigment, the degree of 

dispersion, and the physical properties of the binder.  The shrinkage is undesirable 

because a portion of the original sheet roughness returns, this problem is most severe 

with low coat weights. 

 Supercalendering is often carried out on coated sheets to compact the coating 

structure and develop a greater level of smoothness.  If the coating structure is not 

uniform, it is likely that the supercalendering will further emphasize the non-uniformity.  

Areas of the coating structure relatively rich in adhesive will not develop as high a gloss 

as adjacent areas, and the sheet will exhibit a finely-mottled appearance. 

 Coating clays are a laminar form of clay. When the coating is initially applied, the 

clay platelets are randomly oriented.  To produce a glossy appearance, a substantial 

number of these tiny platelets must be oriented more nearly parallel to the plane of the 

sheet.  At high supercalendering pressures, this reorientation occurs while the binder is 
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squeezed through the pigment particles.  Light reflection from the supercalendered 

surface is more specular, thus improving gloss; however, low areas are not affected. 

 The common objective with barrier coatings is to provide a barrier to water, water 

vapor, air, or grease.  Although wax and hydrophobic polymers can be used to produce 

high water resistance packages for food and medical applications, the thick coating layer 

(>30 µm) results in high coating cost  and poor recyclability.  Furthermore, the water-

repellent and decomposable products obtained by regular wax or polymer coating can not 

greatly benefit customers and industries.   

1.3  Properties and Applications of Superhydrophobic Surface 

 The common way for enhancing the surface hydrophobicity is lowering the 

surface energy.  However, even materials with the lowest surface energy (6.7 mJ/m2 for a 

surface with regularly aligned closest-hexagonal-packed —CF3 groups) gives a water 

contact angle of only around 120o.  In fact, ultra hydrophobic surfaces with water contact 

angle greater than 150o may be developed only by introducing proper roughness on 

materials boundary with low surface energy.   

 In some Eastern cultures, the lotus plant is a symbol of purity.  Although lotuses 

prefer to grow in muddy rivers and lakes, the leaves remain clean.  It is found that lotus 

leaves have a natural cleaning mechanism.  The water droplets roll off lotus leaf surfaces 

like mercury, taking dust particles, tiny insects, and surface contaminants with them.  

This self-cleaning property is caused by both the hierarchical roughness of the leaf 

surface from micrometer-sized papilla with protrusions and the intrinsic material 

hydrophobicity of a surface layer of epicuticular wax covering these papilla.  The 

epicuticula wax provides the low surface energy, and the papillae structure brings a large 
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extent of air trapping when contacting with water.  With a very rough and heterogeneous 

papillae structure, the surface allows air to be trapped more easily underneath the water 

droplets, so the droplets essentially rest on a layer of air.  Rather, a significantly higher 

surface area compared to the projected area creates a greater energy barrier of liquid-solid 

interface.  Coupled to this, when the surface energy of the surface material is intrinsically 

low, the combined effect is the surface will repel any water that comes into contact with 

it.   

 Borrowing from the character of lotus leave surface, a simple method to prepare 

synthetic coatings with exceptional anti-wetting properties is developed.  The ability to 

fabricate water-repellent surface has attracted great interest due to the potential use in 

various applications, such as self-cleaning facades, self-cleaning window panes, self-

cleaning toilet, and self-cleaning kitchen utensil.  Besides, it can help with highly 

reducing drag on ship hulls, motor vehicles, and aircrafts to save energy and increase the 

speed of vehicle.  Self-cleaning fabrics could revolutionize the apparel industry.  The 

technology can be used to create t-shirts and underwear that can be worn hygienically for 

weeks without washing.  The new technology attaches nano-structures to clothing.  Then, 

chemicals that can repel water, oil, and bacteria are directly bound to the nano-structures.  

These two elements combine to create a protective coating on the fibers of clothing.  This 

self-cleaning clothing both prevents the attachment of dirt and bacteria, and forces liquids 

to bead and run off [29-33].   

 Superhydrophobic surfaces indicate the surfaces with water contact angle larger 

than 150o.  Compared with hydrophobic surfaces, superhydrophobic surfaces are with 

much higher anti-wetting property and better self-cleaning property.  Superhydrophobic 
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surfaces are usually prepared by combining an appropriate surface roughness with a 

hydrophobic material, since the hydrophobicity of a surface is determined by its chemical 

composition and topography.  There have been numerous recent reports about successful 

generation of polymeric and inorganic superhydrophobic surfaces utilizing various 

surface treatment techniques:   

Lithographic Patterning 

 Lithographic patterning is a process used to selectively remove parts of the 

substrate surface to produce roughness on the surface.  The process is used to transfer the 

patterns of the masks onto the substrates.  After irradiation, the substrates are etching 

using laser, X-ray, or chemicals as shown in Figure 1.1.  When the etching process is 

complete, the patterned substrates are cleaned follow with surface modifications [29,30].  

Lithographic patterning is an efficient method to prepare superhydrophobic surfaces on 

silicon wafers and metal substrates because it affords exact control over the shape and 

size of the objects it creates, but the process damages the wood fiber substrates, which is 

a significant disadvantage for this method.  Furthermore, the process is very expensive 

that is difficult to be applied to large scale commercial production.  However, the 

lithographic technique can produce permanent surface roughness, which has certain 

advantage than other techniques. 
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Figure 1.1  Schematic representation of the lithographic patterning process. 
 

Laser/ Plasma Etching 

 Etching is the process of using strong acid, laser, or plasma to cut into the 

unprotected parts of a substrate surface to create a design in intaglio in the substrate and 

increase the surface roughness.  In the plasma etching processes now routinely used to 

fabricate superhydrophobic surface, a mask is used to define an area to be etched, and a 

glow discharge generates reactive species which etch the exposed area as shown in 

Figure 1.2 [31].  Depending on the myriad process parameters, such as gas components, 

gas pressure, and of discharge power and frequency, the etch can have varying amounts 

of selectivity, anisotropy, and damage.  In addition, the requirement of having a mask 

previously applied to define the etch pattern greatly increases the complexity of the 

processing sequence and can lead to problems with yield and throughput.   
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Figure 1.2  Schematic illustration of the plasma etching. 

 

 In other researches, laser light has been used to control the etching rates [32,33].  

The laser etching process is illustrated with Figure 1.3.  Various light-assisted processes 

have been studied, including those relying on gas and surface phase interactions.  The 

laser is also found to inhibit polymer deposition on the surface.  The possibility of 

maskless etching is also demonstrated.  In addition, by etching using the laser without the 

discharge, a higher surface roughness of the underlying etch process has been obtained. 

 

Figure 1.3  Schematic illustration of the laser etching. 
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Vertical Alignment of Nanotubes/ Nanofibers 

 The purpose of attaching vertical aligned nanotubes/ nanofibers to the substrate 

surface is to decrease the fraction of solid surface in contact with water droplet, and to 

increase the fraction of air surface in contact with water droplet, respectively [34-37].  

This substrate surface allows air to be trapped more easily underneath water droplets, and 

increases the hydrophobicity of surface.  The fabrication procedure is shown in a Figure 

1.4.  A porous template of commercial alumina membranes with pores, where porosity 

consists of an array of parallel and straight channels, is in contact with a polymeric 

solution, and a thin polymer layers cover the pore walls of the membranes in the initial 

stage of wetting.  After a period of time, the template is dissolved away by sodium 

hydroxide solution at room temperature, and an aligned polymeric nanotube/ nanofiber 

layer is obtained.  The method used to fabricate polymeric nanotube/ nanofiber layer is 

simple and reproducible. 

 

Figure 1.4  Schematic illustration of vertical alignment of nanofibers. 
 

 

Alumina Membrane 

Polymeric Solution 

Substrate 
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Sol-Gel Method 

 The sol-gel process is a wet-chemical technique used for the fabrication of 

materials starting either from a chemical solution or colloidal particles (sol) to produce an 

integrated network (gel).  Recently, the researches are working on depositing sol on a 

substrate to form a layer of porous film by dip-coating or spin-coating in order to increase 

the surface roughness [38-40] as shown in Figure 1.5.  Sol-gel processing includes two 

approaches, hydrolysis of metal alkoxides and polycondensation of hydrolyzed 

intermediates.  Most of the interest in this method is concentrated on metal organic 

alkoxides since they can form an oxide network in organic matrices.  This process 

provides a method for the preparation of inorganic metal oxides porous structures under 

mild conditions starting from organic metal alkoxides.  This permits structural variations 

without compositional alteration.  The sol-gel approach is interested in that it is a low-

temperature technique that allows for the fine control on the product’s chemical 

composition.  However, the formation of a cross-linking network of organic metal oxides 

makes a component difficult to process, and it is a disadvantage that circumscribed the 

application of this method.   

 

Figure 1.5  Schematic representation of the sol-gel method. 
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Phase Separation 

 A superhydrophobic polymeric surface with a high water contact angle and low 

sliding angle was facilely created by a one-step polymer solution casting method [41,42].  

The superhydrophobicity was resulted from vapor-induced phase separation without 

modification with special low surface energy compounds.  It is well known that polymer 

solution becomes thermodynamically unstable when evaporating the solvent under 

certain conditions after casting.  As a result, phase separation will occur to form a 

polymer rich phase and a polymer poor phase.  The concentrated phase solidifies after 

phase separation and forms the matrix, whereas the polymer poor phase forms the pores.  

This method can be extended to a variety of polymers to fabricate the superhydrophobic 

surface through a selection of suitable solvent and nonsolvent vapor.  The facility and 

economy of this method make it suitable for the practical application of 

superhydrophobic surface in large area. 

 

Binary Colloidal Assembly 

 Binary colloidal assembly method is a technique used for the fabrication of 

surface roughness by colloidal self-assembling.  Monodisperse colloidal spheres usually 

self-assemble into highly ordered hexagonal or cubic close-packing arrays.  Due to their 

long-range ordered structures, colloidal self-assemblies can be employed to pattern 

substrates.  In this procedure, irregular structures with a hierarchical roughness surfaces 

were derived from binary colloidal assemblies as shown in Figure 1.6 [43].  Inorganic 

particle-loaded hydrogel spheres and polymers were consecutively dip-coated on 

substrate surface.  The former assemblies were recruited as templates for the latter self-

assembly.  Due to the hydrophilicity difference between substrates and inorganic particle-
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loaded hydrogel spheres, the region selective localization of polymer spheres leads to 

irregular binary structures with a hierarchical roughness.  The subsequent modification 

with low surface energy molecules yields a superhydrophobic surface.  The heating 

treatment can largely enhance the mechanical stability of the resulting binary structures, 

which allows regeneration of the surface superhydrophobicity, providing a good 

durability in practice.  

Dip-coating polymeric colloidal spheres

Dip-coating hydrogel spheres

Dip-coating polymeric colloidal spheres

Dip-coating hydrogel spheres

 

Figure 1.6  Schematic representation of the binary colloidal assembly. 
 

Glancing Angle Deposition 

 Figure 1.7 shows the glancing angle deposition (GLAD) method, the extreme 

accentuation of atomic shadowing that occurs when the impinging vapor flux arrives at 

the substrate from near-glancing angles results in the nanostructure, high porosity, and 

large surface area of GLAD films.  GLAD is a straightforward method for fabricating 

nano-structured thin films of isolated columnar structures that can be sculpted into a 

variety of structural motifs including slanted posts, helices, and vertical posts [44-48].  

The experimental control over film structure arises because film growth will always tend 
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toward the source flux.  The GLAD apparatus provides control over the angle at which 

the source flux arrives at the substrate.  Under these conditions, vapor flux arriving at 

oblique angles at the substrate results in slanted post structured films.  Following this 

reasoning, various film structures can be prepared by rotating the substrate about the axis 

normal to the substrate surface during deposition. 

 

Figure 1.7  Schematic representation of the glancing angle deposition. 
 

 Undoubtedly, low-coast, superhydrophobic, water-repellant, and self-cleaning 

fibers can bring a large number of benefits to the paper industry, food package industry, 

and medical supplying industry.  The superhydrophobic paper packages can also be 

extremely important when suits protective against chemical and biological weapon are 

designed.  It is clear that superhydrophobic fibers and lotus-like substrates will 

revolutionize and extend the capability of many paper-based applications as well as 

create new products markets.  They are ideal products for food packages, biomedical 

applications, electronic resistant papers, and antibacterial papers.  The biodegradable 
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paper products can be extremely interested by military and homeland security 

applications.  However, to the best of our knowledge, a simple and inexpensive way to 

prepare wood-fiber materials demonstrating the lotus effect have not yet been created.  

 Layer-by-layer (LbL) assembly technology, which is developed by Decher and 

co-workers [49], has been proven to be a simple and inexpensive way to fabricate various 

kinds of surfaces with tailored chemical deposition and architecture in micro-scales and 

nano-scales [50-53].  Recently, there have been several reports concerning the use of LbL 

assembly technique to construct superhydrophobic surfaces [54-59].  Shiratori and co-

workers construct superhydrophobic surfaces by first fabricating a LbL assembled hybrid 

film of polyelectrolyte/ silica nanoparticles and then removing the organic components 

by calcination at 650 oC to develop an inorganic nanostructure for superhydrophobic 

behavior [54].  Zhang and co-workers report the use of polyelectrolyte multilayer as a 

performed matrix for electrochemical deposition of gold and silver clusters to fabricate 

superhydrophobic surfaces [55].  Rubner and co-workers mimic the superhydrophobic 

behavior of the lotus-leaf structure by first treating a 5-bilayer poly(allylamine 

hydrochloride) (PAH)/ poly(acrylic acid) (PAA) film in acidic solution to induce 

microporous structure follow by coating the micorporous surface with silica particles [56].  

Cho and co-workers fabricate the superhydrophobic surface by depositing silica 

nanoparticles on the surface of a 10-bilayer PAA coated ZrO2 nanoparticles/ PAH film 

follow with a simple fluorination [57].  Schlenoff and co-workers prepare 

superhydrophobic surfaces by a LbL assembly of fluorinated polyelectrolytes and natural 

nano-rods [58].  Taking advantage of the amplified exponential growth of PAA and 

polyethylenimine (PEI) in the presence of silver ions, Ji and co-workers report a way to 
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construct PAA/ PEI-Ag+ films with hierarchical micro- and nanostructures for use as 

superhydrophobic surface after thermally crosslinking the film [59].  The above results, 

as well as the easy fabrication of large area films with LbL assembly technique holds 

great promise in fabricating superhydrophobic surfaces in a simple and inexpensive way.  

The assembly technology also enables the deposition of multilayer films on non-flat 

surfaces [60-62].  

 This study focuses on developing a simple and inexpensive way to prepare 

superhydrophobic paper products.  In this study, superhydrophobic paper products are 

developed by layer-by-layer deposition follow with a fluorination treatment.  The 

resistance to moisture and water is investigated as a function of relative humidity.  The 

characters of surfaces with different roughness are also studied.  It is expected that the 

superhydrophobic paper products should have super resistance to water, oil, and all 

contaminations. 

1.4  Superhydrophobic Theoretical Background 

 A surface having a water contact angle greater than 150o is called a 

superhydrophobic surface.  A droplet of water easily rolls off a surface having such 

excellent hydrophobicity.  Hence, Superhydrophobicity is defined by two criteria: a very 

high water contact angle and a very low sliding angle.  The sliding angle is the inclination 

angle of the surface from horizontal at which a water droplet completely rolls off the 

solid surface.  In general, contact angles are measured for the evaluation of the surface 

tension and wettability.  Although it is hard to measure the surface tension of a solid 

directly, it is easy to measure the its contact angles. 



 28

 When a liquid droplet is placed on a homogeneous smooth solid surface, the 

contact angle, θ , can be obtained using Young’s equation [63]: 

cos sv sl

lv

γ γθ
γ
−

=  

where svγ , slγ , and lvγ  are the interfacial tensions of the solid-vapor, solid-liquid, and 

liquid-vapor phases, respectively. 

 Wenzel modified Young’s equation and proposed a well known equation for the 

contact angle of liquids on a rough homogeneous surface, θw, which is as follows: 

cos ( ) cossv sl
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r rγ γθ θ
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−
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where r  is the roughness factor defined as the ratio of the actual surface area of the rough 

surface to the geometric projected area.  This equation implies that when the intrinsic 

contact angle of a liquid on a rough solid surface is larger (smaller) than 90o, the surface 

will become superhydrophobic (superhydrophilic) because r is always larger than 1 [64].  

However, it should be noted that the morphology of the surface has a significant 

influence on the observed contact angle for rough surfaces.  Roughness, in simple terms, 

by itself can not explain the high hydrophobicity of very rough surfaces, and Wenzel's 

equation is not necessarily applicable (depending on the r value, Wenzel’s equation will 

become inapplicable to calculate θw as r cosθ  > 1).  For very rough surfaces, a composite 

surface structure made of air (trapped in undulations of a rough surface) and the primary 

surface material are often observed.  The wetting for such heterogeneous surfaces is 

traditionally described by the Cassie’s equation [65]: 

1 1 2 2cos cos cosc f fθ θ θ= +  
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where cθ  is the Cassie contact angle; 1f  and 
2f  are the fractions of materials 1 and 2 on 

the surface, respectively.  Angles 1θ  and 2θ  represent the intrinsic contact angles of the 

liquid with materials 1 and 2 that can be found from Young’s equation.  Cassie’s equation 

can be rewritten as follows where the contact angle of liquid with air is considered to be 

180o ( θ  is the intrinsic contact angle for the primary surface material): 

cos (cos 1) 1c fθ θ= + −  

where f is the fraction of the solid surface in contact with liquid; the fraction of air 

(trapped in the surface roughness) in contact with liquid at the surface is 1 f− .  The 

modified Cassie’s equation can be used to calculate the fraction of the air pockets at the 

surface. 

 Quéré and co-workers studied rough hydrophobic surfaces; the roughness had the 

form of fine microtextures with different geometries [66,67].  To understand the wetting 

behavior of such surfaces, they combined Wenzel’s equation and the modified Cassie’s 

equation to obtain the following equation for a liquid droplet on a solid substrate: 

1cos cr
f

r f
θ −

=
−

 

In the equation, 
crθ  is the critical intrinsic contact angle that delineates the wetting 

regime (Wenzel or Cassie).  The equation shows that for 90o < θ < crθ , the Wenzel’s 

mode is applicable although some cases have been observed with the metastable Cassie’s 

mode [68].  For crθ  < θ < 120o, however, the Cassie’s mode will be applicable because of 

the air pockets trapped below the liquid drop in the undulations of the rough surface.  It 

should be noted that 120o is the highest possible intrinsic contact angle for water on a 

surface obtained by lowering the surface energy. 



 30

CHAPTER 2 

OBJECTIVES, APPROACHES, AND EXPERIMENTS 

 

2.1  Research Objectives 

 It is well known that the roughness of hydrophobic surface enhances the surface 

hydrophobicity.  The main tasks of the research are to develop the nano-structured 

roughness morphology on wood fiber or paper surface, followed by increasing the 

hydrophobicity of rough wood fiber surface by chemical modification, and to study the 

physical properties of the prepared superhydrophobic paper products.  The objectives of 

the research are following: 

1. Develop a method to control the nano-roughness of paper. 

2. Chemically modify the surface from hydrophilic to hydrophobic. 

3. Study the relation between coated particle size and surface hydrophobicity. 

4. Prove the anti-contamination form biomaterials. 

5. Study the feasibility of other particle coating methods. 

 The ultimate goal of the study is targeted to develop a novel nanomaterials and 

nanotechnologies to produce superhydrophobic paper products, for food industry, 

biomedical industry, military applications, and homeland security applications.  In the 

study, both fundamental understanding and method development will be focused. 
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2.2  Materials 

 The silica particles with diameters of about 200 nm, 420 nm, 800 nm, and 1 

micrometer were synthesized according to literature reported method [69].  The reagents 

used for silica particle synthesis, including tetraethyl orthosilicate (TEOS) (98%), 

ammonium hydroxide (NH4OH) (28%), and ethanol (99.5%), were all purchased from 

Sigma-Aldrich.  The top layer of commercial linerboard made from unbleached kraft 

softwood fiber was used as wood-fiber-based substrate.  The aqueous solution of 

poly(diallyldimethylammonium chloride), Poly(DADMAC), with molecular weight of 

100,000-200,000 (20 wt.% in water) was purchased from Sigma-Aldrich.  1H,1H,2H,2H-

perfluorooctyltriethoxysilane (POTS) (97%), used for surface hydrophobic modification 

as shown in Figure 2.1, was purchased from Alfa Aesar.  Deionized water purified in an 

ultrapure water system (NANOpure) was used in all the experiments.  Escherichia coli-

AmpicillinR was used as model bacteria for antibacterial resistance test.  Luria-Bertani 

(LB) medium used for growing and maintaining bacteria cultures were purchased from 

Sigma-Aldrich.  Laboratory grade polystyrene (Mn=140,000; Mw=230,000) and 

tetrahydrofluoride (THF) (98%) used to study the effect of contact liquid viscosity were 

obtained from Sigma-Aldrich.  All the chemicals were used as received.  The Oji ACE-

K-100 cationic starch powder was made by Oji Corn Starch Kabushiki Kaisha. 

                            

Figure 2.1  Molecular structure of 1H,1H,2H,2H-perfluorooctyltriethoxysilane. 
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2.3  Synthesis of Superhydrophobic Linerboard 

2.3.1  Synthesis of Silica Particles 

 Silica particles were synthesized according to the process described by Stober et 

al..  In the process, TEOS was hydrolyzed to form silica particles in ethanol with a 

catalyst, NH4OH, at room temperature as shown in Figure 2.2.  Monodisperse spherical 

particles of controlled sizes, ranging from tens to thousands of nanometers, were 

synthesized in our lab by changing the concentrations of reactant and catalyst.  A typical 

example of the synthesis is given below.  In the synthesis of silica particles with an 

average diameter of 220 nm, TEOS (46.8 ml) was hydrolyzed to form silica particles in 

ethanol (300 ml) with the catalyst, NH4OH (28.2 ml), at room temperature over a period 

of two days.  Silica particles synthesized by the above method are hydrophilic, with 

hydroxide groups on the silica particle surface.  Silica particles were then dried at room 

temperature and made ready for next step. 

 

Hydrolysis: 

 

Alcohol Condensation (Alcoxolation): 
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Water Condensation (Oxolation): 

 

Net Reaction: 

 

Figure 2.2  Synthesis of silica particles. 

 

2.3.2  Preparation of Silica-coated Substrate 

 Cationic Poly(DADMAC) and anionic silica particles were used in layer-by-layer 

self-assembly deposition.  First of all, 1 g of Poly(DADMAC) aqueous solution was 

dispersed in 19 g of deionized water.  Secondly, 0.2 g of silica particles used for substrate 

coating was dispersed in 19.8 g of deionized water.  Before usage, the silica suspension 

was sonicated by ultrasonicator (W-385) for 10 minutes to disperse the silica particles in 

the solution.  The negative charged wood-fiber-based substrate was first immersed in 

prepared Poly(DADMAC) solution for 20 minutes to render the substrate positively 

charged, followed by rinsing with deionized water for 1 minute (Step A).  The substrate 

was then immersed in silica solution for 10 minutes, followed by rinsed with deionized 

water for 1 minute (Step B).  By repeating above steps, a multilayer film of 

Poly(DADMAC)/silica particles could be fabricated as shown in Figure 2.3.  
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Poly(DADMAC) Deionized Water Deionized WaterSilica Particles

A B

Repeat Step A & Step B  for five times

 

Figure 2.3  Schematic illustration of the fabrication of multilayer film assemble on 
linerboard surface. 
 
 

2.3.3  Surface Modification of Silica-coated Substrate 

 The surface modification carried out by chemical vapor deposition of 

1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS) was shown in Figure 2.4.  The 

silica-coated substrate was placed in a sealed vessel, on the bottom of which was 

dispensed a smaller unsealed vessel within a small amount of POTS.  The sealed vessel 

was then put in an oven at 125 °C to enable the silane group of POTS vapor to react the 

hydroxide group on the silica-coated substrate surface.  After 2.5 hours, the substrate was 

removed to another clean sealed vessel and heated at 150 °C for another 2.5 hours to 

volatilize the unreacted POTS molecules on the substrate. 
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Remove C2H5OH

Sealed System at 125oC

POTS Vapor

POTSSilica-coated linerboard  

Figure 2.4  Schematic illustration of the surface modification on silica-coated 
linerboard surface. 
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2.4  Material Characterization Methods 

 The physical properties of the synthesized silica particles, silica-coated linerboard, 

and surface modified silica-coated linerboard were determined by a series of 

characterization methods as follows. 

2.4.1  Scanning Electron Microscopy (SEM) 

 Hitachi 800 field emission scanning electron microscope and Leo 1530VP® field 

emission scanning electron microscope were employed to examine the surface 

morphology and microstructure of the polymer materials.  The samples were stick to the 

top of the tape on the sample holder, and then fixed with compressed air.  All the samples 

underwent a gold thin-film coating with BAL TEC MED 20 HR Sputtering Coater before 

the microscopic characterization.  The coating was conducted at high vacuum (<2x10-5 

bar).  All the microscopies are performed under 1kV, with a working distance range of 3 

to 5mm. 

2.4.2  Dynamic Contact Angle Analyzer (DCA) 

 Dynamic contact angle analyzer FTA200 (DCA) from First Ten Angstroms is 

designed to measure wetting phenomenon such as static or equilibrium contact angle, 

surface tension, surface energy, and absorption.  The instrument features include a tilting 

heated stage and an APPRO BV-7105H black & white camera capable of taking 360 

images per second.  Standard substrates can be used to determine the surface tension of 

test liquids, and determine the surface energy of test solids.  Measurements are made by 

observing the drop shape of a fluid that has been placed on substrate, using rapid video 

capture of images and automatic image analysis.  Software included with the instrument 

can then use the image of liquid droplet shape to calculate static or equilibrium contact 
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angle.  In the study, the water contact angles of the samples were measured at ambient 

temperature with a droplet volume of 0.013 ml. 

2.4.3  Tensile Tester 

 Lab Master tensile tester (84-91 LTL) was employed to measure the tensile 

strength of the samples under different humidity conditions.  The Lab Master tensile 

tester determines internal bond strength to 113 kg with 4.5 gram resolution and ±0.02% 

full scale accuracy.  Peak force is measured by applying a force in the z-direction until 

separation occurs.  All the samples were cut into specimens with a dimension of 

15×7.25×0.4 mm3.  The specimens were held at 25oC under different relative humidity 

for 12 hours before the tension strength measurements.  The relative humidity was 

controlled by the amount of water in the sealed box as shown in Figure 2.5. 

                                 

Figure 2.5  Schematic illustration of the tensile tester. 
 

Sealed box 

Pump 
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CHAPTER 3 

RESULTS AND DISCUSSIONS 

 

 This study focuses on developing a simple and inexpensive way to prepare 

superhydrophobic paper products using layer-by-layer deposition method followed by a 

fluorination treatment.  Three samples were prepared for the comparative study: 

linerboard (original linerboard paper), hydrophobic linerboard (the linerboard paper 

treated by POTS surface modification only), and superhydrophobic linerboard (the 

linerboard paper coated with silica particles followed by POTS surface modification). 

 The present chapter is divided into 3 sections.  Section 3.1 presents the general 

characterization of superhydrophobic linerboard.  Section 3.2  discusses the particle size 

effect of superhydrophobic linerboard surface.  Section 3.3 introduces preparation of 

superhydrophobic linerboard with different methods. 

 Section 3.1 is divided into 8 sections.  Section 3.1.1 presents the surface 

morphology of superhydrophobic surface from the SEM micrographs.  Section 3.1.2 

presents the hydrophobicity of superhydrophobic surface by measuring the water contact 

angles.  Section 3.1.3 presents the surface roughness of superhydrophobic surface by 

developing a MATLAB program.  Section 3.1.4 presents the moisture resistance of 

superhydrophobic surface with different relative humidity.  Section 3.1.5 presents the 

tensile strength of superhydrophobic surface with different relative humidity.  Section 

3.1.6 presents the water resistance of superhydrophobic surface immersing in water.  

Section 3.1.7 presents the bacteria resistance of superhydrophobic surface by accounting 



 39

the CFU on the paper specimens after offering a sliding angle or immersing in water.  

Section 3.1.8 presents the silica particle size effect of superhydrophobic surface. 

 Section 3.2 is divided into 2 sections.  Section 3.2.1 presents the surface 

roughness of superhydrophobic linerboard surface coated with different size of silica 

particles.  Section 3.2.2 presents the surface roughness of superhydrophobic linerboard 

surface coated with different size ratio of mixed silica particles.   

 Section 3.3 is divided into 3 sections.  Section 3.3.1 presents the preparation of 

superhydrophobic linerboard by spread-coating of silica solution followed by a 

fluorination treatment.  Section 3.3.2 presents the preparation of superhydrophobic 

linerboard by dip-coating in cationic starch solution and silica solution followed by a 

fluorination treatment.  Section 3.3.3 presents the preparation of superhydrophobic 

linerboard by directly synthesizing silica particles on surface followed by a fluorination 

treatment. 
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3.1  General Characterization of Superhydrophobic Linerboard 

3.1.1  Surface Morphology of Superhydrophobic Linerboard 

 Silica particles were synthesized according to the process described by Stober et 

al. (1968).  As show in Figure 3.1, the SEM micrograph of silica particles have an 

average diameter of 220 nm.  Though slight agglomeration was observed in the 

micrograph, the particles dispersed very well in deionized water after applying 

ultrasonication. 

 
Figure 3.1  SEM image of synthesized silica particles with average size of 220 nm. 

 

 The superhydrophobic surface was fabricated by layer-by-layer deposition of 

Poly(DADMAC) and silica particles on linerboard substrate followed by a fluorination 

treatment.  Figure 3.2 depicted the SEM micrograph of surface modified silica-coated 

linerboard surface which exhibited the surface was irregularly packed with multilayer of  

silica particles and only with a few interstices. 
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Figure 3.2 SEM images of (a) and (b) are linerboard surface coated by silica particles 

using layer-by-layer technique, follow by a fluorination treatment.  Image of (b) is the 

magnification of (a). 

 

3.1.2  Hydrophobicity of Superhydrophobic Linerboard Surface 

 The contact angle is the angle at which a liquid/vapor interface meets the solid 

surface.  The contact angle is specific for any given system and is determined by the 

interactions across the three interfaces.  Most often the concept is illustrated with a small 

liquid droplet resting on a horizontal solid surface.  If the liquid is very strongly attracted 

to the solid surface the droplet will completely spread out on the solid surface and the 

contact angle will be close to 0°.  Less strongly hydrophilic solids will have a contact 

angle up to 90°.  If the solid surface is hydrophobic, the contact angle will be larger than 

90°.  On highly hydrophobic surfaces, the surfaces have water contact angles as high as 

150° or even nearly 180°.  On these surfaces, water droplets simply rest on the surface, 

without actually wetting to any significant extent.  These surfaces are termed 

superhydrophobic.  This is called the Lotus effect, as these new surfaces are based on 

lotus plants' surface and would be superhydrophobic.  The contact angle thus directly 

provides information on the interaction energy between the surface and the liquid. 

b a 
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a 

 Because of the fast wetting of water on untreated paper surface, the water contact 

angles were measured right after water droplets contact sample surfaces.  However, for 

hydrophobic linerboard specimens and superhydrophobic linerboard specimens, the 

contact angles were rechecked after 10 minutes of contact time.  As shown in Figure 4.3, 

the water contact angle of linerboard surface was 51o, which changed to 110o on 

hydrophobic linerboard surface, and 155o on superhydrophobic linerboard surface, 

indicating a superhydrophobic surface was obtained.  The water contact angle results had 

shown, to a noticeable extent, how the surface energy and surface roughness affected the 

hydrophobicity of linerboard surface, and thus the water contact angle.  Higher water 

contact angle enhanced the moisture resistance and water resistance of wood-fiber-based 

substrate.  Furthermore, the sliding angle on such a surface was lower than 5o, which 

meant the water droplet on the surface could roll off easily. 
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Figure 3.3 Shapes of water droplet on linerboard surface (a), hydrophobic linerboard 
surface (b), and superhydrophobic linerboard surface (c). 
 

 Cassie’s equation, 1 2coscos f fθ θΑ = − , could be used to explain the 

hydrophobicity of rough surface, such as treated and untreated linerboard specimens 

prepared in this study.  Here, θΑ  (110o) was the apparent contact angle measured on the 

hydrophobic linerboard surface; θ  (100o) was the water contact angle on fluoridated 

smooth surface [38]; 1f  and 2f  were the fractions of solid surface and air in contact with 

water droplet, respectively, that was 1 2 1f f+ = .  According to the equation, the 1f  of the 

surface was calculated to be 0.80, which indicated that 20 % of the surface was occupied 

by air.  However, for superhydrophobic linerboard surface, θΑ  (155o) was the apparent 

contact angle.  According to Cassie’s equation, the 1f  of superhydrophobic linerboard 

surface was calculated to be 0.11, which indicated that 89 % of the surface was occupied 

by air.  The surface allowed air to be trapped more easily underneath the water droplets, 

so the droplets essentially rested on a layer of air.  Therefore the water contact angle on 

the superhydrophobic linerboard surface increased significantly. 

 

c 
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3.1.3  Surface Roughness of Superhydrophobic Linerboard Surface 

 Borrowing from the character of lotus leave surface, it was found that 

superhydrophobic property is caused by both the surface roughness and the intrinsic 

material hydrophobicity of the surface layer.  The hydrophobic material provides the low 

surface energy, and the rough structure brings a large extent of air trapping when 

contacting with water, so the droplets essentially rested on a layer of air and can roll off 

easily.  Rather, a significantly higher surface area compared to the projected area creates 

a greater energy barrier of liquid-solid interface.  As shown in Section 3.1.2, the fraction 

of solid surface in contact with water droplet of superhydrophobic linerboard surface was 

calculated to be 0.11, which indicated that 89 % of the surface was occupied by air.  In 

this section, a program is developed in MATLAB to transfer the SEM images of 

superhydrophobic linerboard surface to compute the fraction of solid surface in contact 

with water droplet of superhydrophobic linerboard surface.  The developed MATLAB 

program is shown in Appendix A.  

 MATLAB is a numerical computing environment and programming language.  

Created by the MathWorks, MATLAB allows easy matrix manipulation, plotting of 

functions and data, implementation of algorithms, creation of user interfaces, and 

interfacing with programs in other languages.  Although it specializes in numerical 

computing, an optional toolbox interfaces with the Maple symbolic engine, allowing it to 

be part of a full computer algebra system.   

 Figure 3.4 showed the MATLAB transferred SEM images of superhydrophobic 

linerboard surface with average silica particle size of 220 nm.  From the transferred SEM 

images, around 3 layers of silica particles were packed on the linerboard surface.  The 
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yellow circles depicted silica particles packed on the bottom layer; the pink circles 

depicted silica particles packed on the middle layer; and the red circles depicted silica 

particles packed on the top layer, which had around 9 % of projected area fraction.  The 

result agreed with the fraction of solid surface in contact with water droplet of 

superhydrophobic linerboard surface which was calculated to be 0.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 MATLAB transferred SEM images of (a) and (b) are surface modified silica-
coated linerboard surface. Image of (b) is the magnification of (a). 

 

 

a 

b 
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3.1.4  Moisture Resistance of Superhydrophobic Linerboard  

 Properties of wood-fiber-based material were greatly dependent on its moisture 

content.  The moisture content of specimen was measured as the ratio of the weight of 

water in specimen, to the weight of specimen when it was dried at 105 oC until a constant 

weight was obtained.  In this analysis, specimens were placed in a sealed oven at ambient 

temperature with different relative humidity which was controlled by the amount of total 

water in the sealed oven for 24 hours before measuring the moisture content.  Figure 3.5 

showed the moisture content percentage (%) as a function of relative humidity (%) for 

linerboard, hydrophobic linerboard, and superhydrophobic linerboard, respectively.  It 

was found that the moisture content of linerboard increased by about 10 % when the 

relative humidity increased by 70 %, which suggested the moisture absorption of 

linerboard increased progressively with increasing relative humidity.  As compared with 

linerboard, the hydrophobic linerboard and superhydrophobic linerboard had much higher 

moisture resistance.  The moisture content of hydrophobic linerboard specimens and 

surface superhydrophobic linerboard specimens only increased for around 1 % when the 

relative humidity was increased by 70 %.  Nevertheless, the superhydrophobic linerboard 

had almost the same moisture resistance as the hydrophobic linerboard. 
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Figure 3.5 Moisture content vs. relative humidity of linerboard, hydrophobic linerboard, 

and superhydrophobic linerboard. 

 

3.1.5  Tensile Strength of Superhydrophobic Linerboard  

 In this analysis, the tensile strength of specimen was measured after the 

specimens being conditioned at ambient temperature with different relative humidity that 

was controlled by the amount of total water in the sealed box for 12 hours.  Figure 3.6 

showed the tensile strength (kN/m2) against relative humidity (%) for original linerboard, 

hydrophobic linerboard, and superhydrophobic linerboard, respectively.  As we expected, 

the tensile strength of linerboard specimens decreased significantly under high relative 

humidity condition.  As compared with linerboard, hydrophobic linerboard presented 

higher moisture resistance, and thus the tensile strength.  The tensile strength of 

hydrophobic linerboard specimens decreased slightly under high relative humidity 
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condition.  For superhydrophobic linerboard specimens, it was found that the tensile 

strength decreased slightly under high relative humidity condition.  It was also noted that 

the tensile strength of the superhydrophobic linerboard was about 30% higher than 

hydrophobic linerboard.  The reason for that might be due to the increase in the basis 

weight and bonding by both poly(DADMAC) and silica particles.  The high strength of 

both hydrophobic and superhydrophobic linerboards under high humidity condition 

suggested that the fiber-fiber bonds were well protected in these surface modified 

linerboard specimens, so the moisture did not wet the linerboard specimens as it did in 

original linerboard specimens, as discussed in Section 3.4.    
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Figure 3.6 Tensile strength vs. relative humidity of linerboard, hydrophobic linerboard, 
and superhydrophobic linerboard. 
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3.1.6  Water Resistance of Superhydrophobic Linerboard  

 With hydroxyl groups covering the surface, wood-fiber-based materials were very 

hydrophilic and could absorb water or disperse in water easily.  However, in the package 

applications, high water resistance fibers or papers were required.  In this study, the water 

resistance of superhydrophobic linerboard was investigated.  The experiments were 

carried out by immersing superhydrophobic linerboard specimens in water up to several 

hours followed with measuring the moisture content (%) and the water contact angle 

(degree) of the specimens.  As shown in Figure 3.7, it was found that the moisture 

content increased to 6 % after the specimen was fully immersing in water to 1 hour.  The 

moisture content kept around 6 % after 72 hours, and the water contact angle checked by 

contact angle analyzer could be kept above 150o in the whole process.  That demonstrated 

that the extremely high water resistance of superhydrophobic linerboard was developed. 
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Figure 3.7 Moisture content (solid-square) and water contact angle (open-cycle) vs. 

immersing time of superhydrophobic linerboard. 
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3.1.7  Anti-contamination of Biomaterials Performance  

 A water droplet on an inclined superhydrophobic surface did not slide off, but it 

rolled off.  When the water droplet rolled over a contamination, the contamination was 

removed from the surface if the force of absorption of the contamination was higher than 

the static friction force between the contamination and the surface.  Usually the force 

needed to remove a contamination was very low due to the minimized contact area 

between the contamination and the superhydrophobic surface.  As a result, the droplet 

cleaned the surface by rolling off the surface.  When the bacterial water-based solution 

contacted the superhydrophobic linerboard surface, it was expected that the bacterial 

solution could be removed easily, and thus the superhydrophobic linerboard surface could 

prevent the contamination. 

 The anti-contamination of biomaterials performance of original linerboard, 

hydrophobic linerboard, and superhydrophobic linerboard were evaluated by measuring 

the contamination units of the bacteria after the paper specimens contacted with 

Escherichia coli-AmpicillinR solution.  The flow charts were shown in Figure 3.8.  

During the experiment, the paper specimens with different hydrophobicities were cut into 

15×7.25×0.4 cm3, and placed on a plastic film.  About 0.01 ml of Escherichia coli-

AmpicillinR solution with 105 colony forming units per milliliter (CFU/ml) was 

uniformly sprayed on the surface of paper specimens.  In this study, the paper samples 

were divided in to two groups.   Each group has original linerboard, hydrophobic 

linerboard, and superhydrophobic linerboard specimens.  The first group of the 

specimens was offered an inclining angle of 5o for 5 seconds right after the Escherichia 

coli-AmpicillinR was sprayed, and then the specimens were submerged in Luria-Bertani 
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(LB) medium, respectively.  The second group of the specimens was submerged in water 

for 1 second right after the Escherichia coli-AmpicillinR was sprayed, and then the 

specimens were submerged in LB broth medium, respectively.  The specimens were fully 

immersed in LB broth medium and cultured at 37oC for 24 hours before measuring the 

equivalent colony forming units (CFU).  All the experiments were performed in dark.  

The CFU of Escherichia coli-AmpicillinR incubated in LB broth medium presented the 

Escherichia coli-AmpicillinR units on the specimens before incubation.  

 

Figure 3.8  Flow charts of the anti-contamination of biomaterials performance process. 
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 Figure 3.9 displayed the CFU of Escherichia coli-AmpicillinR on original 

linerboard, hydrophobic linerboard, and superhydrophobic linerboard specimens for 2 

groups of the samples.  For the first group, it was found that the CFU of Escherichia coli-

AmpicillinR on the specimens decreased as the hydrophobicity of specimen increased.  

Compared with original linerboard specimens, approximate 70 % of bacteria were left on 

the hydrophobic linerboard specimens and approximate 7 % of bacteria were left on the 

superhydrophobic linerboard specimens.  The significant lower of the bacterial 

contamination on the superhydrophobic linerboard specimens than hydrophobic 

linerboard specimens was due to the factor that the E-coli solution rolled off from the 

surface of superhydrophobic linerboard specimens, but adhered on the surface of 

hydrophobic linerboard specimens when an inclining angle of 5o was applied to the 

specimens.  For the second group, the CFU of Escherichia coli-AmpicillinR on the 

specimens decreased intensely as the hydrophobicity of specimen increased.  As 

compared with the original linerboard specimens, there were only about 30 % of bacteria 

remained on the hydrophobic linerboard specimens and less than 1 % of bacteria 

remained on the superhydrophobic linerboard specimens.  It was noted that the bacteria 

on the superhydrophobic linerboard specimens was much easier to be removed by 

immersing contaminated paper in water.  As discussed before, the water resistance 

increased as the hydrophobicity of the linerboard surface increased.  With higher anti-

wetting property, the bacteria could be washed easier.  The results shown in Figure 3.9 

clearly demonstrated that superhydrophobicity of a substrate plays an important role in 

fabricating anti-biological contamination materials.     
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Figure 3.9 Bacteria culture on linerboard, hydrophobic linerboard, and superhydrophobic 

linerboard surfaces after offering an inclining angle of 5o for 5 seconds (White) and with 

fully immersing in water for 1 second (Black). 

 

 The linerboard specimens with different hydrophobicities were prepared by layer-

by-layer deposition of poly(diallyldimethylammonium chloride) (poly-DADMAC)/ 

different sizes of silica particles followed with a fluorination treatment.  The water 

contact angles and the sliding angles of the linerboard specimens were measured as 

shown in Figure 3.10.  Sliding angle was the angle when a droplet of water of a certain 

weight begins to slide down an inclined plate.  The sliding angle was commonly 

employed as a criterion for assessing the hydrophobicity of a solid surface.  It was found 

that the sliding angle decreased with the water contact angle increasing.  It was also noted 

that the sliding angles were lower than 5o as the water contact angles were larger than 

150o, which indicated the superhydrophobic linerboard with a impressive self-cleaning 

property.   
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Figure 3.10  Sliding angles against water contact angles on linerboard specimens. 
 

 The sliding angle on the superhydrophobic paper was lower than 5o, which meant 

the bacteria droplets on the superhydrophobic linerboard surface could be rolled off after 

the surface was offered an inclining angle of 5o.  However, it was found that some 

bacteria were remained after offering an inclining angle of 5o in Figure 3.11.  The major 

reason could be the micro-porous linerboard surface trapped some of the bacteria droplets, 

although the surface was superhydrophobic.  To demonstrate that, inclining angle effect 

on superhydrophobic linerboard surface was studied.  The superhydrophobic linerboard 

specimens were offered with different an inclining angles for 5 seconds respectively right 

after the Escherichia coli-AmpicillinR was sprayed, and then the specimens were 

submerged in LB broth medium.  The culturing process was the same as before.  Figure 8 

displayed the equivalent colony forming units (CFU) of bacteria against different 

inclining angles.  The CFU on the superhydrophobic linerboard surface decreased 

significantly after the specimen was offered a small inclining angle, and the CFU 
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decreased gradually with the inclining angle increasing.  After offering an inclining angle 

of 90o, no bacterium was remained on the superhydrophobic surface.  The results 

reflected the bacteria cannot contaminate the superhydrophobic surface at this condition 

even though the superhydrophobic paper has large porous on its surface. 
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Figure 3.11  Bacteria culture on superhydrophobic linerboard surface after offering a 

sliding angle for 5 seconds. 
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3.1.8  Viscosity of Liquid Effect of Superhydrophobic Linerboard  

 It was well known the nanostructures and the low surface energy on 

superhydrophobic surface allowed air to be trapped more easily underneath water 

droplets, so the water droplets could be removed easily.  Contrary to hydrophilic liquids, 

hydrophobic liquids could replace the trapped air on the superhydrophobic surface, and 

penetrated the substrate.  It was also known viscous liquids had high resistance to flow, 

which caused viscous liquids difficult to replace the trapped air.  Thus the contact angle 

against viscous liquid was high.  To demonstrate that superhydrophobic surface could 

prevent the contaminations from viscous hydrophobic liquids, the polystyrene/THF 

mixtures with different viscosities were applied to the study.  

 In this study, contact angles of the polystyrene/THF mixtures with various weight 

ratios were measured on the linerboard, hydrophobic linerboard, and superhydrophobic 

linerboard surfaces at room temperature.  Viscosities of the polystyrene/THF mixtures 

were measured by Cannon-Fenske Routine viscometer at room temperature.  The results 

were shown in Figure 3.12.   

 It indicated that the viscosities of polystyrene/THF mixtures increased with the 

polystyrene/THF weight ratios.  The contact angle increased with the increasing of 

polystyrene/THF mixture viscosity, but the contact angle was not sensitive to the 

viscosity of polystyrene/THF mixture.  The contact angle increased with the increasing of 

mixture viscosity was due to the viscous liquids filled the microstructures slowly and 

allow air to be trapped longer.  However, the contact angles of polystyrene/THF mixture 

on linerboard surface were under 90o, which indicated the original linerboard surface 

could be wetted even against viscous liquids.   
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 The contact angles of polystyrene/THF mixture on hydrophobic linerboard 

surface were also shown in Figure 3.12.  The contact angle increased with the increase 

polystyrene/THF mixture viscosity, and reached 90o where the viscosity of 

polystyrene/THF mixture was higher than 20 cP.  It revealed the hydrophobic linerboard 

surface could not be wetted only against viscous liquids.  Although the polystyrene/THF 

mixture gradually filled the microstructure on hydrophobic linerboard surface when the 

viscosity of mixture was low.  Compared with hydrophilic linerboard, the higher 

hydrophobicity on hydrophobic linerboard surface enable air to be trapped on the surface 

when the viscosity of mixture was high.   

 It was found that on the superhydrophobic linerboard surface, the contact angle of 

the polystyrene/THF mixture increased with the increase of the polystyrene/THF mixture 

viscosity on superhydrophobic linerboard surface.  The increase process could be divided 

into two stages with 1 cP of viscosity as the inflexion.  In the first stage, the contact 

angles of the polystyrene/THF mixture with viscosities lower than 1 cP was sensitive to 

of viscosity.  In the second stage where the viscosities were higher than 1 cP, the contact 

angles increased slowly from 130o to 150o, which indicated the contact angles of 

polystyrene/THF mixtures with viscosities higher than 1 cP were not sensitive.   

 Compared with hydrophobic linerboard, it was observed the contact angles on 

superhydrophobic linerboard surface increased significantly with slight increase of 

polystyrene/THF mixture viscosity.  It revealed the structures on linerboard surface affect 

the wetting behaviors.  With nanostructures on superhydrophobic linerboard surface, it 

enable higher amount of air to be trapped on the surface, which considerable contributed 

to the air contact fraction and thus the contact angle.  
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Figure 3.12  Viscosities and contact angles of polystyrene/THF mixture on the linerboard 
and superhydrophobic linerboard surface with different mixture weight ratios. 
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3.2  Particle Size Effect of Superhydrophobic Linerboard Surface 

3.2.1  Surface Roughness of Superhydrophobic Linerboard Surface Coated with 
Different Size of Silica Particles 

 
 It was well known that the nano-scaled surface roughness is one of the critical 

factors for creating a superhydrophobic surface.  In the study, silica spherical particles 

with different particle sizes were used respectively for the surface roughness treatment as 

shown in Figure 3.13.  After fluorination treatment, the hydrophobicity of surface was 

then characterized by contact angle analyzer.  As shown in Figure 3.14, the water contact 

angle changed from 110o on hydrophobic linerboard specimen surface, to 155o, 152o, 

150o, and 145o on the superhydrophobic linerboard specimens coated with 220 nm, 420 

nm, 680 nm and 1000 nm of silica particles, respectively.  It was found that the water 

contact angle increased significantly from hydrophobic linerboard surface to 

superhydrophobic linerboard surface and the water contact angle decreased slightly on 

superhydrophobic linerboard surface as the silica particle size increased.  The results 

suggested that the superhydrophobic surface was successfully created by introducing the 

nano-scaled surface roughness.   
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Figure 3.13 SEM images of (a) surface modified silica-coated linerboard surface with 
average silica particle size of 1µ m, (b) surface modified silica-coated linerboard surface 
with average silica particle size of 680 nm, (c) surface modified silica-coated linerboard 
surface with average silica particle size of 420 nm, and (d) surface modified silica-coated 
linerboard surface with average silica particle size of 220 nm. 
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Figure 3.14  Water contact angles of surface modified silica-coated linerboard surface 
with different silica particle sizes. 
 

 

c d 



 61

3.2.2  Surface Roughness of Superhydrophobic Linerboard Surface Coated with 
Different Size Ratio of Mixed Silica Particles 

 
 Microscope observations reveal that the waxy surface of the lotus leaf is made of 

micron-sized bumps that, in turn, are covered with nano-scale tubes as shown in Figure 

3.15.  This two-fold structure traps air under any rain drops that fall on the leaf, creating a 

surface that efficiently repels water.  In the study, the silica spherical particles with 

different particle size ratios were coated for the surface roughness treatment in order to 

increase the surface roughness.  The surface roughness was increased by layer-by-layer 

deposition of poly(diallyldimethylammonium chloride)/ micron-scale silica particles that, 

in turn, were coated with nano-scale silica particles in order to bio-mimic the structure of 

lotus leaf surface.  The surface morphologies of the silica-coated linerboard were shown 

in Figure 3.16.  The nano-sized silica particles could not be coated evenly on the micro-

sized silica particles.  Rather, the nano-sized silica particle agglomerates were found in 

the micrographs.  That was due to the nano-sized silica particles had higher surface 

energy comparing with micro-sized silica particles.  Therefore, nano-sized silica particles 

aggregated and formed agglomerates. 

 

Figure 3.15  SEM image and schematic surface structure of lotus leave surface. 
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Figure 3.16 SEM images of (a) (b) surface modified silica-coated linerboard surface with 
average silica particle sizes of 1µ m and 75 nm, image of (b) is the magnification of (a); 
(c) (d) surface modified silica-coated linerboard surface with average silica particle sizes 
of 1µ m and 220 nm, image of (d) is the magnification of (c); (e) (f) surface modified 
silica-coated linerboard surface with average silica particle sizes of 1µ m and 420 nm, 
image of (f) is the magnification of (e); (g) (h) surface modified silica-coated linerboard 
surface with average silica particle sizes of 1 µ m and 800 nm, image of (h) is the 
magnification of (g). 
 
 
 After fluorination treatment, the hydrophobicity of surface was then characterized 

by contact angle analyzer.  As shown in Figure 4.17 and Figure 4.18, the water contact 

angle increased significantly from hydrophobic linerboard surface to superhydrophobic 

linerboard surface and the water contact angle decreased slightly on superhydrophobic 

linerboard surface as the nano-sized silica particle size increased.  The results suggested 

that the superhydrophobic surface was successfully created by introducing the surface 

roughness.  Compared with the linerboard coated with mono-sized silica particles, the 

water contact angles on the linerboard coated with the mixture of silica particles with two 

different sizes were slightly higher.  That revealed the surface roughness was not 

significantly increased by coating with micron-scale silica particles followed with coating 

with nano-scale silica particles.   

g h
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Figure 3.17  Water contact angles of surface modified silica-coated linerboard with 
united size of silica particles. 
 

 

 

 

 

 

 

 

 

 

Figure 3.18  Water contact angles of surface modified silica-coated linerboard with 
different size ratio of silica particles. 
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3.3  Preparation of Superhydrophobic Linerboard with Different Methods 

3.3.1  Preparation of Superhydrophobic Linerboard by Spread-coating of Silica 

Solution Followed by a Fluorination Treatment 

 Spread-coating is a simple procedure used to apply uniform thin films to 

substrates.  However, with the negative charges on silica particle surface and wetted 

linerboard surface, it is difficult to spread the silica particles on the linerboard surface, 

and to keep the silica particles on the linerboard surface after drying.  A large part of 

silica solution penetrated inside the micro-porous linerboard in the coating procedure.  In 

this section, the concentration of silica solution needed to keep enough amount of silica 

particles on the linerboard surface was studied.   

 First of all, 420 nm size of silica particles were dispersed in deionized water with 

different weight ratios.  Before usage, the silica suspension was sonicated by 

ultrasonicator (W-385) for 10 minutes to disperse the silica particles in the solution.  0.1 

ml of silica solution was placed on 15×7.25×0.4 mm3 size of linerboard substrate, and the 

coating solution was then spread on the linerboard surface.  After drying, the silica-

coated substrate was placed in a sealed vessel, on the bottom of which was dispensed a 

smaller unsealed vessel within a small amount of POTS.  The sealed vessel was then put 

in an oven at 125 °C to enable the silane group of POTS vapor to react the hydroxide 

group on the silica-coated substrate surface.  After 2.5 hours, the substrate was removed 

to another clean sealed vessel and heated at 150 °C for another 2.5 hours to volatilize the 

unreacted POTS molecules on the substrate.  In short, the linerboard specimens with 

different hydrophobicities were fabricated by spread coating of difficult concentration of 

silica solution on linerboard substrate followed by a fluorination treatment.   
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 The surface morphologies of the linerboard specimens were shown in Figure 3.19.  

The amount of silica particles kept on the linerboard surface increased as the 

concentration of silica solution increased.  That was due to the viscosity increased with 

the concentration of the silica solution, and the higher solution viscosity prevented the 

penetration of silica solution.  So, larger amount of silica particles was left on the 

linerboard surface, and thus caused higher roughness.  Therefore the water contact angle 

increased with the concentration of silica solution which was shown in Figure 3.20.  It 

showed the water contact angle reached 150o as the concentration of silica solution 

equaled to 5 %, which indicated the superhydrophobic surface could be prepared by 

spread coating 5 % of silica solution on linerboard followed by a fluorination treatment.   
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Figure 3.19 SEM images of (a) surface modified linerboard without silica particles, (b) 
surface modified silica-coated linerboard coated with 2 % of 420 nm silica solution, (c) 
surface modified silica-coated linerboard coated with 5 % of 420 nm silica solution, and 
(d) surface modified silica-coated linerboard coated with 10 % of 420 nm silica solution. 
 

 

 

 

 

 

 

 

 

 

Figure 3.20  Water contact angles of surface modified silica-coated linerboard surface 
with different weight ratio of silica solutions. 
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3.3.2  Preparation of Superhydrophobic Linerboard by Dip-coating in Cationic 

Starch Solution and Silica Solution Followed by a Fluorination Treatment 

 Dip-coating refers to the immersing of a substrate into a solution of the coating 

material, removing the piece from the solution, and allowing it to drain.  It is a popular 

way of creating thin film coated materials.  Oji ACE-K-100 cationic starch and anionic 

silica particles were used in the dip coating procedure.  First of all, 1.3 g of cationic 

starch was dispersed in 8.7 g of deionized water.  Before usage, the cationic starch 

suspension was heated at 85 oC for 10 minutes to well disperse the cationic starch in the 

solution.  Secondly, silica particles of 420 nm were dispersed in deionized water with 

different weight ratios.  Before usage, the silica suspension was sonicated by 

ultrasonicator (W-385) for 10 minutes to disperse the silica particles in the solution.  The 

negative charged linerboard substrate was first immersed in prepared cationic starch 

solution for 10 seconds to render the substrate positively charged, followed by immersing 

in silica solution for 10 seconds.  After drying, the surface property of silica-coated 

substrate was modified by a fluorination treatment in the same procedure as before.  In 

short, the linerboard specimens with different hydrophobicities were fabricated by dip-

coating of difficult concentration of silica solution on linerboard substrate followed by a 

fluorination treatment.   

 The surface morphologies of the linerboard specimens were shown in Figure 3.21.  

The amount of silica particles on the linerboard surface increased as the concentration of 

silica solution increased, and the serious silica agglomeration was found on the silica-

coated linerboard surfaces.  From Figure 3.22, the water contact angles reached 140o on 

the surface modified silica-coated linerboard coated with 1 % of silica solution, and kept 
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around 140o on the surface modified silica-coated linerboard surface coated with higher 

concentration of silica solution.  Compared with layer-by-layer deposition method and 

spread-coating method, a large amount of silica particles was easier to keep on the 

surface in the dip-coating procedure, and the procedure was simpler.  However, we had 

not been able to uniformly coat silica particles on the linerboard.  The SEM micrographs 

indicated that only part of the linerboard was coated alone with cationic starch, so the 

surface roughness was not high enough to prepare superhydrophobic surface. 

 

   

 

 
 
 
 
 
 
 
 
 
 
 

                                                                       

 

 

 

 

 

 

 

c d

a b



 70

 

 

 

 

 

 

 

 

Figure 3.21 SEM images of (a) surface modified linerboard with cationic starch only, (b) 
surface modified silica-coated linerboard coated with 0.5 % of 420 nm silica solution, (c) 
surface modified silica-coated linerboard coated with 1 % of 420 nm silica solution, (d) 
surface modified silica-coated linerboard coated with 2 % of 420 nm silica solution, (e) 
surface modified silica-coated linerboard coated with 5 % of 420 nm silica solution, and 
(f) surface modified silica-coated linerboard coated with 10 % of 420 nm silica solution. 
 

 

 

 

 

 

 

 

 

 

Figure 3.22  Water contact angles of surface modified silica-coated linerboard with 
different weight ratio of silica solutions. 
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3.3.3  Preparation of Superhydrophobic Linerboard by Directly Synthesizing Silica 

Particles on Surface Followed by a Fluorination Treatment 

 With anionic charges on silica particle surface and wood-fiber based substrate, it 

is difficult to coat the silica particles evenly and keep the particles on the linerboard 

surface.  In the study, silica particles were chemically bonded to the linerboard to keep 

the surface roughness.  After immersing linerboard specimens in a mixture of TEOS and 

ethanol, NH4OH was added in the solution as a catalyst.  According to the process 

described by Stober et al., TEOS was hydrolyzed to form silica particles in ethanol with a 

catalyst, NH4OH, at room temperature over a period of two days.  Silica particles 

synthesized by the above method are hydrophilic, with hydroxide groups on the silica 

particle surface.  With hydroxide groups on the linerboard surface, silica particles could 

be bonded to the linerboard surface with the presence of NH4OH.   

 As shown in Figure 3.23, spherical silica particles with a narrow size distribution 

and smooth surface were coated on the linerboard surface.  Though slight agglomeration 

was observed in the micrograph, the silica particles were coated on the linerboard evenly.  

After a fluorination treatment, the silica-coated linerboard surface with a water contact 

angle large than 150o was obtained as shown in Figure 3.24, which indicated a 

superhydrophobic linerboard was prepared successfully in the process.  However, the 

procedure took two days for preparing the superhydrophobic linerboard would increase 

the cost and limit the applications. 
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Figure 3.23 SEM images of  surface modified silica-coated linerboard surface with silica 
particles bonding to the surface. 
 
 

 

Figure 3.24 Shape of water droplet on surface modified silica-coated linerboard surface 
with silica particles bonding to the surface. 
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CHAPTER 4 

CONCLUSIONS 

 

 In this work, we demonstrated that the superhydrophobic linerboard could be 

made by layer-by-layer deposition of poly(diallyldimethylammonium chloride)/ silica 

particles followed with a fluorination treatment.  The fluorination treatment was carried 

out by chemical vapor deposition of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane.  

Compared with original linerboard and chemical modified linerboard, the experiments 

showed that the moisture resistance, tensile strength under high relative humidity 

condition, water resistance, and the ability to prevent contamination of biomaterials were 

significantly improved by the introduction of the roughness on the surface in the 

combination of the decrease of the surface energy.   

 From the study of wetting behaviors of liquids with different viscosities, it was 

found the nanostructures and the low surface energy on superhydrophobic linerboard 

surface allowed air to be trapped more easily underneath the liquid droplets, so the 

droplets essentially rested on a layer of air.  Rather, a significantly higher surface area 

compared to the projected area creates a greater energy barrier of liquid-solid interface.  

Coupled to this, the superhydrophobic linerboard surface enabled to repel liquid even 

with low viscosity that comes into contact with it.   

 Systematic study on the effect of surface roughness by depositing of different 

sized of silica particles followed with a fluorination treatment showed changes in the 

surface morphology and the hydrophobicity.  In general, deposition of smaller particles 

on linerboard surface caused rougher surface, it also resulted in higher water contact 



 74

angle against the surface.  The observation suggested that the increasing of surface 

roughness could improve the hydrophobicity of linerboard surface. 

 The surface roughness was increased by coating silica particles on the linerboard 

surface.  Four different methods were introduced in the study: spread-coating of silica 

solution on linerboard surface; linerboard was dip-coated in cationic starch solution and 

silica solution; directly synthesizing silica particles on linerboard surface; and layer-by-

layer deposition of poly(diallyldimethylammonium chloride)/ silica particles on 

linerboard surface.  With negative charges on silica particle surface and linerboard 

surface, silica particles can not be easily coated on the linerboard surface.  Compared 

with other methods, higher concentration of silica solution needed to be applied by using 

spread-coating method.  In the dip-coated method, cationic starch was applied to render 

the surface positive charges.  The silica particles could not be coated on the linerboard 

surface evenly.  Part of the linerboard was coated alone with cationic starch, so the 

surface roughness was not high enough to prepare superhydrophobic surface.  For 

directly synthesizing silica particles on linerboard surface, the procedure took much 

longer for preparing the superhydrophobic linerboard would increase the cost and limit 

the applications.  Compared with the above three methods, layer-by-layer deposition 

method had the advantages of simplicity and low cost in fabrication, easy availability of 

wood-fiber-based materials, and applicability to prepare large surface area. 
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CHAPTER 5 

FUTURE WORKS 

 

 This study focused on developing a simple and inexpensive way to prepare 

superhydrophobic cellulose fibers and paper products by layer-by-layer deposition of 

poly(diallyldimethylammonium chloride)/ silica particles on linerboard surface followed 

with a fluorination treatment.   

 Compared with other recent researches in preparing surface roughness, layer-by-

layer deposition method had the advantages of simplicity and low cost in fabrication, 

easy availability of wood-fiber-based materials, and applicability to prepare large surface 

area.  In this study, silica particles were synthesized and were coated on the linerboard 

surface to increase surface roughness.  However, the silica particle synthesis procedure 

took several days and high cost.  Therefore, using other inexpensive inorganic particles, 

such as nano-clay and precipitated calcium carbonate (PCC), to substitute silica particles 

would be an important task in the future. 

 In this study, 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane was applied to modify 

the linerboard surface by chemical vapor deposition method.  Although the surface 

energy of fluoride was very low, and offered a great energy barrier of liquid-solid 

interface to repel any water that comes into contact with it.  The cost of chemicals was 

pretty high.  Compared with fluoride, alkenylsuccinic anhydride (ASA) and alkylketene 

dimes (AKD) were two common internal sizing agents used to resist the penetration or 

spreading of liquids through or on paper in the paper industry.  Though the cost of the 
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sizing agents was lower, the surface energy of the sizing agents was not as low as 

fluoride.  Using ASA or AKD to substitute POTS would be a challenge in the future. 

 Traditionally, wax and hydrophobic polymers were used to produce high water 

resistance packages for food and medical applications, the thick coating layer (30 to 50 

µm) results in high coating cost  and poor recyclability.  Furthermore, the water-repellent 

and decomposable products obtained by regular wax or polymer coating can not greatly 

benefit customers and industries.  Compared with wax or polymer coated paper products, 

less polymer was applied on the superhydrophobic paper products prepared in this 

research, which revealed the prepared superhydrophobic paper products were potentially 

repulpable.  The repulping capability of this paper products could be measured to 

demonstrate the recycling capability. 

 In the study, superhydrophobic cellulose fibers and paper products were 

successfully prepared by layer-by-layer deposition of poly(diallyldimethylammonium 

chloride)/ silica particles on linerboard surface followed with a fluorination treatment.  

The silica particles were coated on linerboard surface by electrostatic force.  Although the 

silica particles could be kept on the linerboard surface after immersing in water for more 

than three days, the silica particles could not be able to remain after applying a acute stir.  

The bonding strength between silica particles and cellulose fibers should be improved to 

augment the application areas.  
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APPENDIX A 

MATLAB PROGRAMS 

 

 MATLAB is a numerical computing environment and programming language, 

which was created by the MathWorks.  The MATLAB program used to transfer surface 

morphology images to topography images was following. 

 

function [layerNum] = paper (filename) 

I = rgb2gray (imread (filename)); 

background = imopen (I, strel('disk', 5)); 

I2 = imsubtract (I, background); 

I3 = imadjust (I2); 

level = graythresh (I3); 

bw = im2bw (I3, level); 

[labeled, numObjects] = bwlabel (bw, 4); 

pseudo_color = label2rgb (labeled, @spring, 'c', 'shuffle'); 

imshow (pseudo_color); 

graindata = regionprops (labeled, 'basic'); 

% display (max ([graindata.Area])); 

% display (find ([graindata.Area] == 17709)); 

hist([graindata.Area], 20). 
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