INTEGRATING MODELS AND SIMULATIONS OF CONTINUOUS

DYNAMIC SYSTEM BEHAVIOR INTO SYSML

A Thesis
Presented to
The Academic Faculty

by

Thomas A. Johnson

In Partial Fulfillment
of the Requirements for the Degree of
Master of Science in the
School of Mechanical Engineering

Georgia Institute of Technology
August 2008

COPYRIGHT 2008 BY THOMAS A. JOHNSON

INTEGRATING MODELS AND SIMULATIONS OF CONTINUOUS

DYNAMIC SYSTEM BEHAVIOR INTO SYSML

Approved by:

Dr. Chris Paredis, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Dirk Schaefer
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Russell Peak

Manufacturing Research Center
Georgia Institute of Technology

Date Approved: April 18, 2008

ACKNOWLEDGEMENTS

As my time at Georgia Tech comes to its conclusi@an’t help but reflect upon
my journey through life. | realize that | haveaated relative success and attribute part
of that to my drive for self improvement; howevieknow that | would never have gotten
to this point in my life without the invaluable pedf many different people.

| must first thank my family because they have pththe greatest role in my life.
My mom, Amy, has always believed in me and ensuted | was on the path to
academic success. Through the good times andathditmes, she has been my most
important source of support. | also owe gratittadey dad, Dan, because of his support,
encouragement, and pride in my success. | mustthésk my other parents, Gary and
Sherry. | find it hard to refer to them as “stegrgnts” because they always treat me like
I’'m their own flesh and blood. My brother, Andreand my cousin, David, also deserve
acknowledgement because of their continual helpap®h ears. Finally, | must thank
my grandparents for their encouragement and ingmpira My grandmothers, Jean and
Delta, are very proud of me and make sure thaolkin. My grandfathers, David and
Bill, have been key inspirations in my life anddntinually strive to be as successful as
them.

Outside of my family, no one has contributed to sagcess as much as Alice
Hoang. Her love and support are uncompromisingfanthat | am truly grateful.

During my academic career, I've met several inggiteachers, but none of them
have impressed and helped me as much as Dr. GinesliB. | am consistently surprised

by the depth of his knowledge and inspired by sgown for the future. | have learned

much under his guidance and | can’t imagine unélergaan engineer career without that
knowledge.

| must thank my academic family in the SRL and esly the folks in MaRC
266 and 267. First of all, | have to thank Richldka He has been a great friend and
provided me with an endless amount of guidancalsd have to thank Manas Bajaj for
his friendship, insight, and intellectual guidanc®ther outstanding individuals include
Jonathan Jobe, Alek Kerzhner, Roxanne Moore, aaph@nie Thompson. These people
are a perpetual source of knowledge and fun ahdnkt them for their friendship.

| must also thank Roger Burkhart at Deere & Comp&anford Friedenthal at
Lockheed Martin, and Dr. Leon McGinnis here at @&rTech. They have been
important contributors to and champions of my wo@atitude is also due to my reading
committee, Dr. Russell Peak and Dr. Dirk Schadfer,their interest and intellectual
contributions.

Finally, 1 appreciatively acknowledge the suppofttlte George W. Woodruff
School of Mechanical Engineering, Deere & Compamgd the Center for Compact and
Efficient Fluid Power supported by the National éwe Foundation under Grant No.
EEC-0540834. Additionally, I am grateful for theademic software licenses provided

by Embedded Plus Engineering, IBM, Dynasim, andWmic Inc.

TABLE OF CONTENTS

Page
ACKNOWIEAGEMENTS ... e e e ii
(IS a0] T T | P SPP viii
SUIMIMATY .ttt et i £ 2o et e et et et et ea e e e ea e e e ea e eneesa e een e eeneeennns Xi
(@4 gF=T o] (=T g N 1 o1 (oo [Tt Ao o PP 1
1.1 Managing Complexity with Model-Based Systemgigeering (MBSE)......... 2
1.2 Using SySML in SUPPOrt Of MBSEoouceiiiii e 7
1.3 Modeling System Behavior with SYSML ..., 8
1.4 Motivating QUESTIONSccuuiiiieii et et e et e e et eeeebe e e eean e e e eneaees 10
1.5 THESIS OVEIVIEWcoiiiiiiiiiieiiiee e ettt 14
Chapter 2 Related WOTKcoouu e e 17
2.1 AN INtroduction t0 SYSML.....cccuuniiiiiiiee e 17
2.1.1 SYSML BIOCKS....ccuiiiiiii e 17
2.1.2 SYSML VAIUE TYPES .. ittt ettt e et e et e eeeaaeeees 18
2.1.3 SYSML PrOPEITIES ... ittt e e e e 18
2.1.4 UML StEIEOLYPES ...eiii et ee et e e e e e e e e e e eeens 19
2.1.5 SysML Constraint BIOCKS............c.oumm et 19
2.1.6 SYSML REQUINEMENTSciiiiiieiiiie e eeemmmme et e e 20
2.2 Integrating Design and Analysis Models in SysML...........ccccoiviviiiinieinnnnn. 20
2.3 Integrating CD mModels INt0 SYSMLcueeriieiiiinieeeiieee e 22
24 Performing Model Transformations..........ccccceeuiiiiiiiiniiiiiiie e, 24
2.5 SUMMIATY ..ttt re e et e e et e e e e e e et e e e e eeaeeeaaennneennaae 26
Chapter 3 Modeling Continuous Dynamic System Bedrami SysMLcc.c...... 28
TNt R O o] =T od {1V T PP 28
3.2 Modelica as the FoOUNdation.............. .o ieeeiieiii e 29
3.3 Integrating “White Box” CD Models into SYSML.........ccocociiiiiiiiiniiiiiinnees 30
3.3.1 MOdel DECIAratioNccuieuuii sttt 30

CRCIVZ Y, (o To [=] W 41 (=] o =1 o1 < UT TR 34

3.3.3 Abstraction, Inheritance, and RedefinitianN...............cooooeiiiiiiiiiiiininnnnn. 35
3.3.4 DAE-Based Internal BEhaviorcoooiiiiiiiiiiiiiice e 7.3
3.3.5 Composing the System Model..........oooeieriiiiiiii e 38
3.4 Integrating “Black Box” CD Models into SySML..........cccoovviiiiiniiiiiineeeennnn. 43
3.4.1 Model DECIAratioNocciieuuuii s et 44
3.4.2 MOEl INEITACEottt eeeaees 46
3.4.3 Composing a System Model...........oo i 7.4
3.5 SUMMIATY . .ttt ere e et et et e et e e e e e ea e eeaeeeneennneennae 51
Chapter 4 Transforming between SysML and Modeli@@®s.................ccoooeiviinn. 53
4.1 The Need for Graph Transformationsccccoooiiiiiiiiiiiiii e 53
4.2 The Transformation APProach............coceecciiiiieeiiieeeiiine e e 55
4.2.1 The SysML and Modelica Metamodel SubgraphsS..............ccccovvviiineens 55
4.2.2 The Correspondence Metamodel Subgraph............ccoooviiiiiiiiiiininennnn. 57
4.2.3 The Graph Transformation RUIES.........cceiiiiiiiiiiiii e 59
4.3 SysML-to-Modelica Transformations with VIATRA........cccooiiiiiiiiiiiiineees 64
4.4 Implementation IN RSDoiiiiii e 70
4.5 SUMMIATY ..ttt et ere e o et e e et e e e e e e e e e e eeaeeeaeennneennaes 78
Chapter 5 Modeling Simulations and Analyses in SYSM.........c.ocociiiiiiiiiiiiiiineeennnn. 80
5.1 Defining the Model CONtEXL.........ooiiiiieeee e 80
5.2 Modeling the SIMUIAtIONcoouui e 83
5.3 Abstracting the SImulation e 84
5.4 Embedding the Simulation into an AnalySis coocc....oooviiiiiiiii 85
5.5 SUMMIATY ..ttt ettt ee e mm et e e e e et e e e e e et e eea e eeaeeeaeenaneennaaes 87
Chapter 6 The Hydraulically Powered Excavator Madel..............ccccocoiiiiiiiiiiins 89
6.1 Introduction to the Excavator EXample ..., 89
6.1.1 Overview of the Excavator Example......ccooooiiiiiiiiiiiiiiii e 89
6.1.2 Appropriateness of the Example Model........c...coooiiiiiiiiiiieen. 90

Vi

6.2 Defining the SysML CD Model of the EXcavatOrooeveveieeiiineniiinnne. 91
6.3 Transforming the SysML Excavator Model..............cccooiiiiiiiiiiiinnees 98
6.4 Integrating the Excavator Model into a Simwiatand Analysis.................. 101
6.5 SUMMIATY ..ttt ee e e et e e et e e et e e et e e et e e ean e e een e enneennnas 104
Chapter 7 Discussion and CIOSUIEoiicemaeiieee e 106
7.1 Review and Evaluation of the Model Integratigpproach.......................... 106
7.2 [0 71 = U (0] 1 PP 110
7.3 FULUIE WOTK ... et eea e ees 113
7.4 CloSING REMAIKS ...ttt e e 114
REIBIENCES. ... e e e e e e e e e s 116

vii

Page

Figure 1.1: DOCUMENt-CENLIIC AESIGN.t s e e e et e e eeti e e et e et e e et eeeaaeeeaans 3
Figure 1.2: A globally distributed, MBSE approaohsystems design............ccccceeeeeennnnn. 6
Figure 1.3: The SysML diagram taxonomy {Object Mg@aent Group, 2007 #8}......... 8
Figure 1.4: SysML as a model integration platform...............cccooiiiiiiiiiiiiiineeennnn. 10
Figure 1.5: The research ODJECTIVE. ... e 14
Figure 2.1: A SysML model of a car and itS SUSPEBMSI..........coevevvniieiiiiieeeiiieeeennn. 18.
Figure 2.2: The basics concept of model transfoondCzarnecki, 2006 #48}............ 24
Figure 2.3: Relations between the QVT languagegd@tManagement Group, 2007

BE20). ettt ettt ettt 25
Figure 2.4: An example TGG......iiiiiiiiiiiiieei e e e e e 26
Figure 3.1: An engineering schematic of a MSD SYSte..........cccuoviiiiiiiiiiiiiiieiciieees 31
Figure 3.2: The declaration of a Modelica represgon of a MSD system. 32
Figure 3.3: The declaration of a SysML represeotadf a MSD system. 33
Figure 3.4: Demonstration of Modelica OO modeliogEtructs.ccoovevvevieeiinneennnn. 36
Figure 3.5: Corresponding demonstration of SysML i@@leling constructs. 36
Figure 3.6: A Modelica connection diagram for a MEGD model.ccccoceviiiiennnn. 39
Figure 3.7: Declaration of the mechanical node wamg blocks.cocoiiiiiiinns 41
Figure 3.8: The parametric diagram of M&Dblock.ccooviiiiiiiiiii e, 42
Figure 3.9: The Modelica representation of a fatynposed MSD system model......... 43
Figure 3.10: The declaration of teaternalMSDSysML CD model.c.oceevunneeee. 45

LIST OF FIGURES

Figure 3.11: Declaration of a constraint block esenting a Modelica-specific node. ...48

Figure 3.12: The parametric diagram of EhéernalMSDDblock.ccccooeeiiiiis 49

Figure 3.13: UsingconnectClausebinding connectors in place of system nodes51....

Figure 4.1:
Figure 4.2:

The SysML metamodel subgraph of thevieyto-Modelica TGG.............. 56
The Modelica metamodel subgraph oSy&ML-to-Modelica TGG. 57

viii

Figure 4.3: The Correspondence metamodel subgrfable &ysML-to-Modelica TGGéS
Figure 4.4: The TopBlock-to-Class transformatiolru...............ccc.oooeviiiiiniinnnns 59.
Figure 4.5: The TopValueType-to-ModelicaType transfation rule. 60
Figure 4.6: The TopSysMLPackage-to-ModelicaPackegesformation rule. 60
Figure 4.7: The TopBlock-to-ModelicaConnector tfansation rule.ccc.oc... 60
Figure 4.8: The ContainedBlock-to-Class transforomatule.ccccciiiiiieiinnnn. 61
Figure 4.9: The ExternalBlock-to-Class transformatiule................cccccooeiviieiinnnnnnnn. 1.6
Figure 4.10: The Property-to-Component transforomatule.cccooeeiiiiiiininnnnnn. 62
Figure 4.11: The Constraint-to-Equation transforamatule.ooooviiinnen. 62
Figure 4.12: The Constraint-to-InitialEquation ts&rmation rule.ccoevveeennnnne. 63
Figure 4.13: The SysMLConnector-to-ConnectClaugesformation rule..................... 63
Figure 4.14: An excerpt of the SysML-to-ModelicaG@s represented in VTML........ 65
Figure 4.15: An excerpt of trysml2modelicanachine as represented in VTCL. 67
Figure 4.16: A VIATRA representation of a SysML nedd............ccooeeviiiiiiiiiiiiiiinnnes 68
Figure 4.17: Running th&ysmi2modelicanachine.ccccoooiiiiiiiiiin et e e 69
Figure 4.18: VIATRA modelspace resulting from rumnthesysmi2modelicanachine. .

.. 7
Figure 4.19: The project explorer view of the Syslvinsformers Java source code.....71
Figure 4.20: The functionality @ysML2ModelicaTransformer..............cccooevevivnneens 72
Figure 4.21: A BDD of the EMISDSYSIEM.......ooiiiuiiiiiiiiiieiii e 73
Figure 4.22: An E+ SysML CD model of a MSD SySteM...........ccceuuiiiiiiineieiineeeennnn. 74
Figure 4.23: Generating a Modelica model from theSysML CD model of a MSD

SY S BN, ettt e raas 75
Figure 4.24: An MDT view of the resultant Modeli®ESD model. ... 76
Figure 4.25: The Dymola simulation of the ModelM&D model............c.cccooveeviinnnnnnn. 77
Figure 5.1: Declaration of tHfeuspensionSimulatiaandModelContexblocks. 82
Figure 5.2: The parametric diagramMdddelContext.............coouiiiiiiiiiniiiiinniiiiiees 82
Figure 5.3: The parametric diagramSxspensionSimulation............cccoooeeiieiiiinneeenns 85
Figure 5.4: Declaration of tieuspensionAnalysBocK.coooviiiiiiiiiiiiiiiineee. 86

Figure 5.5: The parametric diagramSuspensionAnalysSiS..........ccceiveiiiiineiiiineeennnn. 86
Figure 6.1: The BDD of thExcavatorDigCycle&SysML CD model.............ccceeevevinennns 92
Figure 6.2: The BDD of thelydraulicsSysML CD sub-model.c.ooooiiiiiii 93
Figure 6.3: The IBD oExcavatorDICCYCIe..........cccuviiiiiiiiiiii e 95
Figure 6.4: The IBD OFHYdrauliCscoouiiiiiiiiei et 97
Figure 6.5: An MDT view of the ModelidaxcavatorExamplenodel. 99
Figure 6.6: A Dymola simulation and animation of ExcavatorDigCyclenodel. 100
Figure 6.7: The BDD obigCycleSimulatiorand ExcavatorModelContext............... 102
Figure 6.8: The IBD oExcavatorModelContext............coovviiiiiiiiiiiiiiiiiie e, 102
Figure 6.9: The simulation abstraction IBDfCycleSimulation............................ 103
Figure 6.10: The BDD dDigCycleANnalysis..........ccuuiiiiiiiiiiiiiiieeeeii e 104
Figure 6.11: The IBD oDigCyCleANalYSIS.......cccuuiiiiiiiiiiiiiii e 104

Figure 7.1:

The validation square {Pederson, 2} £.............ccooeevvvveviieeiineeennennnn L0

SUMMARY

The objective of this research is to use graphepadtand transformation rules to
integrate models of continuous dynamic system hehawith SysML information
models representing systems engineering probleft® driver behind this objective is
the current state of systems engineering. Contesmpsystems engineering problems
are becoming increasingly complex as they are lantlly geographically distributed
design teams, constrained by the objectives ofiphlstakeholders, and inundated by
large quantities of design information. Accordity the principles of model-based
systems engineering (MBSE), engineers can effdgtivanage increasing complexity by
replacing document-centric design methods with agenized, model-based approaches
for representing and investigating their knowledfiging system decomposition and
definition.

In this thesis, modeling constructs from SysML @iddelica are integrated to
improve support for MBSE. The Object Managemerdu@rhas recently developed the
Systems Modeling Language (OMG SysML™). This visuadeling language provides
a comprehensive set of diagrams and constructsiéaeling many common aspects of
systems engineering problems (e.g. system requiresmestructures, functions, and
behaviors). Complementing these SysML construtite, Modelica language has
emerged as a standard for modeling the continugngndics (CD) of systems in terms of
hybrid discrete- event and differential algebrajo&ion systems.

The integration of SysML and Modelica is exploreadni three different
perspectives: the definition of CD models in Syshte use of graph transformations to

automate the transformation of SysML CD models tdaesponding Modelica models;

Xi

and the integration of CD models and other SysMldet® The ability to define CD

models is established through a language mappitwgeba SysML and Modelica. The
mapping is then used to support model transformsttbrough the creation of a triple
graph grammar and corresponding graph transformaties. Finally, CD models are
integrated with other SysML models (e.g. structuraduirements) through the depiction
of simulation experiments and engineering analys&broughout the thesis, example
models of a car suspension and a hydraulically pesdveexcavator are used for
demonstration.

The core of this work is the establishment of mode&bilities that do not exist
independently in SysML or Modelica, but only aseauit of integration. These abilities
include enabling systems engineers to model CDysM&, automatically generate an
executable Modelica model from a SysML model, amdsgribe necessary system
analyses and explicitly relate them to stakehold@ncerns or other system aspects.
Moreover, this work provides a basis for modelgn&tion which can be generalized and

re-specialized for integrating other modeling folisras into SysML.

Xii

CHAPTER 1

INTRODUCTION

Our society relies on the everyday operation ofireeeyed systems. From power
plants to automobiles to personal computers, eegitke systems greatly affect many
aspects of our daily lives; however, routine expedo these systems makes it easy for
us to overlook their immense complexity. Contenapprcomplex systems function at
many different physical scales; contain multipldoststems and components; exhibit
emergent behavior that is not readily compreheadilylexamining component behavior;
encompass multiple engineering disciplines; and canmastrained by the objectives of
multiple stakeholders. Accordingly, contemporaystems engineering problems involve
large quantities of interdependent design inforamathat must be transformed though a
systematic design process into a complete systeaoriggon.

As if systems engineering problems themselves tighovide enough complexity
for engineers to manage, globalization is now agldi® own complications. Decades
ago, most systems were engineered in one geogadpbeation; however, to maintain a
competitive edge in the present global marketpldmgsinesses must now employ
engineering services from the most cost effectind aapable sources regardless of
location. Consequently, design teams undertakygjems engineering problems are
increasingly composed of modular units that operataultiple geographical locations.
Additionally, these design teams consist of a legfeneous membership of system
analysts, component-level disciplinary engineersyd asystem-level engineers.
Communication amongst team members can be hindeyethe fact that different

disciplines rely on different notations and viewistioe same system knowledge and

information. Clearly, the coordination of a glolyadispersed, multidisciplinary design
team coupled with the inherent complexity of a eomporary systems engineering
problem imparts a monumental information managemprdblem upon systems

engineers.

1.1 Managing Complexity with Model-Based Systems Engireging (MBSE)

As complexity grows in a systems engineering pnobleengineers must
effectively manage an increasing quantity of irgt&cdesign knowledge and information.
Accordingly, problems encountered during systemgingering projects are generally
correlated with the organization and managementowohplexity rather than with the
direct technological concerns that affect individgabsystems and specific physical
science areas [1]. If engineers cannot effectivefynage project complexity, they might
overlook important design details and dependenciBsch mistakes can compromise
stakeholder objectives and lead to costly desgpations or system failures.

Traditionally, systems engineering problems areremblusing systematic design
processes such as the method prescribed by PaBleaizd 2] or the systems engineering
“Vee” model proposed by Forsberg and Mooz [3]. t&ymtic design processes consist
of sets of information transformations that iteraly convert stakeholder objectives and
requirements into a complete system descriptios. séen in Figure 1.1, the inputs and
outputs of each transformation are generally docusneontaining the necessary system

knowledge and information.

"__%
v
Planning & Task

Clarification

o

Conceptual Design

ol

Embodiment Design [«

I

Detail Design

FFFIE

Figure 1.1: Document-centric design.

Furthermore, the final output of the design process large collection of product
documentation used to support the subsequent dikesy (e.g. manufacturing,
deployment, or disposal) of the system.

While document-centric design coupled with hard kvoroved to be a successful
combination for solving systems engineering prolsleim the past, it may become
inadequate for dealing with the current increasesystem complexity and globalization.
To transfer knowledge and information between desegam members or steps in the
design process, engineers must navigate the relelouments, extract the necessary
knowledge/information, and translate that contento i discipline-specific (e.g.
mechanical, electrical, computer science) formdikis can be a cumbersome and error-

prone task. Incorporating the effects of globditma only exacerbates the matter.

Moreover, increasing system complexity correlateth \growing quantities of system
information; hence, more labor is needed to decipheduct documentation.

To cope with increasing complexity and globalizaticengineers can adopt
model-based design methods for solving systemsieagng problems [4]. Model-based
systems engineering (MBSE) [5] encourages engin@erasove away from document-
centric design and towards a more computer-basgdractive modeling approach.
Using an MBSE approach to systems design, enging@kge systems engineering
problems through the formal elaboration of modelat t transform stakeholder
requirements and objectives into a full system dpseon. In particular, these models are
used to describe formally the structure, functemd behavior of a system [6].

The MBSE design approach requires the developmintany different design
and analysis models. Design models are used wfgpbe desired structure, function,
and behavior of the system. Example design modwtiide models of system
architecture, CAD models, and use case models.lygisanodels, on the other hand, are
used to analyze the anticipated behavior of theesys Example analysis models include
models of continuous dynamic system behavior,diailement models, and cost models.

If engineers adopt a MBSE design approach, they qaven the valuable
capability to share more easily the critical knadge and information captured in various
design and analysis models. Exploiting this cdpghbtan thwart problems related to
information traceability and consistency that aftero encountered in document-centric
design processes. Consequently, engineers musgrawe the critical knowledge
captured in design and analysis models. ldeallggration could be achieved through

the sole use of one modeling language that is &bldepict all aspects of a systems

engineering project at every necessary level dlifigg however, the creation of such a
modeling language is not a realistic endeavor. ddeer, such a language would simply
reinvent the abilities of other domain-specific ratmlg languages.

Alternatively, to achieve model integration the lutedge needed to make design
decisions should be abstracted from domain-spegibclels into a system information
model. An information model as described by Myloles [7] is a computer-based
symbol structure that formally captures and orgasmimformation in a meaningful
fashion. The information model then serves asatqin for model integration and only
exposes knowledge and information that is importarihe design team as a whole. The
unnecessary details remain encapsulated in smd#ésign or analysis models for
individual use.

While model integration is an import function of arformation model, it also
serves other purposes. The information transfaoma&toccurring in a MBSE design
process, in contrast with traditional methods,racerded in the information model rather
than in large sets of documentation. Furthermitweprimary output of an MBSE design
process is the information model which is subsetiyemsed to support the later
lifecycles of the system.

The MBSE approach to systems design, as depictédgure 1.2, offers some
important benefits for engineers coping with compdgstems and globally distributed

design teams.

Aspect
B
Models

Figure 1.2: A globally distributed, MBSE approaohsiystems design.

The information generated in the design processased in one central location (e.g. a
computer server) that is accessible by any membedhe design team regardless of
geographical location. This promotes close coltabon amongst designers who have no
physical contact with each other. Assuming thatitiiormation model is authored using
a well-understood modeling language, the team mesrdlso have a strict protocol for
communicating important design knowledge and infmion. Additionally, all the
contents of an information model generally exisbie modelspace, but can be displayed
to different individuals in various fashions usinwltiple views or diagrams. This is
analogous to displaying the same system informatiahfferent documents for different
design team members; however, multiple documemsipéhe existence of information
consistencies. This is not the case when usingipteiviews of the same information

model.

1.2 Using SysML in Support of MBSE

Several information modeling formalisms have beewetbped in support of
MBSE design processes. Two well-known informatimodeling languages are the
Object Management Group’s (OMG) successful Unifidddeling Language (UML™)
[8] and the recently adopted Systems Modeling LagguOMG SysML™) [9].

UML is a graphical modeling language for specifyingonstructing, and
documenting the artifacts of software, businessetspédnd other applicable systems. It
is a general-purpose modeling language that camisee with all major object and
component methods. The language is commonly usedgdthe development of large-
scale, complex software for various domains andeémpntation platforms [10].

SysML is also a general-purpose systems modelimguiage that enables
engineers to create and manage information modedn@gneered systems using well-
defined, visual constructs [9]. Instead of develgpSysML as an original language, the
OMG extended UML for the systems engineering comnityun SysML reuses and
extends a subset of UML 2.1 constructs:

> it extends UML classes witlocks
» it supports requirements modeling;
» it supports parametric modeling;
» it extends UML dependencies witiiocations
» it reuses and modifies UMactivities
» it extends UML standard ports witlow ports
Figure 1.3 depicts the SysML diagram taxonomy agraphical representation of

SysML'’s extension of UML.

SysML
Diagram
\ _ 1 _ \
Behavior Requirements Structure
Diagram Diagram Diagram
I I I | I I |
Activity State Machine Sequence Use Case Block Definition Internal Block Package
Diagram Diagram Diagram Diagram Diagram Diagram Diagram
Same as Modified from N_ew_DiaaarT “Parametric
UML 2 UML 2 Type Diagram

Figure 1.3: The SysML diagram taxonomy [9].

A block with a regular or bold border representdML diagram that has been reused or
modified, respectively. Blocks with a dashed bor@gresent new diagrams, namely, the
requirementandparametric diagrams
The knowledge captured in a SysML model is intended support the

specification, analysis, design, and verification aalidation of any engineered system
[9]. As a result, SysML is commonly used to modgktem requirements, tests,
structures, functions, behaviors, and their intatienships. While capturing all of the
above knowledge is critical for ensuring successsaiving a systems engineering
problem, modeling system behavior is arguable nmogbrtant. If a system does not
behave in a way that satisfies stakeholder objestithen it is useless regardless of its

other aspects.

1.3 Modeling System Behavior with SysML

SysML is capable of depicting system behavior ugimg following language
constructs:
» Activity diagramsdescribe the inputs, outputs, sequences, and tamlifor

coordinating various system behaviors;

» Sequence diagrandescribe the flow of control between actors argystem or
its components;
» State machine diagramare used for modeling discrete behavior througitefi
state transition systems;
» Parametric diagramsallow users to represent mathematical constrantsngst
system properties.
The first three of these modeling constructs suppausal behavioral modeling in terms
of discrete events. The last one enables a usaotel equations (callecbnstraintsin
SysML) that establish mathematical relationshipsvben the properties of a system or
its components. While SysML offers many behavioraldeling capabilitieswith the
above constructs, the language specification de¢sexplicitly provide theability to
integrate many different types of behavioral modedgjuired to solve systems
engineering problems.

Oftentimes, engineers need to analyze the conteidgnamics (CD) of a system
alternative. CD are generally represented by kylliscrete event and differential-
algebraic equation (DAE) models which charactetimeexchange of energy, signals, or
other continuous interactions between system coemsn however, the SysML
specification provides no explicit support for igtating DAE models into SysML
models. In other words, no guidance is provided ifbegrating models authored in
languages like Modelica [11] or Matlab/Simulink [12The intent of the work presented

in this thesis is to overcome this burden by batddupon SysML’s current capabilities.

1.4 Motivating Questions

As depicted in Figure 1.4 and discussed in Sedidn SysML is not simply an

information modeling language, but is really a folah for model integration.

Cost
Models

Continuous
Dynamics Models

A {g‘} - ‘\“”- \i‘ “m wl
P e —
| 34 SysML Integration Framework Am
ir = e Bucket
g System Simulations —
Requirements & Engineering
- < Analyses
System . .
Functions J System
- N Architecture
_ J .
CAD System g < Manufacturing
Models Activities & System Models
State Machines) 4 =

& Parametrlcs/

Figure 1.4: SysML as a model integration platform.

Using SysML constructs independently of outsidegleages or tools, modelers can
author several different types of systems engingermodels in SysML (e.g.

requirements models, use case models, activity mpdé/hile these types of models are
certainly necessary they are notsufficient for ensuring the success of SysML. To
improve SysML'’s ability to support MBSE design pesses, the following question must

be answered:

10

The Motivating Question:
How can engineers integrate models in various fdisnas with SysML informatiop
models to promote information consistency, modsteability, and automated modgl

transformation?

As stated in the question, solutions for model grdéion should improve support of
MBSE design processes through the following beseiiitformation consistency, model
traceability, and automated generation of execatatbdels from SysML models. By
integrating the important knowledge and informat@omtained in various engineering
models used to solve systems engineering problengineers can ensure information
consistency throughout the various models usedlie & systems engineering problem.
Additionally, integration enables the tracing ofpiontant associations and dependencies
amongst the various models. Lastly, informationsistency and traceability can enable
engineers to set the context for system analysats ghcompass multiple engineering
models. This enables the automated populatiomesistent information into executable
models used to analyze a system.

While the question of model integration is the calnmotivation for this thesis, it
is too broad to be answered in full. Instead, thésis limits the scope of the question to
integrating CD models into SysML. To answer thasluced motivating question, it is
decomposed into three manageable sub-questiong fifBh question investigates the

actual SysML depiction of CD models built upon s&#t®AES:

11

Question 1:
How can engineers effectively represent modelsonfimuous dynamic system behavjor

using the modeling constructs offered in SysML?

The answer to this question is the foundation fBr i@odel integration. If external CD
models can be appropriately abstracted or repregargting SysML modeling constructs,
then CD model integration and the resultant infdromaconsistency and traceability can
come to realization.

The representation of CD models using SysML modetianstructs is only the
first step to integrating CD models into SysML. u&rintegration can only come to
fruition when a SysML CD model can be linked toeatternal, executable CD model.
Such a linkage can be accomplished through modgraph transformations. Graph
transformations enable the automated, externalutxecof a non-executable SysML CD
model and the integration of an external CD mod#& ia SysML system information
model. Additionally, it provides a method for enag information consistency between
an external CD model and a SysML CD model.

In this thesis, Modelica [11] is the external CD dabng language of interest.
Modelica has emerged as the language of choicexXpressing continuous dynamic
system behavior. It is better structured and neoq@essive than most alternatives such
as VHDL-AMS [13] or ACSL [14]. In addition, bothySML and Modelica are similar in
that they use base modeling elements that adhetket@rinciples of object-oriented
modeling.

Since Modelica is the CD modeling language to legirated with SysML, the

following question is posed:

12

Question 2:
Are graph transformations an effective means afdfarming between SysML modelq of
continuous dynamic system behavior and correspgndifodelica models to enable

automated model execution and to ensure informatosistency?

The answer to this question is the key to autorgatire integration of SysML and
Modelica models. An explicit model transformatischema can be incorporated in a
computer program used to transform from SysML tadblica or vice-versa.

The answers to Questions 1 and 2 enable the ittegm@f SysML and Modelica
models, but don’t explicitly provide guidance onintaining information consistency
and traceability between integrated CD models dhdraspects of a SysML information
model. During the course of a systems enginegrninglem, many different models (e.g.
structural models, CD models, objective functiondeis, requirements models) are used
to make decisions concerning a system alternatiieléillment of stakeholder
requirements and objectives; hence, a decision mahkest fully understand the
relationships between these models. To ensureatli@cision maker understands these
relationships, explicit traceability can be estsiidid between the necessary models. With
respect to a system’s continuous dynamic behatherrelationships between CD models
and other models exist in the context of a systiemlgtion or analysis. This leads to the

following question:

13

Question 3:

1128
[7)]

Can engineers ensure model traceability betweenn@idels and other SysML mod

by explicitly modeling simulations and analysesystem alternatives in SysML?

A promising answer to this question is essential dsing SysML as an integration
platform in support of decision making. If a Sysiviipresentation of a CD model can'’t
be related to other SysML models in a meaningfshi@an, then its inclusion in an

information model provides little value.

1.5 Thesis Overview

According to the motivating questions in Sectiod, Ithe objective of the work
presented in this thesis is to use graph pattendsteansformation rules to integrate

models of continuous dynamic system behavior witysMiL information models

representing systems engineering problems. Thispgcted graphically in Figure 1.5.

Continuous Graph Patterns & SysML
Dynamics Model Transformation Information Model

Rules

Discrete-Event & Requirements,
Differential- Architecture Models,
Algebraic Manufacturing
Equations Models, etc.

Figure 1.5: The research objective.

By achieving this objective, the vision for modetldgration as depicted in Figure 1.4 can
take one more step towards reality. Disciplinarycomponent-level designers can use

external languages and software tools for createtgiled, low-level design and analysis

14

models. Then, they can abstract into the SysMLtesysinformation model the
knowledge and information that is relevant at thgstam level. Once the
information/knowledge is abstracted into a SysMLdelpit can be bound or associated
with other models (e.g. models of simulations, eagring analyses, requirements,
system structure, use cases) created in or absfraatio a SysML system information
model. Using such relationships, the elementsiahtegrated model can be updated via
the SysML system information model and reflectedha external design and analysis
models through the use of automated model/grapisfoemations. If the modelers use
such tools for transforming from SysML to exterfaguages/tools and vice-versa, true
model integration can become a realization via tha&lirectional flow of
information/knowledge.

Before acceptable answers can be provided for thitesating questions, we must
have a better understanding of the extent to wthely have already been answered.
Accordingly, Chapter 2 of this thesis provides arreiew of work that is highly related
to the motivating questions. Due to the strondpéigveen this thesis and SysML, Section
2.1 provides a review of some important SysML cargs and introduces the car
suspension example used in later chapters. Thigoses specifically aimed at readers
who have limited or no familiarity with SysML andVlL. Readers who are familiar with
both languages need not delve into the detailsti®e2.2 provides an overview of work
concerning the integration in SysML of design amalgsis models. Section 2.3 then
provides a more specific overview of relevant afitsrat integrating CD models into
SysML. Finally, Section 2.4 highlights relevant nkoin the field of model

transformations.

15

To answer Question 1, Chapter 3 describes in dékaibpproach to representing
models of continuous dynamic system behavior inVysThis is accomplished through
the specification of a modeling approach and s&ysML constructs that correspond to
important Modelica modeling practices and consgudiVhen a clear mapping between
the two languages does not exist, a SysML extensiprovided to fill the gap.

To answer Question 2, Chapter 4 explains an apprtat¢ransforming SysML
models into Modelica models and vice-versa. Thpr@gch relies on a triple graph
grammar (TGG) [15] and a corresponding set of gra@imsformation rules. The
automated transformation process is implementedgutie VIATRA [16, 17] model
transformation framework and Eclipse [18]/RatioSgstems Developer (RSD) [19]..

To answer Question 3, Chapter 5 provides an appr@ad set of SysML
constructs for supporting decision-making procestfa®ugh the explicit SysML
depiction of CD simulations and engineering anays&he approach is broken down
into four steps: establishing the context of a CBdel with respect to a system
alternative, modeling the simulation, abstractitg tsimulation into an input-output
model, and embedding the simulation in an engingeaanalysis.

The final three chapters bring this thesis to as&lo To demonstrate several
important concepts described in this thesis, Chagptxhibits the SysML integration of a
CD model of hydraulically powered excavator. Cleapt is then intended to discuss,

evaluate, and draw some important conclusions abeutvork described in this thesis.

16

CHAPTER 2

RELATED WORK

2.1 An Introduction to SysML

Before discussing any relevant work or the approfachintegrating CD and
simulation models in SysML, this section reviewshsomportant SysML constructs and

introduces an example problem used throughouthbisis.

211 SysML Blocks

The primary modeling unit in SysML is thock As described in Chapter 8 of
the SysML specification [9], a block is a modulantwf a system description. A block
can represent anything, whether tangible or intaagithat describes a system. For
instance, a block could model a system, processtiin, or context. When combined
together, blocks define a collection of featurest tthescribe a system or other object of
interest. Hence, blocks provide a means for anneeg to represent a system by
decomposing it into a collection of interrelategeaits.

All block declarations occur in Block Definition Diagram(BDD). A BDD is
used to define block features and the relationsbitsveen blocks or other SysML
modeling elements. Figure 2.1 is a BDD depictihg tefinition of a car and its
suspension. A car is obviously composed of moiesystems and components, but
Figure 2.1 is sufficient for the sake of demongirat SysML allows a modeler to omit
elements of the underlying information model thatract from the main intent of a

diagram.

17

bdd Car Definition J
«requirement»

ReboundReq
Car
text = “When
values 7 disturbed by 0.1 m,
mass: Sl.Mass = 1500 /| the suspension shall
«satisfy» | settle to 5% of
steady state in
suspension under 1 sec.”
WheelSuspension
values « vg Ilu ;Zize»
«moe» settlingTime: Time i
’ unit = kg
coil Q/ shock
Coil Shock
values values
springRate: Real dampingCoef: Real

Figure 2.1: A SysML model of a car and its suspamsi

212 SysML Value Types

A SysML value types an extension of the UMdata typeused to define types of
values that may be used to express information tabaystem [9]. More specifically,
value types are used to assign to a value profetynits and dimensions declared in its
definition. For example, Figure 2.1 displays tledimition of SI.Masswhich carries units

of kilograms.

213 SysML Properties

A SysML property describes a part or characterigtia block and consists of a
named value of a specified type. In Figure 2.19 tmportant types of properties are
depicted. The first kind is theart property Part properties represent a subsystem or
component of a system and must be typed by a bl&ekt properties can be depicted in

the parts compartmentof a block or using @omposition association A composition

18

association is displayed as a black diamond witdila The property name appears at the
tail end of the association. For example, thelblBar in Figure 2.1 owns a part property
namedsuspensiomf typeWheelSuspension

The second kind of property isvalue property A value property appears in a
block’s values compartmerdnd represents a quantifiable characteristic olbekb(e.g.
mass, length, velocity). Accordingly, it must yped to a SysML value type or UML
data type. For exampl€ar in Figure 2.1 has a value propenasswhich is typed to

the value typ&l.Massto supply units of kilograms.

214 UML Stereotypes

A stereotypeis a UML construct used to create customized ifleagons of
modeling elements. Stereotypes are defined by &emysvthat appear inside of
guillemets. These customization constructs exteadtandard elements to identify more
specialized cases important to specific classesppfications. Most SysML constructs
have been defined as UML stereotypes and usersalmeed to create additional
stereotypes to capture the specialized semantiespairticular application domain. An
example of a stereotype is illustrated in Figurke Zhe stereotypemoe»applied to the
WheelSuspensian value propertysettlingTime indicates that it is a “measure of

effectiveness”.

215 SysML Constraint Blocks

As defined in the SysML specification [9]canstraint blockis a specialized form
of the SysML block and is intended to package comlynased constraints in a reusable,

parameterized fashion. Constraint blocks can éstified by thecconstraint»stereotype

19

that appears in their namespace compartments. piidperties of constraint block are

referred to aparameterdo emphasize the objective of constraint paranzetion.

216 SysML Requirements

A SysML requirements used to represent a textual requirement orctibgefor a
system, subsystem, or component. Requirementstaren with the«requirement»
stereotype and optionally display a compartmentdigplaying text and identification
fields. Requirements are related to other modadilegnents using variowependencies
such as thesatisfy and verify dependencies. A dependency is a UML construct for
expressing different types of relationships betwesnious modeling constructs. The use
of SysML requirements and dependencies is demdedtia Figure 2.1 by the satisfy

dependency betwealtheelSuspensiand theReboundRegequirement.

2.2 Integrating Design and Analysis Models in SysML

“Currently it is common practice for systems enghseto use a wide
range of modeling languages, tools and techniguedaoge systems
projects. In a manner similar to how UML unifiecetihodeling languages
used in the software industry, SysML is intendedutofy the diverse

modeling languages currently used by systems eagsrig9]

This excerpt from the SysML specification cleamgicates that the intent of the
language is to provide a platform for model unifica (i.e. integration). The constructs
provided by the language are certainly capablaippsrting model integration, but they

don’t necessarily endow a SysML user with the “ofuthe box” ability to perform model

20

integration. Rather than relying on end usersnabke model integration, this ability
should be cultivated by knowledgeable SysML chamgio

One notable means of enabling model integratioByaML has been provided
through the development of Composable Objects (JQiEs22]. COBs provide both a
graphical and lexical representation of algebra&lationships that can be used to tie
design models to analysis models in a parametshida. COBs recently served as the
basis for the development of the SysML parametiagr@hms [9]. By establishing a
mapping between COBs and SysML parametrics, thegiation and execution of
engineering analyses (such as structural finitenetd analyses) within the context of
SysML has been demonstrated [23]. This thesis dstéme work on COBs by focusing
on the integration of CD Modelica models into SysML

Huang et al. [24] explore the model integrationatalities of SysML through the
SysML representation of design and simulation @rmalysis) models for manufacturing
processes. In particular, the authors presentctbation of a flow shop model and
subsequently map it to a queuing analysis modalditionally, the authors describe an
approach to automating the generation of an exbeutM-Plant [25] flow shop model
via XPath [26]. This executable model is then usedimulate the SysML simulation
model.

The ability to integrate heterogeneous models irsMly has also been
demonstrated through the development of Multi-Asggmmponent Models (MAsCoMs)
[27]. The MAsCoM framework is intended to supponbdel reuse through the
establishment of relationships between design msodel system components,

corresponding analysis models, and the many aspéetsnodel that pertain to analysis

21

objectives, stakeholder perspectives, and othemesles of MBSE. Within the
framework, analysis models are integrated with comemt models and aspect models

such that their semantics of intended use are pagpand represented for reuse.

2.3 Integrating CD models into SysML

Recently, several researchers have also recogtheateed to integrate models of
continuous dynamic system behavior into SysML. &pproaches to integrating CD
models are as varied as the CD modeling languagieg bntegrated. In this section,
several approaches are reviewed and contrastedhathpproach outlined in Chapter 3
of this thesis.

Currently, Matlab/Simulink models of system dynasnare used extensively in
the development of engineered systems. Recogriziaglependency, Vanderperren and
Dehaene [28] have discussed the current and fustages of UML/SysML and
Matlab/Simulink integration using two different appches: co-simulation and reliance
upon a common execution language. The intent tf Bpproaches is to test the design
of an embedded system and its control softwareitmlaneously executing a UML
model of the software and a Simulink model of thetesm dynamics. The co-simulation
approach involves data exchange between a UMLatodISimulink via an interface tool.
This approach is demonstrated by Hooman et al. §2@] implemented in Telelogic’s
Rhapsody [30] UML modeling tool. The other apptmaciemonstrated in the
GeneralStore integration platform [31], relies dme tgeneration and coupling of
executable code (e.g. C/C++ code) from both the UAld Matlab/Simulink models.
The work presented in this thesis is very similar these Matlab/Simulink and

UML/SysML integration efforts, but adopts the persjive that an information model

22

should serve as an integration platform rather &sa means for describing only certain
aspects of the system.

Another common formalism for modeling continuousayic system behavior is
the bond graph. Developed in 1961 by Paynter [B@&hd graphs are graphical models
used to describe continuous dynamics resulting femergy flow through a system and
its composition of discrete components. Due to phevalence and history of bond
graphs in systems engineering analysis, Turki ammhBo [33] extended the capabilities
of SysML activity modeling to support the represgiin of bond graphs. While this
extension enables bond graph modelers to intedlate models into larger SysML
models, the authors only discuss the possibilitgerferating executable CD models and
do not provide guidance for relating SysML bondpdranodels to other SysML models.

Two groups have worked on the integration of MameliCD models into
SysML/UML. The first work from Fritzson, Akhvledi® and Pop [34] provides support
for modeling continuous dynamics in SysML via theodélicaML profile for
UML/SysML. The ModelicaML profile enables usersdepict a Modelica CD model
graphically alongside other aspects of a UML/SysMiformation models. The
ModelicaML profile reuses several UML and SysML strocts, but also introduces
completely new language constructs. Such constaretthe Modelica class diagram, the
equation diagram, and the simulation diagram.

The second work is a similar profile named UMLThis profile was created by
Nytsch-Geusen [35] for developing and graphicakypidting hybrid discrete and DAE
models in UML/SysML. The author presents hybriddels as Modelica models that are

based on a combination of DAEs and discrete staasitions modeled with the

23

Modelica state chart extension. Using a UMiditor and a Modelica tool that supports
code generation, Modelica stubs can be automatigaterated from UM diagrams so
that the user must only insert the equation-baséd\dor of the system in question.

In this thesis, the capabilities of ModelicaML adtL" are further extended by
demonstrating the integration of CD models with enthSysML constructs for
requirements, structure, and design objectivesditixhally, this thesis demonstrates the
use of model transformations to enable the autam@t@nsformation of information

between SysML and Modelica models.
2.4 Performing Model Transformations

Model transformations, as conceptualized in th@lymepicted in Figure 2.2, are

anticipated to play a major role in future MBSE eanbrs [36].

refers to i . refers to
Source Metamodel Transformation Specification Target Metamodel
conforms to executes conforms to
reads i i writes
Source Model Transformation Engine Target Model

Figure 2.2: The basics concept of model transfaondB86].

Generally, model transformations are performedraggformation engines that can read
a source model conforming to a source metamodel exetute a transformation
specification to produce a target model conforminga target metamodel. Current
applications of model transformations include moslgichronization and the generation
of low-level models/code from high-level modelsheTwork presented in this thesis (see
Chapter 4) demonstrates the potential of modektoamations for MBSE through the
generation of executable, lower-level Modelica cddem higher-level SysML CD

models.

24

Many methods exist for completing model transforaregt between two or more
modeling languages (metamodels). Two common toamsition tools are OMG’s
Queries/Views/Transformations (QVT) [37] and TGGS][

The QVT specification provides a set of languagesgiierying a source model
that complies with a source metamodel and transfagnt into a target model that
complies with a target metamodel. Two QVT langsaBelationsandCore, are used to
model declaratively the relationships between seamd target metamodels at different
levels of fidelity. The Operational Mappingslanguage is then used to perform
imperative transformations based on the relatigsskepicted in th€ore or Relations

languages. The relations between the QVT languagedepicted in Figure 2.3.

Relations

RelationsToCore
Operational Transformation

Mappings

Core

Figure 2.3: Relations between the QVT languagek [37

Overall, QVT is a powerful and widely accepted nlddensformation tool; however, the
imperative nature of theOperational Mappingslanguage hampers bidirectional
transformations.

TGGs are similar to QVT in intent but are declamaty nature. Accordingly,
TGGs are particularly useful for completing complexdidirectional model
transformations; however, others have shown that @\equally expressive and capable
[38]. In a TGG, two modeling languages (metamgdale defined as graphs. The
mapping between the two metamodels is then repieddony an intermediary graph

called thecorrespondence metamodeTlhis third graph is essential for defining graph

25

transformation rules and maintaining traceabilitjk$é between the two models. By
guerying a model space containing SysML or Modeticalels, transformations rules are
executed until the model space complies with thexified TGG. For example, Figure
2.4 displays a small TGG that relates a SysML bloaka Modelica class using a
correspondence entity nambtbck2classwith one relation pointing to thielock entity

(in the SysML metamodel graph) and one todlaessentity (in the Modelica metamodel
graph).

SysML Correspondence Modelica
| |

blockR classR
block2class

Figure 2.4: An example TGG.

A practical implementation of TGGs is also demaatsid extensively by Kénigs [39].

2.5 Summary

This chapter provides an overview of material tisahighly relevant to model
integration via SysML. Section 2.1 is a gener&loduction to SysML and establishes
the context for the example SysML car model usedutdphout the rest of this thesis.
Section 2.2 is a review of some past and ongoingkvem various types of model
integration via SysML. Section 2.3 is a more speaeview of work regarding the
integration of CD models into SysML. Section 2s4ai review of work related to the
automation of model synchronization and generatiarmodel/graph transformations.

The work presented in this thesis is clearly pdradarger, ongoing effort to
improve MBSE through model integration. It buildgon past and current work in an

effort to increase the modeling capabilities of inegrs designing complex systems.

26

This is accomplished by enabling the definition,toamated transformation, and
integration of CD models into SysML. Moreover, galizing the work presented in this
thesis provides a stencil for integrating otheretymf design or analysis models into
SysML via language mappings, graph transformatiang, the depiction of simulations

and engineering analyses.

27

CHAPTER 3
MODELING CONTINUOUS DYNAMIC

SYSTEM BEHAVIOR IN SYSML

In this chapter, an approach is described for sgméng CD models using
SysML modeling constructs. More specifically, d@qgoroach enables the integration of
Modelica-based CD models. First, an approach tned for creating fully detailed
“white box” CD models in SysML. Then, an approashoutlined for creating low
fidelity “black box” CD models in SysML that act asferences to existing, external

Modelica models.

3.1 Objectives

A model is only valuable if it increases a decisioaker’s ability to design a
better system at an acceptable cost [40] The mfmtetepresenting CD models in
SysML is valuable if it strikes an appropriate logka between the benefits expected from
developing a model and the costs of encoding thained information. To develop a
valuable modeling approach, the following objectiage established:

1. The approach must enable the integration of coatisudynamics models into
broader SysML models. By integrating a Modelicadsh CD model into SysML,
decision makers can formally recognize relationstuptween continuous dynamic
behavior and other aspects of the system.

2. The approach must facilitate the transformation SysML CD models into
Modelica models and vice-versa. SysML is a langufag describing information

and knowledge in the context of systems engineering is by itself not an

28

executable language—model execution is relegatesinmilation tools. Hence,
seamless connections should be established bet®gs¥iL and CD simulation
tools via SysML-to-Modelica model transformations.

3. The approach must encourage model reuse. If grscan avoid creating every
model from scratch by reusing or modifying pre-gmig models, he or she can
realize significant reductions in the use of projesources.

4. The approach must facilitate efficient stakeholdemmunication. Unambiguous
communication is very important during the develepbtof a complex system. By
relying on a formal, accepted approach for intaggatCD models in SysML
information models, behavioral knowledge can bemiriguously shared amongst

designers or stakeholders.

3.2 Modelica as the Foundation

In this thesis, Modelica is the foundation for grating CD models into SysML.
As discussed in Section 1.4, Modelica has emergeadlanguage of choice for modeling
continuous dynamic system behavior. In additiathiSysML and Modelica are similar
in that they use base modeling elements that adbettee principles of object-oriented
modeling. Both languages also encourage modeérdusugh acausal equation-based
modeling. Unfortunately, enough differences existween the languages such that a
one-to-one mapping is not possible. Since SysMintsnded to be a general-purpose
modeling language, some of the specialized sensanfidViodelica do not have direct
SysML equivalents. To overcome these differentes,approach has been to find an

appropriate balance between converting some impoidelica semantics into explicit

29

constraints in SysML or, when that is not possua&/able, extending SysML constructs

through UML stereotypes.

3.3 Integrating “White Box” CD Models into SysML

Through the mapping of essential Modelica modetingstructs to their SysML
counterparts, this section provides an approactreating “white box” CD models in
SysML. This enables modelers to capture nearlyyestetail of a CD model using native
SysML constructs. Accordingly, modelers can cresitetly “white box” SysML CD

models or hybrid “white/black box” system modelge¢Bon 3.4.3)

3.3.1 Modd Declaration

The fundamental similarity between SysML and Moakelis the use of objects.
The primary modeling unit in Modelica is thiass Classes serve as definition templates
for modeling the components of other classes [41).make Modelica easier to read and
maintain, special restricted classes were develfgredefining the intended function of a
class [11]. Example restrictions ar®dels connectorstypes andfunctions While the
restrictions are useful, they are not necessamyast cases. One can usually maintain
model validity by replacing a restricted class vathegular class; however, exceptions to
this heuristic (the Modelicaonnectorandtypée are addressed later in this chapter.

The declaration of a Modelica class maps directlthat of a SysML block. This
mapping is established because both the classhendldck serve as the base modeling
unit in their respective language while sharingisimstructures. Blocks, like classes,

provide the structure for other objects by actiaglck definition templates.

30

Figure 3.1 is an engineering schematic of a Massigamper (MSD) system.
The system is composed of a spring and damper rdumtparallel between two system
nodes. A mass and a steady-state detection sars@onnected to the top node while

the bottom node is connected to the ground.

spring

né

damper

—_

n3
ground

Figure 3.1: An engineering schematic of a MSD syste

Figure 3.2 and Figure 3.3 illustrate the equivadend SysML blocks and Modelica
classes through their representations of CD modais2sponding to the schematic in

Figure 3.1.

31

/IThe MSD declaration
class MSD
/[The system components

Mass mass;
Spring spring;
Damper damper;
Fixed ground;
SteadyStateDetector detect;

eﬁ.(.j MSD;
/IThe Mass declaration

class Mass
/[The variables

Sl.Position S;
Sl.LMass m;
Sl.Velocity V;
Sl.Acceleration a;

/[The interface component
MechJunction j;
initial equation
s=-0.1;
equation
s=|.s;
v= der (s);
a= der (v);
m*a = |.f;
end Mass;

/IThe MechJunction declaration
connector MechJunction
Sl.Position S;
Sl.Force f;
end MechJunction;

Figure 3.2: The declaration of a Modelica represgmt of a MSD system.

Figure 3.2 is a lexical Modelica model of a Massi#gpDamper (MSD). Figure 3.3

displays the corresponding SysML declaration oft&D CD model.

32

bdd MSD Definition)
MechJunction
MSD
values
values s: Sl.Position
time: Time f: SI.Force
mass
Mass Sprin
spring pring
constraints values
{{Modelica} s = j.s; k: Real
v = der(s);
a = der(v);
m*a=jf} o damper Damper
{s=-0.1; } «initial»
values
parts d: Real
j: MechJunction
ground
values Fixed
s: Sl.Position
m: Sl.Mass SteadyStateDetector
v: Sl.Velocity detect
a: Sl.Acceleration values
ssTime: Time

Figure 3.3: The declaration of a SysML representatf a MSD system.

The blockMSD represents the declaration of the overall MSDesystvhile the other
blocks Mass Spring Damper SteadyStateDetectdfixed andMechJunctioi represent
the definitions of the system components.

In Modelica, the properties of a model are cattechponents.A component can
represent a part (e.g. spring, damper) or chaisite(e.g. length, position) of the
system. One can tell whether a component represemnpart or a characteristic by
identifying the class to which the component iseyp “Part” components are usages of
regular classes or models. These components m&ydwlL part properties typed to
other blocks. “Characteristic” components (i.exiafales) are usages of classes with the
type restriction. These components and type classes dirggtly to SysML value
properties typed to value typesnce both are used assign the units of measure or

dimension declared in its definition.

33

The property-component mapping is illustrated igufe 3.2 and Figure 3.3. For
example, in Figure 3.2 the claBkSD owns a “part” componemhasstyped to the class
Mass The classvlassowns a “characteristic” componesityped to the Modelica type
Sl.Position This is reproduced in Figure 3.3 by a blddkD that owns a part property
masstyped to the bloclMass The block mass owns a value propeartyped to the value

type Sl.Position

3.3.2 Modd Interface

To interact with other models in an object-orien(€®D) fashion, a given model
should have a well-defined interface. Models usedhe description of a system’s
continuous dynamic behavior generally interact gisiorossandthrough variables [32]
exposed to the rest of the system model. Sinagsa@nd through variables are the only
means of interaction, they can be encapsulatedardi interface objects that are exposed
to other system components and subsystems

In Modelica, a model's interface consists of congne typed toconnectors
Modelica connectors are restricted classes that hotoss and through variables, but
have no equations defining behavior. In Sectiél3.Modelica classes were mapped to
SysML blocks, so Modelica connectors can also mdpdcks. Consequently, a SysML
model’s interface can be established by creating @nmore part properties typed to
blocks encapsulating only across and through viasab

To illustrate the declaration of a model interfaéégure 3.3 depicts a block
namedMechJunction This is a reusable block that encapsulatesiposaind force value
properties corresponding to translational acrosstarough variables, respectively. To

define the interfaces for each componentM$D, the appropriate number of part

34

properties are declared for each component and tyyeed to MechJunction For

example Masshas one part properiytyped toMechJunction

3.3.3 Abstraction, Inheritance, and Redefinition

Both languages support model reuse through the @®epts of abstract classes,
inheritance, and redefinition. In this sectionpapping is defined between the SysML
and Modelica interpretations of these OO principles

The first OO principle is the concept of an abdtrac partial object. If a
Modelica class is tagged with tpartial keyword, then the class is not fully defined and
cannot be instantiated, but serves as a templattecdn be extended through object
inheritance. Similarly, SysML supports the concepanabstractblock that exists as a
partially defined model.

The second OO principle is object inheritance. ehithnce is a modeling
mechanism that enables a child object to inhedt r@fine the definition of a parent. In
Modelica, inheritance is accomplished throughektends clause When inserted in the
definition of a Modelica class, the extends claasgomatically imports the entire
definition of the target (parent) class. SimilarysML blocks (and other modeling
elements) can be extended through the use of $ati@n/generalization relationships.
A generalization is depicted by an arrow with atelnead.

Figure 3.4 illustrates the concepts of a parti@ssland class inheritance in

Modelica.

35

/IThe partial MechSensor declaration
partial class MechSensor
MechJunction j;

er.1.(.j MechSensor;
/IThe SteadyStateDetector declaration

class SteadyStateDetector
extends MechSensor;

er.1.(.j MSD;
Figure 3.4: Demonstration of Modelica OO modeliogstructs.

As seen in the figure, the claStgeadyStateDetectextends the partial clab%echSensor
This indicates that &teadyStateDetectos a subtype of #MechSensoland inherits a
component typed tdlechJunction The equivalent SysML modeling constructs can be

seen in Figure 3.5.

bdd SteadyStateDetector Deﬁnition/

{abstract}
MechSensor

parts
j: MechJunction

SteadyStateDetector

Figure 3.5: Corresponding demonstration of SysML i@@ieling constructs.

The SysML blockMechSensois partially defined due t§abstract} appearing in the
block’s namespace. SteadyStateDetectoextends this partial definition through the
specialization relationship.

Modelica also supports model reuse through theotiseplaceable properties and
their redeclaration. A Modelica class can have moments that are tagged by the
replaceablekeyword. This allows the component to be redefinsing theredeclare

construct when its owning class is typed by a camepb in another class. In SysML,

36

every property of a block is considered to be rmgdble using standard UML

mechanisms of redefinition.

3.34 DAE-Based Internal Behavior

DAEs are commonly used to define the continuousdya behavior of a system.
To define the DAE-based internal behavior of a ;lddodelica employs thequation
clausein which equations can be used to maintain matheatatlationships between
the class’s components. Similarly, the creatiommathematical relationships between
SysML properties is accomplished by assigning caimgs to a given block. Constraints
appear between braces and are displayed in a bloahstraints compartment

Oftentimes, initial conditions must be placed onmadel to ensure that a
mathematical solver can provide an analytical omewcal solution to a system of
differential equations. In the context of a nuroarisolution, initial conditions are held
true at the beginning of a simulation and can chaihgreafter. The creation of initial
conditions is generally accomplished in Modelicanggheinitial equation clause To
map this concept into SysML, a distinction mustrbade between regular and initial
constraints. Such distinctions or semantic exterssare accomplished in SysML using
UML stereotypes. Accordingly, a constraint cancharacterized as an initial condition
using thexinitial» stereotype. This stereotype is an original extent SysML and can
only be assigned to constraints. The stereotypeifsgs that the constraint must be true
at the beginning of a simulation.

To illustrate the use of Modelica equations, FigBu2 displays the claddassand
its behavior as characterized by the initial equratand equation clauses. Equivalent

usages of SysML constraints and dneitial» stereotype are displayed in Figure 3.3. The

37

internal behavior of the blocklassis defined using four regular constraints and one
initial constraint. Note that the constraints @l refer to the Modelica language, but

other syntax could be used according to the modgleeferred executable language.

3.35 Composing the System Model

Composing a system CD model comprises the desmmitf energy and signal
interactions between system components. Genemallsh component interactions are
modeled using the equivalent of Kirchhoff's circlatws: at a connection (i.e. system
node) all across variables are equal and all thrvagiables add up to zero.

In Modelica, interactions between system componearts modeled using
Modelica connectors, tHéow prefix andconnect clausesAs discussed in Section 3.3.2,
connectors are used to encapsulate across andythvawviables. Other classes then use
these connector definitions to create interface pmomants. The Modelica language
offers a unique modeling construct called fleav prefixthat can be used to explicitly
identify a connector’s through variables. Thisngortant when composing a system
model with Modelicaconnect clauses A connect clause is a special equation used in a
system model's equation section for connectingitkerface components of the system
components. If two or more connector componergscannected with connect clauses,
the following equations are implicitly defined: dlibw variables sum to zero while any
other variables are equal. This is advantageoumémelers because they don't need to
model system nodes—the circuit equations (i.e. éhaivalent of Kirchhoff's laws)
implicitly exist in the model. The lack of explicsystem nodes is illustrated in the

Modelica connection diagram of Figure 3.6.

38

Dymola - Dynamic Modeling Laboratory - [Diagram]

File Edit Simulabion Elob &nimaktion Commands SWindow Help

== e y=:

L

[%a- ¢ & =

INOOCARZL 21

“ E = |::|.J:E:tl:|r|'| -

x|

[+l

Packages

;--Frl.ul_,t:

[Medis

[] Slunits

g StateGiraph
(] Thermal

[] Utilities

LowgeaPelativeStates

I rnared

B _ &8

Compaonents

EU rnarmed

elidingtd azz
zpring
damper
fined

o

spring

Tl

dlidingMass
— -

damper

7777

fixed

Modeling

" Sirnulation

Figure 3.6: A Modelica connection diagram for a MGD model.

While Modelica connectors, the flow prefix, and neat clauses are convenient
modeling tools, they have no direct equivalentsSysML. This could be resolved
through the creation of several SysML extensiors stereotypes, but this greatly
restricts the modeling approach outlined in thistisa (Section 3.3) to the creation of
Modelica models in SysML. The approach certaieljes on Modelica as a foundation,
but should still be general enough to facilitate ifitegration of a variety of CD modeling

languages. Furthermore, creating SysML extendimnthe purpose of hiding the details

of a CD model seems to contradict the idea of “evbibx” modeling.

39

To describe component interactions in SysML usirfg/laite box” approach, the
system nodes must be represented explicitly. Bysimdes are used to impose common
constraints on system parts and don't necessagyesent system components. To
recognize this notion, node definitions should dlegated to constraint blocks. A system
model can then owrmonstraint propertieusages of constraint blocks) to represent
system nodes. Using a SysMharametric diagramthe parametenssed in the definition
of a constraint block can be bound to the properieanother block or constraint block
using binding connectors A binding connector implies aure equality constraint
between two objects. If the objects are part ptagse then all of the sub-properties
belonging to each part are equal. Hence, bindiegriterface of a system component to
a parameter of a system node implies that any thestiele properties in the component
interface are equal to their counterparts in th@enparameter. This corresponds to using
a Modelica connect clause to connect two interfamm@ponents that don’t contain flow
variables.

Figure 3.7 illustrates the definition of two comeit blocks named/lechNode3

andMechNode4

40

bdd MSD Node Definition/

MSD

parts
mass: Mass
spring: Spring
damper: Damper
ground: Fixed
detect: SteadyStateDetector

¢

n3 n4
«constraint» «constraint»
MechNode3 MechNode4
constraints constraints
{{Modelica} j1.s =j2.s; {{Modelica} j1.s = j2.s;
j1.s =j3.s; j1.s =j3.s;
j1.f+j2.f+j3.f=0; } j1.s=j4s;
j1.f+j2.f+j3.f+j4.f = 0; }
parameters
j1: MechJunction parameters
j2: MechJunction j1: MechJunction
j3: MechJunction j2: MechJunction

j3: MechJunction
j4: MechJunction

Figure 3.7: Declaration of the mechanical node wamg blocks.

These constraint blocks have several paramefetise typeMechJunction The across

and through variables of these parameters are dulgiethe packaged constraints that
describe Kirchhoff’'s circuit laws for a translat@mmechanical system. MSD owns one
usage of each constraint block to enable the iatieraof its part properties. Figure 3.8
displays a parametric diagram that depicts the jpderactions as a result of binding

usages oMechJunction Note the resemblance of Figure 3.8 to Figure 3.1

41

par MSD J

mass: Mass detect: SteadyStateDetector

j: MechJunction j: MechJunction

[] L]

j3: MechJunction j4: MechJunction
n4: MechNode4
j1: MechJunction j2: MechJunction

T T
spring: Spring damper: Damper
j1: MechJunction t— j1: MechJunction
j2: MechJunction j2: MechJunction

I I

L] []

j1: MechJunction j2: MechJunction
n3: MechNode3

j3: MechJunction

[]

ground: Fixed

j: MechJdunction —

Figure 3.8: The parametric diagram of M&D block.

The Modelica equivalent to Figure 3.7 and FiguBcan be seen in Figure 3.9.

42

/[The MSD declaration
class MSD
/[The system components
Mass mass;
Spring spring;
Damper damper;
Fixed ground;
SteadyStateDetector detect;
/[The system nodes
MechNode3 n3;
MechNode4 n4;
equation
/[The system composition
connect (mass.j, n4.j3);
connect (detect.j, n4.j4);
connect (spring.j1, n4.j1);
connect (damper.j1, n4.j2);
connect (spring.j2, n3.j1);
connect (damper.j2, n3.j2);
connect (ground.j, n3.j3);
end MSD;

/IThe MechNode3 declaration
class MechNode3
MechJunction j1, j2, j3;

equation

jils=j2.s;

jl.s=j3.s;

jLf+j2.f+j3.f = 0;
end MechNode3;

/IThe MechNode4 declaration
class MechNode4
MechJunction j1, j2, j3, j4;

equation

jils=j2s;

jl.s=j3.s;

jls=jds;

jLf+j2.1+j3.f+j4.f = O;
end MechNode4;

Figure 3.9: The Modelica representation of a fatynposed MSD system model.

3.4 Integrating “Black Box” CD Models into SysML

Oftentimes, engineers reuse existing computatiomalels when solving systems
engineering problems. If an engineer wishes t@gean existing Modelica CD model
and integrate it into a larger SysML informationdet) recreating the model in SysML
using the approach outlined in Section 3.3 coutterto be a cumbersome task. In this
section, a modeling approach is described for nattggg pre-existing, external models

into SysML by representing only their most impottdetails and an interface for user

43

and model interaction. System models can thenolbeposed of these external models

using binding connectors and Modelica-specific slyshodes.

3.4.1 Modd Declaration

When building models using a “white box”, high-fitg modeling approach such
as that outlined in Section 3.3, a modeler mustadecevery detail needed to define
completely the model of interest; however, whemgsa “black box”, low-fidelity
modeling approach, a modeler only needs to ackrigelesufficiently the referenced
model and its most important details.

The first step in referencing an external modekascreate a SysML object
representing that model. Since the primary SysMidefling unit is the block and the
modeling approach outlined in Section 3.3 relieslenuse of blocks, the representation
of an external model should be relegated to a blbolwever, using blocks to represent
both “white box” and “black box” could be confusing a modeler can't easily
distinguish between both types of blocks.

To identify a “black box” block referencing an esttal model, the «external»
stereotype is introduced to enable SysML modete@cknowledge dependence upon an
external model. This stereotype is an originakagion to SysML. When a block is
assigned thexexternal»stereotype, the modeler is obliged to include seaey model
metadata by adding the value propertiésString, fgqn:String andmime:String These
properties enable the identification and high-ledekcription of the external model.
While these properties are sufficient for the waidne in this thesis, theexternal»
stereotype could be extended or modified to impaiker important metadata. The

property takes on the value of the external modeiiform resource locator (URL). This

44

allows a SysML model transformer to locate the &@ntaining the referenced model.
Thefgn property takes on the value of the referenced nwédly qualified name. This
identifies the model location within the file sp@mil by url. The mime property
classifies the referenced model and takes on tlue vd a descriptive phrase or keyword.
Figure 3.10 demonstrates the declaration of extdrioaks through the creation
of an MSD system model that utilizes “black box’ferences to four external

translational-mechanics models from the Modelian8ard Library (MSL).

bdd External MSD Definition)

«external»

ExternalMSD MSLMechanicalFlange

massv
«external» spring «external»
MSLSlidingMass MSLSpring
values
m: MSLSIMass
url: String = “.../Modelica 2.2.1/" damper «external»
fqn: String = “Modelica.Mechanics. MSLDamper
Translational.SlidingMass”
mime: String = “model/modelica”
parts ground «external»
flange_a: MSLMechanicalFlange MSLFixed

flange_b: MSLMechanicalFlange

Figure 3.10: The declaration of teaternalMSDSysML CD model.

This BDD is very similar to Figure 3.3 in that atk representing the whole system of
interest owns usages of and is decomposed int&kdbld@at describe the subsystems or
components. Note that tlexternalMSDblock is the only block without the «external»
stereotype as it does not refer to an existing Mcalenodel. All of the other blocks do
have the stereotype and accordingly awh fgn, andmime properties with appropriate

values. In the case of thdSLSlidingMassits url points to the location of the MSEgn

45

identifies the actual name of the model in the M&nd mime has the value
“model/modelica” to signify that the block is red@cing a Modelica model.

A “black box” model is intended to hide details fioa model user; however,
hiding all details is not permissible since a modeler ofemes about certain properties in
the referenced model. Accordingly, most propertiesd not be shown in an external
block, but those representing model parametersapnables of interest must be exposed
to the user. Otherwise, the external block hasnadd application base. To recognize
and utilize these properties, a user should aclenyd them in an external block by
adding value properties that have the same nameayaedas the actual property in the
referenced model. Figure 3.10 demonstrates thdetimyg approach by acknowledging

the parametem owned by the Sliding Mass model in the MSL.

3.4.2 Modd Interface

While many unnecessary details are omitted fromdiaaration of an external
block in SysML, the block’s interface must be egply defined to enable the creation of
system models composed of external models. Juslessribed in Section 3.3.2, the
interface for model interaction is declared usingrtpproperties typed to blocks
containing across and through variables. The mdifderence however is that when
declaring the typed interface blocks, the acrosbk tArough variables don’t need to be
shown. Instead, the typed blocks are also assigmeeexternal» stereotype and given
appropriate metadata.

Figure 3.10 demonstrates the declaration of extenterface blocks through the
depiction of a reference to the MSL Mechanical E&amodel commonly used by MSL

Mechanics models. The other external blocks irnufgg3.10 contain usages of these

46

flange blocks using the names of their counterplrdelica connector components. For
example, MSLSlidingMas®wns usages diiSLMechanicalFlangavith namedlange_a
andflange_bsince the MSL Sliding Mass model owns usages oM Mechanical

Flange model with the naméange_aandflange_b.

3.4.3 Composing a System Model

As discussed in Section 3.3.5, CD system modelscangposed by connecting
usages of blocks that represent a system’s componeunbsystem. In a similar fashion,
modelers might need to create a CD system modelréti@as on connected usages of
external blocks. Just as Section 3.3.5 descrihesuse of system nodes enforcing
constraints upon the across and through variabtpesed in the interfaces of system
parts, the approach to connecting usages of extblmeks relies on Modelica-specific
system nodes that impose Modelica connect clauSesinect clauses are used in place
of an explicit representation of an equivalent tockhoff's laws because most native
Modelica CD models own usages of connectors thatlenthe flow prefix. Hence, a
connect clause that connects two interfaces usiaglow prefix implicitly imposes an
equivalent of Kirchhoff's laws.

To demonstrate the use of Modelica-specific systentes, Figure 3.11 displays
the declaration of a node constraint block ownirapastraint that imposes two Modelica

connect clauses on its parameters.

a7

bdd External MSD Node Definition)

extNode1 «constraint»
ExternalMSD > ExternalMechNode3
parts constraints
mass: MSLMass { {Modelica} connect(flange1, flange2);
spring: MSLSpring extNode2 connect(flange1, flange3); }
damper: MSLDamper
ground: MSLFixed parameters
flange1: MSLMechanicalFlange
flange2: MSLMechanicalFlange
flange3: MSLMechanicalFlange

Figure 3.11: Declaration of a constraint block esgnting a Modelica-specific node.

Each node block hadiSLMechanicalFlangeparameters that are referenced in its
constraint(s). Connecting a part's usageidLMechanicalFlangée.g. mass.flange_b:
MSLMechanicalFlangeto a flange belonging to a node in effect subkdg the system
component’s flange in the connect clause modeletthéyode’s constraint. To compose
a system model, binding connectors are placed legtwgstem components and system
nodes using the same approach outlined in Sect&B.3This is demonstrated in Figure

3.12.

48

par ExternalMSD J

mass: MSLSlidingMass

flange_a: MSLMechanicalFlange

flange_b: MSLMechanicalFlange

[]

flange3: MSLMechanicalFlange
extNode1: ExternalMechNode3

[]

flange1: MSLMechanicalFlange

flange2: MSLMechanicalFlange

[]

spring: MSLSpring

damper: MSLDamper

flange_a: MSLMechanicalFlange

flange_a: MSLMechanicalFlange

flange_b: MSLMechanicalFlange

flange_b: MSLMechanicalFlange

[]

[]

flange1: MSLMechanicalFlange flange2: MSLMechanicalFlange
extNode2: ExternalMechNode3

flange3: MechJunction

7

ground: MSLFixed

flange_b: MSLMechanicalFlange

Figure 3.12: The parametric diagram of Ehé¢ernalMSDblock.

While the use of Modelica-specific system nodesliexly captures Modelica
connect clause syntax, it can become cumbersoma wedmposing system models. As
discussed in Section 3.3.5, a SysML binding cormareataps directly to a Modelica
connect clause under the assumption that all Masatontained in a SysML model’s
interface don't rely on an equivalent of the Modeliflow prefix. Hence, any time a
SysML-to-Modelica transformer encounters a SysMlnrextor, a Modelica connect
clause is created. Consequently, a “hack” of gertstroduced in which a modeler can

substitute simple binding connector(s) in placead¥lodelica-specific system node. In

49

Figure 3.12ground.flange_hs connected textNode2.flange@hile extNode2.flangeis
connected tospring.flange_b The corresponding set of Modelica equations are
connect(ground.flange_b,extNode2.flange®)nnect(extNode.flangel,extNode2.flangel)
(this comes from the constraints of the blo&«ternalMechanicalNodg3 and
connect(extNode2.flange,spring.flange_b)This set of Modelica equations can be
reduced toconnect(ground.flange b, spring.flange Wwhich corresponds to a SysML
connector placed directly betweeground.flange _band spring.flange b Hence,
Modelica-specific system nodes aren’t necessantythair removal from a SysML model
portrays incorrect semantics since the binding eotor replacements are used to
represent the imposition of circuit laws rathemtipaire equalities.

One option is to leave this modeling practice asek that is only effective when
dealing with external models that rely on the Max¢eflow prefix. Alternatively, the
binding connector can be extended using a UML setgpe to ensure that a parametric
diagram of a CD model depicts the correct semantitisis original stereotype, named
«connectClause»can be applied to a binding connector placed betwtwo part
properties typed to external blocks representingl®lioa connectors. The semantics of
the stereotype state that the binding connectaradigtrepresents a Modelica connect
clause instead of simply pure equality. Exampléshe «connectClause>binding

connector are displayed in Figure 3.13 and in #oaeator model of Chapter 6.

50

par ExternaIMSD/

mass: MSLSlidingMass

flange_a: MSLMechanicalFlange

flange_b: MSLMechanicalFlange

«connectClause» «connectClause»
spring: MSLSpring damper: MSLDamper
flange_a: MSLMechanicalFlange — - flange_a: MSLMechanicalFlange
flange_b: MSLMechanicalFlange flange_b: MSLMechanicalFlange
| |
«connectClause» «connectClause»

ground: MSLFixed

+ flange_b: MSLMechanicalFlange H

Figure 3.13: UsingconnectClausebinding connectors in place of system nodes.

3.5 Summary

This chapter outlines in detail the approach toesgnting CD models using the
graphical modeling constructs provided in SysML.ect®n 3.1 first establishes the
objectives of the approach to ensure that its useiges a SysML modeler with a
valuable CD modeling ability. Section 3.2 initiatthe explanation of the SysML CD
modeling approach by providing justification foring Modelica as the foundational CD
modeling language. Section 3.3 provides an exhausapproach to creating fully-
detailed, “white box” CD models in SysML. To fatte the simplification of CD
modeling in SysML, Section 3.4 provides a convenapproach to creating “black box”

SysML CD models that act as proxies for existingdeliica models.

51

The SysML CD modeling constructs outlined in thiegter are the foundation
for integrating CD models with other SysML modeldsing these constructs, modelers
can abstract important knowledge from system CD eat®dnto SysML such that
information can be shared amongst the various ati@ilels represented in a SysML
information model. Furthermore, the language magpised to develop the SysML CD
modeling approach can be used to develop a grapkfarmation schema for automating

the transformation of information and knowledgensstn SysML and Modelica models.

52

CHAPTER 4
TRANSFORMING BETWEEN

SYSML AND MODELICA MODELS

In Chapter 3, an approach was described for reptiegeCD models in SysML
via a language mapping between SysML and Modeli@me of the objectives of the
approach was to enable the transformation of Sy§NMLmodels into Modelica models
for the purpose of model execution. In this chgpiee language mapping is extended
into a graph transformation schema and transfoonatiles that enable the automation

of SysML-to-Modelica model transformations.

4.1 The Need for Graph Transformations

If true model integration is to occur in SysML, ergers must be able to link
external models adhering to languages other thavByo models existing in SysML.
Such a linkage permits the creation of dependergéseen design and analysis models
authored in SysML or in other languages. In thetext of CD modeling in SysML, the
linkage to Modelica models is partially establisisdthe CD “white box” and “black
box” modeling approaches described in Chapter 3veler, the ability to abstract a
Modelica CD model into SysML doesn’t necessarilpye the ability to affect the
Modelica model through the representation of bigdiand associations to the SysML
model. To provide this abilty, a modeler must kable to transform
knowledge/information between SysML and Modelicadels. Preferably, these

transformations are automated to ensure fast and-feee transformations.

53

One option for automating the transformation preces by using a typical
computer programming language (e.g. Java, C/C++HQréate software that is able to
guery and transform SysML and Modelica models tglotine use of large, complex sets
of logical constructs (e.g. switch statements,t#tesnents). While this is a feasible
approach to implementing model transformationspight not be the most user-friendly
and adaptable approach.

Alternatively, another option for automating thansformation process is through
the use of a higher-level approach that is betigted for implementing model
transformations. One such high-level approachhe tse of graph transformations.
Instead of using complex sets of low-level logicagh transformations rely on pattern
matching abilities built into graph transformatidools (e.g. VIATRA) to identify
precondition patterns in a source model and tocpites postcondition patterns in a target
model. In the context of SysML-Modelica transfotimas, graph transformations can be
used to locate and specify patterns in a graphSysML or Modelica model.

Outside of the relative ease of incorporating gramnsformations, another
important benefit is the preservation of graphgrat between source and target models.
When performing graph transformations, the restulgaaph can be preserved and reused
for future propagations of changes in a sourceanget model. This is not easily
accomplished using low-level logical constructs.

Overall, graph transformations provide a convenmethanism for completing
model transformations. The implementation of graphsformations for the purpose of
transforming SysML and Modelica models providesftil®ewing potential functionality:

the generation of Modelica models from SysML modelsd vice-versa; and the

54

propagation of changes in Modelica models to Sysfthdels and vice-versa. When
these abilities are obtained, true “execution” $irdan be established between SysML and

Modelica models.

4.2 The Transformation Approach

Due to the benefits of performing model transforiore with TGGs, the
transformation approach outlined in this chapteohkees around the creation of a TGG
and corresponding operational graph transformatiorfes. Operational graph
transformation rules are scenario-specific rules faansforming source modeling
elements into corresponding target modeling elesent contrast, actual TGG graph
transformation rules are declarative by nature amte powerful since they enable
bidirectional model transformation and model syodiwation; however, these rules are
difficult to implement because not all transforroag are bidirectional and many model
transformation tools are not capable of executiiniydctional transformation rules. In
this chapter, operational rules are developed ferfopming SysML-to-Modelica
transformations because they sufficiently demotestitee power of graph transformations
and their potential for improving MBSE. Moreovéne TGG described in this chapter

can still facilitate the development of actual T@@&es.

421 The SysML and Modelica Metamodel Subgraphs

The key to developing a TGG is the language mappifdy examining the
mapping in detail, the essential modeling eleméwots each language can be identified
and separated from the non-essential elements. eXxamnple, a clear mapping exists

between SysML blocks and Modelica classes, so ðents must be acknowledged in

55

the SysML-to-Modelica transformation schema. Imtcast, a clear mapping does not
exist between the Modelica flow prefix and a Syskibdeling construct, so the flow
prefix is not included in the transformation schem®&®nce the necessary modeling
elements are identified, graph-based representatbreach language are developed as
subgraphs of the TGG. These subgraph metamodelsiarintended to represent a
modeling language in its entirety; instead, they mcomplete representations enabling
model transformations that adhere to the languaggpmg of interest.

Figure 4.1 displays the subgraph of the SysML metighused in the SysML-to-

Modelica TGG.
sysmllmport
generalization)
contain
String sysmiElement
stereotype ‘ %
umiMultiplicity B block ‘ sysmlPackage ‘
multi propAssn type

4{ property ‘ ‘ constraintBIock‘ ‘ valueType

endAssn %

| 1 | | |

sysmlConnector value part constraint sysmlParameter constraintProperty

Figure 4.1: The SysML metamodel subgraph of thé&viiy®-Modelica TGG.

This representation of the SysML metamodel str&ke®mpromise between maintaining
accuracy and fostering ease of use. Additionallydeling elements that are not required
in the SysML-to-Modelica transformation are excldde.g. requirements). Important

modeling elements such as blocks, packages, pregednd connectors are included

56

while unnecessary elements like connector endsr@led are replaced with the simple
relationendAssrpointing from a connector to a property.
Figure 4.2 displays the graph of the Modelica met@@hused in the development

of the SysML-to-Modelica TGG.

modelicalmport

composition

extends

class

type A

modelicaConnector modelicaType modelicaPackage
—
component unitAssn equation
egnAssn
modelicaUnit d
componentRef
size ‘ ‘
modelicaParameter arraySize connectClause initialEquation

Figure 4.2: The Modelica metamodel subgraph ofSy&VIL-to-Modelica TGG.
Again, the intent of this graph is not to refleciredtly the Modelica language
specification [11], but to strike a balance betwaecuracy and ease of use.

4.2.2 The Correspondence Metamodel Subgraph

To develop the correspondence graph for the TGGh esapping described in
Chapter 3 is translated into a correspondence elethat points to the mapped elements.
This results in the specification of the SysML-t@dklica TGG as depicted in Figure

4.3.

57

SysML Correspondence Modelica
blockR T lassR
blocl o° block2class case class

!

blockR

il

blockR
valueType

block2modelicaConnector F

classR ‘

‘ value Type2modelicaType

‘ modelicaConnector ‘

classR
modelicaType

=]

modelicaPackageR
}— modelicaPackage

sysmlPackageR
sysmlPackage —{ sysmlPackage2modelicaPackage

propertyR
property

propertyR

property2component

]

property2modelicaParameter }

componentR
component

componentR ‘

- constraintR
constraint

constraintR

constraint2equation

‘ modelicaParameter ‘

]

constraint2initialEquation

equationR
equation

sysmiConnectorR
sysmiConnector

sysmlConnector2connectClause ‘

equationR
initialEquation

connectClauseR
connectClause

Figure 4.3: The Correspondence metamodel subgrfable &ysML-to-Modelica TGG.

Most correspondence modeling elements have beamedednly if they were necessary
for ensuring model traceability. A complete cop@sdence metamodel would include
correspondence elements for every mapping betweesMIS and Modelica. For

example, the correspondence between a block atabswas deemed necessary while a

correspondence between UML multiplicities and Maxdelarray sizes was deemed

unnecessary.

58

4.2.3 The Graph Transformation Rules

When the TGG is complete, operational graph transtion rules can be
developed that force a source and target modeltiefgthe TGG. As depicted in Figure
2.2, graph transformations are used to read a sommadel adhering to a source
metamodel and write a corresponding target mode¢rag to a target metamodel. In
the context of TGGs, a specific sequence of opmratigraph transformation rules is
used to search through source, target, and comdspoe graphs to match a given
precondition pattern. When the precondition patisrsatisfied, a postcondition pattern
that satisfies the TGG is prescribed resultinghm ¢reation of new correspondence and
target modeling elements.

In the SysML-to-Modelica graph transformation agmio, a graph containing
instances of SysML metamodel elements is firstqzhte identify all top-level (i.e. non-
contained) definition modeling elements (blocksckames, value types, and units).
When a top-level definition element is found, imstas of the appropriate correspondence
element and Modelica metamodel element are cremtddcorrespondence relationships

are defined. This is depicted in Figure 4.4 thioEgure 4.6 (minus some details).

SysML Correspondence Modelica
| |
blockR classR
a: block aCorr: block2class a: class
{new} {new}
{new} {new}

Figure 4.4: The TopBlock-to-Class transformatiole ru

59

SysML Correspondence Modelica

| |
blockR classR
‘ a: valueType }%m{ aCorr: valueType2modelicaType }mﬁ{ a: modelicaType ‘

{new} {new}

Figure 4.5: The TopValueType-to-ModelicaType transfation rule.

SysML Correspondence Modelica

\ \
sysmlPackageR modelicaPackageR
a: sysmlPackage aCorr: sysmlPackage2modelicaPackage a: modelicaPackage
[aisysmiPaclage [<—— " ysmipackag 9o =T 1 ge |

{new} {new}

Figure 4.6: The TopSysMLPackage-to-ModelicaPackeayesformation rule.

While most top-level definition element transforroatrules are simple, a special
rule is used to transform SysML blocks into Modeleonnectors. As depicted in Figure
4.7, this rule states that instancesnaidelicaConnectoand block2modelicaConnector
correspondence elements should exist black is used by gart that is the target of a

sysmlConnectts endAssnelationship.

SysML Correspondence Modelica
type blockR classR
m{ aCorr: blockZmodelicaConnector }mﬁ a: modelicaConnector

endAssn newt newt

‘ s: sysmlConnector

Figure 4.7: The TopBlock-to-ModelicaConnector tfansation rule.

Once all instances of top-level SysML definitiormknts are transformed into
their Modelica counterparts, the transformatiore rdépicted in Figure 4.8 is applied to

the SysML model to transform containeldcksinto containedtlasses

60

SysML Correspondence Modelica

sysmlPackageR modelicaPackageR:
‘ p: sysmlPackage }y%g;{ pCorr: sysmlPackage2modelicaPackage %ﬂg p: modelicaPackage ‘

{new}

contain composition
a: block ‘ aCorr: block2class ‘ a: class
L blockR fnewy | I fnew) Q

inew} classR inew}

Figure 4.8: The ContainedBlock-to-Class transforomatule.

Similar rules exist for containecglueTypessysmlPackagesndunits

The last definition elements that are subject tangformation are blocks
stereotyped by the “external” keyword. As depiciedrigure 4.9, the transformation is
the nearly identical to that depicted in Figure, 4dt the resulting class is flagged such
that a Modelica code exporter (see Section 4.4smbery to create new Modelica

classes that represent existing Modelica classes.

SysML Correspondence Modelica
| |
blockR classR
a: block aCorr: block2class a: class
{new} {new}
stereotype {new} {new}

external: String

Figure 4.9: The ExternalBlock-to-Class transformatiule.

Once all of the instances of SysML definition elerseare transformed, rules are
applied to transform SysMlproperties The general Property-to-Component rule is
depicted in Figure 4.10, but specialized rules algst for transforming specific subtypes

of SysML properties.

61

SysML Correspondence Modelica
blockR ‘ ‘ classR _
a: block < ‘ aCorr: block2class | % a: class
propAssn composition \[/{"®"
{new}
p: property fhevd pCorr: property2component | ~| p: component

| componentR

propertyR {new} {new}

Figure 4.10: The Property-to-Component transforomatule.

The entity structure of the Property-to-Componeahsformation rule is very similar to

that of the ContainedBlock-to-Class transformatite, but the relationships and

element instances have changed. Instead of segrfdri an instance of sysmlPackage

containing an instance ofldock the rule searches for an instance black associated

with an instance of groperty This structure is also present in the Consti@nt

Equation rule displayed

InitialEquation rule displayed in Figure 4.12.

in Figure 4.11 and spemdli by the Constraint-to-

SysML Correspondence Modelica
blockR ‘ ‘ classR)
a: block {/P ‘ aCorr: block2class | = @ class
propAssn eqnAssn /"W
{new} {new} ’7
¢: constraint cCorr: constraint2equation } - c: equation
constraintR tnew) equationR tnew)

Figure 4.11: The Constraint-to-Equation transfoiamatule.

62

SysML Correspondence Modelica

: blockR | : | classFﬁ :
a: block ‘ aCorr: block2class ‘ a: class
propAssn egnAssn {new}
{new} {new}
¢: constraint cCorr: constraint2initialEquation }—Oﬁ c: initialEquation ‘
; equation
constraintR fnew) q fnew)

stereotype

initial: String

Figure 4.12: The Constraint-to-InitialEquation tséarmation rule.

Upon finishing the transformation of properties awdnstraints, SysML
connectors that connect two block properties asnsformed into corresponding
Modelica connect clauses. By searchingdgsmIConnectarthat are the source of two
endAssa targeted at two different properties, the tramsédion rule can create a
connectClausehat directs &aomponentRefelation to the two appropriamponents

This transformation rule is depicted in Figure 4.13

SysML Correspondence Modelica
blockR ‘ ‘ classR
a: block ‘ aCorr: block2class | a: class
propAssn eqnAssn | {new}
sysmiConnectorR ‘ connectClauseR —
EHES smICWH sCorr: sysmlConnector2connectClause s: connectClause
Y {new} Y | {new} {new} ‘
endAssn {new} componentRef {new}
p1: property } p1Corr: property2component } p1: component
{new}
propertyR componentR
endAssn componentRef
p2: property } p2Corr: property2component } p2: component
propertyR componentR

Figure 4.13: The SysMLConnector-to-ConnectClauaestformation rule.

After all SysML connectors have been transformetb iModelica connect
clauses, theysml2modelicanachine finishes the model transformation by ticnsing
simple SysML constructs like the abstract consfrumport association, generalization

association, and UML multiplicities.

63

4.3 SysML-to-Modelica Transformations with VIATRA

To implement the SysML-to-Modelica model transfotima approach, the TGG
and operational graph transformation rules wereo@ed using the VIATRA [16, 17]
plugin for Eclipse. The VIATRA framework was devpéd to provide general-purpose
support for completing model transformations betwearious engineering domains and
modeling languages. Additionally, it was desigriiedsupport many transformation
standards including OMG’s Query/View/Transformatig@VT) [37]. VIATRA is
comparable to other model transformation tools saglirujaba [42] or MOFLON [43],
but offers unique features like recursive pattesind negative patterns with arbitrary
negation depths.

To capture patterns, models, and metamodels, VIATiRAes on its own
declarative modeling language called the VIATRA fle Metamodeling Language
(VTML). VTML provides two main constructs for reggenting models or metamodels:
entitiesand relations An entity represents a modeling concept (e.gclyl property)
while a relation represents a relationship betweatities (e.g. property association
between a block and a property).

Using this entity-relation concept, the metamodielpicted in Figure 4.1 through
Figure 4.3 were described in VTML to create theMilygo-Modelica TGG. Excerpts of

the VTML metamodels can be seen in Figure 4.14.

64

/IThe SysML Metamodel
entity(SysML) {
/[The SysML block
enti ty(block) {
rel ati on(propAssn, block, property);
mul tiplicity(propAssn, one_to_one);
i sAggr egat i on(propAssn, true);

}
/[The SysML Property

enti ty(property) {
rel ati on(type, property, block);

/[The Modelica Metamodel
enti ty(Modelica) {
/[The Modelica class
enti ty(class) {
rel ati on(composition, class, component);

/[The Modelica component
enti t y(component) {
rel ati on(type, component, class);

=

/IThe Correspondence Metamodel
enti t y(Correspondence) {
/[The block2class correspondence
enti t y(block2class) {
rel ati on(blockR, block2class, SysML.block);
rel ati on(classR, block2class, Modelica.class);
}
/[The property2component correspondence
ent i t y(property2component) {
rel ati on(propertyR, property2component, SysML.property);
rel ati on(componentR, property2component, Modelica.component

}
.

Figure 4.14: An excerpt of the SysML-to-ModelicaG@s represented in VTML.

As seen in Figure 4.14, the primary modeling elessvé@m VTML are the entity and the

relation. For clarification, when specifying aatbn the first argument is the relation

name, the second argument is the source entity symethe third argument is the target

entity type. For example, lllock can have a relatiopropAssnpointing from ablock

(preferably itself) to groperty.

65

To specify model transformations performed usingtraot state machines and
graph transformation rules, VIATRA relies on its mwnmperative command language
called the VIATRA Textual Command Language (VTCL)The VTCL language
provides a user with several general-purpose aactstrused to compute graph
transformations. The first construct is tinachine A machine can contain a main rule
and various other rules (i.e. functions) that penf@ctions on the elements existing in a
VIATRA modelspace. A machine can also contain graatterns written in VTML
syntax that are used to perform pattern matching MIATRA modelspace. For a
machine to perform graph transformations, VTCL eypla special rule appropriately
named thgraph transformation rul§ GTR) that can contain precondition, postcondition
and action sections. The precondition section ngtem in VTML syntax and used to
specify a pattern that must be matched somewheteimodelspace. The postcondition
pattern is also written in VTML syntax used to prédse how the modelspace should be
changed once the precondition is satisfied. Adterecondition and postcondition are
satisfied, a GTR can use the auxiliary action secto perform a set of imperative
actions on the modelspace (e.g. renaming entiidsesetting entity values).

Using VTCL, a machine namexysml2modelicavas developed for performing
SysML-to-Modelica model transformations. Excerpfsthis machine can be seen in

Figure 4.15.

66

/importing the TGG metamodel

i mport SysML;

i mpor t Modelica;

i npor t Correspondence;

/IThe sysml2modelica VTCL machine
machi ne(sysml2modelica) {

/[The property2component graph transformation rul e
gt r ul e property2componentRule(i nout P)={
/IThe precondition pattern required to do trans formation
precondi tion pattern lhs(B, P, PAssn, C, BCCorr, BR, CR) ={
block(B) {
property(P);

block.propAssn(PAssn, B, P);

block2class(Corr);
block2class.blockR(BR, Corr, B);
block2class.classR(CR, Corr, C);
class(C);

/IThe resulting postcondition pattern
post condi tion patternrhs(P, PAssn, A, Comp) ={
block(B) {
property(P);
block.propAssn(PAssn, B, P);

block2class(BCCorr);
block2class.blockR(BR, BCCorr, B);
block2class.classR(CR, BCCorr, C);
property2component(PACorr);
property2component.propertyR(PR, PACorr, P);
property2component.componentR(AR, PACorr, A);
class(C) {

component(A);

class.composition(Comp, C, A);

}

/IRenaming A and Comp and resetting the value o fA
action{
rename(A, name(P));
r enamre(Comp, name(PAssn));
set Val ue(A, value(P));

/[The gtrule execution sequence
rul e main() = seq{

T forall P appl y property2componentRule(P);

;-
}

Figure 4.15: An excerpt of treysml2modelicanachine as represented in VTCL.

The machine is divided into two important sectioaset of GTRs that reflect the graph
transformation rules described in Section 4.2.3 andain rule that prescribes the

sequence in which the GTRs should be performeden/huser runs treysml2modelica

67

machine, the GTRs are applied to all SysML elemeatssting in a specific

transformation workspace belonging to a VIATRA miggace.

Figure 4.16 through Figure 4.18 demonstrate theultsesof running the
sysml2modelicanachine on an example VIATRA representation oysh\8. model.

= E kransformSpace | entity
[E] correspondenceModels @ entity
+-[E] modelicaModels 1 entiky
=-[E] swsmiMadels 1 entity
=I-[E] M3DExample : sysmiPackage
,ET uM7117_9d {-= Simulations) : contain
,ai‘ uM7121_9d {-= M3DDefinition) : conkain
+-[E] MSDDefinition ; sysmlPackage
=1-[E] simulations : sysmiPackage
,ET uM7119_9d {-= MSDConkexk) @ conkain
=-[E] MsDiContext ¢ black,
,ET ulM7181_9d (- > massParameter) : propAssn
,ET ul7184_9d {- = springCoefParameter) : prophssn
,ET U7 187_9d {- > dampingCoefParameter) ; propAssn
,ET uM7190_9d (- = analysisMaodel) ; propassn
+-[E] analysistodel {{mass.m = massPar...} : part
+-[E] dampingCoefParameter {60001 @ walue
+-[E] massParameter {375} 1 value
+-[E] springCoefParameter 500001 @ value

Figure 4.16: A VIATRA representation of a SysML nedd

68

= [E] root

N =2 R e B B R = R S =T

[E] Modelica
[E] swsML
E] asm
cleanTransformspace @ Maching
copyBlockDefs ; Machine
[E] correspondence

[E] datatvpes : entity
graphPatterns : Machine

sysmlzmodelise ko hics

E transFDrmS H‘ Add R.Elath:lrl
E corresp | =) Export as WTHML
[E] modelic
5B sy nd
=-E] ms [E] Add Entity
Jﬁ' 1 conkain
Run As »)
Jﬁ' n : conkain
& Cebug As r A
=5 Profile As r
Analysis bexk) ¢ contain
=] Team »
Compare With 4 sParameker) ; prophssn
Replace With P hgCoefParameter) : propassn
Run As b pingCoefParameter) ; propassn
Debug As ¥ |ysisModel) : propAssn
Prafile As ¥ is.m = massPar...} : part
&nalysis ¥ Eter {6000% : value

I E] TiassParameter 1479 | value
[E] springCoefParameter {50000} : value

E Y
Figure 4.17: Running th&ysml2modelicanachine.

69

= E kransformSpace | entity
+-[E] correspondenceModels : entity
=)-[E] modelicaModels ; entity
[E] libraryModels @ entity
=-[E] models ; entity
=-[E] MSDExample : modelicaPackage
,ET uM7117_9d {-= Simulations) : composition
,ET uM7F121_9d (- = MaDDefinition) ; composition
+-[E] MSDDefinition : modelicaPackage
=)-[E] simulations : modelicaPackage
,ET uM7119_9d (-= M3DConkext) : composition
=I-[E] MaDiCantext : class

,ET ul7181_9d {-= massParameter) : composition
,ET ul7184_9d {-= springCoefParameter) | composition
,ET uM7157_9d (- dampingCoefParameter) ;| composition
,ET uM7190_9d {-= analysisModel) ; composition
[E] analysisModel {{mass.m = massPar...: : component
[E] dampingCoefParameter 46000% @ modelicaParameter
[E] massParameter {375} : modelicaParameter
[E] springCoefParameter {50000} : modelicaParameter

+-[E] sysmiModels : entity
Figure 4.18: VIATRA modelspace resulting from rumnthesysmi2modelicanachine.

- B -

For more information about the VIATRA source coti®e best resource is the
documentation in the code itself. Most every aspéthe code is well documented using
an easy-to-read commenting scheme. The code cahtamed by contacting the author

and obtaining the SysMLTransformers plugin [44] aodrce files.

4.4 Implementation in RSD

In this section, an overview is provided for thesB. Transformers plugin for the
EmbeddedPlus (E+) SysML Toolkit [45] and IBM’s extied version of Eclipse called
Rational Systems Developer (RSD) [19]. This pluigirused to transform a visual E+
SysML CD model into a lexical Modelica model usMBATRA and thesysml2modelica
machine. Only the most important classes and Ideda¢ discussed in the following

sections. For more information about the Java c®wode, the best resource is the

70

documentation in the code itself. Again, this cade be found in SysMLTransformers
plugin and source files.
The plugin source code is divided amongst the alagses seen in Figure 4.19.

= 15‘1 Java src
=B src
=84 swemitransformers
+- | J] Ackivataor.java
[J] SwsMLZModelicadction. java
[4] SwsMLZModelicaTransFormer. java
[d] SwsMLZViakradction. java
[d] SwsMLZViakralmporterjava
(4] SysML2ViakraTransfarmer java
|J] SysMLSimulationBlock, java
|J] WiatrazModelicaExporter.java
+-|J] viatraManager.java
4By JRE Syskem Library [jdk]
+-B, Plug-in Dependencies
4 [~ META-INF
lard build, properties
S plagin. ml
Figure 4.19: The project explorer view of the Sysivinsformers Java source code.

e e o ey Sy B

The classed\ctivator, SysML2ModelicaActignand SysML2ViatraActiomall deal with
activating the plugin classes via the RSD projeqgilager’'s pop-up menu. The class
SysMLSimulationBlocks used to store and pass along the propertiea &ysML
simulation model (Chapter 5). To ease interactiath the VIATRA Application
Programming Interface (API), théatraManagerclass is used to provide original utility
methods and to access commonly used VIATRA API owthfor manipulating a
VIATRA modelspace. The importer claSysML2Viatralmporteis used to access the
E+ API and translate a selected E+ SysML CD mod& VIATRA syntax. The
exporter clas¥/iatra2ModelicaExporteto access a VIATRA modelspace and generate
Modelica code from a VIATRA representation of a Mbca model. The

SysML2ViatraTransformerlass packages an instance of 8ysML2Viatralmportem a

71

fashion that enables easy execution from the progaplorer pop-up menu. The
SysML2ModelicaTransformeilass is very similar to tfeysML2ViatraTransformezlass
but is used to do a complete transformation of arSgsML CD model using instances
of both the SysML2Viatralmporter and Viatra2zModelicaExporter classes. The

functionality of theSysML2ModelicaTransformetass is illustrated in Figure 4.20.

Embedded Plus SysML Dymola / MDT
Modeling Environment
Simulation
SysML Simulation Results
Model
Simulation Load/Simulate

Modelica
Model

Characteristics

SysML *
Continuous Modelica
Dynamics Model Continuous
Dynamics Model

4

) /
Import SysML Model CExport Modelica ModeD%

VIATRA Transformation Framework

SysML2Modelica
Graph Transformation
Machine

A

VIATRA SysML-Modelica VIATRA
SysML — Correspondence — Modelica
Representation Model Representation

Figure 4.20: The functionality @ysML2ModelicaTransformer

Figure 4.21 through Figure 4.25 illustrate the ltesof transforming an E+ MSD
model by running th&ysML2ModelicaTransforménrough RSD’s project explorer pop-
up menu. Figure 4.21 shows a BDD of an E+ versibthe MSD model that is
embedded inside of a SysML simulation model via @adeh context (Section 5.1 and

Section 5.2).

72

«hlock, sirnulation:
5 M5DSimulation
[Cg startTime : Time
[Cg stopTime : Time
[Cg time : Time
Eg nurnIntervals ; Integer
1

1 - simulationContesxt

«hlock:
i) MSDContext

[Cg massParameter | Mass
Cg springCoefParameter ; SprinaRate
(Eg dampingCoefParameter : DampingCoefficient
1
1 - ahalysisModel
whlockz
) MSDSystem

Cg mass @ Mazs

[Cg spring @ Spring

[Eg damper : Damper

[Eg ground : Fixed

[Eg force : Force

[Eg nodel : MechanicalNode
[Eg node2 ; MechanicalModed

Figure 4.21: A BDD of the EMSDSystem
MSDSystens owned byMSDContexivhich has three value properties characterizieg th
mass spring and damper part properties ofanalysisModel These properties,
massParametefset to 375 kilogramsypringCoefParametgfset to 50,000 Newtons per
meter), anddampingCoefParametef(set to 6,000 Newton-seconds per meter), are
intended to represent realistic characteristica oér suspension. Figure 4.22 displays a

parametric diagram dfISDSystenthat is similar to the diagram shown in Figure. 3.8

73

) MSDSystem

=

rmass | Mazss

=

j 1 Mechanicallunction

=

force 1 Farce

=

j 1 Mechanicallunction

£

]

g =
i1 : Mechanicallunction j2 + Mechanicalunction
g g
i2 1 Mechanicallunction 4 1 Mechanicallunction

spting { Spring
I

=

=

damper\Damper

=

i1 : MechanicalJunction

=

j2 + MechanicalJunction

=

il 1 Mechanicallunction

=

j2 1 Mechanicallunction

= (=

i1 : Mechanicallunction j2 + Mechanicallunction
g
i# 1 Mechanicallunction

Fized

=

=

j 1 Mechanicallunction

Figure 4.22: An E+ SysML CD model of a MSD system.

74

As depicted in Figure 4.23, this model can be tianged into a corresponding Modelica

model by right clicking it in the RSD project expdo and selecting “Generate Modelica

Model...".
P Project Explorer X = ‘:,1:’:"{} ¥ = O
1=F ContinuausCynamicsiModeling
= SysML2ModelicaviatraTransFormer
[=1=F SwsMLTestProject
@ Diagrams
=] % Models
=B
L (At Add UML ¢
57 (Blocl &dd Diagrarn r
o (msd Add SysML ’
'?;:, (ML Add SysML Diagram »
B3 Camp fdd SysML Relation r
B0 Inkerl Mew 4
© MSDE add shorbeut
@ MsDe
@ simul Cpen
B value Cpen With »
RLCExarm Close
TestMod: Close all
Save fAs...
Mavigake ¥
Wisualize r
Rename
Refactor r
3 Delete
Import Model Library, ..
gy Import. .,
= Export,..,
E‘ Walidate
£ | Refresh F5
EE Ogtline 532 Inher Modeling References L
&n outline is nat available, Find/Replace. ..

7 Model Query...
Generake Report. ..
Generate Yiakra Model,. .

Generate Modelica Model, .,

Figure 4.23: Generating a Modelica model from theSysML CD model of a MSD system.

75

When the SysML2ModelicaTransformecompletes the transformation process, the
resulting Modelica model is placed in a ModelicavBlepment Tooling (MDT) [46]
project and imported into Dymola [47] for simulatio This is shown in Figure 4.24 and

Figure 4.25.

%84 ExcavatorModel em:x g4 MSDExample. emx @ MSDExample:: Simulations: M50 Simulation v mple.mo X =0

package M3IDExsmple| b
package Simulations

class M3IDContext
M3DExawmple . M3DDefinition. M3D3ystem analysisModel (mass.m = massParameter, spring.c = springCoefParameter, damg
parameter M3DExample.MS3DDefinition.ValueTypes.MNass wassParameter = 375;
parameter M3DExample.MS3DDefinition.ValueTypes.S3pringRate springCoefParameter = 50000;
parameter M3DExsmple.MSDDefinition.ValueTypes.DampingCoefficient damwpingCoefParameter = £000;

end M3DContext:

end Simulations:

package M3DDefinition

class M3D3ystem
M3DExawple.M3Dhefinition. Components. Mass mass;
M3DExawmple . M3DDefinition. Components. 3pring spring;
M3DExawmple.M3DDefinition. Components. Damper dsamper;
M3DExawmple . M30Definition. Components.Fixed ground;
M3DExawple . M3DDefinition. Components.Force force;
M3DExample . M30Definition. Interfaces. MechanicallNode nodel;
M3DExample . . M3DDefinition. Interfaces. MechanicallNoded nodel;
egquation
connect (ground. j, nodel.j3):;
connect (nodel.jl, spring.j2):
connect (darwper.j2, nodel.j2):
connect (spring.jl, nodeZ.j3):
connect (darwper.jl, nodeZ.j4):
connect (nodez.j2, forece.j):
connect (nodeZ.jl, mass.j):
end M3D3vstem;

end M3DDefinition;

end MEDExample;

Figure 4.24: An MDT view of the resultant ModeliREsD model.

76

MSDContext - MSDExample. Simulations. MSDContext M=E3
File Edit Simulakion Plab Animation Commands Window Help
s HQAS Wie@mi: He O @:FER EOE
Pl HMAD M Tived |} Speedt] 1 v

Y ariable Browser |_r| [E| [5_<|
dzres 1 analysizshodel mazs =
M5S0 Context 2 032
= analpziztd odel
| [Hmass 0.30 4
]
Oa 0.2a8 4
5
[derfs] 0.25
v : £ E
[der+] 024
[Im
L LOs0 o 022 4
{ [®zpring
| Edarper 3 020
£ ! 2 018 | , | , | | |
[Advanced] 0 1 9 3 4

| = true
zimulateModel { "M5DExample Simulationzs . M5DContext", stopTime=d, number0fInterval=s=2000,
= true

4 | >

0] 3

ommands

. (= Modeling | “* Simulation |

Figure 4.25: The Dymola simulation of the ModelM&D model.

The simulation results of Figure 4.25 indicate titet MSD CD model authored
in E+ was transformed into a meaningful, executdiledelica model. In fact, the
performance of the simulated MSD system satisfies ReboundRegrequirement
specified for thaVheelSuspensiamodeled in Figure 2.1. Moreover, the behaviothef
MSD model corresponds nicely with that of a truestaspension. When a suspension is
given a displacement and forced to respond, itcslpi overshoots its steady-state

position and gradually (i.e. with no residual vitiwa) settles.

1

While transforming a SysML CD model into Modelicabpides some benefits for
automating the simulation of the SysML model, trensformation of a model context
(Sections 5.1 and 6.4) provides much more funclignafor a SysML user.
Transforming the model context enables the simaudabtf a CD model that includes
information regarding static or known aspects & $iystem of interest. Currently, an
unstable version of the SysMLTransformers plugin bandle some depictions of a CD
model's context. This could be easily stabilizgdcbntinuing the development of graph
transformation rules and the Java code used tothertransformations; however, the
current abilities of the SysMLTransformers pluginoyide promising examples for

creating other types of graph transformations ppsut of model integration in SysML.

4.5 Summary

In this chapter, a TGG and operational graph tansitional rules are presented
to handle SysML-to-Modelica model transformation§ection 4.1 first justifies the
selection of graph transformations for automatinggsMiL-to-Modelica model
transformations. Section 4.2 is a description lid SysML-Modelica TGG and the
SysML-to-Modelica operational graph transformatrafes. Section 4.3 is a discussion
on the implementation of the SysML-Modelica TGG ardph transformation rules in
the VIATRA graph transformation tool. Section 4pfovides an overview of the
SysMLTransformers plugin for RSD which is usedransform E+ SysML CD models
into lexical Modelica models.

By establishing the ability to transform SysML mtsdmto Modelica models via
graph transformations, a precedent has been se¢rabling the execution of more

complex graph transformations. The TGG proposddisnchapter provides a foundation

78

that can be reused or extended to support modelftnanations like Modelica-to-SysML

transformations and model synchronization transé&ions. Moreover, this chapter
provides a basic guide for creating a true linkMgetn SysML and other external models
via graph transformations. As support grows faating transformation links between
various types of integrated models, engineers ballbetter able to ensure information
consistency and model traceability throughout thedehtbased design of a complex

system.

79

CHAPTER 5

MODELING SIMULATIONS AND ANALYSES IN SYSML

In the context of model-based systems engineenmoglels and simulations allow
systems engineers to investigate and predict thavi@ of system alternatives without
the need for physical prototyping. For exampl&x model of a MSD system can be
used to simulate and predict the behavior of asogpension alternative. This chapter
describes how to relate a CD model to other reledasign information/knowledge in
SysML by binding of model parameters inn@odel contextdefining an experiment
performed on a model insamulation defining a measure of effectiveness as the result
a simulation; and using abstracted simulatiom the context of system analysis. This
complements the model transformation approachradlin Chapter 4 and the model
integration effort in general because it enablesttansformation and execution of CD

models that incorporate information from other SisiModels.

5.1 Defining the Model Context

In systems engineering, a continuous dynamics mdlalways used in a
particular context. Within this model context #lements of a system’s structural model
are bound parametrically to the corresponding efesnef the analysis model. For
example, when analyzing a set of car suspensiemalives, engineers can assume that
the mass used in a MSD CD model is always one guaftthe car's mass even though
the suspension characteristics vary amongst teenatives.

In current practice, engineers do not always disiish between the physical

structure or system topology and the correspongysiem behavior. For instance, it is

80

common practice to use an electric circuit diagesnthe representation for defining both
the circuit topology as well as the behavior of tireuit in a SPICE simulation [48]. As
systems become more complex engineers often nemgbtesent a system with multiple
simulation models corresponding to different leved$ abstraction or different
disciplinary perspectives. The use of an explicbdel context as suggested here
facilitates the preservation of consistency amoradisthe separate models. A similar
approach to setting the context for an analysis ehal demonstrated with the MRA
CBAM concept [21].

To relate the structure to the behaviomadel contexblock is defined with two
part properties: one usage of the system modebardiusage of the analysis model. If
mathematical relationships beyond simple equivaendst between the known elements
of the system model and the corresponding elem&ntke analysis model, additional
constraint blocks can also be defined. Finallyaeametric diagram of the model context
block is created to bind the known system eleméotishe corresponding analysis
elements.

In the lower portion of Figure 5.1, the blobkodelContextis defined as owning

usages oMSD, Car, and a constraint block nambthssRelation

81

bdd Simulation Definition)

«simulation»
SuspensionSimulation

«constraint»
Sample&Hold

values
startTime: Time =0
stopTime: Time =5

constraints
{ {Modelica} when time >=t then
input = output;

simModel

time: Time end when; }
kinput: Real
dinput: Real) parameters
ssTimeOutput: Time input:
output:
’ time: Time
t: Time

sample&hold

ModelContext

? massRel

«constraint»
MassRelation

constraints

msd mcCar

MSD Car

{{Modelica} m = 0.25*carMass }

parameters
m: Sl.Mass
carMass: Sl.Mass

Figure 5.1: Declaration of tHeuspensionSimulaticandModelContexblocks.

In Figure 5.2, a parametric diagramMbdelContexis used to establish the relationship

between the masses of the MSD and car models.

par ModelContext J

mcCar: Car

msd: MSD

mass: Sl.Mass

mass.m: Sl.Mass

carMass: Sl.Mass

massRel: MassRelation
m: Sl.Mass

Figure 5.2: The parametric diagramhdddelContext

Inside of this parametric diagrammsd.mass.ns defined as one quarter of the mass of

mcCar.mas$y connecting them to the appropriate parametertti® constraint property

massRel

82

5.2 Modeling the Simulation

A simulation is an experiment performed on a corapomhal model [41]. Before
a simulation can be performed, the experiment rbasfully defined. A fully defined
simulation includes a specification of initial catmhs, boundary values, observed
outputs, and potentially the process steps one folistv to complete the experiment.
From a modeling perspective, all of these aspemsbe captured in the computational
model itself or in extensions of the model definesing the same modeling constructs
described in Chapter 3. One can therefore asshatethe “model” as defined in the
model context is fully specified—all the parametars bound to values and the set of
system equations is non-singular. Under those ngstgons, the only additional
information that needs to be provided is the siad end time of the simulation.

To make the semantics of a simulation explicit g3i8L, modelers can utilize the
«simulation» stereotype. This original stereotype can be agpte a block that
represents a simulation of a fully specified comapiahal model. As is illustrated in
Figure 5.1, this stereotype requires the inclusibatime property, which represents the
simulation time;startTimeand stopTimeproperties; and a part property (esgnMode)
that represents the computational model to be simd! The semantics of the
«simulation» stereotype are that all the properties in the cdatmnal model are
evaluated as a function dime from startTimeto stopTime Note that the application of
this stereotype completely defines a simulation eexpent in a fashion that is
independent of any particular simulation solvenvbhwer, other solver-specific properties

could be included (e.g. number of intervals). dldidon, note that Modelica semantics

83

differ from SysML semantics which require the egpldefinition of a local simulation

time property to which all time-varying system pedies can be bound.

5.3 Abstracting the Simulation

A simulation as defined in the previous sectiorowad a systems engineer to
define an experiment in which the system behavian be observed. However,
simulations are often used to make system-levaydesgecisions. In that case, the same
experiment is often performed on multiple systerterahtives. It then becomes
important to abstract this simulation formally f®use purposes by clearly defining the
inputs (the properties that can take on differeadu@s from one simulation run to the
next), and the outputs (the properties that aiatefest to a decision maker, for instance,
a measure of effectiveness that drives a desigmigattion). The relationship between
simulation inputs and outputs can then itself bes@tered as a model. Unlike the model
of the system, this model is an algebraic relatigmnsalbeit a very complex one, that
requires running the entire simulation to compute outputs from the inputs. When
abstracting a simulation in this fashion to supmetision making, it is justifiable to
assume that the outputs of the simulation are iscplantities (decisions can only be
made based on scalars because vectors cannot leerdmmed [49]). Sometimes this
requires that a modeler include additional modeéitgments in the CD model to define
these scalar measures of effectiveness. For testam the BDD in Figure 5.1 and the
corresponding parametric diagram in Figure 5.3, gshspension simulation has been
abstracted into an input-output model with inpussti@e decision variablesnput and
kinput (bound to the damping and stiffness of the suspepsiand an output as the

measure of effectivenesssTimeOutpufthe time to steady-state for the MSD system).

84

par SuspensionSimuIation/

stopTime: Time time: Time

t: Time time: Time
sample&hold: Sample&Hold

output: input:

[] [1]

ssTimeOutput: Time simModel.msd: MSD

— detect.ssTime: Time

dinput: Real damper.d: Real
kinput: Real spring.k: Real
time: Time

Figure 5.3: The parametric diagramSxspensionSimulation

The output has been bound to a property of MSDutlinaa “sample and hold” constraint
property, sample&hold making explicit that the output takes on the gatf the time-
varying propertydetect.ssTimavhen the simulation time equadtopTime In general,
more complex models may be necessary to relatears@altputs to time-varying

simulation properties.

5.4 Embedding the Simulation into an Analysis

Once a simulation has been abstracted into an-opiut model, it can be used
in support of analyzing system alternatives witbpesct to stakeholder requirements and

measures of effectiveness, as is illustrated inr€i.4 and Figure 5.5.

85

bdd Analysis Deﬁnition)

SuspensionAnalysis

? werify»)

sim W

«simulation»
SuspensionSimulation

values
startTime: Time =0
stopTime: Time =5
time: Time
kinput: Real
dinput: Real
ssTimeOutput: Time

suspensionAlternative

«requirement»
ReboundReq

WheelSuspension

'

shock Q/

Shock

values
springRate: Real = 50000

values
dampingCoef: Real = 6000

Figure 5.4: Declaration of tHeuspensionAnalysidock.

par SuspensionAnaIysis/

suspensionAlternative:

sim: SuspensionSimulation

WheelSuspension

ssTimeOQutput: Time

«moey settlingTime: Time

dinput: Real

shock.dampingCoef: Real

kinput: Real

coil.springRate: Real

Figure 5.5: The parametric diagramSafspensionAnalysis

Analyses generally verify that a system alternativeets a certain system requirement.
This can be modeled explicitly in SysML using teerify» dependency. A parametric
diagram of a block representing a system analyais e used to connect the system
alternative to the abstracted simulation, as tatstd in Figure 5.5. Instead of binding the
simulation inputs and outputs directly to the cep@nding value properties of the system
alternative, one could also define an optimizagwablem in which the stiffness and
damping are optimized with respect to one or mogasures of effectiveness. Whenever
there is a need for repeated evaluation of the latioa with different inputs, it is

desirable to embed the simulation explicitly inearalysis as depicted in Figure 5.4.

5.5 Summary

This chapter presents the final facet of integigp@nCD model into SysML by
describing an approach to relating a SysML CD mddebther elements of a SysML
model via the creation of SysML models of simulasioand engineering analyses.
Section 5.1 is a description of how to set the exinbf a CD model by binding its
properties to the properties of a SysML structunaldel. Section 5.2 is an explanation
on depicting simulations of SysML CD models usingmmon SysML modeling
constructs. Section 5.3 describes the abstraofiemmulation models for the purpose of
enabling simulation reusability. Section 5.4 tlkscusses the creation of SysML models
of engineering analyses that rely on abstractedlation and system alternative models.

While others may approach the implementation ofidem system analyses
differently than the approach outlined in this deapthe basic concepts of modeling
simulations and analyses in SysML are crucial &talelishing meaningful relationships
between CD and other SysML models. An analysis ehtile a SysML CD model
provides little value to an engineer if it cannotswer a question about the system
through simulation; hence, simulations and theiniogy analyses are a primary means of
relating the knowledge contained in CD models drel knowledge contained in other
design and analysis models.

By enabling the relation of CD models to other SisModels (e.g. structural
model of a system alternative), the prospect aigusnodel transformations as described
in Chapter 4 becomes even more promising. Tramsfigy a SysML CD model whose

properties are bound to the properties of otheMbydesign or analysis models supplies

87

an executable Modelica model with information thats the context for simulating the

continuous behavior of a given system alternative.

88

CHAPTER 6

THE HYDRAULICALLY POWERED EXCAVATOR MODEL

6.1 Introduction to the Excavator Example

The example model presented in this chapter isnd#e to demonstrate the
scalability of the CD model integration approachpgwsed in Chapter 3 through Chapter
5. If the approach is capable of handling thegragon of complex models such as the
excavator model, then its use in a MBSE design gg®ccould benefit engineers

designing complex systems.

6.1.1 Overview of the Excavator Example

The model described in this chapter is meant tdctlépe continuous dynamic
behavior of an earth-moving, hydraulically powesedavator. These machines are used
extensively in the construction industry amongs$keod for performing a large variety of
tasks with the most common being digging and tremch They are complex systems
composed of numerous interconnected subsystemscamgponents and are typically
designed by large companies employing distributrdlises from engineers of multiple
disciplines.

Motion is provided to these systems through the pterncontrol of multiple
hydraulic actuators linked to various mechanicalctres like the driver’'s carriage and
the digging arm. The carriage is allowed to rotabeut its base through the use of a
hydraulic motor. The arm is composed of three nsinctures: the boom (the large

mechanical link connected to the carriage), thewndrdthe smaller mechanical link

89

between the boom and the bucket), and the digguuedi attached at the end of the
excavator arm. The arm is allowed to move in titegrees of freedom through the use
of four double-acting hydraulic cylinders: two plehcylinders controlling the boom
rotation, one controlling the crowd rotation, ameeaontrolling the bucket rotation. The
hydraulic actuators are powered by a load-sensprgssure-compensating circuit
controlling the operation of a variable-displacemégdraulic pump. The pump is
typically driven by an internal-combustion engiféow is routed to the actuators through
the use of four load-sensing directional servo eslv The valve positions are
continuously controlled by an excavator operatooulgh control signals typically input
from a joystick interface.

To model the digging motion of a hydraulically poe® excavator, a Modelica
model can contain an enormous set of hybrid diseegent and DAE models. Both the
SysML and Modelica excavator CD models depicteithis chapter represent a collection
of over 11,000 equations. The CD model primarilgptares the energy-based,
continuous behavior of the rigid-body mechanics #ral hydraulics, but also includes

simplified models of the control signals and thegiemment.

6.1.2 Appropriateness of the Example Model

This model was chosen to test the abilities of el integration approach
outlined in this thesis due to its increased comipleand relevance to the systems
engineering community as compared to the simplesagapension model discussed in
Chapter 2 through Chapter 5. The excavator mogledomplex due to its multiple
degrees of freedom, subsystems, and encompasseeeang disciplines. Such a model

if deemed valid can provide a large amount of Vallianformation for a decision maker

90

selecting or eliminating individual alternative®rn large discrete or continuous design
spaces.

Under the assumption that the model is sufficiemymplex for testing the
abilities of the SysML CD model integration appribathe rest of this chapter utilizes the
principles of the approach to integrate the exaav&D model into SysML via its
depiction using SysML modeling constructs, the 4fammation of the SysML CD model
into Modelica code, and the incorporation of the8l CD model into a simulation and
engineering analysis model. The model is develas#uy the E+ toolkit for RSD which
imposes certain modeling limitations with respectite integration approach proposed in
this thesis. These limitations are identified tigbout the description of the E+ SysML

CD model.

6.2 Defining the SysML CD Model of the Excavator

To begin the integration process, the excavatorm@iglel is first declared and
composed using the “white box” and “black box” apgrhes outlined in Sections 3.3 and
3.4, respectively. First, as seen in Figure 6.1 ariginal SysML block,

ExcavatorDigCycleis declared in a BDD as a CD model of the exaaiatig cycle.

91

«hlock, externals»

ahlocks «hlocks :
) Hydraulics) ExcavatorDigCycle : e BudlyMechanlcs
Eg swingFlange ; RotFlange_b 1 E:E' ;\:Sw;,g:gmge '.:;Flaln_;;la:ge_a
g boomCylBaseR : TransFlange_a 1 1 : a E’E cyBoomRightBase : TransFlange_h
g boomCylBasel .: TransHange_a 1 1 | EgcvBoomieftBase : TransFlange_b
g boomCyiRadk : TransFlange b 1 Eg cylBoormRightRod : TransFlange_a

Eg boomCylRadL : TransFlange_b
Eg bucketCylBase : TransFlange_a “ydravlics
Eg armiylBase : TransFlange_a

Eg bucketCylRod : TransFlange_b

g cylBoomLeftRod : TransFlange_a
[£g cviBucketBase : TransFlange_b
Eg cylirmBase : TransFlange_b

g cvlBucketRod : TransFlange_a

EE‘ E;n;ncmv!;{r?gjg; Tr?rl'lsglar'llIge_bt 1 - world g cylarmRod : TransFlange_a
o e Rea Py - hode g fan « String

Egil: Tlunctionl . E‘E mime : String

Eg armialve : LSWalvelnitl ahlocks «hlock, externals s url : String

Eg armiCyl : DoubledctingCylinder1 @ TransNode2 @ World n

Eg bucketCyl: DoubledctingCylinder2

Eg bucketvalve : LSValvelnit2 &E‘; i Pansi:ange_; i ;rqam.eg_tb- +Frame_b 1 e e

g boomifalve : LSV alveUnita B gL oo = s grtwg

Eg boomCylL : Doubladctingyinder3 = mlln?esé =tring «block, external>

Eg boomCyiR @ DoubleActingCylinder Egur: =Uing) DigCycleCommands
Egpower : Powsrlnit Modelicalonnection g commandSignal : RealCutput
gy shaft : ConstantSpeed {connect{abl} g fon @ String

(g boom _s_init : Real Eg mime : String

Egarm_s_init : Real g url : String

g bucket_s_init : Real

Figure 6.1: The BDD of thExcavatorDigCycle&sysML CD model.

The blockExcavatorDigCyclas decomposed into various part properties tyjedther
blocks three external, “black box” blocks representimg-pxisting Modelica models of
the excavator’'s multi-body mechanical structurg;@icle command signals, and a world
reference frame; one original “white box” block regenting the hydraulics subsystem;
and one block representing a system node for denading the equivalence of
Modelica-specific system nodes and &wennectClausebinding connector.

At this point, it is necessary to discuss an E+tation affecting the depiction of
system nodes and constraint blocks in general. lé/Nhe modeling approach outlined in
Sections 3.3.5 and 3.4.3 promotes the use of @nstbilocks for depicting system nodes,
bugs in the E+ toolkit prevent a user from follogithe approach exactly. More
specifically, a constraint parameter typed to &llmstead of a value or data type cannot
be connected to any other elements using assemlidinding connectors. This means
that a user cannot connect a component interfguedtyo a block (e.g. a part property

typed toMechanicalJunctionto a usage of a node constraint block since tmstcaint

92

parameter must be typed to the same block (e.g. asaneter typed to
MechanicalJunction To overcome this issue, a modeler must reptasedes using
regular blocks instead of constraint blocks, as seé¢igure 6.1.

The hydraulics subsystem, modeled Hydraulics in Figure 6.1, is further

depicted in its BDD seen in Figure 6.2.

«hlock, externals:
3 PowerUnit

[EgportT : FluidPort

[Eg portLSinit : FluidPort
[Eg portLs : FluidPart

[Eg portP : FluidPart

g flange_a : RotFlange_a
[Eg fon : String

[Eg mrirne: & String

[Ll & String

- Pt 1
1
«hlock, externalz «hlock: «hlock, externalz
) PartialFluidCircuit 3 Hydraulics) HydraulicMotor
&, fign : String & swingFlange ; RotFlange_b & flange_bl : TransFlange_b
& 5| &
Eg mime : String [Eg boomCylBaseR : TransFlange_a ot | Egport FluidPort:
Eg url : String [Eg boomCylBasel : TransHange_a g portl : FluidPort
[Eg boomCylRodR © TransFlange_b 1 1| g fon : String
Eg boomCylRodL ; TransFlange_b Cg mime ; String
1 | EgbucketCylBase : TransFlange_a (g url ¢ String
«block, externals g armiZylBase @ TransFlange_a
9 Tlunction 1 1 g bucketCylRod : TransFlange_b 1 1
Eghort_a : FluidPort |~ _ g Eg armiZylRod @ TransFlange_b - swingValve
g port_b : FluidPort [Eg commandSignal : Reallnput 1 «hblock, extemal_»
[T port_c : FluidPort 1 1 1 1 © LSValveunit
=1 ﬁ:lﬂ : Strlng _ J2 1 i - boomalve EE"!.I' | ReaIOutput
D i G - armiyl 1 SO |
[Cg mirne © String 1 1 1 1 Egu : Reallnput
Eg url : String -boomCyR - boomCyll 1 - bucketcyl [Eg portPZ : FluidPort
[EgportT1 : FluidPort
«hlock, ex‘gemal»_ - armialve g POrtT2 ; FluidPort
-constantSpesd 1 © DoubleActingCylinder 1 Eg portlSz FluidPort;
Eg flange_b : TransFlange_b EgportL51 ; FuidPart
«block, externals Eg flange_a @ TransFlange_a Eg portPl : FluidPort
i ConstantSpeed 5 sl i 5 =
[Eg port_a : FluidPart -bucketyalve | Egports : FluidPort
g flange_b : RotFlange_b [Eg port_b : FluidPart 1 [Eg portE : FluidPort
g fan : String (g fon : String (g fan : String
[Cg mirne © String [Cg mirme & String [Cg mime © String
(g Lrl ¢ String g url : String gl : String

Figure 6.2: The BDD of thelydraulicsSysML CD sub-model.

Hydraulicsis broken down into part properties representisgnterface with the other

excavator subsystem models and other propertiesgepting the hydraulic components.

93

More specifically, the hydraulics subsystem is cosgul of relations to six different
external blocks: PartialFluidCircuit, TJunction, DoubleActingCylindeLSValveUnit,
and HydraulicMotor from the FluidPower [50] library for Modelica; anthe
ConstantSpeerbtational-mechanical model from the MSL.

To compose the system CD model of the excavaterpthltiple subsystems and
components must be bound together using the apgmpesamutlined in Sections 3.3.5 and
3.4.3. First the high-leveExcavatorDigCyclemodel is composed in an Internal Block
Diagram (IBD) in place of a parametric diagram doi@nother E+ modeling limitation.
When modeling in an E+ parametric diagram, a bigdionnector isn't owned by the
diagram owner if the connector is placed betweesteak properties belonging to two
different part properties. Instead, the conne@ancorrectly owned by the definition
block of one of the part properties. For examgle, connector is drawn betweénb.c
andA.d.cin a parametric diagram @& while b is typed toB andd is typed toD, the
connector is incorrectly placed betweBrc and D.c and owned by eitheB or D;
however, this is not the case when modeling in BlD.| When composing a system
model in an IBD, nested connector ends are coyr@tdiced between nested properties.
To cope with this problem, system models are coegom E+ IBDs instead of

parametric diagrams. The IBD BkcavatoDigCycles illustrated in Figure 6.3.

94

3 ExcavatorDigCycle

heydraulics @ Hydraudlics

=

boomCylBaseR : TransFlange_a

=

=

node : TransModeZ

a: TransFlange_a

b : TransFlange_b

E

=

body ; BodyMechanics

cylBoomRightBase ; TransFlange_b

swingFlange : RotFlange_b

=]

sconnectClauses

=

swingFlange : RokFlange_a

boomZvlBasel : TransFlange_a

=
boomCyIRodR ; TransFlange_b

g

cylBoomLeftBase : TransFlange_b

boomCyIRodL ; TransFlange_b

=

cylEoomRightRod : TransFlange_a

armZy|Base : TransFlange_a

g

cvlBoomLeftRod ; TransFlange_a

=

armZylRod ; TransFlange_b

=

cylrmBase : TransFlange_b

=)

cvlarmRod @ TransFlange_a

bucketCyiBase : TransFlange_a

=

bucketZyiRod ¢ TransFlange_b

0
comrandSignal : Reallnput [4]

".

command3ignal : Realoukput

=

u:u:ummanfﬂx;_ DigCvcleCormmands

frame_b : Frame_b

=

cylBucketBase : TransFlange_b

cylBucketRod ; TransFlange_a

=

baseFrame : Frame_a

e

wirld ¢ 'v'-.-'u:url_d-".

=

Figure 6.3: The IBD oExcavatorDicCycle

95

Figure 6.3 depicts the equivalence between Modspeific system nodes and
«connectClause>binding connectors. Any connectors bypassing stesy node are
assumed to have tkeonnectClausestereotype. Figure 6.4 displays a much larger and
more complex model composition through the depictibHydraulic's IBD.

Figure 6.4 also depicts a work-around for overcgramother E+ bug. When
making connections between multiple usages ofdhgesblock in an IBD, connectors are
often incorrectly and automatically placed in otparts of the same diagram. Suppose
that blockA has two propertiels andc. If another blockD owns two usages &%, al and
a2, and a connector is drawn froal.b to another property iD, say e.f, another
connector automatically appears in the IBDobetweera2.bande.f. To overcome this
problem, every E+ definition block can only be tgd®y one property in a given block.

If a definition block is required for two or moregperties of one block, it is copied and
renamed as many times as necessary. For instawstead of creating four usages of
DoubleActingCylinderin Hydraulics (as seen in Figure 6.2), four part properties are
typed to four independent definition blocks conitagn the same definition:
DoubleActingCylinderl DoubleActingCylinder2 DoubleActingCylinder3 and

DoubleActingCylinder4.

96

L6

D Hydraukcs

boomCylRod :
TransFlange b

boornCylB s :

swingFlangs ¢
TransFlange_a

RatFlange_b

matar : HydraulicMator boomCylR ; DoubledctingCyindadt

flange_b1 : TransFlange b

Alange _a : TransFlangs s flange b : TransFlange b

port : FluidPart portd ; FluidPort port_a i FluidPort port_b i FluidPort

+ TIunctionz

port_a : FluidPort port_b : FluidPort
“

wting'ahe § LS\ aheel k]

portds : FluidPort portd 1 FluidPar

parte : FluidPor

1 RealOutpu: u : Reallnpur v i RealGutpu

portLS2 : FluidPort

portLS1 : FluidPort

portP2 tFluidPart portP 1 FluidPart

portT2 ¢ FluidPor portT1 : FluidPor

pawer Pawerlri

haft : ConstantSpeed = [=] =]

ponlS FluidPart porT : FluidPart pantP : FluidPort

flange : RotFlange b T =]

Range_a :RotFlange_a

boamWalve | LSY ahrel k3 ‘

portlS2 ; FluidPort
portP2 : FluidPart

portT2 i FluidPart

boomCylbss : boornCylRod :
TransFlange_a TransFlange b

amCylBase ;
TransFlangs_s

arCylL : DoubleActingCyinds

flange_a : TransFlange_a Aange_b : TransFlangs b

port_a i FluidPart

port_b ; FluidPort port_a : FluidPort

part_c : FluidPort

port_a : FluidPort port_b : FluidPort

t pattE ¢ FluidPort

u : Reallnpur

portLS1 ; FluidPort

portP 1 FluidPart

portT1 i FluidPaort

¥ : RealQutput

flange_a : TransFlange_s

parté : FluidPar

portlS2 : FluidPort

portP2 ¢ FluidPort

portT2 FluidPor

amniCylRed &
TransFlanga b

atmnCyl : DoubledctingCyindar

Aange_b : TransFlangs b

port_b ; FluidPort

armnahve t LSW ahielntl |

porB | FluidPart

u : RealInput

portLS1 : FluidPort

portP 1 FluidPort

ponT1:FluidPart

bucketCylBme |
TrangFiznge_a

ucketCyl ; DoubleActingCryinda?

Alange_a : TransFlange

port_a i FluidPort

bickettave L5Vaheli2

a

parté : FluidPar

+ 1 RealCutput

poHLS2 :FluidPart

porP2 ; FluidPart

porT2 : FluidPart

bucketCylRed |
TrancFlanga b

Aange_b : TransFlange b

port_b i FluidPart

pottB : FluidPart

u 1 Reallnput

portls1 : FluidPort

portP L ; FluidPart

portT1 :FluidPart

portLSinit : FluidP ...

Figure 6.4: The IBD oHydraulics

comnmmandSignal |
Reallnput [4]

This intricate IBD demonstrates the ability of t6® modeling approach to capture the
behavior of complex engineered systems. This fill@ram concludes the depiction of
the excavator CD model which is now ready to bedi@med into a corresponding
Modelica model. One must note that this intricaysML model was not the only way to
integrate an excavator CD model into SysML. Indfesa modeler could have modeled

the entire excavator model in Modelica and refetceitl using an external block.

6.3 Transforming the SysML Excavator Model

This section builds upon the work presented in iBed.2 by transforming the
SysML CD model of the excavator into an executdidelelica model. Just as the MSD
model was transformed in Section 4.4, the SysML3i@mers plugin for RSD/E+ is
used to transform the excavator SysML CD modelgighe SysML-Modelica TGG and
operational graph transformation rules implemented/IATRA. An excerpt of the

resulting Modelica model as displayed in MDT carsben in Figure 6.5.

98

package ExcavatorExample A

class ExcavatorDigCyole

Modelica.Mechanics.MultiBody. World world:;

ExcavatorExample . Components. Hydraulics hydraulics (redeclare package Medium = FluidPower.Fluids.C
ExcavatorModel.Subiystems. Migiyclelfeq command (startTime=0,1) ;

Excavatorlodel.3ub3ystems. NechanicsBody body(sving phi_start=0, boom phi start=50, arm phi start
ExcavatorExawple, Interfaces,.Nodes. Translode?2 node:

equation

connect (hydraulics.boomCylBasel, body.cylBoomLeftBase) :
connect (hydraulics.hoomCylRodR, body.cylBoomRightRod) ;
connect (hydraulics.boomCylRodl, body.cylBoomLeftRod) ;
connect (hydraulics.armCylRod, body.cylirmBod) :

connect (hydraulics.armCylBase, body.cylirmBase) ;
connect (hydraulics.bucketCylEod, body.cylBucketRod) !
connect (hydraulics.bucketCylEase, body.cylBucketBase) ;
connect (hydraulics.command3ignal, comoand.command3ignal);
connect (vorld.frawe b, body.baseFrame);

connect (hydraulics.swingFlange, body.swingFlange)
connect (hydraulics.boomCylBaseR, node.a):

connect (node.b, body.cylBoomRightEase) :

end ExcavatorDigCyole;

end ExcavatorExample;

Figure 6.5: An MDT view of the ModelidaxcavatorExamplenodel.

This Modelica model can then be imported into Dyarfok execution. This is illustrated

in Figure 6.6.

99

ExcavatorDigCycle - ExcavatorExample. ExcavatorDigCycle E]E|r>__(|

File Edit Simulation Plat Animation Commands Window Help
wHQEe Ri¢B[x [HevOo @FEXK EH
sl Al M Time:-—j_ Speed:] 1w

Yariable Brows B Plot [1*]

Variables Walues %
- lelthermLondLeft — hydraulics power portP p - ——— hydraulics bucketCyl port
thermCondRight GEG
envSinkd,
envSinkB
SEE

leakage_aZE re
leakage_BZE e
il 4Ef -

- HbucketValve

Hboom alve

HboomCyll

[+ boomCylR

= paver

CEOT it KIKA L
Clp_init

polsPump

circuitT ank.

[Hreliefy alwe

3EG

[P&]

2E6 -

partLSinit
partLs
- Hflange_a
H=haft
~[Jboom_z_init 1.1
- [amm_s_init 0.7
- [bucket_s_init 0723
command .
4 | | >
[Advanced

gimul ateModel { "ExcavatorExample . ExcavatorDigCycle", stopTime=20, method="da=ssl", result a
= true

[0

Selected object: body.base.shape.Form
£ >

ommands

! (=) Madeling ‘ @ Simulation |

Figure 6.6: A Dymola simulation and animation of BExcavatorDigCyclenodel.

The results of the SysML-based Dymola simulatioensg Figure 6.6 correspond with

the results obtained by manually building #zmeexcavator model directly in Modelica

100

syntax (thus validating that the new auto-generapgtoach produces the same model as
the traditional, manual method). In fact, the Madeexcavator model has been under
manual, iterative development for over a year anoviges meaningful results with
respect to the actual behavior of a hydraulicaiypred excavator. This is encouraging
because the SysML representation is appropriatedfracting the behavior of a complex
model that has been painstakingly developed in e testing the open source Fluid
Power Modelica library [50]. However, work stilkads to be done on the model. Aside
from adding more detail (if higher fidelity resulise desired), one can see from Figure
6.6 that the damping of the system should incréassombat the pressure fluctuations

seen in port A of the bucket cylinder past a tirhé2seconds during the dig cycle.

6.4 Integrating the Excavator Model into a Simulation and Analysis

The final step in completing the SysML integratmiithe excavator CD model is
the establishment of its relationships with othdenmeents of the larger SysML
information model via models of a dig cycle simidatand corresponding engineering
analysis. First, Figure 6.7 and Figure 6.8 setcthatext for the excavator CD model by

binding one of its properties to theassproperty of a&Carriage structural model.

101

«hlock, simmulation:
i) DigCycleSimulation

(S5 startTime : Time

Eg stopTime : Tirme

[Eg time : Time

Eg CycleTimeOutput : Time

(Eg bucketCylDiameterInput | MSLSILength

1

- EMc
1

whlock:
i3 ExcavatormModelContext
1 1
1 - digCycle
- Cafriage 1
hlock «hlocks
) Carriage) ExcavatorDigCycle
[Cg mass @ MSLSIMass [Eg CarriageMass @ MSLSIMass
(Eg bucketCylDiameter : MELSILength
Eg CycleTime : Time

Figure 6.7: The BDD obigCycleSimulatiorand ExcavatorModelContext

3 Excavator™odelContext
carriage ; Carriage digCycle : ExcavatorDigClycle
mass :+ MSLSIMass CarriageMass : MSLSIMass

Figure 6.8: The IBD oExcavatorModelContext

Figure 6.7 also depicts the definition of a SysMlimwdation block named
DigCycleSimulatiorwhich is assigned thesimulation»stereotype and the accompanying
startTime stopTime andtime value properties. The simulation model is abst@dmto a

reusable input-output model, as seen in Figurea@d Figure 6.9, by assigning it the

102

values bucketCylDiameterinputand cycleTimeOutputand binding them to

corresponding properties einc.digCycleExcavatorDigCycle

i3} DigCycleSimulation
emc . ExcavatorModel”ontest)
digCycle E}{cavaturDigCycleQ
bucketCylDiameterinput ; MSLSILeng:m bucketCylDiameter : MSLSILen;ﬂ
cycleTimedutput Tirr; :

cycleTime : Time

Figure 6.9: The simulation abstraction IBD@ifCycleSimulation

Finally, the integration of the excavator CD modelcompleted by embedding the

abstracted simulation model into a model of an magiing analysis of a system

alternative model. This is illustrated in Figuré®and Figure 6.11.

103

the

whlock:s

i) DigCycleAnalysis
averifys 4 1 - dlternativel
«requirermnent: r whlocks
O CyolefimeReq §3) Excavator
Id=1 g digCycleTime : Time
Text = The digcycle time 1
st be less than 15 sec,
1 brydravlics
1 /. digcyclesimulation whlocks
whilock, simmulations: HydraulicSubsystem
3 DigCycleSimulation 1
[Eg start Time : Time e bucketCylinder
g stopTime : Time ablockes
Eg time : Tima DoubleActingHydraulicCylinder
B cycleTimetutput : Time ® L &
e bucketCylDiameterInput : MSLSILength

(g boreDiameter | MSLSILength
Figure 6.10: The BDD dbigCycleAnalysis

i) DigCycleAnalysis

alternativel : Excavator

digoyclesimulation : DigCycleSimulation

digCycleTime ; Time

cycleTimeOutput : Time

E

bydravlics : HydraulicSubsystem

E

bucketCylinder : DoubledctingHydraulicCylinder

boreDiameter : MSLSILength

bucketCylDiameterInput : MSLSILength

Figure 6.11: The IBD obigCycleAnalysis

6.5 Summary

The intent of this chapter is provide an exampléentégrating into SysML a CD

model that goes far beyond the complexity of theDM&le initially presented in this

104

thesis. Section 6.1 provides a brief introductionthe excavator example and a
justification of its use in this thesis. Sectio2 ®egins the description of the excavator
example by declaring th&xcavatorDigCycleSysML CD model. Section 6.3 then
demonstrates the use of this SysML CD model foromatically generating a

corresponding, executable Modelica CD model. MRmabection 6.4 completes the

model integration process by relating the excav@drmodel to other elements in the
SysML information model through the creation of ratsdrepresenting the dig cycle

simulation and a corresponding dig cycle analysis.

105

CHAPTER 7

DISCUSSION AND CLOSURE

In this thesis, CD models representing continuogsachic system behavior are
integrated into SysML to further promote and supporshift to MBSE for complex
systems design. This final chapter discussesntiegration abilities contributed in this
thesis by discussing their validity, limitationg)dafuture prospects. The thesis is then

brought to a close with some final remarks.

7.1 Review and Evaluation of the Model Integration Appoach

The driver behind this thesis is an open-endedtaguesabout the use of design
and analysis model integration via SysML for themotion of information consistency,
model traceability, and automated model transfoionat Many people have explored
model integration in SysML (e.g. Peak et al. [2poman et al. [29], Huang et al. [24]),
but this thesis specifically focuses on the usa ddnguage mapping; TGG and graph
transformation rules; and models of simulations angineering analyses to support the
integration of Modelica representations of CD inBysML information models.
Consequently, a “model” of sorts is provided fotegrating CD models and, if the
“model” is sufficiently generalized, other desigmdaanalysis models into larger SysML
models.

Whenever an engineer decides to use a model, hetfgsieensure that the model
is valid with respect to the conditions under whidttle model is used. Hence, if

distributed engineers developing complex systengs tar use or extend the model

106

integration approach outlined in this thesis, thayst be sure that the method is valid for
their purposes.

To verify and validate methods and models relabeehigineering design, one tool
that is commonly utilized is the validation squ@&]. Due to high level of relevance
between the work presented in this thesis and i#d Df engineering design, the
validation square is used to evaluate the modelgmation approach. The validation
square, as seen in Figure 7.1, is decomposed ouo duadrants representing the

necessary validation steps.

[(1) (4) \
Theoretical Theoretical
Structural Performance
Validity Validity

2 ©))
Empirical Empirical
Structural Performance

\ Validity Validity)

Figure 7.1: The validation square [51].

To validate some construct or piece of work, a usest first ensure that the construct
has theoretical structural validity. This requites user to ensure that the construct is
logically consistent. When a user can confidentBke that assertion, he/she can move
onto ensuring empirical structural validity. In ghguadrant, the user must build
confidence in the example problems used to testdinstruct. If the user is confident in
his choice of example problems, he/she can move emipirical performance validity.
During this phase of validation, the user has a&pgplihe construct to the example

problems and is using the results as supportindee¢e. The user must accept that the

107

example problems provide meaningful results. Ugadisfying this quadrant, the user can
move onto theoretical performance validity. In thisadrant, the user must take a “leap of
faith” by accepting that the construct is usefuydia the applications presented in the
example problems. If this quadrant is satisfie& tbnstruct has been validated and is
generally applicable to the problems it was intehtibesolve.

To ensure that the integration approach maintdiesretical structural validity,
the approach must be logically consistent and aaeiptegrating CD models into SysML
to promote consistency, traceability, and automatiolhe steps used to integrate CD
models into SysML enable the establishment of ab@scy links amongst the sub-
models existing in the SysML information model. eTimtegration approach also
promotes traceability by enabling the establishn@ntdependencies and associations
between various types of SysML models (e.g. requamrgs models) and models of
simulations and engineering analyses which incatgor SysML CD models.
Furthermore, the approach promotes automation aplery the implementation of graph
transformations for automatically transforming imf@tion/knowledge between SysML
and Modelica models. Since the approach promotesistency, traceability, and
automatiorandis consistent with the motivation described int#ecl.4, the approach is
deemed to be theoretically structurally valid.

To ensure empirical structural validity, confidenoethe example problems (i.e.
the MSD and excavator models) must be establishéthile the MSD example CD
model is convenient for easily displaying the intpat aspects of the integration
approach, it is not representative of the compledeis encountered in contemporary

systems engineering problems. On the other hdedCD model of the hydraulically

108

powered excavator is certainly comparable to thmpdexity of contemporary systems,
as argued in Section 6.1.2. When combined togetherMSD and excavator example
models demonstrate the applicability of this mode&tgration approach to problems of
varying complexity. Hence, the work presentedhis thesis is empirically structurally
valid.

The empirical performance validity of the work preted is ascertained through
the successful illustration of both the MSD andaastor example problems. When the
integration approach is applied to both CD modebhnagles, the result is an
interconnected set of SysML constructs infusingeaternal CD model into a larger
MBSE problem. These integrated models now pronsotesistency, traceability, and
transformation automation in a way that better &ggmbngineers to apply MBSE in the
design of complex systems. Hence, empirical peréorce validity is established for the
approach to integrating CD models into SysML.

To fulfill the last quadrant of the validation s@ea theoretical performance
validity must be ensured for the integration apploaln other words, the integration
approach must be applicable to problems outsidineMSD and excavator examples.
As mentioned before, both examples span a larggerahcomplexity. One can assume
that the range represents or is close to the codtiple encountered in the design of
contemporary systems. Moreover, the approach dmilgeneralized and reapplied to the
integration of other design and analysis modelsh&r expanding its application base.
The major problem with the work presented in thissis, however, is that it has not been
tested on the target audience: systems and disaiglengineers working in distributed

design teams. One can assume that through impentesh implementation details this

109

approach to CD model integration could be valudbiethe target audience; however,
that value has yet to be confirmed. This can adgur through extensive user testing
and improved implementations of the integrationrapph. Hence, while the work

appears to be applicable to its intended audiendeseenarios, theoretical performance

validity is not completely ensured.

7.2 Limitations

Language Inconsistencies

The most fundamental limitation of this work is thhe integration approach is
based on a language mapping that is subject tousinconsistencies between SysML
and Modelica. The first notable inconsistencyhiattModelica offers restricted classes
built in to the language for component definitiohil@ SysML only relies on the block
and value type for property definition. In the e€ad mapping Modelica connectors to a
SysML definition construct, the graph transformatia Figure 4.7 provides a suitable
work around; however, many other Modelica restdctéass types are ignored in this
thesis. Another inconsistency between the two uaggs is Modelica’s use of the
variability prefixes likeflow and parameter While these have no direct equivalents in
SysML, SysML properties could be further extendeithvstereotypes to match the
semantics associated with the various Modelicaabdiy prefixes. This lack of
variability prefixes in SysML also causes an ingstecy between the semantics of a
SysML binding connector and a Modelica connect sdau This inconsistency was

discussed at length and resolved in Section 3.4.3.

110

Incomplete TGG subgraphs

Another fundamental limitation of this work is these of incomplete and
simplified metamodels during the construction oé thGG. Both the SysML and
Modelica metamodel graphs omit some elements ofnaaik questionable assumptions
about their respective languages in an attempalanbe accuracy and usability. These
simplifications and assumptions will not support abssible SysML and Modelica
models. In the SysML metamodel, only elements fmapter 8 and Chapter 10 of the
SysML specification [9] are included in the metambdA complete metamodel would
include every modeling element from SysML (e.g.uis®mments, use cases, activities,
state machines). In the Modelica metamodel, difietypes of special equations are not
treated as individual modeling elements per the &liod specification [11] and are
simply lumped together in thequationentity. Additionally, special variability prefixes
(e.g.input, output constantfinal) and restricted classes (efgnctions records model3
are ignored. Moreover, the correspondence metanmdmtains traceability between
actual SysML and Modelica modeling entities butoigs the correspondence between
various SysML and Modelica modeling relations. Timajority of the extensions
required to complete the TGG are implementatioefradd (i.e., they can be implemented
using the same concepts described in this thémsyever, others may require conceptual
extensions beyond the method described in thisshe& complete TGG should relate

everyaspect (entity or relation) of one language tatlago

Reliance on Modelica 2.2

The work presented in this thesis also has linotetifrom the implementation

perspective. The first limitation is the dependenpon version 2.2 [11] of the Modelica

111

language specification. During the course of thisk, version 3.0 [52] Modelica was
released and some of its constructs are not swgzpbyt the language mapping and graph
transformations. For instance, the concept ipaceable packagé.e. a package that
serves as a template package and can be lateakgetithrough redefinition) has been

added to Modelica 3.0, but has not been addreadhisithesis.

Focus on Operational Graph Transformation Rules

Another implementation-oriented limitation of thiwork is its focus on
operational graph transformations for enabling glkeeeration of Modelica CD models
from SysML CD models. While these transformatidies showcase the potential of
using graph transformations for integrating SysMbdels with external models, they
don't actually provide other necessary abiliti@hese include the ability to synchronize
SysML and Modelica models and the ability to getei®ysML models from Modelica
code. Both of these abilities could be achievaduph the creation of bidirectional
transformation rules that force a SysML and Modetiz adhere to the TGG described in
Section 4.2, but the development of such rules ireguurther development and an

increased understanding of graph transformatioorthe

Non-executable Models of Engineering Analyses

One last implementation-oriented limitation of thierk is the current inability to
execute SysML models of simulations and engineeasimglysis. Currently, simulations
and model contexts can be handled by an unstalssowneof the SysMLTransformers
plugin, but SysML models of engineering analyses rawt handled. Such an ability is

crucial for increasing the credibility and powerMBSE. Without this ability, the work

112

presented in Chapter 6 only enables systems emgirteedesign and document a

simulation or engineering analysis.

Practical Limitations

With respect to the practicality of the integrateoproach, the work presented in
this thesis is likely to only provide value to geapghically distributed businesses
designing complex systems. Until model integrai®better supported with easy-to-use
software tools, the added overhead of using advamzalel integration in simpler design
projects is likely to detract value during the d@sprocess. Another practical limitation
of this work is that it has not been tested bytaiget audience. Moreover, performing
such tests in conjunction with this work is notremtly a feasible prospect. To test the
utility of this work, large shifts would need toao from document-centric design to
MBSE in the systems engineering community. Onbntlvould a sufficient user base

exist for testing the approach to CD model intagrat

7.3 Future Work

The direction of future work should first point tawds the development of a more
robust and comprehensive SysML-Modelica mapping thiea TGG schema, better
transformation rules, and a stable software toal ttan be presented and tested in
industry and academia. As mentioned in Section #el current implementation of the
graph transformer is proficient at transformingoatext-free SysML CD model, but not
fully able to transform CD models wrapped into adelocontext. To ensure the success

of SysML as a model integration platform, such fiorality must be acquired to

113

increase support for information consistency, mauateability, and automated CD
model transformation and execution.

Furthermore, consideration should be given to thtegration of a powerful
engineering analysis tool/language, like ModelCents8], for actually executing a
SysML model of an engineering analysis composed beterogeneous set of smaller
design and analysis models bound or belonging stradied simulations. First of all,
such integration would enable system alternativescidbed in SysML to be analyzed
automatically in ModelCenter based on multiple sgstaspects (e.g. structural, CD,
cost). Such an accomplishment could push the laiesl of model integration and
advance the current state of concurrent engine@racfices.

To increase credibility in the claim that this apgech can be generalized and re-
specialized for integrating other design and amalysodels into a SysML model, the
general approach should be applied to engineerimgetimg languages commonly used
in the development of complex systems. For ingasach languages include Maple
[54], CAD modeling languages, and finite elemenglaages. In a fashion similar to the
approach outlined in this thesis, integration stiobk achieved through language
mappings, graph transformation schemas, and theaforepresentation of simulations

and engineering analyses.

7.4 Closing Remarks

As systems desigh becomes an increasingly compldgaor, engineers must be
able to manage effectively the large quantitiesasgociated design information and
knowledge. Moreover, as design teams continuede the sense of central locality, the

use of document-centric design continues to becameantiquated and error-prone

114

approach to solving systems engineering problemnscontrast with document-centric
design, MBSE encourages designers to accept amd su#he changes permeating the
field of systems engineering.

To improve support for MBSE, this thesis builds npbe notion that SysML is a
platform for model integration by exploring the sygy between SysML and Modelica.
By creating a language mapping between SysML anddlifta, an approach is provided
for representing system CD models alongside otlysM& models used to capture a
systems engineering problem. Graph transformatemes then utilized for creating
execution links between SysML and Modelica to suppmodel generation and
synchronization. Finally, an approach is outlinfed relating a CD model to other
SysML models via the specification of simulatiomsl &ngineering analyses.

Hopefully, the work in this thesis not only enablbe integration of CD models,
but also encourages and provides guidance for odsmarchers attempting to improve
support for model integration and MBSE in generdlo succeed in the competitive
global marketplace, designers must be adaptablef@mehrd-thinking. Clearly, the
continued development and adoption of MBSE is aulidactic for adapting to the
changing times; however, MBSE s still a relativglyung approach to systems design
and requires continuous nurturing from industriadl @academic champions. The work
presented in this thesis is just one more strideatds realizing the wide-spread use of

model integration and MBSE.

115

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

Sage, A. P., and Armstrong Jr., J. E., 2086pduction to Systems Engineerjng
John Wiley & Sons, Inc., New York, NY.

Pahl, G., Beitz, W., Feldhunen, J., and Grété]., 2007,Engineering Design: A
Systematic Approacitspringer, London, UK.

Forsberg, K., and Mooz, H., 1992, "The Relasimp of Systems Engineering to
the Project Cycle,Engineering Management Journd(3), pp. 36-43.

Oliver, D., Kelliher, T. P., and Keegan, Jr.GJ 1997 Engineering Complex
Systems with Models and ObjediscGraw-Hill, New York.

Estefan, J., 2007, "Survey of Model-Based Syst&ngineering (MBSE)
Methodologies," Jet Propulsion Laboratory, Califarimstitute of Technology,
Pasedena, CA

Gero, J. S., 1990, "Design Prototypes: A Knalgle Representation Schema for
Design,"Al Magazine 11(4), pp. 26-36.

Mylopoulos, J., 1998, "Information Modeling the Time of the Revolution,"
Information System23(3-4).

ISO/IEC, 2005, "Unified Modeling Language Sgdextion,”
http://www.omg.org/cgi-bin/apps/doc?formal/05-044idf, April 2008.

Object Management Group, 2007, "OMG Systems #liod Language
Specification,” http://www.omg.org/cgi-bin/doc?@éf09-01, April 2008.

Booch, G., Jacobson, I., and Rumbaugh, J.520@e Unified Modeling
Language User Guideédddison-Wesley Professional.

Modelica Association, 2005, "Modelica Langu&eecification Version 2.2,"
http://www.modelica.org/documents/ModelicaSpec2f.pgdril 2008.

The Mathworks, 200&imulink http://www.mathworks.com/products/simulink/,
April 2008.

Christen, E., and Bakalar, K., 1999, "VHDL-AM& Hardware Description
Language for Analog and Mixed-Signal Application&EE Transactions on
Circuits and Systems Il: Analog and Digital SigRabcessing40(10), pp. 1263-
1272.

Mitchell, E. E. L., and Gauthier, J. S., 1978dvanced Continuous Simulation
Language (ACSL),SIMULATION 26(3), pp. 72-78.

116

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Schiurr, A., 1994, "Specification of Graph Ts&tors with Triple Graph
Grammars," iWG'94 Workshop on Graph-Theoretic Concepts in Caoenpu
Science

2006, "The VIATRA 2 Model Transformation Framerk: User's Guide,"
http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-
home/subprojects/VIATRA2/doc/viatratut_October2@ah, April 2008.

Varré, D., 2003VIATRA: Visual Automated Model Transformatidhesis,
Department of Measurement and Information Systémsjersity of Technology
and Economics, Budapest.

The Eclipse Foundation, 200B¢lipse http://www.eclipse.org/, April 2008.

IBM, 2007,Rational Systems Developer (RSD)
http://www.ibm.com/developerworks/rational/produitd/, April 2008.

Peak, R. S., Burkhart, R. M., FriedenthalAS.Wilson, M. W., Bajaj, M., and
Kim, 1., 2007, "Simulation-Based Design Using SysMPart 1: A Parametrics
Primer,"INCOSE International Symposiui®an Diego, CA.

Peak, R. S., Burkhart, R. M., FriedenthalAS.Wilson, M. W., Bajaj, M., and
Kim, 1., 2007, "Simulation-Based Design Using SysMPart 2: Celebrating
Diversity by Example,INCOSE International Symposiui®an Diego, CA.

Peak, R. S., and Wilson, M. W., 2001, "Enhagdengineering Design and
Analysis Interoperability Part 2: A High DiversiBxample,"First MIT
Conference Computational Fluid and Structural Mewlka (CFSM) Cambridge,
Massachusetts, USA.

Peak, R., Friedenthal, S., Moore, A., Burkh&:t Waterbury, S., Bajaj, M., and
Kim, 1., 2005, "Experiences Using SysML Paramettic®epresent Constrained
Object-Based Analysis Templategth NASA-ESA Workshop on Product Data
Exchange (PDE)Atlanta, GA, USA.

Huang, E., Ramamurthy, R., and McGinnis, 1002, "System and Simulation
Modeling Using SysML," inThe 2007 Winter Simulation Conference
Washington, D. C.

Tecnomatix, 2003M-Plant http://www.emplant.com, April 2008.

W3C, 2007, "XML Path Language (XPath) Versif,"
http://www.w3.org/TR/xpath, April 2008.

Jobe, J. M., Johnson, T. A., and Paredis, G., 2008, "Multi-Aspect Component
Models: A Framework for Model Reuse in SysML,"A8SME 2008 International
Design Engineering Technical Conferences & Compuded Information in
Engineering Conference (IDETC/CIE 2008yooklyn, NY.

117

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Vanderperren, Y., and Dehaene, W., 2006, "FuiviL/SysML to
Matlab/Simulink: Current State and Future Perspestl' inDesign, Automation
and Test in Europe (DATE) Conferensdunich, Germany.

Hooman, J., Mulyar, N., and Posta, L., 20@outpling Simulink and UML
Models," inSymposium FORMS/FORMATS

Telelogic, 2008Rhapsody
http://modeling.telelogic.com/products/rhapsodyéxafm, April 2008.

Reichmann, C., Gebauer, D., and Miller-Glakem)., 2004, "Model Level
Coupling of Hetergeneous Embedded SystemhthRTAS Workshop on
Model-Driven Embedded Systems

Paynter, H., 1961Analysis and Design of Engineering Systelhd Press,
Cambridge, MA.

Turki, S., Soriano, T., 2005, "A SysML Exteasifor Bond Graphs Support,” in
5th International Conference on Technology and Awtion Thessaloniki,
Greece.

Pop, A., and Akhvlediani, D., and Fritzson, 2007, "Towards Unified Systems
Modeling with the ModelicaML UML Profile," innternational Workshop on
Equation-Based Object-Oriented Languages and Taak6ping University
Electronic Press, Berlin, Germany.

Nytsch-Geusen, C., 2007, "The Use of UML witkhe Modelling Process of
Modelica-Models," innternational Workshop on Equation-Based Object-
Oriented Languages and Toplsnk6éping University Electronic Press, Berlin,
Germany.

Czarnecki, K., Helsen, S., 2006, "Feature-BaSarvey of Model Transformation
Approaches,1BM Systems Journadx(3), pp. 621-645.

Object Management Group, 2007, "Meta Objedilfa (MOF) 2.0
Query/View/Transformation Specification," http:/fAmomg.org/docs/ptc/07-07-
07.pdf, April 2008.

Greenyer, J., Kindler, E., 2007, "ReconcilirGGs with QVT," inModel Driven
Engineering Languages and Systems, MoDELS,280finger, Berlin /
Heidelberg.

Konigs, A., 2005, "Model Transformation withiiple Graph Grammars," in
Model Transformations in Practice, Satellite Woriglof MODELS 2005
Montego Bay, Jamaica.

Keeney, R. L., 1994, "Creativity in Decisioraking with Value-Focused
Thinking," Sloan Management Revie8b(4), pp. 33-41.

118

[41] Fritzson, P., 200&rinciples of Object-Oriented Modeling and Simuwatiwith
Modelica 2.1 IEEE Press, Piscataway, NJ.

[42] University of Paderborn Software Engineeringp@, 2007 Fujaba Tool Suite 5
http://wwwcs.uni-paderborn.de/cs/fujaba/, April 300

[43] Real-Time Systems Lab, 20@Vpflon, http://www.moflon.org/index.html, April
2008.

[44] Johnson, T. A., Paredis, C. J. J., and Kerzhhg 2008, "The SysML
Transformers Plugin for Embedded Plus: A User'd&iiGeorgia Institute of
Technology, Atlanta, GA, http://srl.gatech.edu/Memrgstjohnson/
SysMLTransformers.zip, April 2008.

[45] EmbeddedPlus Engineering, 20&EmbeddedPlus SysML Toolkit
http://www.embeddedplus.com/SysML.php, April 2008.

[46] Fritzson, P., et al., 2007, "OpenModelica $ystDocumentation,”
http://www.ida.liu.se/labs/pelab/modelica/OpenMacteteleases/1.4.3/doc/Open
ModelicaSystem.pdf, April 2008.

[47] Dynasim, 2008Dymola 7.0 http://www.dynasim.se/index.htm, April 2008.

[48] Nagel, L. W., and Pederson, D. O., 1973, "8gBimulation Program with
Integrated Circuit Emphasis,” University of Califia, Berkeley, CA

[49] Keeney, R. L., and Raiffa, H., 197Becisions with Multiple Objectives:
Preferences and Value Tradeofien Wiley and Sons, New York.

[50] Paredis, C. J. J., 2008luidPower Library for Modelica

[51] Pederson, K., Emblemsvag, J., Bailey, R., ®ll& K., and Mistree, F., 2000,
"Validating Design Methods & Research: The ValidatBquare," iRSME
Design Engineering Technical Conferenc&MSE, Baltimore, MD.

[52] Modelica Association, 2008, "Modelica Langu&eecification Version 3.0,"
http://www.modelica.org/documents/ModelicaSpec3f).pgril 2008.

[53] Phoenix Integration, 2008JodelCenter v7.0http://www.phoenix-
int.com/products/modelcenter.php, April 2008.

[54] Maplesoft, 2008Maple 11 http://www.maplesoft.com/, April 2008.

119

