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SUMMARY 

The objective of this research is to use graph patterns and transformation rules to 

integrate models of continuous dynamic system behavior with SysML information 

models representing systems engineering problems.  The driver behind this objective is 

the current state of systems engineering.  Contemporary systems engineering problems 

are becoming increasingly complex as they are handled by geographically distributed 

design teams, constrained by the objectives of multiple stakeholders, and inundated by 

large quantities of design information.  According to the principles of model-based 

systems engineering (MBSE), engineers can effectively manage increasing complexity by 

replacing document-centric design methods with computerized, model-based approaches 

for representing and investigating their knowledge during system decomposition and 

definition. 

In this thesis, modeling constructs from SysML and Modelica are integrated to 

improve support for MBSE.  The Object Management Group has recently developed the 

Systems Modeling Language (OMG SysML™).  This visual modeling language provides 

a comprehensive set of diagrams and constructs for modeling many common aspects of 

systems engineering problems (e.g. system requirements, structures, functions, and 

behaviors).  Complementing these SysML constructs, the Modelica language has 

emerged as a standard for modeling the continuous dynamics (CD) of systems in terms of 

hybrid discrete- event and differential algebraic equation systems. 

The integration of SysML and Modelica is explored from three different 

perspectives: the definition of CD models in SysML; the use of graph transformations to 

automate the transformation of SysML CD models into corresponding Modelica models; 
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and the integration of CD models and other SysML models.  The ability to define CD 

models is established through a language mapping between SysML and Modelica.  The 

mapping is then used to support model transformations through the creation of a triple 

graph grammar and corresponding graph transformation rules.  Finally, CD models are 

integrated with other SysML models (e.g. structural, requirements) through the depiction 

of simulation experiments and engineering analyses.  Throughout the thesis, example 

models of a car suspension and a hydraulically powered excavator are used for 

demonstration. 

The core of this work is the establishment of modeling abilities that do not exist 

independently in SysML or Modelica, but only as a result of integration.  These abilities 

include enabling systems engineers to model CD in SysML, automatically generate an 

executable Modelica model from a SysML model, and prescribe necessary system 

analyses and explicitly relate them to stakeholder concerns or other system aspects.  

Moreover, this work provides a basis for model integration which can be generalized and 

re-specialized for integrating other modeling formalisms into SysML. 
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CHAPTER 1 

INTRODUCTION 

Our society relies on the everyday operation of engineered systems.  From power 

plants to automobiles to personal computers, engineered systems greatly affect many 

aspects of our daily lives; however, routine exposure to these systems makes it easy for 

us to overlook their immense complexity.  Contemporary complex systems function at 

many different physical scales; contain multiple subsystems and components; exhibit 

emergent behavior that is not readily comprehensible by examining component behavior; 

encompass multiple engineering disciplines; and are constrained by the objectives of 

multiple stakeholders.  Accordingly, contemporary systems engineering problems involve 

large quantities of interdependent design information that must be transformed though a 

systematic design process into a complete system description. 

As if systems engineering problems themselves didn’t provide enough complexity 

for engineers to manage, globalization is now adding its own complications.  Decades 

ago, most systems were engineered in one geographical location; however, to maintain a 

competitive edge in the present global marketplace, businesses must now employ 

engineering services from the most cost effective and capable sources regardless of 

location.  Consequently, design teams undertaking systems engineering problems are 

increasingly composed of modular units that operate in multiple geographical locations.  

Additionally, these design teams consist of a heterogeneous membership of system 

analysts, component-level disciplinary engineers, and system-level engineers.  

Communication amongst team members can be hindered by the fact that different 

disciplines rely on different notations and views of the same system knowledge and 
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information.  Clearly, the coordination of a globally dispersed, multidisciplinary design 

team coupled with the inherent complexity of a contemporary systems engineering 

problem imparts a monumental information management problem upon systems 

engineers. 

1.1 Managing Complexity with Model-Based Systems Engineering (MBSE) 

As complexity grows in a systems engineering problem, engineers must 

effectively manage an increasing quantity of intricate design knowledge and information.  

Accordingly, problems encountered during systems engineering projects are generally 

correlated with the organization and management of complexity rather than with the 

direct technological concerns that affect individual subsystems and specific physical 

science areas [1].  If engineers cannot effectively manage project complexity, they might 

overlook important design details and dependencies.  Such mistakes can compromise 

stakeholder objectives and lead to costly design iterations or system failures. 

Traditionally, systems engineering problems are solved using systematic design 

processes such as the method prescribed by Pahl and Beitz [2] or the systems engineering 

“Vee” model proposed by Forsberg and Mooz [3].  Systematic design processes consist 

of sets of information transformations that iteratively convert stakeholder objectives and 

requirements into a complete system description.  As seen in Figure 1.1, the inputs and 

outputs of each transformation are generally documents containing the necessary system 

knowledge and information.   



 3 

Furthermore, the final output of the design process is a large collection of product 

documentation used to support the subsequent lifecycles (e.g. manufacturing, 

deployment, or disposal) of the system. 

While document-centric design coupled with hard work proved to be a successful 

combination for solving systems engineering problems in the past, it may become 

inadequate for dealing with the current increases in system complexity and globalization.  

To transfer knowledge and information between design team members or steps in the 

design process, engineers must navigate the relevant documents, extract the necessary 

knowledge/information, and translate that content into discipline-specific (e.g. 

mechanical, electrical, computer science) formats.  This can be a cumbersome and error-

prone task.  Incorporating the effects of globalization only exacerbates the matter.  

Planning & Task 
Clarification

Conceptual Design

Embodiment Design

Detail Design

Planning & Task 
Clarification

Conceptual Design

Embodiment Design

Detail Design

 
Figure 1.1: Document-centric design. 
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Moreover, increasing system complexity correlates with growing quantities of system 

information; hence, more labor is needed to decipher product documentation. 

To cope with increasing complexity and globalization, engineers can adopt 

model-based design methods for solving systems engineering problems [4].  Model-based 

systems engineering (MBSE) [5] encourages engineers to move away from document-

centric design and towards a more computer-based, interactive modeling approach.  

Using an MBSE approach to systems design, engineers solve systems engineering 

problems through the formal elaboration of models that transform stakeholder 

requirements and objectives into a full system description.  In particular, these models are 

used to describe formally the structure, function, and behavior of a system [6]. 

The MBSE design approach requires the development of many different design 

and analysis models.  Design models are used to specify the desired structure, function, 

and behavior of the system.  Example design models include models of system 

architecture, CAD models, and use case models.  Analysis models, on the other hand, are 

used to analyze the anticipated behavior of the system.  Example analysis models include 

models of continuous dynamic system behavior, finite element models, and cost models. 

If engineers adopt a MBSE design approach, they are given the valuable 

capability to share more easily the critical knowledge and information captured in various 

design and analysis models.  Exploiting this capability can thwart problems related to 

information traceability and consistency that are often encountered in document-centric 

design processes.  Consequently, engineers must integrate the critical knowledge 

captured in design and analysis models.  Ideally, integration could be achieved through 

the sole use of one modeling language that is able to depict all aspects of a systems 
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engineering project at every necessary level of fidelity; however, the creation of such a 

modeling language is not a realistic endeavor.  Moreover, such a language would simply 

reinvent the abilities of other domain-specific modeling languages. 

Alternatively, to achieve model integration the knowledge needed to make design 

decisions should be abstracted from domain-specific models into a system information 

model.  An information model as described by Mylopoulos [7] is a computer-based 

symbol structure that formally captures and organizes information in a meaningful 

fashion.  The information model then serves as a platform for model integration and only 

exposes knowledge and information that is important to the design team as a whole.  The 

unnecessary details remain encapsulated in smaller design or analysis models for 

individual use. 

While model integration is an import function of an information model, it also 

serves other purposes.  The information transformations occurring in a MBSE design 

process, in contrast with traditional methods, are recorded in the information model rather 

than in large sets of documentation.  Furthermore, the primary output of an MBSE design 

process is the information model which is subsequently used to support the later 

lifecycles of the system. 

The MBSE approach to systems design, as depicted in Figure 1.2, offers some 

important benefits for engineers coping with complex systems and globally distributed 

design teams. 
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The information generated in the design process is stored in one central location (e.g. a 

computer server) that is accessible by any member of the design team regardless of 

geographical location.  This promotes close collaboration amongst designers who have no 

physical contact with each other.  Assuming that the information model is authored using 

a well-understood modeling language, the team members also have a strict protocol for 

communicating important design knowledge and information.  Additionally, all the 

contents of an information model generally exist in one modelspace, but can be displayed 

to different individuals in various fashions using multiple views or diagrams.  This is 

analogous to displaying the same system information in different documents for different 

design team members; however, multiple documents permit the existence of information 

consistencies.  This is not the case when using multiple views of the same information 

model. 

Aspect 

A 
Models  

Aspect 

B 
Models  

System 
Model 

Product 
Realization 

 
Figure 1.2: A globally distributed, MBSE approach to systems design. 
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1.2 Using SysML in Support of MBSE 

Several information modeling formalisms have been developed in support of 

MBSE design processes.  Two well-known information modeling languages are the 

Object Management Group’s (OMG) successful Unified Modeling Language (UML™) 

[8] and the recently adopted Systems Modeling Language (OMG SysML™) [9]. 

UML is a graphical modeling language for specifying, constructing, and 

documenting the artifacts of software, business models, and other applicable systems.  It 

is a general-purpose modeling language that can be used with all major object and 

component methods.  The language is commonly used during the development of large-

scale, complex software for various domains and implementation platforms [10]. 

SysML is also a general-purpose systems modeling language that enables 

engineers to create and manage information models of engineered systems using well-

defined, visual constructs [9].  Instead of developing SysML as an original language, the 

OMG extended UML for the systems engineering community.  SysML reuses and 

extends a subset of UML 2.1 constructs: 

� it extends UML classes with blocks; 

� it supports requirements modeling; 

� it supports parametric modeling; 

� it extends UML dependencies with allocations; 

� it reuses and modifies UML activities; 

� it extends UML standard ports with flow ports. 

Figure 1.3 depicts the SysML diagram taxonomy as a graphical representation of 

SysML’s extension of UML. 



 8 

A block with a regular or bold border represents a UML diagram that has been reused or 

modified, respectively.  Blocks with a dashed border represent new diagrams, namely, the 

requirements and parametric diagrams.  

The knowledge captured in a SysML model is intended to support the 

specification, analysis, design, and verification and validation of any engineered system 

[9].  As a result, SysML is commonly used to model system requirements, tests, 

structures, functions, behaviors, and their interrelationships.   While capturing all of the 

above knowledge is critical for ensuring success in solving a systems engineering 

problem, modeling system behavior is arguable most important.  If a system does not 

behave in a way that satisfies stakeholder objectives, then it is useless regardless of its 

other aspects. 

1.3 Modeling System Behavior with SysML 

SysML is capable of depicting system behavior using the following language 

constructs: 

� Activity diagrams describe the inputs, outputs, sequences, and conditions for 

coordinating various system behaviors; 

 
Figure 1.3: The SysML diagram taxonomy [9]. 
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� Sequence diagrams describe the flow of control between actors and a system or 

its components; 

� State machine diagrams are used for modeling discrete behavior through finite 

state transition systems; 

� Parametric diagrams allow users to represent mathematical constraints amongst 

system properties. 

The first three of these modeling constructs support causal behavioral modeling in terms 

of discrete events.  The last one enables a user to model equations (called constraints in 

SysML) that establish mathematical relationships between the properties of a system or 

its components.  While SysML offers many behavioral modeling capabilities with the 

above constructs, the language specification does not explicitly provide the ability to 

integrate many different types of behavioral models required to solve systems 

engineering problems. 

Oftentimes, engineers need to analyze the continuous dynamics (CD) of a system 

alternative.  CD are generally represented by hybrid discrete event and differential-

algebraic equation (DAE) models which characterize the exchange of energy, signals, or 

other continuous interactions between system components; however, the SysML 

specification provides no explicit support for integrating DAE models into SysML 

models.  In other words, no guidance is provided for integrating models authored in 

languages like Modelica [11] or Matlab/Simulink [12].  The intent of the work presented 

in this thesis is to overcome this burden by building upon SysML’s current capabilities. 
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1.4 Motivating Questions 

As depicted in Figure 1.4 and discussed in Section 1.1, SysML is not simply an 

information modeling language, but is really a platform for model integration. 

Using SysML constructs independently of outside languages or tools, modelers can 

author several different types of systems engineering models in SysML (e.g. 

requirements models, use case models, activity models).  While these types of models are 

certainly necessary, they are not sufficient for ensuring the success of SysML.  To 

improve SysML’s ability to support MBSE design processes, the following question must 

be answered: 
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Figure 1.4: SysML as a model integration platform. 
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The Motivating Question: 

How can engineers integrate models in various formalisms with SysML information 

models to promote information consistency, model traceability, and automated model 

transformation? 

As stated in the question, solutions for model integration should improve support of 

MBSE design processes through the following benefits: information consistency, model 

traceability, and automated generation of executable models from SysML models.  By 

integrating the important knowledge and information contained in various engineering 

models used to solve systems engineering problems, engineers can ensure information 

consistency throughout the various models used to solve a systems engineering problem.  

Additionally, integration enables the tracing of important associations and dependencies 

amongst the various models.  Lastly, information consistency and traceability can enable 

engineers to set the context for system analyses that encompass multiple engineering 

models.  This enables the automated population of consistent information into executable 

models used to analyze a system. 

While the question of model integration is the central motivation for this thesis, it 

is too broad to be answered in full.  Instead, this thesis limits the scope of the question to 

integrating CD models into SysML.  To answer this reduced motivating question, it is 

decomposed into three manageable sub-questions.  The first question investigates the 

actual SysML depiction of CD models built upon sets of DAEs:  
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Question 1: 

How can engineers effectively represent models of continuous dynamic system behavior 

using the modeling constructs offered in SysML? 

The answer to this question is the foundation for CD model integration.  If external CD 

models can be appropriately abstracted or represented using SysML modeling constructs, 

then CD model integration and the resultant information consistency and traceability can 

come to realization. 

The representation of CD models using SysML modeling constructs is only the 

first step to integrating CD models into SysML.  True integration can only come to 

fruition when a SysML CD model can be linked to an external, executable CD model.  

Such a linkage can be accomplished through model or graph transformations.  Graph 

transformations enable the automated, external execution of a non-executable SysML CD 

model and the integration of an external CD model into a SysML system information 

model.  Additionally, it provides a method for ensuring information consistency between 

an external CD model and a SysML CD model. 

In this thesis, Modelica [11] is the external CD modeling language of interest.  

Modelica has emerged as the language of choice for expressing continuous dynamic 

system behavior.  It is better structured and more expressive than most alternatives such 

as VHDL-AMS [13] or ACSL [14].  In addition, both SysML and Modelica are similar in 

that they use base modeling elements that adhere to the principles of object-oriented 

modeling. 

Since Modelica is the CD modeling language to be integrated with SysML, the 

following question is posed: 
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Question 2: 

Are graph transformations an effective means of transforming between SysML models of 

continuous dynamic system behavior and corresponding Modelica models to enable 

automated model execution and to ensure information consistency? 

The answer to this question is the key to automating the integration of SysML and 

Modelica models.  An explicit model transformation schema can be incorporated in a 

computer program used to transform from SysML to Modelica or vice-versa. 

The answers to Questions 1 and 2 enable the integration of SysML and Modelica 

models, but don’t explicitly provide guidance on maintaining information consistency 

and traceability between integrated CD models and other aspects of a SysML information 

model.  During the course of a systems engineering problem, many different models (e.g. 

structural models, CD models, objective function models, requirements models) are used 

to make decisions concerning a system alternative’s fulfillment of stakeholder 

requirements and objectives; hence, a decision maker must fully understand the 

relationships between these models.  To ensure that a decision maker understands these 

relationships, explicit traceability can be established between the necessary models.  With 

respect to a system’s continuous dynamic behavior, the relationships between CD models 

and other models exist in the context of a system simulation or analysis.  This leads to the 

following question: 
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Question 3: 

Can engineers  ensure model traceability between CD models and other SysML models 

by explicitly modeling simulations and analyses of system alternatives in SysML? 

A promising answer to this question is essential for using SysML as an integration 

platform in support of decision making.  If a SysML representation of a CD model can’t 

be related to other SysML models in a meaningful fashion, then its inclusion in an 

information model provides little value. 

1.5 Thesis Overview 

According to the motivating questions in Section 1.4, the objective of the work 

presented in this thesis is to use graph patterns and transformation rules to integrate 

models of continuous dynamic system behavior with SysML information models 

representing systems engineering problems.  This is depicted graphically in Figure 1.5. 

By achieving this objective, the vision for model integration as depicted in Figure 1.4 can 

take one more step towards reality.  Disciplinary or component-level designers can use 

external languages and software tools for creating detailed, low-level design and analysis 
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Figure 1.5: The research objective. 
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models.  Then, they can abstract into the SysML system information model the 

knowledge and information that is relevant at the system level.  Once the 

information/knowledge is abstracted into a SysML model, it can be bound or associated 

with other models (e.g. models of simulations, engineering analyses, requirements, 

system structure, use cases) created in or abstracted into a SysML system information 

model.  Using such relationships, the elements of an integrated model can be updated via 

the SysML system information model and reflected in the external design and analysis 

models through the use of automated model/graph transformations.  If the modelers use 

such tools for transforming from SysML to external languages/tools and vice-versa, true 

model integration can become a realization via the bidirectional flow of 

information/knowledge. 

Before acceptable answers can be provided for the motivating questions, we must 

have a better understanding of the extent to which they have already been answered.  

Accordingly, Chapter 2 of this thesis provides an overview of work that is highly related 

to the motivating questions.  Due to the strong tie between this thesis and SysML, Section 

2.1 provides a review of some important SysML constructs and introduces the car 

suspension example used in later chapters.  This section is specifically aimed at readers 

who have limited or no familiarity with SysML and UML.  Readers who are familiar with 

both languages need not delve into the details.  Section 2.2 provides an overview of work 

concerning the integration in SysML of design and analysis models.  Section 2.3 then 

provides a more specific overview of relevant attempts at integrating CD models into 

SysML.  Finally, Section 2.4 highlights relevant work in the field of model 

transformations. 
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To answer Question 1, Chapter 3 describes in detail the approach to representing 

models of continuous dynamic system behavior in SysML.  This is accomplished through 

the specification of a modeling approach and set of SysML constructs that correspond to 

important Modelica modeling practices and constructs.  When a clear mapping between 

the two languages does not exist, a SysML extension is provided to fill the gap. 

To answer Question 2, Chapter 4 explains an approach to transforming SysML 

models into Modelica models and vice-versa.  The approach relies on a triple graph 

grammar (TGG) [15] and a corresponding set of graph transformation rules.  The 

automated transformation process is implemented using the VIATRA [16, 17] model 

transformation framework and Eclipse [18]/Rational Systems Developer (RSD) [19].. 

To answer Question 3, Chapter 5 provides an approach and set of SysML 

constructs for supporting decision-making processes through the explicit SysML 

depiction of CD simulations and engineering analyses.  The approach is broken down 

into four steps: establishing the context of a CD model with respect to a system 

alternative, modeling the simulation, abstracting the simulation into an input-output 

model, and embedding the simulation in an engineering analysis. 

The final three chapters bring this thesis to a close.  To demonstrate several 

important concepts described in this thesis, Chapter 6 exhibits the SysML integration of a 

CD model of hydraulically powered excavator.  Chapter 7 is then intended to discuss, 

evaluate, and draw some important conclusions about the work described in this thesis. 
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CHAPTER 2 

RELATED WORK 

2.1 An Introduction to SysML 

Before discussing any relevant work or the approach for integrating CD and 

simulation models in SysML, this section reviews some important SysML constructs and 

introduces an example problem used throughout this thesis. 

2.1.1 SysML Blocks 

The primary modeling unit in SysML is the block.  As described in Chapter 8 of 

the SysML specification [9], a block is a modular unit of a system description.  A block 

can represent anything, whether tangible or intangible, that describes a system.  For 

instance, a block could model a system, process, function, or context.  When combined 

together, blocks define a collection of features that describe a system or other object of 

interest.  Hence, blocks provide a means for an engineer to represent a system by 

decomposing it into a collection of interrelated objects. 

All block declarations occur in a Block Definition Diagram (BDD).  A BDD is 

used to define block features and the relationships between blocks or other SysML 

modeling elements.  Figure 2.1 is a BDD depicting the definition of a car and its 

suspension.  A car is obviously composed of more subsystems and components, but 

Figure 2.1 is sufficient for the sake of demonstration.  SysML allows a modeler to omit 

elements of the underlying information model that detract from the main intent of a 

diagram. 
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2.1.2 SysML Value Types 

A SysML value type is an extension of the UML data type used to define types of 

values that may be used to express information about a system [9].  More specifically, 

value types are used to assign to a value property the units and dimensions declared in its 

definition.  For example, Figure 2.1 displays the definition of SI.Mass which carries units 

of kilograms. 

2.1.3 SysML Properties 

A SysML property describes a part or characteristic of a block and consists of a 

named value of a specified type.  In Figure 2.1, two important types of properties are 

depicted.  The first kind is the part property.  Part properties represent a subsystem or 

component of a system and must be typed by a block.  Part properties can be depicted in 

the parts compartment of a block or using a composition association.  A composition 

bdd Car Definition

WheelSuspension

Shock

values

dampingCoef: Real

Car

values

mass: SI.Mass = 1500

Coil

values

springRate: Real

«requirement»

ReboundReq

text = “When 

disturbed by 0.1 m, 

the suspension shall 

settle to 5% of 

steady state in 

under 1 sec.”

«satisfy»

values

«moe» settlingTime: Time

suspension

«valueType»

SI.Mass

unit = kg 

coil shock

 
Figure 2.1: A SysML model of a car and its suspension. 
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association is displayed as a black diamond with a tail.  The property name appears at the 

tail end of the association.  For example, the block Car in Figure 2.1 owns a part property 

named suspension of type WheelSuspension. 

The second kind of property is a value property.  A value property appears in a 

block’s values compartment and represents a quantifiable characteristic of a block (e.g. 

mass, length, velocity).  Accordingly, it must be typed to a SysML value type or UML 

data type.  For example, Car in Figure 2.1 has a value property mass which is typed to 

the value type SI.Mass to supply units of kilograms. 

2.1.4 UML Stereotypes 

A stereotype is a UML construct used to create customized classifications of 

modeling elements.  Stereotypes are defined by keywords that appear inside of 

guillemets.  These customization constructs extend the standard elements to identify more 

specialized cases important to specific classes of applications.  Most SysML constructs 

have been defined as UML stereotypes and users are allowed to create additional 

stereotypes to capture the specialized semantics of a particular application domain.  An 

example of a stereotype is illustrated in Figure 2.1. The stereotype «moe» applied to the 

WheelSuspension’s value property settlingTime indicates that it is a “measure of 

effectiveness”. 

2.1.5 SysML Constraint Blocks 

As defined in the SysML specification [9], a constraint block is a specialized form 

of the SysML block and is intended to package commonly used constraints in a reusable, 

parameterized fashion.  Constraint blocks can be identified by the «constraint» stereotype 
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that appears in their namespace compartments.  The properties of constraint block are 

referred to as parameters to emphasize the objective of constraint parameterization. 

2.1.6 SysML Requirements 

A SysML requirement is used to represent a textual requirement or objective for a 

system, subsystem, or component.  Requirements are shown with the «requirement» 

stereotype and optionally display a compartment for displaying text and identification 

fields.  Requirements are related to other modeling elements using various dependencies 

such as the satisfy and verify dependencies.  A dependency is a UML construct for 

expressing different types of relationships between various modeling constructs.  The use 

of SysML requirements and dependencies is demonstrated in Figure 2.1 by the satisfy 

dependency between WheelSuspension and the ReboundReq requirement. 

2.2 Integrating Design and Analysis Models in SysML 

“Currently it is common practice for systems engineers to use a wide 

range of modeling languages, tools and techniques on large systems 

projects. In a manner similar to how UML unified the modeling languages 

used in the software industry, SysML is intended to unify the diverse 

modeling languages currently used by systems engineers.” [9] 

This excerpt from the SysML specification clearly indicates that the intent of the 

language is to provide a platform for model unification (i.e. integration).  The constructs 

provided by the language are certainly capable of supporting model integration, but they 

don’t necessarily endow a SysML user with the “out of the box” ability to perform model 
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integration.  Rather than relying on end users to enable model integration, this ability 

should be cultivated by knowledgeable SysML champions. 

One notable means of enabling model integration in SysML has been provided 

through the development of Composable Objects (COBs) [20-22].  COBs provide both a 

graphical and lexical representation of algebraic relationships that can be used to tie 

design models to analysis models in a parametric fashion.  COBs recently served as the 

basis for the development of the SysML parametric diagrams [9].  By establishing a 

mapping between COBs and SysML parametrics, the integration and execution of 

engineering analyses (such as structural finite element analyses) within the context of 

SysML has been demonstrated [23]. This thesis extends the work on COBs by focusing 

on the integration of CD Modelica models into SysML. 

Huang et al. [24] explore the model integration capabilities of SysML through the 

SysML representation of design and simulation (i.e. analysis) models for manufacturing 

processes.  In particular, the authors present the creation of a flow shop model and 

subsequently map it to a queuing analysis model.  Additionally, the authors describe an 

approach to automating the generation of an executable eM-Plant [25] flow shop model 

via XPath [26].  This executable model is then used to simulate the SysML simulation 

model. 

The ability to integrate heterogeneous models in SysML has also been 

demonstrated through the development of Multi-Aspect Component Models (MAsCoMs) 

[27].  The MAsCoM framework is intended to support model reuse through the 

establishment of relationships between design models of system components, 

corresponding analysis models, and the many aspects of a model that pertain to analysis 
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objectives, stakeholder perspectives, and other elements of MBSE.  Within the 

framework, analysis models are integrated with component models and aspect models 

such that their semantics of intended use are captured and represented for reuse. 

2.3 Integrating CD models into SysML 

Recently, several researchers have also recognized the need to integrate models of 

continuous dynamic system behavior into SysML.  The approaches to integrating CD 

models are as varied as the CD modeling languages being integrated.  In this section, 

several approaches are reviewed and contrasted with the approach outlined in Chapter 3 

of this thesis. 

Currently, Matlab/Simulink models of system dynamics are used extensively in 

the development of engineered systems.  Recognizing this dependency, Vanderperren and 

Dehaene [28] have discussed the current and future states of UML/SysML and 

Matlab/Simulink integration using two different approaches: co-simulation and reliance 

upon a common execution language.  The intent of both approaches is to test the design 

of an embedded system and its control software by simultaneously executing a UML 

model of the software and a Simulink model of the system dynamics.  The co-simulation 

approach involves data exchange between a UML tool and Simulink via an interface tool.  

This approach is demonstrated by Hooman et al. [29] and implemented in Telelogic’s 

Rhapsody [30] UML modeling tool.  The other approach, demonstrated in the 

GeneralStore integration platform [31], relies on the generation and coupling of 

executable code (e.g. C/C++ code) from both the UML and Matlab/Simulink models.  

The work presented in this thesis is very similar to these Matlab/Simulink and 

UML/SysML integration efforts, but adopts the perspective that an information model 
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should serve as an integration platform rather than as a means for describing only certain 

aspects of the system. 

Another common formalism for modeling continuous dynamic system behavior is 

the bond graph.  Developed in 1961 by Paynter [32], bond graphs are graphical models 

used to describe continuous dynamics resulting from energy flow through a system and 

its composition of discrete components.  Due to the prevalence and history of bond 

graphs in systems engineering analysis, Turki and Soriano [33] extended the capabilities 

of SysML activity modeling to support the representation of bond graphs.  While this 

extension enables bond graph modelers to integrate their models into larger SysML 

models, the authors only discuss the possibility of generating executable CD models and 

do not provide guidance for relating SysML bond graph models to other SysML models.  

Two groups have worked on the integration of Modelica CD models into 

SysML/UML.  The first work from Fritzson, Akhvlediani, and Pop [34] provides support 

for modeling continuous dynamics in SysML via the ModelicaML profile for 

UML/SysML.  The ModelicaML profile enables users to depict a Modelica CD model 

graphically alongside other aspects of a UML/SysML information models.  The 

ModelicaML profile reuses several UML and SysML constructs, but also introduces 

completely new language constructs.  Such constructs are the Modelica class diagram, the 

equation diagram, and the simulation diagram. 

The second work is a similar profile named UMLH.  This profile was created by 

Nytsch-Geusen [35] for developing and graphically depicting hybrid discrete and DAE 

models in UML/SysML.  The author presents hybrid models as Modelica models that are 

based on a combination of DAEs and discrete state transitions modeled with the 



 24 

Modelica state chart extension.  Using a UMLH editor and a Modelica tool that supports 

code generation, Modelica stubs can be automatically generated from UMLH diagrams so 

that the user must only insert the equation-based behavior of the system in question. 

In this thesis, the capabilities of ModelicaML and UMLH are further extended by 

demonstrating the integration of CD models with other SysML constructs for 

requirements, structure, and design objectives.  Additionally, this thesis demonstrates the 

use of model transformations to enable the automated transformation of information 

between SysML and Modelica models. 

2.4 Performing Model Transformations 

Model transformations, as conceptualized in the graph depicted in Figure 2.2, are 

anticipated to play a major role in future MBSE endeavors [36]. 

Generally, model transformations are performed by transformation engines that can read 

a source model conforming to a source metamodel and execute a transformation 

specification to produce a target model conforming to a target metamodel.  Current 

applications of model transformations include model synchronization and the generation 

of low-level models/code from high-level models.  The work presented in this thesis (see 

Chapter 4) demonstrates the potential of model transformations for MBSE through the 

generation of executable, lower-level Modelica code from higher-level SysML CD 

models. 

 
Figure 2.2: The basics concept of model transformation [36]. 
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Many methods exist for completing model transformations between two or more 

modeling languages (metamodels).  Two common transformation tools are OMG’s 

Queries/Views/Transformations (QVT) [37] and TGGs [15]. 

The QVT specification provides a set of languages for querying a source model 

that complies with a source metamodel and transforming it into a target model that 

complies with a target metamodel.  Two QVT languages, Relations and Core, are used to 

model declaratively the relationships between source and target metamodels at different 

levels of fidelity.  The Operational Mappings language is then used to perform 

imperative transformations based on the relationships depicted in the Core or Relations 

languages.  The relations between the QVT languages are depicted in Figure 2.3. 

Overall, QVT is a powerful and widely accepted model transformation tool; however, the 

imperative nature of the Operational Mappings language hampers bidirectional 

transformations. 

 TGGs are similar to QVT in intent but are declarative by nature.  Accordingly, 

TGGs are particularly useful for completing complex, bidirectional model 

transformations; however, others have shown that QVT is equally expressive and capable 

[38].  In a TGG, two modeling languages (metamodels) are defined as graphs.  The 

mapping between the two metamodels is then represented by an intermediary graph 

called the correspondence metamodel.  This third graph is essential for defining graph 

 
Figure 2.3: Relations between the QVT languages [37]. 
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transformation rules and maintaining traceability links between the two models.  By 

querying a model space containing SysML or Modelica models, transformations rules are 

executed until the model space complies with the specified TGG.  For example, Figure 

2.4 displays a small TGG that relates a SysML block to a Modelica class using a 

correspondence entity named block2class with one relation pointing to the block entity 

(in the SysML metamodel graph) and one to the class entity (in the Modelica metamodel 

graph).   

A practical implementation of TGGs is also demonstrated extensively by Königs [39]. 

2.5 Summary 

This chapter provides an overview of material that is highly relevant to model 

integration via SysML.  Section 2.1 is a general introduction to SysML and establishes 

the context for the example SysML car model used throughout the rest of this thesis.  

Section 2.2 is a review of some past and ongoing work on various types of model 

integration via SysML.  Section 2.3 is a more specific review of work regarding the 

integration of CD models into SysML.  Section 2.4 is a review of work related to the 

automation of model synchronization and generation via model/graph transformations. 

The work presented in this thesis is clearly part of a larger, ongoing effort to 

improve MBSE through model integration.  It builds upon past and current work in an 

effort to increase the modeling capabilities of engineers designing complex systems.  

 
Figure 2.4: An example TGG. 
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This is accomplished by enabling the definition, automated transformation, and 

integration of CD models into SysML.  Moreover, generalizing the work presented in this 

thesis provides a stencil for integrating other types of design or analysis models into 

SysML via language mappings, graph transformations, and the depiction of simulations 

and engineering analyses. 
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CHAPTER 3 

MODELING CONTINUOUS DYNAMIC 

SYSTEM BEHAVIOR IN SYSML 

In this chapter, an approach is described for representing CD models using 

SysML modeling constructs.  More specifically, the approach enables the integration of 

Modelica-based CD models.  First, an approach is outlined for creating fully detailed 

“white box” CD models in SysML.  Then, an approach is outlined for creating low 

fidelity “black box” CD models in SysML that act as references to existing, external 

Modelica models. 

3.1 Objectives 

A model is only valuable if it increases a decision maker’s ability to design a 

better system at an acceptable cost [40]  The model for representing CD models in 

SysML is valuable if it strikes an appropriate balance between the benefits expected from 

developing a model and the costs of encoding the required information.  To develop a 

valuable modeling approach, the following objectives are established:  

1. The approach must enable the integration of continuous dynamics models into 

broader SysML models.  By integrating a Modelica-based CD model into SysML, 

decision makers can formally recognize relationships between continuous dynamic 

behavior and other aspects of the system. 

2. The approach must facilitate the transformation of SysML CD models into 

Modelica models and vice-versa.  SysML is a language for describing information 

and knowledge in the context of systems engineering, but is by itself not an 
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executable language—model execution is relegated to simulation tools.  Hence, 

seamless connections should be established between SysML and CD simulation 

tools via SysML-to-Modelica model transformations. 

3. The approach must encourage model reuse.  If a designer can avoid creating every 

model from scratch by reusing or modifying pre-existing models, he or she can 

realize significant reductions in the use of project resources. 

4. The approach must facilitate efficient stakeholder communication.  Unambiguous 

communication is very important during the development of a complex system.  By 

relying on a formal, accepted approach for integrating CD models in SysML 

information models, behavioral knowledge can be unambiguously shared amongst 

designers or stakeholders. 

3.2 Modelica as the Foundation 

In this thesis, Modelica is the foundation for integrating CD models into SysML.  

As discussed in Section 1.4, Modelica has emerged as a language of choice for modeling 

continuous dynamic system behavior.  In addition, both SysML and Modelica are similar 

in that they use base modeling elements that adhere to the principles of object-oriented 

modeling.  Both languages also encourage model reuse through acausal equation-based 

modeling.  Unfortunately, enough differences exist between the languages such that a 

one-to-one mapping is not possible.  Since SysML is intended to be a general-purpose 

modeling language, some of the specialized semantics of Modelica do not have direct 

SysML equivalents.  To overcome these differences, the approach has been to find an 

appropriate balance between converting some implicit Modelica semantics into explicit 
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constraints in SysML or, when that is not possible/valuable, extending SysML constructs 

through UML stereotypes. 

3.3 Integrating “White Box” CD Models into SysML 

Through the mapping of essential Modelica modeling constructs to their SysML 

counterparts, this section provides an approach to creating “white box” CD models in 

SysML.  This enables modelers to capture nearly every detail of a CD model using native 

SysML constructs.  Accordingly, modelers can create strictly “white box” SysML CD 

models or hybrid “white/black box” system models (Section 3.4.3) 

3.3.1 Model Declaration 

The fundamental similarity between SysML and Modelica is the use of objects.  

The primary modeling unit in Modelica is the class.  Classes serve as definition templates 

for modeling the components of other classes [41].  To make Modelica easier to read and 

maintain, special restricted classes were developed for defining the intended function of a 

class [11].  Example restrictions are models, connectors, types, and functions.  While the 

restrictions are useful, they are not necessary in most cases.  One can usually maintain 

model validity by replacing a restricted class with a regular class; however, exceptions to 

this heuristic (the Modelica connector and type) are addressed later in this chapter. 

The declaration of a Modelica class maps directly to that of a SysML block.  This 

mapping is established because both the class and the block serve as the base modeling 

unit in their respective language while sharing similar structures.  Blocks, like classes, 

provide the structure for other objects by acting as block definition templates. 
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Figure 3.1 is an engineering schematic of a Mass-Spring-Damper (MSD) system.  

The system is composed of a spring and damper mounted in parallel between two system 

nodes.  A mass and a steady-state detection sensor are connected to the top node while 

the bottom node is connected to the ground. 

Figure 3.2 and Figure 3.3 illustrate the equivalence of SysML blocks and Modelica 

classes through their representations of CD models corresponding to the schematic in 

Figure 3.1. 

mass 

spring damper 

ground 

node2 

node1 

detect 

 
Figure 3.1: An engineering schematic of a MSD system. 
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Figure 3.2 is a lexical Modelica model of a Mass-Spring-Damper (MSD).  Figure 3.3 

displays the corresponding SysML declaration of the MSD CD model. 

//The MSD declaration 
class  MSD 
  //The system components 
  Mass mass; 
  Spring  spring; 
  Damper damper; 
  Fixed  ground; 
  SteadyStateDetector  detect; 
  … 
end MSD; 
 
//The Mass declaration 
class  Mass 
  //The variables 
  SI.Position s; 
  SI.Mass m; 
  SI.Velocity v; 
  SI.Acceleration a; 
  //The interface component 
  MechJunction  j; 
initial equation 
  s = -0.1; 
equation 
  s = j.s; 
  v = der (s); 
  a = der (v); 
  m*a = j.f; 
end Mass; 
 
//The MechJunction declaration  
connector  MechJunction 
  SI.Position  s; 
  SI.Force  f; 
end MechJunction;  

Figure 3.2: The declaration of a Modelica representation of a MSD system. 



 33 

The block MSD represents the declaration of the overall MSD system while the other 

blocks (Mass, Spring, Damper, SteadyStateDetector, Fixed, and MechJunction) represent 

the definitions of the system components. 

In Modelica, the properties of a model are called components.  A component can 

represent a part (e.g. spring, damper) or characteristic (e.g. length, position) of the 

system.  One can tell whether a component represents a part or a characteristic by 

identifying the class to which the component is typed.  “Part” components are usages of 

regular classes or models.  These components map to SysML part properties typed to 

other blocks.  “Characteristic” components (i.e. variables) are usages of classes with the 

type restriction. These components and type classes map directly to SysML value 

properties typed to value types since both are used assign the units of measure or 

dimension declared in its definition. 

bdd MSD Definition

Mass

parts

j: MechJunction

values

s: SI.Position

m: SI.Mass

v: SI.Velocity

a: SI.Acceleration

constraints

{ {Modelica} s = j.s; 

   v = der(s);

   a = der(v);

  m*a = j.f; }

{ s = -0.1; } «initial»

SteadyStateDetector

values

ssTime: Time

MechJunction

values

s: SI.Position

f: SI.Force

Spring

values

k: Real

Damper

values

d: Real

Fixed

spring

damper

ground

detect

MSD

mass

values

time: Time

 
Figure 3.3: The declaration of a SysML representation of a MSD system. 
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The property-component mapping is illustrated in Figure 3.2 and Figure 3.3.  For 

example, in Figure 3.2 the class MSD owns a “part” component mass typed to the class 

Mass.  The class Mass owns a “characteristic” component s typed to the Modelica type 

SI.Position.  This is reproduced in Figure 3.3 by a block MSD that owns a part property 

mass typed to the block Mass.  The block mass owns a value property s typed to the value 

type SI.Position. 

3.3.2 Model Interface 

To interact with other models in an object-oriented (OO) fashion, a given model 

should have a well-defined interface.  Models used in the description of a system’s 

continuous dynamic behavior generally interact using across and through variables [32] 

exposed to the rest of the system model.  Since across and through variables are the only 

means of interaction, they can be encapsulated inside of interface objects that are exposed 

to other system components and subsystems 

In Modelica, a model’s interface consists of components typed to connectors.  

Modelica connectors are restricted classes that hold across and through variables, but 

have no equations defining behavior.  In Section 3.3.1, Modelica classes were mapped to 

SysML blocks, so Modelica connectors can also map to blocks.  Consequently, a SysML 

model’s interface can be established by creating one or more part properties typed to 

blocks encapsulating only across and through variables. 

To illustrate the declaration of a model interface, Figure 3.3 depicts a block 

named MechJunction.  This is a reusable block that encapsulates position and force value 

properties corresponding to translational across and through variables, respectively.  To 

define the interfaces for each component of MSD, the appropriate number of part 
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properties are declared for each component and then typed to MechJunction.  For 

example, Mass has one part property j typed to MechJunction. 

3.3.3 Abstraction, Inheritance, and Redefinition 

Both languages support model reuse through the OO concepts of abstract classes, 

inheritance, and redefinition.  In this section, a mapping is defined between the SysML 

and Modelica interpretations of these OO principles. 

The first OO principle is the concept of an abstract or partial object.  If a 

Modelica class is tagged with the partial keyword, then the class is not fully defined and 

cannot be instantiated, but serves as a template that can be extended through object 

inheritance.  Similarly, SysML supports the concept of an abstract block that exists as a 

partially defined model. 

The second OO principle is object inheritance.  Inheritance is a modeling 

mechanism that enables a child object to inherit and refine the definition of a parent.  In 

Modelica, inheritance is accomplished through the extends clause.  When inserted in the 

definition of a Modelica class, the extends clause automatically imports the entire 

definition of the target (parent) class.  Similarly, SysML blocks (and other modeling 

elements) can be extended through the use of specialization/generalization relationships.  

A generalization is depicted by an arrow with a white head. 

Figure 3.4 illustrates the concepts of a partial class and class inheritance in 

Modelica. 
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As seen in the figure, the class SteadyStateDetector extends the partial class MechSensor.  

This indicates that a SteadyStateDetector is a subtype of a MechSensor and inherits a 

component typed to MechJunction. The equivalent SysML modeling constructs can be 

seen in Figure 3.5. 

The SysML block MechSensor is partially defined due to {abstract} appearing in the 

block’s namespace.  SteadyStateDetector extends this partial definition through the 

specialization relationship. 

Modelica also supports model reuse through the use of replaceable properties and 

their redeclaration.  A Modelica class can have components that are tagged by the 

replaceable keyword.  This allows the component to be redefined using the redeclare 

construct when its owning class is typed by a component in another class.  In SysML, 

//The partial MechSensor declaration 
partial class  MechSensor 
  MechJunction  j; 
  … 
end MechSensor; 
 
//The SteadyStateDetector declaration 
class  SteadyStateDetector 
  extends  MechSensor; 
  … 
end MSD;  

Figure 3.4: Demonstration of Modelica OO modeling constructs. 

 
Figure 3.5: Corresponding demonstration of SysML OO modeling constructs. 
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every property of a block is considered to be replaceable using standard UML 

mechanisms of redefinition. 

3.3.4 DAE-Based Internal Behavior 

DAEs are commonly used to define the continuous dynamic behavior of a system. 

To define the DAE-based internal behavior of a class, Modelica employs the equation 

clause in which equations can be used to maintain mathematical relationships between 

the class’s components.  Similarly, the creation of mathematical relationships between 

SysML properties is accomplished by assigning constraints to a given block.  Constraints 

appear between braces and are displayed in a block’s constraints compartment. 

Oftentimes, initial conditions must be placed on a model to ensure that a 

mathematical solver can provide an analytical or numerical solution to a system of 

differential equations.  In the context of a numerical solution, initial conditions are held 

true at the beginning of a simulation and can change thereafter.  The creation of initial 

conditions is generally accomplished in Modelica using the initial equation clause.  To 

map this concept into SysML, a distinction must be made between regular and initial 

constraints.  Such distinctions or semantic extensions are accomplished in SysML using 

UML stereotypes.  Accordingly, a constraint can be characterized as an initial condition 

using the «initial» stereotype.  This stereotype is an original extension to SysML and can 

only be assigned to constraints.  The stereotype specifies that the constraint must be true 

at the beginning of a simulation. 

To illustrate the use of Modelica equations, Figure 3.2 displays the class Mass and 

its behavior as characterized by the initial equation and equation clauses.  Equivalent 

usages of SysML constraints and the «initial» stereotype are displayed in Figure 3.3.  The 
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internal behavior of the block Mass is defined using four regular constraints and one 

initial constraint.  Note that the constraints explicitly refer to the Modelica language, but 

other syntax could be used according to the modeler’s preferred executable language. 

3.3.5 Composing the System Model 

Composing a system CD model comprises the description of energy and signal 

interactions between system components.  Generally, such component interactions are 

modeled using the equivalent of Kirchhoff’s circuit laws: at a connection (i.e. system 

node) all across variables are equal and all through variables add up to zero. 

In Modelica, interactions between system components are modeled using 

Modelica connectors, the flow prefix, and connect clauses.  As discussed in Section 3.3.2, 

connectors are used to encapsulate across and through variables.  Other classes then use 

these connector definitions to create interface components.  The Modelica language 

offers a unique modeling construct called the flow prefix that can be used to explicitly 

identify a connector’s through variables.  This is important when composing a system 

model with Modelica connect clauses.  A connect clause is a special equation used in a 

system model’s equation section for connecting the interface components of the system 

components.  If two or more connector components are connected with connect clauses, 

the following equations are implicitly defined: all flow variables sum to zero while any 

other variables are equal.  This is advantageous for modelers because they don’t need to 

model system nodes—the circuit equations (i.e. the equivalent of Kirchhoff’s laws) 

implicitly exist in the model.  The lack of explicit system nodes is illustrated in the 

Modelica connection diagram of Figure 3.6. 
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While Modelica connectors, the flow prefix, and connect clauses are convenient 

modeling tools, they have no direct equivalents in SysML.  This could be resolved 

through the creation of several SysML extensions via stereotypes, but this greatly 

restricts the modeling approach outlined in this section (Section 3.3) to the creation of 

Modelica models in SysML.  The approach certainly relies on Modelica as a foundation, 

but should still be general enough to facilitate the integration of a variety of CD modeling 

languages.  Furthermore, creating SysML extensions for the purpose of hiding the details 

of a CD model seems to contradict the idea of “white box” modeling. 

 
Figure 3.6: A Modelica connection diagram for a MSD CD model. 
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To describe component interactions in SysML using a “white box” approach, the 

system nodes must be represented explicitly.  System nodes are used to impose common 

constraints on system parts and don’t necessarily represent system components.  To 

recognize this notion, node definitions should be relegated to constraint blocks.  A system 

model can then own constraint properties (usages of constraint blocks) to represent 

system nodes.  Using a SysML parametric diagram, the parameters used in the definition 

of a constraint block can be bound to the properties of another block or constraint block 

using binding connectors.  A binding connector implies a pure equality constraint 

between two objects.  If the objects are part properties, then all of the sub-properties 

belonging to each part are equal.  Hence, binding the interface of a system component to 

a parameter of a system node implies that any nested value properties in the component 

interface are equal to their counterparts in the node parameter.  This corresponds to using 

a Modelica connect clause to connect two interface components that don’t contain flow 

variables. 

Figure 3.7 illustrates the definition of two constraint blocks named MechNode3 

and MechNode4. 
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These constraint blocks have several parameters of the type MechJunction.  The across 

and through variables of these parameters are subject to the packaged constraints that 

describe Kirchhoff’s circuit laws for a translational mechanical system.  MSD owns one 

usage of each constraint block to enable the interaction of its part properties.  Figure 3.8 

displays a parametric diagram that depicts the part interactions as a result of binding 

usages of MechJunction.  Note the resemblance of Figure 3.8 to Figure 3.1. 

bdd MSD Node Definition

«constraint»

MechNode4

parameters

j1: MechJunction

j2: MechJunction

j3: MechJunction

j4: MechJunction

constraints

{ {Modelica} j1.s = j2.s;

  j1.s = j3.s;

  j1.s = j4.s;

  j1.f+j2.f+j3.f+j4.f = 0; }

«constraint»

MechNode3

parameters

j1: MechJunction

j2: MechJunction

j3: MechJunction

constraints

{ {Modelica} j1.s = j2.s;

  j1.s = j3.s;

  j1.f+j2.f+j3.f = 0; }

parts

mass: Mass 

spring: Spring

damper: Damper

ground: Fixed

detect: SteadyStateDetector

MSD

n4n3

 
Figure 3.7: Declaration of the mechanical node constraint blocks. 
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The Modelica equivalent to Figure 3.7 and Figure 3.8 can be seen in Figure 3.9. 

 
Figure 3.8: The parametric diagram of the MSD block. 
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3.4 Integrating “Black Box” CD Models into SysML 

Oftentimes, engineers reuse existing computational models when solving systems 

engineering problems.  If an engineer wishes to reuse an existing Modelica CD model 

and integrate it into a larger SysML information model, recreating the model in SysML 

using the approach outlined in Section 3.3 could prove to be a cumbersome task.  In this 

section, a modeling approach is described for integrating pre-existing, external models 

into SysML by representing only their most important details and an interface for user 

//The MSD declaration 
class  MSD 
  //The system components 
  Mass mass; 
  Spring  spring; 
  Damper damper; 
  Fixed  ground; 
  SteadyStateDetector  detect; 
  //The system nodes 
  MechNode3 n3; 
  MechNode4 n4; 
equation 
  //The system composition 
  connect (mass.j, n4.j3); 
  connect (detect.j, n4.j4); 
  connect (spring.j1, n4.j1); 
  connect (damper.j1, n4.j2); 
  connect (spring.j2, n3.j1); 
  connect (damper.j2, n3.j2); 
  connect (ground.j, n3.j3); 
end MSD; 
 
//The MechNode3 declaration 
class  MechNode3 
  MechJunction  j1, j2, j3; 
equation 
  j1.s = j2.s; 
  j1.s = j3.s; 
  j1.f+j2.f+j3.f = 0; 
end MechNode3; 
 
//The MechNode4 declaration 
class  MechNode4 
  MechJunction  j1, j2, j3, j4; 
equation 
  j1.s = j2.s; 
  j1.s = j3.s; 
  j1.s = j4.s; 
  j1.f+j2.f+j3.f+j4.f = 0; 
end MechNode4;  

Figure 3.9: The Modelica representation of a fully composed MSD system model. 
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and model interaction.  System models can then be composed of these external models 

using binding connectors and Modelica-specific system nodes. 

3.4.1 Model Declaration 

When building models using a “white box”, high-fidelity modeling approach such 

as that outlined in Section 3.3, a modeler must declare every detail needed to define 

completely the model of interest; however, when using a “black box”, low-fidelity 

modeling approach, a modeler only needs to acknowledge sufficiently the referenced 

model and its most important details. 

The first step in referencing an external model is to create a SysML object 

representing that model.  Since the primary SysML modeling unit is the block and the 

modeling approach outlined in Section 3.3 relies on the use of blocks, the representation 

of an external model should be relegated to a block; however, using blocks to represent 

both “white box” and “black box” could be confusing if a modeler can’t easily 

distinguish between both types of blocks. 

To identify a “black box” block referencing an external model, the «external» 

stereotype is introduced to enable SysML modelers to acknowledge dependence upon an 

external model.  This stereotype is an original extension to SysML.  When a block is 

assigned the «external» stereotype, the modeler is obliged to include necessary model 

metadata by adding the value properties url:String, fqn:String, and mime:String.  These 

properties enable the identification and high-level description of the external model.  

While these properties are sufficient for the work done in this thesis, the «external» 

stereotype could be extended or modified to impose other important metadata.  The url 

property takes on the value of the external model’s uniform resource locator (URL).  This 
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allows a SysML model transformer to locate the file containing the referenced model.  

The fqn property takes on the value of the referenced model’s fully qualified name.  This 

identifies the model location within the file specified by url.  The mime property 

classifies the referenced model and takes on the value of a descriptive phrase or keyword. 

Figure 3.10 demonstrates the declaration of external blocks through the creation 

of an MSD system model that utilizes “black box” references to four external 

translational-mechanics models from the Modelica Standard Library (MSL). 

This BDD is very similar to Figure 3.3 in that a block representing the whole system of 

interest owns usages of and is decomposed into blocks that describe the subsystems or 

components.  Note that the ExternalMSD block is the only block without the «external» 

stereotype as it does not refer to an existing Modelica model.  All of the other blocks do 

have the stereotype and accordingly own url, fqn, and mime properties with appropriate 

values.  In the case of the MSLSlidingMass, its url points to the location of the MSL, fqn 

 
Figure 3.10: The declaration of the ExternalMSD SysML CD model. 
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identifies the actual name of the model in the MSL, and mime has the value 

“model/modelica” to signify that the block is referencing a Modelica model. 

A “black box” model is intended to hide details from a model user; however, 

hiding all details is not permissible since a modeler often cares about certain properties in 

the referenced model.  Accordingly, most properties need not be shown in an external 

block, but those representing model parameters or variables of interest must be exposed 

to the user.  Otherwise, the external block has a limited application base.  To recognize 

and utilize these properties, a user should acknowledge them in an external block by 

adding value properties that have the same name and type as the actual property in the 

referenced model.  Figure 3.10 demonstrates this modeling approach by acknowledging 

the parameter m owned by the Sliding Mass model in the MSL. 

3.4.2 Model Interface 

While many unnecessary details are omitted from the declaration of an external 

block in SysML, the block’s interface must be explicitly defined to enable the creation of 

system models composed of external models.  Just as described in Section 3.3.2, the 

interface for model interaction is declared using part properties typed to blocks 

containing across and through variables.  The major difference however is that when 

declaring the typed interface blocks, the across and through variables don’t need to be 

shown.  Instead, the typed blocks are also assigned the «external» stereotype and given 

appropriate metadata. 

Figure 3.10 demonstrates the declaration of external interface blocks through the 

depiction of a reference to the MSL Mechanical Flange model commonly used by MSL 

Mechanics models.  The other external blocks in Figure 3.10 contain usages of these 
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flange blocks using the names of their counterpart Modelica connector components.  For 

example, MSLSlidingMass owns usages of MSLMechanicalFlange with names flange_a 

and flange_b since the MSL Sliding Mass model owns usages of the MSL Mechanical 

Flange model with the names flange_a and flange_b. 

3.4.3 Composing a System Model 

As discussed in Section 3.3.5, CD system models are composed by connecting 

usages of blocks that represent a system’s component or subsystem.  In a similar fashion, 

modelers might need to create a CD system model that relies on connected usages of 

external blocks.  Just as Section 3.3.5 describes the use of system nodes enforcing 

constraints upon the across and through variables exposed in the interfaces of system 

parts, the approach to connecting usages of external blocks relies on Modelica-specific 

system nodes that impose Modelica connect clauses.  Connect clauses are used in place 

of an explicit representation of an equivalent to Kirchhoff’s laws because most native 

Modelica CD models own usages of connectors that employ the flow prefix.  Hence, a 

connect clause that connects two interfaces using the flow prefix implicitly imposes an 

equivalent of Kirchhoff’s laws. 

To demonstrate the use of Modelica-specific system nodes, Figure 3.11 displays 

the declaration of a node constraint block owning a constraint that imposes two Modelica 

connect clauses on its parameters. 
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Each node block has MSLMechanicalFlange parameters that are referenced in its 

constraint(s).  Connecting a part’s usage of MSLMechanicalFlange (e.g. mass.flange_b: 

MSLMechanicalFlange) to a flange belonging to a node in effect substitutes the system 

component’s flange in the connect clause modeled by the node’s constraint.  To compose 

a system model, binding connectors are placed between system components and system 

nodes using the same approach outlined in Section 3.3.5.  This is demonstrated in Figure 

3.12. 

 
Figure 3.11: Declaration of a constraint block representing a Modelica-specific node. 
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While the use of Modelica-specific system nodes explicitly captures Modelica 

connect clause syntax, it can become cumbersome when composing system models.  As 

discussed in Section 3.3.5, a SysML binding connector maps directly to a Modelica 

connect clause under the assumption that all variables contained in a SysML model’s 

interface don’t rely on an equivalent of the Modelica flow prefix.  Hence, any time a 

SysML-to-Modelica transformer encounters a SysML connector, a Modelica connect 

clause is created.  Consequently, a “hack” of sorts is introduced in which a modeler can 

substitute simple binding connector(s) in place of a Modelica-specific system node.  In 

par ExternalMSD

extNode1: ExternalMechNode3

flange1: MSLMechanicalFlange

flange3: MSLMechanicalFlange

flange2: MSLMechanicalFlange

extNode2: ExternalMechNode3

flange1: MSLMechanicalFlange

flange3: MechJunction

flange2: MSLMechanicalFlange

damper: MSLDamper

flange_b: MSLMechanicalFlange

mass: MSLSlidingMass

flange_a: MSLMechanicalFlange

spring: MSLSpring

flange_a: MSLMechanicalFlange

flange_b: MSLMechanicalFlange

flange_a: MSLMechanicalFlange

flange_b: MSLMechanicalFlange

ground: MSLFixed

flange_b: MSLMechanicalFlange

 
Figure 3.12:  The parametric diagram of the ExternalMSD block. 
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Figure 3.12, ground.flange_b is connected to extNode2.flange3 while extNode2.flange1 is 

connected to spring.flange_b.  The corresponding set of Modelica equations are 

connect(ground.flange_b,extNode2.flange3), connect(extNode.flange1,extNode2.flange1) 

(this comes from the constraints of the block ExternalMechanicalNode3), and 

connect(extNode2.flange,spring.flange_b).  This set of Modelica equations can be 

reduced to connect(ground.flange_b, spring.flange_b) which corresponds to a SysML 

connector placed directly between ground.flange_b and spring.flange_b.  Hence, 

Modelica-specific system nodes aren’t necessary, but their removal from a SysML model 

portrays incorrect semantics since the binding connector replacements are used to 

represent the imposition of circuit laws rather than pure equalities. 

One option is to leave this modeling practice as a hack that is only effective when 

dealing with external models that rely on the Modelica flow prefix.  Alternatively, the 

binding connector can be extended using a UML stereotype to ensure that a parametric 

diagram of a CD model depicts the correct semantics.  This original stereotype, named 

«connectClause», can be applied to a binding connector placed between two part 

properties typed to external blocks representing Modelica connectors.  The semantics of 

the stereotype state that the binding connector actually represents a Modelica connect 

clause instead of simply pure equality.  Examples of the «connectClause» binding 

connector are displayed in Figure 3.13 and in the excavator model of Chapter 6. 
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3.5 Summary 

This chapter outlines in detail the approach to representing CD models using the 

graphical modeling constructs provided in SysML.  Section 3.1 first establishes the 

objectives of the approach to ensure that its use provides a SysML modeler with a 

valuable CD modeling ability.  Section 3.2 initiates the explanation of the SysML CD 

modeling approach by providing justification for using Modelica as the foundational CD 

modeling language. Section 3.3 provides an exhaustive approach to creating fully-

detailed, “white box” CD models in SysML.  To facilitate the simplification of CD 

modeling in SysML, Section 3.4 provides a convenient approach to creating “black box” 

SysML CD models that act as proxies for existing Modelica models. 

 
Figure 3.13:  Using «connectClause» binding connectors in place of system nodes. 
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The SysML CD modeling constructs outlined in this chapter are the foundation 

for integrating CD models with other SysML models.  Using these constructs, modelers 

can abstract important knowledge from system CD models into SysML such that 

information can be shared amongst the various other models represented in a SysML 

information model.  Furthermore, the language mapping used to develop the SysML CD 

modeling approach can be used to develop a graph transformation schema for automating 

the transformation of information and knowledge between SysML and Modelica models. 
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CHAPTER 4 

TRANSFORMING BETWEEN 

SYSML AND MODELICA MODELS 

In Chapter 3, an approach was described for representing CD models in SysML 

via a language mapping between SysML and Modelica.  One of the objectives of the 

approach was to enable the transformation of SysML CD models into Modelica models 

for the purpose of model execution.  In this chapter, the language mapping is extended 

into a graph transformation schema and transformation rules that enable the automation 

of SysML-to-Modelica model transformations. 

4.1 The Need for Graph Transformations 

If true model integration is to occur in SysML, engineers must be able to link 

external models adhering to languages other than SysML to models existing in SysML.  

Such a linkage permits the creation of dependencies between design and analysis models 

authored in SysML or in other languages.  In the context of CD modeling in SysML, the 

linkage to Modelica models is partially established by the CD “white box” and “black 

box” modeling approaches described in Chapter 3; however, the ability to abstract a 

Modelica CD model into SysML doesn’t necessarily provide the ability to affect the 

Modelica model through the representation of bindings and associations to the SysML 

model.  To provide this ability, a modeler must be able to transform 

knowledge/information between SysML and Modelica models.  Preferably, these 

transformations are automated to ensure fast and error-free transformations. 
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One option for automating the transformation process is by using a typical 

computer programming language (e.g. Java, C/C++) to create software that is able to 

query and transform SysML and Modelica models through the use of large, complex sets 

of logical constructs (e.g. switch statements, if statements).  While this is a feasible 

approach to implementing model transformations, it might not be the most user-friendly 

and adaptable approach. 

Alternatively, another option for automating the transformation process is through 

the use of a higher-level approach that is better suited for implementing model 

transformations.  One such high-level approach is the use of graph transformations.  

Instead of using complex sets of low-level logic, graph transformations rely on pattern 

matching abilities built into graph transformation tools (e.g. VIATRA) to identify 

precondition patterns in a source model and to prescribe postcondition patterns in a target 

model.  In the context of SysML-Modelica transformations, graph transformations can be 

used to locate and specify patterns in a graph of a SysML or Modelica model. 

Outside of the relative ease of incorporating graph transformations, another 

important benefit is the preservation of graph patterns between source and target models.  

When performing graph transformations, the resultant graph can be preserved and reused 

for future propagations of changes in a source or target model.  This is not easily 

accomplished using low-level logical constructs. 

Overall, graph transformations provide a convenient mechanism for completing 

model transformations.  The implementation of graph transformations for the purpose of 

transforming SysML and Modelica models provides the following potential functionality: 

the generation of Modelica models from SysML models and vice-versa; and the 
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propagation of changes in Modelica models to SysML models and vice-versa.  When 

these abilities are obtained, true “execution” links can be established between SysML and 

Modelica models. 

4.2 The Transformation Approach 

Due to the benefits of performing model transformations with TGGs, the 

transformation approach outlined in this chapter revolves around the creation of a TGG 

and corresponding operational graph transformation rules.  Operational graph 

transformation rules are scenario-specific rules for transforming source modeling 

elements into corresponding target modeling elements.  In contrast, actual TGG graph 

transformation rules are declarative by nature and more powerful since they enable 

bidirectional model transformation and model synchronization; however, these rules are 

difficult to implement because not all transformations are bidirectional and many model 

transformation tools are not capable of executing bidirectional transformation rules.  In 

this chapter, operational rules are developed for performing SysML-to-Modelica 

transformations because they sufficiently demonstrate the power of graph transformations 

and their potential for improving MBSE.  Moreover, the TGG described in this chapter 

can still facilitate the development of actual TGG rules. 

4.2.1 The SysML and Modelica Metamodel Subgraphs 

The key to developing a TGG is the language mapping.  By examining the 

mapping in detail, the essential modeling elements from each language can be identified 

and separated from the non-essential elements.  For example, a clear mapping exists 

between SysML blocks and Modelica classes, so both elements must be acknowledged in 
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the SysML-to-Modelica transformation schema.  In contrast, a clear mapping does not 

exist between the Modelica flow prefix and a SysML modeling construct, so the flow 

prefix is not included in the transformation schema.  Once the necessary modeling 

elements are identified, graph-based representations of each language are developed as 

subgraphs of the TGG.  These subgraph metamodels are not intended to represent a 

modeling language in its entirety; instead, they are incomplete representations enabling 

model transformations that adhere to the language mapping of interest. 

Figure 4.1 displays the subgraph of the SysML metamodel used in the SysML-to-

Modelica TGG. 

This representation of the SysML metamodel strikes a compromise between maintaining 

accuracy and fostering ease of use.  Additionally, modeling elements that are not required 

in the SysML-to-Modelica transformation are excluded (e.g. requirements).  Important 

modeling elements such as blocks, packages, properties, and connectors are included 

 
Figure 4.1: The SysML metamodel subgraph of the SysML-to-Modelica TGG. 
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while unnecessary elements like connector ends and roles are replaced with the simple 

relation endAssn pointing from a connector to a property. 

Figure 4.2 displays the graph of the Modelica metamodel used in the development 

of the SysML-to-Modelica TGG. 

Again, the intent of this graph is not to reflect directly the Modelica language 

specification [11], but to strike a balance between accuracy and ease of use. 

4.2.2 The Correspondence Metamodel Subgraph 

To develop the correspondence graph for the TGG, each mapping described in 

Chapter 3 is translated into a correspondence element that points to the mapped elements.  

This results in the specification of the SysML-to-Modelica TGG as depicted in Figure 

4.3. 

 
Figure 4.2: The Modelica metamodel subgraph of the SysML-to-Modelica TGG. 
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Most correspondence modeling elements have been defined only if they were necessary 

for ensuring model traceability.  A complete correspondence metamodel would include 

correspondence elements for every mapping between SysML and Modelica.  For 

example, the correspondence between a block and a class was deemed necessary while a 

correspondence between UML multiplicities and Modelica array sizes was deemed 

unnecessary. 

 
Figure 4.3: The Correspondence metamodel subgraph of the SysML-to-Modelica TGG. 
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4.2.3 The Graph Transformation Rules 

When the TGG is complete, operational graph transformation rules can be 

developed that force a source and target model to satisfy the TGG.  As depicted in Figure 

2.2, graph transformations are used to read a source model adhering to a source 

metamodel and write a corresponding target model adhering to a target metamodel.  In 

the context of TGGs, a specific sequence of operational graph transformation rules is 

used to search through source, target, and correspondence graphs to match a given 

precondition pattern.  When the precondition pattern is satisfied, a postcondition pattern 

that satisfies the TGG is prescribed resulting in the creation of new correspondence and 

target modeling elements. 

In the SysML-to-Modelica graph transformation approach, a graph containing 

instances of SysML metamodel elements is first parsed to identify all top-level (i.e. non-

contained) definition modeling elements (blocks, packages, value types, and units).  

When a top-level definition element is found, instances of the appropriate correspondence 

element and Modelica metamodel element are created and correspondence relationships 

are defined.  This is depicted in Figure 4.4 through Figure 4.6 (minus some details). 

 

 
Figure 4.4: The TopBlock-to-Class transformation rule. 
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While most top-level definition element transformation rules are simple, a special 

rule is used to transform SysML blocks into Modelica connectors.  As depicted in Figure 

4.7, this rule states that instances of modelicaConnector and block2modelicaConnector 

correspondence elements should exist if a block is used by a part that is the target of a 

sysmlConnector’s endAssn relationship. 

Once all instances of top-level SysML definition elements are transformed into 

their Modelica counterparts, the transformation rule depicted in Figure 4.8 is applied to 

the SysML model to transform contained blocks into contained classes. 

 
Figure 4.5: The TopValueType-to-ModelicaType transformation rule. 

 
Figure 4.6: The TopSysMLPackage-to-ModelicaPackage transformation rule. 

 
Figure 4.7: The TopBlock-to-ModelicaConnector transformation rule. 
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Similar rules exist for contained valueTypes, sysmlPackages, and units. 

The last definition elements that are subject to transformation are blocks 

stereotyped by the “external” keyword.  As depicted in Figure 4.9, the transformation is 

the nearly identical to that depicted in Figure 4.4, but the resulting class is flagged such 

that a Modelica code exporter (see Section 4.4) doesn’t try to create new Modelica 

classes that represent existing Modelica classes. 

Once all of the instances of SysML definition elements are transformed, rules are 

applied to transform SysML properties.  The general Property-to-Component rule is 

depicted in Figure 4.10, but specialized rules also exist for transforming specific subtypes 

of SysML properties. 

 
Figure 4.8: The ContainedBlock-to-Class transformation rule. 

 
Figure 4.9: The ExternalBlock-to-Class transformation rule. 
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The entity structure of the Property-to-Component transformation rule is very similar to 

that of the ContainedBlock-to-Class transformation rule, but the relationships and 

element instances have changed.  Instead of searching for an instance of a sysmlPackage 

containing an instance of a block, the rule searches for an instance of a block associated 

with an instance of a property.  This structure is also present in the Constraint-to-

Equation rule displayed in Figure 4.11 and specialized by the Constraint-to-

InitialEquation rule displayed in Figure 4.12. 

 

 
Figure 4.10: The Property-to-Component transformation rule. 

 
Figure 4.11: The Constraint-to-Equation transformation rule. 
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Upon finishing the transformation of properties and constraints, SysML 

connectors that connect two block properties are transformed into corresponding 

Modelica connect clauses.  By searching for sysmlConnectors that are the source of two 

endAssns targeted at two different properties, the transformation rule can create a 

connectClause that directs a componentRef relation to the two appropriate components.  

This transformation rule is depicted in Figure 4.13. 

After all SysML connectors have been transformed into Modelica connect 

clauses, the sysml2modelica machine finishes the model transformation by transforming 

simple SysML constructs like the abstract construct, import association, generalization 

association, and UML multiplicities. 

 
Figure 4.12: The Constraint-to-InitialEquation transformation rule. 

 
Figure 4.13: The SysMLConnector-to-ConnectClause transformation rule. 
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4.3 SysML-to-Modelica Transformations with VIATRA 

To implement the SysML-to-Modelica model transformation approach, the TGG 

and operational graph transformation rules were encoded using the VIATRA [16, 17] 

plugin for Eclipse.  The VIATRA framework was developed to provide general-purpose 

support for completing model transformations between various engineering domains and 

modeling languages.  Additionally, it was designed to support many transformation 

standards including OMG’s Query/View/Transformation (QVT) [37].  VIATRA is 

comparable to other model transformation tools such as Fujaba [42] or MOFLON [43], 

but offers unique features like recursive patterns and negative patterns with arbitrary 

negation depths. 

To capture patterns, models, and metamodels, VIATRA relies on its own 

declarative modeling language called the VIATRA Textual Metamodeling Language 

(VTML).  VTML provides two main constructs for representing models or metamodels: 

entities and relations.  An entity represents a modeling concept (e.g. block, property) 

while a relation represents a relationship between entities (e.g. property association 

between a block and a property). 

Using this entity-relation concept, the metamodels depicted in Figure 4.1 through 

Figure 4.3 were described in VTML to create the SysML-to-Modelica TGG.  Excerpts of 

the VTML metamodels can be seen in Figure 4.14. 
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As seen in Figure 4.14, the primary modeling elements in VTML are the entity and the 

relation.  For clarification, when specifying a relation the first argument is the relation 

name, the second argument is the source entity type, and the third argument is the target 

entity type.  For example, a block can have a relation propAssn pointing from a block 

(preferably itself) to a property. 

//The SysML Metamodel 
entity(SysML) { 
  //The SysML block 
  entity(block) { 
    relation(propAssn, block, property); 
    multiplicity(propAssn, one_to_one); 
    isAggregation(propAssn, true); 
    … 
  } 
  //The SysML Property 
  entity(property) { 
    relation(type, property, block); 
    … 
  } 
  … 
} 
//The Modelica Metamodel 
entity(Modelica) { 
  //The Modelica class 
  entity(class) { 
    relation(composition, class, component); 
    … 
  } 
  //The Modelica component 
  entity(component) { 
    relation(type, component, class); 
    … 
  } 
} 
//The Correspondence Metamodel 
entity(Correspondence) { 
  //The block2class correspondence 
  entity(block2class) { 
    relation(blockR, block2class, SysML.block); 
    relation(classR, block2class, Modelica.class); 
  } 
  //The property2component correspondence 
  entity(property2component) { 
    relation(propertyR, property2component, SysML.property); 
    relation(componentR, property2component, Modelica.component );  
  } 
  … 
}  

Figure 4.14: An excerpt of the SysML-to-Modelica TGG as represented in VTML. 
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To specify model transformations performed using abstract state machines and 

graph transformation rules, VIATRA relies on its own imperative command language 

called the VIATRA Textual Command Language (VTCL).  The VTCL language 

provides a user with several general-purpose constructs used to compute graph 

transformations.  The first construct is the machine.  A machine can contain a main rule 

and various other rules (i.e. functions) that perform actions on the elements existing in a 

VIATRA modelspace.  A machine can also contain graph patterns written in VTML 

syntax that are used to perform pattern matching in a VIATRA modelspace.  For a 

machine to perform graph transformations, VTCL employs a special rule appropriately 

named the graph transformation rule (GTR) that can contain precondition, postcondition, 

and action sections.  The precondition section is written in VTML syntax and used to 

specify a pattern that must be matched somewhere in the modelspace.  The postcondition 

pattern is also written in VTML syntax used to prescribe how the modelspace should be 

changed once the precondition is satisfied.  After a precondition and postcondition are 

satisfied, a GTR can use the auxiliary action section to perform a set of imperative 

actions on the modelspace (e.g. renaming entities and resetting entity values). 

Using VTCL, a machine named sysml2modelica was developed for performing 

SysML-to-Modelica model transformations.  Excerpts of this machine can be seen in 

Figure 4.15. 
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The machine is divided into two important sections: a set of GTRs that reflect the graph 

transformation rules described in Section 4.2.3 and a main rule that prescribes the 

sequence in which the GTRs should be performed.  When a user runs the sysml2modelica 

//Importing the TGG metamodel 
import SysML; 
import Modelica; 
import Correspondence; 
//The sysml2modelica VTCL machine 
machine(sysml2modelica) { 
  … 
  //The property2component graph transformation rul e 
  gtrule property2componentRule( inout P) = { 
    //The precondition pattern required to do trans formation 
    precondition pattern lhs(B, P, PAssn, C, BCCorr, BR, CR) = { 
      block(B) { 
        property(P); 
        block.propAssn(PAssn, B, P); 
      } 
      block2class(Corr); 
      block2class.blockR(BR, Corr, B); 
      block2class.classR(CR, Corr, C); 
      class(C); 
    } 
    //The resulting postcondition pattern 
    postcondition pattern rhs(P, PAssn, A, Comp) = { 
      block(B) { 
        property(P); 
        block.propAssn(PAssn, B, P); 
      } 
      block2class(BCCorr); 
      block2class.blockR(BR, BCCorr, B); 
      block2class.classR(CR, BCCorr, C); 
      property2component(PACorr); 
      property2component.propertyR(PR, PACorr, P); 
      property2component.componentR(AR, PACorr, A);  
      class(C) { 
        component(A); 
        class.composition(Comp, C, A); 
      } 
    } 
    //Renaming A and Comp and resetting the value o f A 
    action { 
      rename(A, name(P)); 
      rename(Comp, name(PAssn)); 
      setValue(A, value(P)); 
  } 
  //The gtrule execution sequence 
  rule main() = seq { 
    … 
    forall P apply property2componentRule(P); 
    … 
   } 
}  

Figure 4.15: An excerpt of the sysml2modelica machine as represented in VTCL. 
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machine, the GTRs are applied to all SysML elements existing in a specific 

transformation workspace belonging to a VIATRA modelspace. 

Figure 4.16 through Figure 4.18 demonstrate the results of running the 

sysml2modelica machine on an example VIATRA representation of a SysML model. 

 

 
Figure 4.16: A VIATRA representation of a SysML model. 
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Figure 4.17: Running the sysml2modelica machine. 
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For more information about the VIATRA source code, the best resource is the 

documentation in the code itself.  Most every aspect of the code is well documented using 

an easy-to-read commenting scheme.  The code can be obtained by contacting the author 

and obtaining the SysMLTransformers plugin [44] and source files. 

4.4 Implementation in RSD 

In this section, an overview is provided for the SysMLTransformers plugin for the 

EmbeddedPlus (E+) SysML Toolkit [45] and IBM’s extended version of Eclipse called 

Rational Systems Developer (RSD) [19].  This plugin is used to transform a visual E+ 

SysML CD model into a lexical Modelica model using VIATRA and the sysml2modelica 

machine.  Only the most important classes and details are discussed in the following 

sections.  For more information about the Java source code, the best resource is the 

 
Figure 4.18: VIATRA modelspace resulting from running the sysml2modelica machine. 
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documentation in the code itself.  Again, this code can be found in SysMLTransformers 

plugin and source files. 

The plugin source code is divided amongst the nine classes seen in Figure 4.19. 

The classes Activator, SysML2ModelicaAction, and SysML2ViatraAction all deal with 

activating the plugin classes via the RSD project explorer’s pop-up menu.  The class 

SysMLSimulationBlock is used to store and pass along the properties of a SysML 

simulation model (Chapter 5).  To ease interaction with the VIATRA Application 

Programming Interface (API), the ViatraManager class is used to provide original utility 

methods and to access commonly used VIATRA API methods for manipulating a 

VIATRA modelspace.  The importer class SysML2ViatraImporter is used to access the 

E+ API and translate a selected E+ SysML CD model into VIATRA syntax.  The 

exporter class Viatra2ModelicaExporter to access a VIATRA modelspace and generate 

Modelica code from a VIATRA representation of a Modelica model.  The 

SysML2ViatraTransformer class packages an instance of the SysML2ViatraImporter in a 

 
Figure 4.19: The project explorer view of the SysMLTransformers Java source code. 
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fashion that enables easy execution from the project explorer pop-up menu.  The 

SysML2ModelicaTransformer class is very similar to the SysML2ViatraTransformer class 

but is used to do a complete transformation of an E+ SysML CD model using instances 

of both the SysML2ViatraImporter and Viatra2ModelicaExporter classes.  The 

functionality of the SysML2ModelicaTransformer class is illustrated in Figure 4.20. 

Figure 4.21 through Figure 4.25 illustrate the results of transforming an E+ MSD 

model by running the SysML2ModelicaTransformer through RSD’s project explorer pop-

up menu.  Figure 4.21 shows a BDD of an E+ version of the MSD model that is 

embedded inside of a SysML simulation model via a model context (Section 5.1 and 

Section 5.2). 

 
Figure 4.20: The functionality of SysML2ModelicaTransformer. 
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MSDSystem is owned by MSDContext which has three value properties characterizing the 

mass, spring, and damper part properties of analysisModel.  These properties, 

massParameter (set to 375 kilograms), springCoefParameter (set to 50,000 Newtons per 

meter), and dampingCoefParameter (set to 6,000 Newton-seconds per meter), are 

intended to represent realistic characteristics of a car suspension.  Figure 4.22 displays a 

parametric diagram of MSDSystem that is similar to the diagram shown in Figure 3.8. 

 

 
Figure 4.21: A BDD of the E+ MSDSystem. 
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Figure 4.22: An E+ SysML CD model of a MSD system. 



 75 

As depicted in Figure 4.23, this model can be transformed into a corresponding Modelica 

model by right clicking it in the RSD project explorer and selecting “Generate Modelica 

Model…”. 

 
Figure 4.23: Generating a Modelica model from the E+ SysML CD model of a MSD system. 



 76 

When the SysML2ModelicaTransformer completes the transformation process, the 

resulting Modelica model is placed in a Modelica Development Tooling (MDT) [46] 

project and imported into Dymola [47] for simulation.  This is shown in Figure 4.24 and 

Figure 4.25. 

 

 
Figure 4.24: An MDT view of the resultant Modelica MSD model. 
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The simulation results of Figure 4.25 indicate that the MSD CD model authored 

in E+ was transformed into a meaningful, executable Modelica model.  In fact, the 

performance of the simulated MSD system satisfies the ReboundReq requirement 

specified for the WheelSuspension modeled in Figure 2.1.  Moreover, the behavior of the 

MSD model corresponds nicely with that of a true car suspension.  When a suspension is 

given a displacement and forced to respond, it typically overshoots its steady-state 

position and gradually (i.e. with no residual vibration) settles. 

 
Figure 4.25: The Dymola simulation of the Modelica MSD model. 
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While transforming a SysML CD model into Modelica provides some benefits for 

automating the simulation of the SysML model, the transformation of a model context 

(Sections 5.1 and 6.4) provides much more functionality for a SysML user.  

Transforming the model context enables the simulation of a CD model that includes 

information regarding static or known aspects of the system of interest.  Currently, an 

unstable version of the SysMLTransformers plugin can handle some depictions of a CD 

model’s context.  This could be easily stabilized by continuing the development of graph 

transformation rules and the Java code used to run the transformations; however, the 

current abilities of the SysMLTransformers plugin provide promising examples for 

creating other types of graph transformations in support of model integration in SysML. 

4.5 Summary 

In this chapter, a TGG and operational graph transformational rules are presented 

to handle SysML-to-Modelica model transformations.  Section 4.1 first justifies the 

selection of graph transformations for automating SysML-to-Modelica model 

transformations.  Section 4.2 is a description of the SysML-Modelica TGG and the 

SysML-to-Modelica operational graph transformation rules.  Section 4.3 is a discussion 

on the implementation of the SysML-Modelica TGG and graph transformation rules in 

the VIATRA graph transformation tool.  Section 4.4 provides an overview of the 

SysMLTransformers plugin for RSD which is used to transform E+ SysML CD models 

into lexical Modelica models. 

By establishing the ability to transform SysML models into Modelica models via 

graph transformations, a precedent has been set for enabling the execution of more 

complex graph transformations.  The TGG proposed in this chapter provides a foundation 
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that can be reused or extended to support model transformations like Modelica-to-SysML 

transformations and model synchronization transformations.  Moreover, this chapter 

provides a basic guide for creating a true link between SysML and other external models 

via graph transformations.  As support grows for creating transformation links between 

various types of integrated models, engineers will be better able to ensure information 

consistency and model traceability throughout the model-based design of a complex 

system. 
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CHAPTER 5 

MODELING SIMULATIONS AND ANALYSES IN SYSML 

In the context of model-based systems engineering, models and simulations allow 

systems engineers to investigate and predict the behavior of system alternatives without 

the need for physical prototyping.  For example, a CD model of a MSD system can be 

used to simulate and predict the behavior of a car suspension alternative.  This chapter 

describes how to relate a CD model to other relevant design information/knowledge in 

SysML by binding of model parameters in a model context; defining an experiment 

performed on a model in a simulation; defining a measure of effectiveness as the result of 

a simulation; and using an abstracted simulation in the context of system analysis.  This 

complements the model transformation approach outlined in Chapter 4 and the model 

integration effort in general because it enables the transformation and execution of CD 

models that incorporate information from other SysML models. 

5.1 Defining the Model Context 

In systems engineering, a continuous dynamics model is always used in a 

particular context.  Within this model context the elements of a system’s structural model 

are bound parametrically to the corresponding elements of the analysis model.  For 

example, when analyzing a set of car suspension alternatives, engineers can assume that 

the mass used in a MSD CD model is always one quarter of the car’s mass even though 

the suspension characteristics vary amongst the alternatives. 

In current practice, engineers do not always distinguish between the physical 

structure or system topology and the corresponding system behavior.  For instance, it is 
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common practice to use an electric circuit diagram as the representation for defining both 

the circuit topology as well as the behavior of the circuit in a SPICE simulation [48].  As 

systems become more complex engineers often need to represent a system with multiple 

simulation models corresponding to different levels of abstraction or different 

disciplinary perspectives. The use of an explicit model context as suggested here 

facilitates the preservation of consistency amongst all the separate models.  A similar 

approach to setting the context for an analysis model is demonstrated with the MRA 

CBAM concept [21]. 

To relate the structure to the behavior, a model context block is defined with two 

part properties: one usage of the system model and one usage of the analysis model.  If 

mathematical relationships beyond simple equivalence exist between the known elements 

of the system model and the corresponding elements of the analysis model, additional 

constraint blocks can also be defined. Finally, a parametric diagram of the model context 

block is created to bind the known system elements to the corresponding analysis 

elements. 

In the lower portion of Figure 5.1, the block ModelContext is defined as owning 

usages of MSD, Car, and a constraint block named MassRelation. 
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In Figure 5.2, a parametric diagram of ModelContext is used to establish the relationship 

between the masses of the MSD and car models. 

Inside of this parametric diagram, msd.mass.m is defined as one quarter of the mass of 

mcCar.mass by connecting them to the appropriate parameters on the constraint property 

massRel. 

«simulation»

SuspensionSimulation

ModelContext

MSD Car

«constraint»

Sample&Hold

constraints

{ {Modelica} when time >= t then

        input = output;

  end when; }

parameters

input:

output:

time: Time

t: Time

«constraint»

MassRelation

constraints

{ {Modelica} m = 0.25*carMass }

parameters

m: SI.Mass

carMass: SI.Mass

values

startTime: Time = 0

stopTime: Time = 5

time: Time

kInput: Real

dInput: Real

ssTimeOutput: Time

msd mcCar

simModel

bdd Simulation Definition

massRel

sample&hold

 
Figure 5.1: Declaration of the SuspensionSimulation and ModelContext blocks. 

par ModelContext

mcCar: Car

mass: SI.Mass

msd: MSD

mass.m: SI.Mass

massRel: MassRelation
m: SI.Mass

carMass: SI.Mass

 
Figure 5.2: The parametric diagram of ModelContext. 
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5.2 Modeling the Simulation 

A simulation is an experiment performed on a computational model [41].  Before 

a simulation can be performed, the experiment must be fully defined.  A fully defined 

simulation includes a specification of initial conditions, boundary values, observed 

outputs, and potentially the process steps one must follow to complete the experiment.  

From a modeling perspective, all of these aspects can be captured in the computational 

model itself or in extensions of the model defined using the same modeling constructs 

described in Chapter 3.  One can therefore assume that the “model” as defined in the 

model context is fully specified—all the parameters are bound to values and the set of 

system equations is non-singular.  Under those assumptions, the only additional 

information that needs to be provided is the start and end time of the simulation. 

To make the semantics of a simulation explicit in SysML, modelers can utilize the 

«simulation» stereotype.  This original stereotype can be applied to a block that 

represents a simulation of a fully specified computational model.  As is illustrated in 

Figure 5.1, this stereotype requires the inclusion of a time property, which represents the 

simulation time; startTime and stopTime properties; and a part property (e.g. simModel) 

that represents the computational model to be simulated.  The semantics of the 

«simulation» stereotype are that all the properties in the computational model are 

evaluated as a function of time from startTime to stopTime.  Note that the application of 

this stereotype completely defines a simulation experiment in a fashion that is 

independent of any particular simulation solver; however, other solver-specific properties 

could be included (e.g. number of intervals).  In addition, note that Modelica semantics 
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differ from SysML semantics which require the explicit definition of a local simulation 

time property to which all time-varying system properties can be bound. 

5.3 Abstracting the Simulation 

A simulation as defined in the previous section allows a systems engineer to 

define an experiment in which the system behavior can be observed.  However, 

simulations are often used to make system-level design decisions.  In that case, the same 

experiment is often performed on multiple system alternatives.  It then becomes 

important to abstract this simulation formally for reuse purposes by clearly defining the 

inputs (the properties that can take on different values from one simulation run to the 

next), and the outputs (the properties that are of interest to a decision maker, for instance, 

a measure of effectiveness that drives a design optimization).  The relationship between 

simulation inputs and outputs can then itself be considered as a model.  Unlike the model 

of the system, this model is an algebraic relationship, albeit a very complex one, that 

requires running the entire simulation to compute the outputs from the inputs.  When 

abstracting a simulation in this fashion to support decision making, it is justifiable to 

assume that the outputs of the simulation are scalar quantities (decisions can only be 

made based on scalars because vectors cannot be rank-ordered [49]).  Sometimes this 

requires that a modeler include additional modeling elements in the CD model to define 

these scalar measures of effectiveness.  For instance, in the BDD in Figure 5.1 and the 

corresponding parametric diagram in Figure 5.3, the suspension simulation has been 

abstracted into an input-output model with inputs as the decision variables, dInput and 

kInput (bound to the damping and stiffness of the suspension), and an output as the 

measure of effectiveness, ssTimeOutput (the time to steady-state for the MSD system). 
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The output has been bound to a property of MSD through a “sample and hold” constraint 

property, sample&hold, making explicit that the output takes on the value of the time-

varying property detect.ssTime when the simulation time equals stopTime.  In general, 

more complex models may be necessary to relate scalar outputs to time-varying 

simulation properties. 

5.4 Embedding the Simulation into an Analysis 

Once a simulation has been abstracted into an input-output model, it can be used 

in support of analyzing system alternatives with respect to stakeholder requirements and 

measures of effectiveness, as is illustrated in Figure 5.4 and Figure 5.5. 

par SuspensionSimulation

kInput: Real

dInput: Real

stopTime: Time time: Time

simModel.msd: MSD

detect.ssTime: Time

spring.k: Real

damper.d: Real

sample&hold: Sample&Hold

input:output:

t: Time time: Time

ssTimeOutput: Time

time: Time

 
Figure 5.3: The parametric diagram of SuspensionSimulation. 
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Analyses generally verify that a system alternative meets a certain system requirement.  

This can be modeled explicitly in SysML using the «verify» dependency. A parametric 

diagram of a block representing a system analysis can be used to connect the system 

alternative to the abstracted simulation, as illustrated in Figure 5.5.  Instead of binding the 

simulation inputs and outputs directly to the corresponding value properties of the system 

alternative, one could also define an optimization problem in which the stiffness and 

damping are optimized with respect to one or more measures of effectiveness.  Whenever 

there is a need for repeated evaluation of the simulation with different inputs, it is 

desirable to embed the simulation explicitly in an analysis as depicted in Figure 5.4. 

 
Figure 5.4: Declaration of the SuspensionAnalysis block. 

 
Figure 5.5: The parametric diagram of SuspensionAnalysis. 
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5.5 Summary 

This chapter presents the final facet of integrating a CD model into SysML by 

describing an approach to relating a SysML CD model to other elements of a SysML 

model via the creation of SysML models of simulations and engineering analyses.  

Section 5.1 is a description of how to set the context of a CD model by binding its 

properties to the properties of a SysML structural model.  Section 5.2 is an explanation 

on depicting simulations of SysML CD models using common SysML modeling 

constructs.  Section 5.3 describes the abstraction of simulation models for the purpose of 

enabling simulation reusability.  Section 5.4 then discusses the creation of SysML models 

of engineering analyses that rely on abstracted simulation and system alternative models. 

While others may approach the implementation of depicting system analyses 

differently than the approach outlined in this chapter, the basic concepts of modeling 

simulations and analyses in SysML are crucial for establishing meaningful relationships 

between CD and other SysML models.  An analysis model like a SysML CD model 

provides little value to an engineer if it cannot answer a question about the system 

through simulation; hence, simulations and their owning analyses are a primary means of 

relating the knowledge contained in CD models and the knowledge contained in other 

design and analysis models. 

By enabling the relation of CD models to other SysML models (e.g. structural 

model of a system alternative), the prospect of using model transformations as described 

in Chapter 4 becomes even more promising.  Transforming a SysML CD model whose 

properties are bound to the properties of other SysML design or analysis models supplies 
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an executable Modelica model with information that sets the context for simulating the 

continuous behavior of a given system alternative. 
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CHAPTER 6 

THE HYDRAULICALLY POWERED EXCAVATOR MODEL 

6.1 Introduction to the Excavator Example 

The example model presented in this chapter is intended to demonstrate the 

scalability of the CD model integration approach proposed in Chapter 3 through Chapter 

5.  If the approach is capable of handling the integration of complex models such as the 

excavator model, then its use in a MBSE design process could benefit engineers 

designing complex systems. 

6.1.1 Overview of the Excavator Example 

The model described in this chapter is meant to depict the continuous dynamic 

behavior of an earth-moving, hydraulically powered excavator.  These machines are used 

extensively in the construction industry amongst others for performing a large variety of 

tasks with the most common being digging and trenching.  They are complex systems 

composed of numerous interconnected subsystems and components and are typically 

designed by large companies employing distributed services from engineers of multiple 

disciplines. 

Motion is provided to these systems through the complex control of multiple 

hydraulic actuators linked to various mechanical structures like the driver’s carriage and 

the digging arm.  The carriage is allowed to rotate about its base through the use of a 

hydraulic motor.  The arm is composed of three main structures:  the boom (the large 

mechanical link connected to the carriage), the crowd (the smaller mechanical link 
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between the boom and the bucket), and the digging bucket attached at the end of the 

excavator arm.  The arm is allowed to move in three degrees of freedom through the use 

of four double-acting hydraulic cylinders: two parallel cylinders controlling the boom 

rotation, one controlling the crowd rotation, and one controlling the bucket rotation.  The 

hydraulic actuators are powered by a load-sensing, pressure-compensating circuit 

controlling the operation of a variable-displacement hydraulic pump.  The pump is 

typically driven by an internal-combustion engine. Flow is routed to the actuators through 

the use of four load-sensing directional servo valves.  The valve positions are 

continuously controlled by an excavator operator through control signals typically input 

from a joystick interface. 

To model the digging motion of a hydraulically powered excavator, a Modelica 

model can contain an enormous set of hybrid discrete-event and DAE models.  Both the 

SysML and Modelica excavator CD models depicted in this chapter represent a collection 

of over 11,000 equations.  The CD model primarily captures the energy-based, 

continuous behavior of the rigid-body mechanics and the hydraulics, but also includes 

simplified models of the control signals and the environment. 

6.1.2 Appropriateness of the Example Model 

This model was chosen to test the abilities of the model integration approach 

outlined in this thesis due to its increased complexity and relevance to the systems 

engineering community as compared to the simple car suspension model discussed in 

Chapter 2 through Chapter 5.  The excavator model is complex due to its multiple 

degrees of freedom, subsystems, and encompassed engineering disciplines.  Such a model 

if deemed valid can provide a large amount of valuable information for a decision maker 
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selecting or eliminating individual alternatives from large discrete or continuous design 

spaces. 

Under the assumption that the model is sufficiently complex for testing the 

abilities of the SysML CD model integration approach, the rest of this chapter utilizes the 

principles of the approach to integrate the excavator CD model into SysML via its 

depiction using SysML modeling constructs, the transformation of the SysML CD model 

into Modelica code, and the incorporation of the SysML CD model into a simulation and 

engineering analysis model.  The model is developed using the E+ toolkit for RSD which 

imposes certain modeling limitations with respect to the integration approach proposed in 

this thesis.  These limitations are identified throughout the description of the E+ SysML 

CD model. 

6.2 Defining the SysML CD Model of the Excavator 

To begin the integration process, the excavator CD model is first declared and 

composed using the “white box” and “black box” approaches outlined in Sections 3.3 and 

3.4, respectively.  First, as seen in Figure 6.1, an original SysML block, 

ExcavatorDigCycle, is declared in a BDD as a CD model of the excavator’s dig cycle. 
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The block ExcavatorDigCycle is decomposed into various part properties typed to other 

blocks: three external, “black box” blocks representing pre-existing Modelica models of 

the excavator’s multi-body mechanical structure, dig-cycle command signals, and a world 

reference frame; one original “white box” block representing the hydraulics subsystem; 

and one block representing a system node for demonstrating the equivalence of 

Modelica-specific system nodes and the «connectClause» binding connector. 

At this point, it is necessary to discuss an E+ limitation affecting the depiction of 

system nodes and constraint blocks in general.  While the modeling approach outlined in 

Sections 3.3.5 and 3.4.3 promotes the use of constraint blocks for depicting system nodes, 

bugs in the E+ toolkit prevent a user from following the approach exactly.  More 

specifically, a constraint parameter typed to a block instead of a value or data type cannot 

be connected to any other elements using assembly or binding connectors.  This means 

that a user cannot connect a component interface typed to a block (e.g. a part property 

typed to MechanicalJunction) to a usage of a node constraint block since the constraint 

 
Figure 6.1: The BDD of the ExcavatorDigCycle SysML CD model. 
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parameter must be typed to the same block (e.g. a parameter typed to 

MechanicalJunction).  To overcome this issue, a modeler must represent nodes using 

regular blocks instead of constraint blocks, as seen in Figure 6.1. 

The hydraulics subsystem, modeled by Hydraulics in Figure 6.1, is further 

depicted in its BDD seen in Figure 6.2. 

Hydraulics is broken down into part properties representing its interface with the other 

excavator subsystem models and other properties representing the hydraulic components.  

 
Figure 6.2:  The BDD of the Hydraulics SysML CD sub-model. 
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More specifically, the hydraulics subsystem is composed of relations to six different 

external blocks:  PartialFluidCircuit, TJunction, DoubleActingCylinder, LSValveUnit, 

and HydraulicMotor from the FluidPower [50] library for Modelica; and the 

ConstantSpeed rotational-mechanical model from the MSL. 

To compose the system CD model of the excavator, the multiple subsystems and 

components must be bound together using the approaches outlined in Sections 3.3.5 and 

3.4.3.  First the high-level ExcavatorDigCycle model is composed in an Internal Block 

Diagram (IBD) in place of a parametric diagram due to another E+ modeling limitation.  

When modeling in an E+ parametric diagram, a binding connector isn’t owned by the 

diagram owner if the connector is placed between nested properties belonging to two 

different part properties.  Instead, the connector is incorrectly owned by the definition 

block of one of the part properties.  For example, if a connector is drawn between A.b.c 

and A.d.c in a parametric diagram of A while b is typed to B and d is typed to D, the 

connector is incorrectly placed between B.c and D.c and owned by either B or D; 

however, this is not the case when modeling in an IBD.  When composing a system 

model in an IBD, nested connector ends are correctly placed between nested properties.  

To cope with this problem, system models are composed in E+ IBDs instead of 

parametric diagrams.  The IBD of ExcavatoDigCycle is illustrated in Figure 6.3. 
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Figure 6.3:  The IBD of ExcavatorDicCycle. 
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Figure 6.3 depicts the equivalence between Modelica-specific system nodes and 

«connectClause» binding connectors.  Any connectors bypassing a system node are 

assumed to have the «connectClause» stereotype.  Figure 6.4 displays a much larger and 

more complex model composition through the depiction of Hydraulic’s IBD. 

Figure 6.4 also depicts a work-around for overcoming another E+ bug.  When 

making connections between multiple usages of the same block in an IBD, connectors are 

often incorrectly and automatically placed in other parts of the same diagram.  Suppose 

that block A has two properties b and c.  If another block D owns two usages of A, a1 and 

a2, and a connector is drawn from a1.b to another property in D, say e.f, another 

connector automatically appears in the IBD of D between a2.b and e.f.  To overcome this 

problem, every E+ definition block can only be typed by one property in a given block.  

If a definition block is required for two or more properties of one block, it is copied and 

renamed as many times as necessary.  For instance, instead of creating four usages of 

DoubleActingCylinder in Hydraulics (as seen in Figure 6.2), four part properties are 

typed to four independent definition blocks containing the same definition: 

DoubleActingCylinder1, DoubleActingCylinder2, DoubleActingCylinder3, and 

DoubleActingCylinder4. 
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Figure 6.4:  The IBD of Hydraulics. 
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This intricate IBD demonstrates the ability of the CD modeling approach to capture the 

behavior of complex engineered systems.  This final diagram concludes the depiction of 

the excavator CD model which is now ready to be transformed into a corresponding 

Modelica model.  One must note that this intricate SysML model was not the only way to 

integrate an excavator CD model into SysML.  Instead, a modeler could have modeled 

the entire excavator model in Modelica and referred to it using an external block. 

6.3 Transforming the SysML Excavator Model 

This section builds upon the work presented in Section 6.2 by transforming the 

SysML CD model of the excavator into an executable Modelica model.  Just as the MSD 

model was transformed in Section 4.4, the SysMLTransformers plugin for RSD/E+ is 

used to transform the excavator SysML CD model using the SysML-Modelica TGG and 

operational graph transformation rules implemented in VIATRA.  An excerpt of the 

resulting Modelica model as displayed in MDT can be seen in Figure 6.5. 
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This Modelica model can then be imported into Dymola for execution.  This is illustrated 

in Figure 6.6. 

 
Figure 6.5: An MDT view of the Modelica ExcavatorExample model. 
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The results of the SysML-based Dymola simulation seen in Figure 6.6 correspond with 

the results obtained by manually building the same excavator model directly in Modelica 

 
Figure 6.6: A Dymola simulation and animation of the ExcavatorDigCycle model. 
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syntax (thus validating that the new auto-generated approach produces the same model as 

the traditional, manual method).  In fact, the Modelica excavator model has been under 

manual, iterative development for over a year and provides meaningful results with 

respect to the actual behavior of a hydraulically powered excavator.  This is encouraging 

because the SysML representation is appropriately abstracting the behavior of a complex 

model that has been painstakingly developed in support of testing the open source Fluid 

Power Modelica library [50].  However, work still needs to be done on the model.  Aside 

from adding more detail (if higher fidelity results are desired), one can see from Figure 

6.6 that the damping of the system should increase to combat the pressure fluctuations 

seen in port A of the bucket cylinder past a time of 12 seconds during the dig cycle. 

6.4 Integrating the Excavator Model into a Simulation and Analysis 

The final step in completing the SysML integration of the excavator CD model is 

the establishment of its relationships with other elements of the larger SysML 

information model via models of a dig cycle simulation and corresponding engineering 

analysis.  First, Figure 6.7 and Figure 6.8 set the context for the excavator CD model by 

binding one of its properties to the mass property of a Carriage structural model. 
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Figure 6.7 also depicts the definition of a SysML simulation block named 

DigCycleSimulation which is assigned the «simulation» stereotype and the accompanying 

startTime, stopTime, and time value properties.  The simulation model is abstracted into a 

reusable input-output model, as seen in Figure 6.7 and Figure 6.9, by assigning it the 

 
Figure 6.7: The BDD of DigCycleSimulation and ExcavatorModelContext. 

 
Figure 6.8: The IBD of ExcavatorModelContext. 
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values bucketCylDiameterInput and cycleTimeOutput and binding them to the 

corresponding properties of emc.digCycle: ExcavatorDigCycle 

Finally, the integration of the excavator CD model is completed by embedding the 

abstracted simulation model into a model of an engineering analysis of a system 

alternative model.  This is illustrated in Figure 6.10 and Figure 6.11. 

 
Figure 6.9: The simulation abstraction IBD of DigCycleSimulation. 
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6.5 Summary 

The intent of this chapter is provide an example of integrating into SysML a CD 

model that goes far beyond the complexity of the MSD example initially presented in this 

 
Figure 6.10: The BDD of DigCycleAnalysis. 

 
Figure 6.11: The IBD of DigCycleAnalysis. 



 105 

thesis.  Section 6.1 provides a brief introduction to the excavator example and a 

justification of its use in this thesis.  Section 6.2 begins the description of the excavator 

example by declaring the ExcavatorDigCycle SysML CD model.  Section 6.3 then 

demonstrates the use of this SysML CD model for automatically generating a 

corresponding, executable Modelica CD model.  Finally, Section 6.4 completes the 

model integration process by relating the excavator CD model to other elements in the 

SysML information model through the creation of models representing the dig cycle 

simulation and a corresponding dig cycle analysis. 
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CHAPTER 7 

DISCUSSION AND CLOSURE 

In this thesis, CD models representing continuous dynamic system behavior are 

integrated into SysML to further promote and support a shift to MBSE for complex 

systems design.  This final chapter discusses the integration abilities contributed in this 

thesis by discussing their validity, limitations, and future prospects.  The thesis is then 

brought to a close with some final remarks. 

7.1 Review and Evaluation of the Model Integration Approach 

The driver behind this thesis is an open-ended question about the use of design 

and analysis model integration via SysML for the promotion of information consistency, 

model traceability, and automated model transformation.  Many people have explored 

model integration in SysML (e.g. Peak et al. [20], Hooman et al. [29], Huang et al. [24]), 

but this thesis specifically focuses on the use of a language mapping; TGG and graph 

transformation rules; and models of simulations and engineering analyses to support the 

integration of Modelica representations of CD into SysML information models.  

Consequently, a “model” of sorts is provided for integrating CD models and, if the 

“model” is sufficiently generalized, other design and analysis models into larger SysML 

models. 

Whenever an engineer decides to use a model, he/she must ensure that the model 

is valid with respect to the conditions under which the model is used.  Hence, if 

distributed engineers developing complex systems are to use or extend the model 
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integration approach outlined in this thesis, they must be sure that the method is valid for 

their purposes. 

To verify and validate methods and models related to engineering design, one tool 

that is commonly utilized is the validation square [51].  Due to high level of relevance 

between the work presented in this thesis and the field of engineering design, the 

validation square is used to evaluate the model integration approach.  The validation 

square, as seen in Figure 7.1, is decomposed into four quadrants representing the 

necessary validation steps. 

To validate some construct or piece of work, a user must first ensure that the construct 

has theoretical structural validity. This requires the user to ensure that the construct is 

logically consistent.  When a user can confidently make that assertion, he/she can move 

onto ensuring empirical structural validity. In this quadrant, the user must build 

confidence in the example problems used to test the construct. If the user is confident in 

his choice of example problems, he/she can move onto empirical performance validity. 

During this phase of validation, the user has applied the construct to the example 

problems and is using the results as supporting evidence. The user must accept that the 
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(3)
Empirical

Performance
Validity
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Performance
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Figure 7.1: The validation square [51]. 
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example problems provide meaningful results. Upon satisfying this quadrant, the user can 

move onto theoretical performance validity. In this quadrant, the user must take a “leap of 

faith” by accepting that the construct is useful beyond the applications presented in the 

example problems. If this quadrant is satisfied, the construct has been validated and is 

generally applicable to the problems it was intended to solve. 

To ensure that the integration approach maintains theoretical structural validity, 

the approach must be logically consistent and adept at integrating CD models into SysML 

to promote consistency, traceability, and automation.  The steps used to integrate CD 

models into SysML enable the establishment of consistency links amongst the sub-

models existing in the SysML information model.  The integration approach also 

promotes traceability by enabling the establishment of dependencies and associations 

between various types of SysML models (e.g. requirements models) and models of 

simulations and engineering analyses which incorporate SysML CD models.  

Furthermore, the approach promotes automation by enabling the implementation of graph 

transformations for automatically transforming information/knowledge between SysML 

and Modelica models.  Since the approach promotes consistency, traceability, and 

automation and is consistent with the motivation described in Section 1.4, the approach is 

deemed to be theoretically structurally valid. 

To ensure empirical structural validity, confidence in the example problems (i.e. 

the MSD and excavator models) must be established.  While the MSD example CD 

model is convenient for easily displaying the important aspects of the integration 

approach, it is not representative of the complex models encountered in contemporary 

systems engineering problems.  On the other hand, the CD model of the hydraulically 
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powered excavator is certainly comparable to the complexity of contemporary systems, 

as argued in Section 6.1.2.  When combined together, the MSD and excavator example 

models demonstrate the applicability of this model integration approach to problems of 

varying complexity.  Hence, the work presented in this thesis is empirically structurally 

valid. 

The empirical performance validity of the work presented is ascertained through 

the successful illustration of both the MSD and excavator example problems.  When the 

integration approach is applied to both CD model examples, the result is an 

interconnected set of SysML constructs infusing an external CD model into a larger 

MBSE problem.  These integrated models now promote consistency, traceability, and 

transformation automation in a way that better enables engineers to apply MBSE in the 

design of complex systems.  Hence, empirical performance validity is established for the 

approach to integrating CD models into SysML. 

To fulfill the last quadrant of the validation square, theoretical performance 

validity must be ensured for the integration approach.  In other words, the integration 

approach must be applicable to problems outside of the MSD and excavator examples.  

As mentioned before, both examples span a large range of complexity.  One can assume 

that the range represents or is close to the complexities encountered in the design of 

contemporary systems.  Moreover, the approach could be generalized and reapplied to the 

integration of other design and analysis models further expanding its application base.  

The major problem with the work presented in this thesis, however, is that it has not been 

tested on the target audience: systems and disciplinary engineers working in distributed 

design teams.  One can assume that through improvement of implementation details this 
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approach to CD model integration could be valuable for the target audience; however, 

that value has yet to be confirmed.  This can only occur through extensive user testing 

and improved implementations of the integration approach.  Hence, while the work 

appears to be applicable to its intended audience and scenarios, theoretical performance 

validity is not completely ensured. 

7.2 Limitations 

Language Inconsistencies 

The most fundamental limitation of this work is that the integration approach is 

based on a language mapping that is subject to various inconsistencies between SysML 

and Modelica.  The first notable inconsistency is that Modelica offers restricted classes 

built in to the language for component definition while SysML only relies on the block 

and value type for property definition.  In the case of mapping Modelica connectors to a 

SysML definition construct, the graph transformation in Figure 4.7 provides a suitable 

work around; however, many other Modelica restricted class types are ignored in this 

thesis.  Another inconsistency between the two languages is Modelica’s use of the 

variability prefixes like flow and parameter.  While these have no direct equivalents in 

SysML, SysML properties could be further extended with stereotypes to match the 

semantics associated with the various Modelica variability prefixes.  This lack of 

variability prefixes in SysML also causes an inconsistency between the semantics of a 

SysML binding connector and a Modelica connect clause.  This inconsistency was 

discussed at length and resolved in Section 3.4.3. 
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Incomplete TGG subgraphs 

Another fundamental limitation of this work is the use of incomplete and 

simplified metamodels during the construction of the TGG.  Both the SysML and 

Modelica metamodel graphs omit some elements of and make questionable assumptions 

about their respective languages in an attempt to balance accuracy and usability.  These 

simplifications and assumptions will not support all possible SysML and Modelica 

models.  In the SysML metamodel, only elements from Chapter 8 and Chapter 10 of the 

SysML specification [9] are included in the metamodel.  A complete metamodel would 

include every modeling element from SysML (e.g. requirements, use cases, activities, 

state machines).  In the Modelica metamodel, different types of special equations are not 

treated as individual modeling elements per the Modelica specification [11] and are 

simply lumped together in the equation entity.  Additionally, special variability prefixes 

(e.g. input, output, constant, final) and restricted classes (e.g. functions, records, models) 

are ignored.  Moreover, the correspondence metamodel maintains traceability between 

actual SysML and Modelica modeling entities but ignores the correspondence between 

various SysML and Modelica modeling relations.  The majority of the extensions 

required to complete the TGG are implementation-oriented (i.e., they can be implemented 

using the same concepts described in this thesis); however, others may require conceptual 

extensions beyond the method described in this thesis.  A complete TGG should relate 

every aspect (entity or relation) of one language to another. 

Reliance on Modelica 2.2 

The work presented in this thesis also has limitations from the implementation 

perspective.  The first limitation is the dependence upon version 2.2 [11] of the Modelica 
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language specification.  During the course of this work, version 3.0 [52] Modelica was 

released and some of its constructs are not supported by the language mapping and graph 

transformations.  For instance, the concept of a replaceable package (i.e. a package that 

serves as a template package and can be later specialized through redefinition) has been 

added to Modelica 3.0, but has not been addressed in this thesis. 

Focus on Operational Graph Transformation Rules 

Another implementation-oriented limitation of this work is its focus on 

operational graph transformations for enabling the generation of Modelica CD models 

from SysML CD models.  While these transformation abilities showcase the potential of 

using graph transformations for integrating SysML models with external models, they 

don’t actually provide other necessary abilities.  These include the ability to synchronize 

SysML and Modelica models and the ability to generate SysML models from Modelica 

code.  Both of these abilities could be achieved through the creation of bidirectional 

transformation rules that force a SysML and Modelica to adhere to the TGG described in 

Section 4.2, but the development of such rules requires further development and an 

increased understanding of graph transformation theory. 

Non-executable Models of Engineering Analyses 

One last implementation-oriented limitation of this work is the current inability to 

execute SysML models of simulations and engineering analysis.  Currently, simulations 

and model contexts can be handled by an unstable version of the SysMLTransformers 

plugin, but SysML models of engineering analyses are not handled.  Such an ability is 

crucial for increasing the credibility and power of MBSE.  Without this ability, the work 
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presented in Chapter 6 only enables systems engineers to design and document a 

simulation or engineering analysis. 

Practical Limitations 

With respect to the practicality of the integration approach, the work presented in 

this thesis is likely to only provide value to geographically distributed businesses 

designing complex systems.  Until model integration is better supported with easy-to-use 

software tools, the added overhead of using advanced model integration in simpler design 

projects is likely to detract value during the design process.  Another practical limitation 

of this work is that it has not been tested by its target audience.  Moreover, performing 

such tests in conjunction with this work is not currently a feasible prospect.  To test the 

utility of this work, large shifts would need to occur from document-centric design to 

MBSE in the systems engineering community.  Only then would a sufficient user base 

exist for testing the approach to CD model integration. 

7.3 Future Work 

The direction of future work should first point towards the development of a more 

robust and comprehensive SysML-Modelica mapping via the TGG schema, better 

transformation rules, and a stable software tool that can be presented and tested in 

industry and academia.  As mentioned in Section 4.4, the current implementation of the 

graph transformer is proficient at transforming a context-free SysML CD model, but not 

fully able to transform CD models wrapped into a model context.  To ensure the success 

of SysML as a model integration platform, such functionality must be acquired to 
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increase support for information consistency, model traceability, and automated CD 

model transformation and execution.  

Furthermore, consideration should be given to the integration of a powerful 

engineering analysis tool/language, like ModelCenter [53], for actually executing a 

SysML model of an engineering analysis composed of a heterogeneous set of smaller 

design and analysis models bound or belonging to abstracted simulations.  First of all, 

such integration would enable system alternatives described in SysML to be analyzed 

automatically in ModelCenter based on multiple system aspects (e.g. structural, CD, 

cost).  Such an accomplishment could push the boundaries of model integration and 

advance the current state of concurrent engineering practices. 

To increase credibility in the claim that this approach can be generalized and re-

specialized for integrating other design and analysis models into a SysML model, the 

general approach should be applied to engineering modeling languages commonly used 

in the development of complex systems.  For instance, such languages include Maple 

[54], CAD modeling languages, and finite element languages.  In a fashion similar to the 

approach outlined in this thesis, integration should be achieved through language 

mappings, graph transformation schemas, and the formal representation of simulations 

and engineering analyses. 

7.4 Closing Remarks 

As systems design becomes an increasingly complex endeavor, engineers must be 

able to manage effectively the large quantities of associated design information and 

knowledge.  Moreover, as design teams continue to lose the sense of central locality, the 

use of document-centric design continues to become an antiquated and error-prone 
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approach to solving systems engineering problems.  In contrast with document-centric 

design, MBSE encourages designers to accept and adapt to the changes permeating the 

field of systems engineering. 

To improve support for MBSE, this thesis builds upon the notion that SysML is a 

platform for model integration by exploring the synergy between SysML and Modelica.  

By creating a language mapping between SysML and Modelica, an approach is provided 

for representing system CD models alongside other SysML models used to capture a 

systems engineering problem.  Graph transformations are then utilized for creating 

execution links between SysML and Modelica to support model generation and 

synchronization.  Finally, an approach is outlined for relating a CD model to other 

SysML models via the specification of simulations and engineering analyses. 

Hopefully, the work in this thesis not only enables the integration of CD models, 

but also encourages and provides guidance for other researchers attempting to improve 

support for model integration and MBSE in general.  To succeed in the competitive 

global marketplace, designers must be adaptable and forward-thinking.  Clearly, the 

continued development and adoption of MBSE is a useful tactic for adapting to the 

changing times; however, MBSE is still a relatively young approach to systems design 

and requires continuous nurturing from industrial and academic champions.  The work 

presented in this thesis is just one more stride towards realizing the wide-spread use of 

model integration and MBSE. 
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