

INTEGRATING MODELS AND SIMULATIONS OF CONTINUOUS

DYNAMIC SYSTEM BEHAVIOR INTO SYSML

A Thesis
Presented to

The Academic Faculty

by

Thomas A. Johnson

In Partial Fulfillment
of the Requirements for the Degree of

Master of Science in the
School of Mechanical Engineering

Georgia Institute of Technology
August 2008

COPYRIGHT 2008 BY THOMAS A. JOHNSON

INTEGRATING MODELS AND SIMULATIONS OF CONTINUOUS

DYNAMIC SYSTEM BEHAVIOR INTO SYSML

Approved by:

Dr. Chris Paredis, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Dirk Schaefer
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Russell Peak
Manufacturing Research Center
Georgia Institute of Technology

Date Approved: April 19th, 2008

 iii

ACKNOWLEDGEMENTS

As my time at Georgia Tech comes to its conclusion, I can’t help but reflect upon

my journey through life. I realize that I have attained relative success and attribute part

of that to my drive for self improvement; however, I know that I would never have gotten

to this point in my life without the invaluable help of many different people.

I must first thank my family because they have played the greatest role in my life.

My mom, Amy, has always believed in me and ensured that I was on the path to

academic success. Through the good times and the bad times, she has been my most

important source of support. I also owe gratitude to my dad, Dan, because of his support,

encouragement, and pride in my success. I must also thank my other parents, Gary and

Sherry. I find it hard to refer to them as “step-parents” because they always treat me like

I’m their own flesh and blood. My brother, Andrew, and my cousin, David, also deserve

acknowledgement because of their continual help and open ears. Finally, I must thank

my grandparents for their encouragement and inspiration. My grandmothers, Jean and

Delta, are very proud of me and make sure that I know it. My grandfathers, David and

Bill, have been key inspirations in my life and I continually strive to be as successful as

them.

Outside of my family, no one has contributed to my success as much as Alice

Hoang. Her love and support are uncompromising and for that I am truly grateful.

During my academic career, I’ve met several inspiring teachers, but none of them

have impressed and helped me as much as Dr. Chris Paredis. I am consistently surprised

by the depth of his knowledge and inspired by his vision for the future. I have learned

 iv

much under his guidance and I can’t imagine undertaking an engineer career without that

knowledge.

I must thank my academic family in the SRL and especially the folks in MaRC

266 and 267. First of all, I have to thank Rich Malak. He has been a great friend and

provided me with an endless amount of guidance. I also have to thank Manas Bajaj for

his friendship, insight, and intellectual guidance. Other outstanding individuals include

Jonathan Jobe, Alek Kerzhner, Roxanne Moore, and Stephanie Thompson. These people

are a perpetual source of knowledge and fun and I thank them for their friendship.

I must also thank Roger Burkhart at Deere & Company, Sanford Friedenthal at

Lockheed Martin, and Dr. Leon McGinnis here at Georgia Tech. They have been

important contributors to and champions of my work. Gratitude is also due to my reading

committee, Dr. Russell Peak and Dr. Dirk Schaefer, for their interest and intellectual

contributions.

Finally, I appreciatively acknowledge the support of the George W. Woodruff

School of Mechanical Engineering, Deere & Company, and the Center for Compact and

Efficient Fluid Power supported by the National Science Foundation under Grant No.

EEC-0540834. Additionally, I am grateful for the academic software licenses provided

by Embedded Plus Engineering, IBM, Dynasim, and No Magic Inc.

 v

TABLE OF CONTENTS

Page

Acknowledgements ... iii

List of Figures ..viii

Summary..xi

Chapter 1 Introduction...1

1.1 Managing Complexity with Model-Based Systems Engineering (MBSE).........2

1.2 Using SysML in Support of MBSE ..7

1.3 Modeling System Behavior with SysML ..8

1.4 Motivating Questions ...10

1.5 Thesis Overview ..14

Chapter 2 Related Work ..17

2.1 An Introduction to SysML..17

2.1.1 SysML Blocks..17

2.1.2 SysML Value Types...18

2.1.3 SysML Properties...18

2.1.4 UML Stereotypes ...19

2.1.5 SysML Constraint Blocks...19

2.1.6 SysML Requirements ...20

2.2 Integrating Design and Analysis Models in SysML..20

2.3 Integrating CD models into SysML ..22

2.4 Performing Model Transformations..24

2.5 Summary..26

Chapter 3 Modeling Continuous Dynamic System Behavior in SysML28

3.1 Objectives ..28

3.2 Modelica as the Foundation..29

3.3 Integrating “White Box” CD Models into SysML ..30

3.3.1 Model Declaration..30

 vi

3.3.2 Model Interface ..34

3.3.3 Abstraction, Inheritance, and Redefinition..35

3.3.4 DAE-Based Internal Behavior ..37

3.3.5 Composing the System Model ..38

3.4 Integrating “Black Box” CD Models into SysML...43

3.4.1 Model Declaration..44

3.4.2 Model Interface ..46

3.4.3 Composing a System Model ...47

3.5 Summary..51

Chapter 4 Transforming between SysML and Modelica Models53

4.1 The Need for Graph Transformations ...53

4.2 The Transformation Approach..55

4.2.1 The SysML and Modelica Metamodel Subgraphs.......................................55

4.2.2 The Correspondence Metamodel Subgraph...57

4.2.3 The Graph Transformation Rules..59

4.3 SysML-to-Modelica Transformations with VIATRA64

4.4 Implementation in RSD..70

4.5 Summary..78

Chapter 5 Modeling Simulations and Analyses in SysML..80

5.1 Defining the Model Context ...80

5.2 Modeling the Simulation ..83

5.3 Abstracting the Simulation ...84

5.4 Embedding the Simulation into an Analysis ...85

5.5 Summary..87

Chapter 6 The Hydraulically Powered Excavator Model..89

6.1 Introduction to the Excavator Example...89

6.1.1 Overview of the Excavator Example...89

6.1.2 Appropriateness of the Example Model ..90

 vii

6.2 Defining the SysML CD Model of the Excavator ...91

6.3 Transforming the SysML Excavator Model..98

6.4 Integrating the Excavator Model into a Simulation and Analysis101

6.5 Summary..104

Chapter 7 Discussion and Closure ...106

7.1 Review and Evaluation of the Model Integration Approach..........................106

7.2 Limitations...110

7.3 Future Work...113

7.4 Closing Remarks..114

References...116

 viii

LIST OF FIGURES

Page

Figure 1.1: Document-centric design. ..3

Figure 1.2: A globally distributed, MBSE approach to systems design.............................6

Figure 1.3: The SysML diagram taxonomy {Object Management Group, 2007 #8}.........8

Figure 1.4: SysML as a model integration platform..10

Figure 1.5: The research objective. ..14

Figure 2.1: A SysML model of a car and its suspension. ..18

Figure 2.2: The basics concept of model transformation {Czarnecki, 2006 #48}............24

Figure 2.3: Relations between the QVT languages {Object Management Group, 2007
#29}. ...25

Figure 2.4: An example TGG...26

Figure 3.1: An engineering schematic of a MSD system. ...31

Figure 3.2: The declaration of a Modelica representation of a MSD system.32

Figure 3.3: The declaration of a SysML representation of a MSD system.33

Figure 3.4: Demonstration of Modelica OO modeling constructs.36

Figure 3.5: Corresponding demonstration of SysML OO modeling constructs.36

Figure 3.6: A Modelica connection diagram for a MSD CD model.39

Figure 3.7: Declaration of the mechanical node constraint blocks.41

Figure 3.8: The parametric diagram of the MSD block. ..42

Figure 3.9: The Modelica representation of a fully composed MSD system model.........43

Figure 3.10: The declaration of the ExternalMSD SysML CD model.45

Figure 3.11: Declaration of a constraint block representing a Modelica-specific node. ...48

Figure 3.12: The parametric diagram of the ExternalMSD block...................................49

Figure 3.13: Using «connectClause» binding connectors in place of system nodes.51

Figure 4.1: The SysML metamodel subgraph of the SysML-to-Modelica TGG..............56

Figure 4.2: The Modelica metamodel subgraph of the SysML-to-Modelica TGG.57

 ix

Figure 4.3: The Correspondence metamodel subgraph of the SysML-to-Modelica TGG.
..58

Figure 4.4: The TopBlock-to-Class transformation rule. ..59

Figure 4.5: The TopValueType-to-ModelicaType transformation rule.60

Figure 4.6: The TopSysMLPackage-to-ModelicaPackage transformation rule.60

Figure 4.7: The TopBlock-to-ModelicaConnector transformation rule.60

Figure 4.8: The ContainedBlock-to-Class transformation rule..61

Figure 4.9: The ExternalBlock-to-Class transformation rule...61

Figure 4.10: The Property-to-Component transformation rule.62

Figure 4.11: The Constraint-to-Equation transformation rule. ..62

Figure 4.12: The Constraint-to-InitialEquation transformation rule.63

Figure 4.13: The SysMLConnector-to-ConnectClause transformation rule.....................63

Figure 4.14: An excerpt of the SysML-to-Modelica TGG as represented in VTML........65

Figure 4.15: An excerpt of the sysml2modelica machine as represented in VTCL.67

Figure 4.16: A VIATRA representation of a SysML model..68

Figure 4.17: Running the sysml2modelica machine..69

Figure 4.18: VIATRA modelspace resulting from running the sysml2modelica machine.
..70

Figure 4.19: The project explorer view of the SysMLTransformers Java source code.....71

Figure 4.20: The functionality of SysML2ModelicaTransformer.72

Figure 4.21: A BDD of the E+ MSDSystem. ..73

Figure 4.22: An E+ SysML CD model of a MSD system. ..74

Figure 4.23: Generating a Modelica model from the E+ SysML CD model of a MSD
system. ..75

Figure 4.24: An MDT view of the resultant Modelica MSD model.76

Figure 4.25: The Dymola simulation of the Modelica MSD model.................................77

Figure 5.1: Declaration of the SuspensionSimulation and ModelContext blocks.82

Figure 5.2: The parametric diagram of ModelContext. ...82

Figure 5.3: The parametric diagram of SuspensionSimulation.85

Figure 5.4: Declaration of the SuspensionAnalysis block..86

 x

Figure 5.5: The parametric diagram of SuspensionAnalysis..86

Figure 6.1: The BDD of the ExcavatorDigCycle SysML CD model.92

Figure 6.2: The BDD of the Hydraulics SysML CD sub-model.93

Figure 6.3: The IBD of ExcavatorDicCycle. ...95

Figure 6.4: The IBD of Hydraulics. ..97

Figure 6.5: An MDT view of the Modelica ExcavatorExample model.99

Figure 6.6: A Dymola simulation and animation of the ExcavatorDigCycle model.100

Figure 6.7: The BDD of DigCycleSimulation and ExcavatorModelContext..................102

Figure 6.8: The IBD of ExcavatorModelContext. ...102

Figure 6.9: The simulation abstraction IBD of DigCycleSimulation.103

Figure 6.10: The BDD of DigCycleAnalysis. ...104

Figure 6.11: The IBD of DigCycleAnalysis. ...104

Figure 7.1: The validation square {Pederson, 2000 #21}..107

 xi

SUMMARY

The objective of this research is to use graph patterns and transformation rules to

integrate models of continuous dynamic system behavior with SysML information

models representing systems engineering problems. The driver behind this objective is

the current state of systems engineering. Contemporary systems engineering problems

are becoming increasingly complex as they are handled by geographically distributed

design teams, constrained by the objectives of multiple stakeholders, and inundated by

large quantities of design information. According to the principles of model-based

systems engineering (MBSE), engineers can effectively manage increasing complexity by

replacing document-centric design methods with computerized, model-based approaches

for representing and investigating their knowledge during system decomposition and

definition.

In this thesis, modeling constructs from SysML and Modelica are integrated to

improve support for MBSE. The Object Management Group has recently developed the

Systems Modeling Language (OMG SysML™). This visual modeling language provides

a comprehensive set of diagrams and constructs for modeling many common aspects of

systems engineering problems (e.g. system requirements, structures, functions, and

behaviors). Complementing these SysML constructs, the Modelica language has

emerged as a standard for modeling the continuous dynamics (CD) of systems in terms of

hybrid discrete- event and differential algebraic equation systems.

The integration of SysML and Modelica is explored from three different

perspectives: the definition of CD models in SysML; the use of graph transformations to

automate the transformation of SysML CD models into corresponding Modelica models;

 xii

and the integration of CD models and other SysML models. The ability to define CD

models is established through a language mapping between SysML and Modelica. The

mapping is then used to support model transformations through the creation of a triple

graph grammar and corresponding graph transformation rules. Finally, CD models are

integrated with other SysML models (e.g. structural, requirements) through the depiction

of simulation experiments and engineering analyses. Throughout the thesis, example

models of a car suspension and a hydraulically powered excavator are used for

demonstration.

The core of this work is the establishment of modeling abilities that do not exist

independently in SysML or Modelica, but only as a result of integration. These abilities

include enabling systems engineers to model CD in SysML, automatically generate an

executable Modelica model from a SysML model, and prescribe necessary system

analyses and explicitly relate them to stakeholder concerns or other system aspects.

Moreover, this work provides a basis for model integration which can be generalized and

re-specialized for integrating other modeling formalisms into SysML.

 1

CHAPTER 1

INTRODUCTION

Our society relies on the everyday operation of engineered systems. From power

plants to automobiles to personal computers, engineered systems greatly affect many

aspects of our daily lives; however, routine exposure to these systems makes it easy for

us to overlook their immense complexity. Contemporary complex systems function at

many different physical scales; contain multiple subsystems and components; exhibit

emergent behavior that is not readily comprehensible by examining component behavior;

encompass multiple engineering disciplines; and are constrained by the objectives of

multiple stakeholders. Accordingly, contemporary systems engineering problems involve

large quantities of interdependent design information that must be transformed though a

systematic design process into a complete system description.

As if systems engineering problems themselves didn’t provide enough complexity

for engineers to manage, globalization is now adding its own complications. Decades

ago, most systems were engineered in one geographical location; however, to maintain a

competitive edge in the present global marketplace, businesses must now employ

engineering services from the most cost effective and capable sources regardless of

location. Consequently, design teams undertaking systems engineering problems are

increasingly composed of modular units that operate in multiple geographical locations.

Additionally, these design teams consist of a heterogeneous membership of system

analysts, component-level disciplinary engineers, and system-level engineers.

Communication amongst team members can be hindered by the fact that different

disciplines rely on different notations and views of the same system knowledge and

 2

information. Clearly, the coordination of a globally dispersed, multidisciplinary design

team coupled with the inherent complexity of a contemporary systems engineering

problem imparts a monumental information management problem upon systems

engineers.

1.1 Managing Complexity with Model-Based Systems Engineering (MBSE)

As complexity grows in a systems engineering problem, engineers must

effectively manage an increasing quantity of intricate design knowledge and information.

Accordingly, problems encountered during systems engineering projects are generally

correlated with the organization and management of complexity rather than with the

direct technological concerns that affect individual subsystems and specific physical

science areas [1]. If engineers cannot effectively manage project complexity, they might

overlook important design details and dependencies. Such mistakes can compromise

stakeholder objectives and lead to costly design iterations or system failures.

Traditionally, systems engineering problems are solved using systematic design

processes such as the method prescribed by Pahl and Beitz [2] or the systems engineering

“Vee” model proposed by Forsberg and Mooz [3]. Systematic design processes consist

of sets of information transformations that iteratively convert stakeholder objectives and

requirements into a complete system description. As seen in Figure 1.1, the inputs and

outputs of each transformation are generally documents containing the necessary system

knowledge and information.

 3

Furthermore, the final output of the design process is a large collection of product

documentation used to support the subsequent lifecycles (e.g. manufacturing,

deployment, or disposal) of the system.

While document-centric design coupled with hard work proved to be a successful

combination for solving systems engineering problems in the past, it may become

inadequate for dealing with the current increases in system complexity and globalization.

To transfer knowledge and information between design team members or steps in the

design process, engineers must navigate the relevant documents, extract the necessary

knowledge/information, and translate that content into discipline-specific (e.g.

mechanical, electrical, computer science) formats. This can be a cumbersome and error-

prone task. Incorporating the effects of globalization only exacerbates the matter.

Planning & Task
Clarification

Conceptual Design

Embodiment Design

Detail Design

Planning & Task
Clarification

Conceptual Design

Embodiment Design

Detail Design

Figure 1.1: Document-centric design.

 4

Moreover, increasing system complexity correlates with growing quantities of system

information; hence, more labor is needed to decipher product documentation.

To cope with increasing complexity and globalization, engineers can adopt

model-based design methods for solving systems engineering problems [4]. Model-based

systems engineering (MBSE) [5] encourages engineers to move away from document-

centric design and towards a more computer-based, interactive modeling approach.

Using an MBSE approach to systems design, engineers solve systems engineering

problems through the formal elaboration of models that transform stakeholder

requirements and objectives into a full system description. In particular, these models are

used to describe formally the structure, function, and behavior of a system [6].

The MBSE design approach requires the development of many different design

and analysis models. Design models are used to specify the desired structure, function,

and behavior of the system. Example design models include models of system

architecture, CAD models, and use case models. Analysis models, on the other hand, are

used to analyze the anticipated behavior of the system. Example analysis models include

models of continuous dynamic system behavior, finite element models, and cost models.

If engineers adopt a MBSE design approach, they are given the valuable

capability to share more easily the critical knowledge and information captured in various

design and analysis models. Exploiting this capability can thwart problems related to

information traceability and consistency that are often encountered in document-centric

design processes. Consequently, engineers must integrate the critical knowledge

captured in design and analysis models. Ideally, integration could be achieved through

the sole use of one modeling language that is able to depict all aspects of a systems

 5

engineering project at every necessary level of fidelity; however, the creation of such a

modeling language is not a realistic endeavor. Moreover, such a language would simply

reinvent the abilities of other domain-specific modeling languages.

Alternatively, to achieve model integration the knowledge needed to make design

decisions should be abstracted from domain-specific models into a system information

model. An information model as described by Mylopoulos [7] is a computer-based

symbol structure that formally captures and organizes information in a meaningful

fashion. The information model then serves as a platform for model integration and only

exposes knowledge and information that is important to the design team as a whole. The

unnecessary details remain encapsulated in smaller design or analysis models for

individual use.

While model integration is an import function of an information model, it also

serves other purposes. The information transformations occurring in a MBSE design

process, in contrast with traditional methods, are recorded in the information model rather

than in large sets of documentation. Furthermore, the primary output of an MBSE design

process is the information model which is subsequently used to support the later

lifecycles of the system.

The MBSE approach to systems design, as depicted in Figure 1.2, offers some

important benefits for engineers coping with complex systems and globally distributed

design teams.

 6

The information generated in the design process is stored in one central location (e.g. a

computer server) that is accessible by any member of the design team regardless of

geographical location. This promotes close collaboration amongst designers who have no

physical contact with each other. Assuming that the information model is authored using

a well-understood modeling language, the team members also have a strict protocol for

communicating important design knowledge and information. Additionally, all the

contents of an information model generally exist in one modelspace, but can be displayed

to different individuals in various fashions using multiple views or diagrams. This is

analogous to displaying the same system information in different documents for different

design team members; however, multiple documents permit the existence of information

consistencies. This is not the case when using multiple views of the same information

model.

Aspect

A
Models

Aspect

B
Models

System
Model

Product
Realization

Figure 1.2: A globally distributed, MBSE approach to systems design.

 7

1.2 Using SysML in Support of MBSE

Several information modeling formalisms have been developed in support of

MBSE design processes. Two well-known information modeling languages are the

Object Management Group’s (OMG) successful Unified Modeling Language (UML™)

[8] and the recently adopted Systems Modeling Language (OMG SysML™) [9].

UML is a graphical modeling language for specifying, constructing, and

documenting the artifacts of software, business models, and other applicable systems. It

is a general-purpose modeling language that can be used with all major object and

component methods. The language is commonly used during the development of large-

scale, complex software for various domains and implementation platforms [10].

SysML is also a general-purpose systems modeling language that enables

engineers to create and manage information models of engineered systems using well-

defined, visual constructs [9]. Instead of developing SysML as an original language, the

OMG extended UML for the systems engineering community. SysML reuses and

extends a subset of UML 2.1 constructs:

� it extends UML classes with blocks;

� it supports requirements modeling;

� it supports parametric modeling;

� it extends UML dependencies with allocations;

� it reuses and modifies UML activities;

� it extends UML standard ports with flow ports.

Figure 1.3 depicts the SysML diagram taxonomy as a graphical representation of

SysML’s extension of UML.

 8

A block with a regular or bold border represents a UML diagram that has been reused or

modified, respectively. Blocks with a dashed border represent new diagrams, namely, the

requirements and parametric diagrams.

The knowledge captured in a SysML model is intended to support the

specification, analysis, design, and verification and validation of any engineered system

[9]. As a result, SysML is commonly used to model system requirements, tests,

structures, functions, behaviors, and their interrelationships. While capturing all of the

above knowledge is critical for ensuring success in solving a systems engineering

problem, modeling system behavior is arguable most important. If a system does not

behave in a way that satisfies stakeholder objectives, then it is useless regardless of its

other aspects.

1.3 Modeling System Behavior with SysML

SysML is capable of depicting system behavior using the following language

constructs:

� Activity diagrams describe the inputs, outputs, sequences, and conditions for

coordinating various system behaviors;

Figure 1.3: The SysML diagram taxonomy [9].

 9

� Sequence diagrams describe the flow of control between actors and a system or

its components;

� State machine diagrams are used for modeling discrete behavior through finite

state transition systems;

� Parametric diagrams allow users to represent mathematical constraints amongst

system properties.

The first three of these modeling constructs support causal behavioral modeling in terms

of discrete events. The last one enables a user to model equations (called constraints in

SysML) that establish mathematical relationships between the properties of a system or

its components. While SysML offers many behavioral modeling capabilities with the

above constructs, the language specification does not explicitly provide the ability to

integrate many different types of behavioral models required to solve systems

engineering problems.

Oftentimes, engineers need to analyze the continuous dynamics (CD) of a system

alternative. CD are generally represented by hybrid discrete event and differential-

algebraic equation (DAE) models which characterize the exchange of energy, signals, or

other continuous interactions between system components; however, the SysML

specification provides no explicit support for integrating DAE models into SysML

models. In other words, no guidance is provided for integrating models authored in

languages like Modelica [11] or Matlab/Simulink [12]. The intent of the work presented

in this thesis is to overcome this burden by building upon SysML’s current capabilities.

 10

1.4 Motivating Questions

As depicted in Figure 1.4 and discussed in Section 1.1, SysML is not simply an

information modeling language, but is really a platform for model integration.

Using SysML constructs independently of outside languages or tools, modelers can

author several different types of systems engineering models in SysML (e.g.

requirements models, use case models, activity models). While these types of models are

certainly necessary, they are not sufficient for ensuring the success of SysML. To

improve SysML’s ability to support MBSE design processes, the following question must

be answered:

SysML Integration Framework

System
Requirements

System
Architecture

System
Functions

System
Activities &

State Machines
System

Parametrics

Simulations
& Engineering

Analyses

SysML Integration Framework

System
Requirements

System
Architecture

System
Functions

System
Activities &

State Machines
System

Parametrics

Simulations
& Engineering

Analyses

CAD
Models

Cost
Models

Continuous
Dynamics Models

Manufacturing
Models

Boom

Arm

Bucket

Pump

…

…

…

…

…

…

…………

$ # Total

2000

1000

700

3000

2000

1000

700

3000

1

1

1

1

Figure 1.4: SysML as a model integration platform.

 11

The Motivating Question:

How can engineers integrate models in various formalisms with SysML information

models to promote information consistency, model traceability, and automated model

transformation?

As stated in the question, solutions for model integration should improve support of

MBSE design processes through the following benefits: information consistency, model

traceability, and automated generation of executable models from SysML models. By

integrating the important knowledge and information contained in various engineering

models used to solve systems engineering problems, engineers can ensure information

consistency throughout the various models used to solve a systems engineering problem.

Additionally, integration enables the tracing of important associations and dependencies

amongst the various models. Lastly, information consistency and traceability can enable

engineers to set the context for system analyses that encompass multiple engineering

models. This enables the automated population of consistent information into executable

models used to analyze a system.

While the question of model integration is the central motivation for this thesis, it

is too broad to be answered in full. Instead, this thesis limits the scope of the question to

integrating CD models into SysML. To answer this reduced motivating question, it is

decomposed into three manageable sub-questions. The first question investigates the

actual SysML depiction of CD models built upon sets of DAEs:

 12

Question 1:

How can engineers effectively represent models of continuous dynamic system behavior

using the modeling constructs offered in SysML?

The answer to this question is the foundation for CD model integration. If external CD

models can be appropriately abstracted or represented using SysML modeling constructs,

then CD model integration and the resultant information consistency and traceability can

come to realization.

The representation of CD models using SysML modeling constructs is only the

first step to integrating CD models into SysML. True integration can only come to

fruition when a SysML CD model can be linked to an external, executable CD model.

Such a linkage can be accomplished through model or graph transformations. Graph

transformations enable the automated, external execution of a non-executable SysML CD

model and the integration of an external CD model into a SysML system information

model. Additionally, it provides a method for ensuring information consistency between

an external CD model and a SysML CD model.

In this thesis, Modelica [11] is the external CD modeling language of interest.

Modelica has emerged as the language of choice for expressing continuous dynamic

system behavior. It is better structured and more expressive than most alternatives such

as VHDL-AMS [13] or ACSL [14]. In addition, both SysML and Modelica are similar in

that they use base modeling elements that adhere to the principles of object-oriented

modeling.

Since Modelica is the CD modeling language to be integrated with SysML, the

following question is posed:

 13

Question 2:

Are graph transformations an effective means of transforming between SysML models of

continuous dynamic system behavior and corresponding Modelica models to enable

automated model execution and to ensure information consistency?

The answer to this question is the key to automating the integration of SysML and

Modelica models. An explicit model transformation schema can be incorporated in a

computer program used to transform from SysML to Modelica or vice-versa.

The answers to Questions 1 and 2 enable the integration of SysML and Modelica

models, but don’t explicitly provide guidance on maintaining information consistency

and traceability between integrated CD models and other aspects of a SysML information

model. During the course of a systems engineering problem, many different models (e.g.

structural models, CD models, objective function models, requirements models) are used

to make decisions concerning a system alternative’s fulfillment of stakeholder

requirements and objectives; hence, a decision maker must fully understand the

relationships between these models. To ensure that a decision maker understands these

relationships, explicit traceability can be established between the necessary models. With

respect to a system’s continuous dynamic behavior, the relationships between CD models

and other models exist in the context of a system simulation or analysis. This leads to the

following question:

 14

Question 3:

Can engineers ensure model traceability between CD models and other SysML models

by explicitly modeling simulations and analyses of system alternatives in SysML?

A promising answer to this question is essential for using SysML as an integration

platform in support of decision making. If a SysML representation of a CD model can’t

be related to other SysML models in a meaningful fashion, then its inclusion in an

information model provides little value.

1.5 Thesis Overview

According to the motivating questions in Section 1.4, the objective of the work

presented in this thesis is to use graph patterns and transformation rules to integrate

models of continuous dynamic system behavior with SysML information models

representing systems engineering problems. This is depicted graphically in Figure 1.5.

By achieving this objective, the vision for model integration as depicted in Figure 1.4 can

take one more step towards reality. Disciplinary or component-level designers can use

external languages and software tools for creating detailed, low-level design and analysis

Continuous
Dynamics Model

Discrete-Event &
Differential-
Algebraic
Equations

SysML
Information Model

Requirements,
Architecture Models,

Manufacturing
Models, etc.

SysML
Information Model

Requirements,
Architecture Models,

Manufacturing
Models, etc.

Graph Patterns &
Transformation

Rules

Figure 1.5: The research objective.

 15

models. Then, they can abstract into the SysML system information model the

knowledge and information that is relevant at the system level. Once the

information/knowledge is abstracted into a SysML model, it can be bound or associated

with other models (e.g. models of simulations, engineering analyses, requirements,

system structure, use cases) created in or abstracted into a SysML system information

model. Using such relationships, the elements of an integrated model can be updated via

the SysML system information model and reflected in the external design and analysis

models through the use of automated model/graph transformations. If the modelers use

such tools for transforming from SysML to external languages/tools and vice-versa, true

model integration can become a realization via the bidirectional flow of

information/knowledge.

Before acceptable answers can be provided for the motivating questions, we must

have a better understanding of the extent to which they have already been answered.

Accordingly, Chapter 2 of this thesis provides an overview of work that is highly related

to the motivating questions. Due to the strong tie between this thesis and SysML, Section

2.1 provides a review of some important SysML constructs and introduces the car

suspension example used in later chapters. This section is specifically aimed at readers

who have limited or no familiarity with SysML and UML. Readers who are familiar with

both languages need not delve into the details. Section 2.2 provides an overview of work

concerning the integration in SysML of design and analysis models. Section 2.3 then

provides a more specific overview of relevant attempts at integrating CD models into

SysML. Finally, Section 2.4 highlights relevant work in the field of model

transformations.

 16

To answer Question 1, Chapter 3 describes in detail the approach to representing

models of continuous dynamic system behavior in SysML. This is accomplished through

the specification of a modeling approach and set of SysML constructs that correspond to

important Modelica modeling practices and constructs. When a clear mapping between

the two languages does not exist, a SysML extension is provided to fill the gap.

To answer Question 2, Chapter 4 explains an approach to transforming SysML

models into Modelica models and vice-versa. The approach relies on a triple graph

grammar (TGG) [15] and a corresponding set of graph transformation rules. The

automated transformation process is implemented using the VIATRA [16, 17] model

transformation framework and Eclipse [18]/Rational Systems Developer (RSD) [19]..

To answer Question 3, Chapter 5 provides an approach and set of SysML

constructs for supporting decision-making processes through the explicit SysML

depiction of CD simulations and engineering analyses. The approach is broken down

into four steps: establishing the context of a CD model with respect to a system

alternative, modeling the simulation, abstracting the simulation into an input-output

model, and embedding the simulation in an engineering analysis.

The final three chapters bring this thesis to a close. To demonstrate several

important concepts described in this thesis, Chapter 6 exhibits the SysML integration of a

CD model of hydraulically powered excavator. Chapter 7 is then intended to discuss,

evaluate, and draw some important conclusions about the work described in this thesis.

 17

CHAPTER 2

RELATED WORK

2.1 An Introduction to SysML

Before discussing any relevant work or the approach for integrating CD and

simulation models in SysML, this section reviews some important SysML constructs and

introduces an example problem used throughout this thesis.

2.1.1 SysML Blocks

The primary modeling unit in SysML is the block. As described in Chapter 8 of

the SysML specification [9], a block is a modular unit of a system description. A block

can represent anything, whether tangible or intangible, that describes a system. For

instance, a block could model a system, process, function, or context. When combined

together, blocks define a collection of features that describe a system or other object of

interest. Hence, blocks provide a means for an engineer to represent a system by

decomposing it into a collection of interrelated objects.

All block declarations occur in a Block Definition Diagram (BDD). A BDD is

used to define block features and the relationships between blocks or other SysML

modeling elements. Figure 2.1 is a BDD depicting the definition of a car and its

suspension. A car is obviously composed of more subsystems and components, but

Figure 2.1 is sufficient for the sake of demonstration. SysML allows a modeler to omit

elements of the underlying information model that detract from the main intent of a

diagram.

 18

2.1.2 SysML Value Types

A SysML value type is an extension of the UML data type used to define types of

values that may be used to express information about a system [9]. More specifically,

value types are used to assign to a value property the units and dimensions declared in its

definition. For example, Figure 2.1 displays the definition of SI.Mass which carries units

of kilograms.

2.1.3 SysML Properties

A SysML property describes a part or characteristic of a block and consists of a

named value of a specified type. In Figure 2.1, two important types of properties are

depicted. The first kind is the part property. Part properties represent a subsystem or

component of a system and must be typed by a block. Part properties can be depicted in

the parts compartment of a block or using a composition association. A composition

bdd Car Definition

WheelSuspension

Shock

values

dampingCoef: Real

Car

values

mass: SI.Mass = 1500

Coil

values

springRate: Real

«requirement»

ReboundReq

text = “When

disturbed by 0.1 m,

the suspension shall

settle to 5% of

steady state in

under 1 sec.”

«satisfy»

values

«moe» settlingTime: Time

suspension

«valueType»

SI.Mass

unit = kg

coil shock

Figure 2.1: A SysML model of a car and its suspension.

 19

association is displayed as a black diamond with a tail. The property name appears at the

tail end of the association. For example, the block Car in Figure 2.1 owns a part property

named suspension of type WheelSuspension.

The second kind of property is a value property. A value property appears in a

block’s values compartment and represents a quantifiable characteristic of a block (e.g.

mass, length, velocity). Accordingly, it must be typed to a SysML value type or UML

data type. For example, Car in Figure 2.1 has a value property mass which is typed to

the value type SI.Mass to supply units of kilograms.

2.1.4 UML Stereotypes

A stereotype is a UML construct used to create customized classifications of

modeling elements. Stereotypes are defined by keywords that appear inside of

guillemets. These customization constructs extend the standard elements to identify more

specialized cases important to specific classes of applications. Most SysML constructs

have been defined as UML stereotypes and users are allowed to create additional

stereotypes to capture the specialized semantics of a particular application domain. An

example of a stereotype is illustrated in Figure 2.1. The stereotype «moe» applied to the

WheelSuspension’s value property settlingTime indicates that it is a “measure of

effectiveness”.

2.1.5 SysML Constraint Blocks

As defined in the SysML specification [9], a constraint block is a specialized form

of the SysML block and is intended to package commonly used constraints in a reusable,

parameterized fashion. Constraint blocks can be identified by the «constraint» stereotype

 20

that appears in their namespace compartments. The properties of constraint block are

referred to as parameters to emphasize the objective of constraint parameterization.

2.1.6 SysML Requirements

A SysML requirement is used to represent a textual requirement or objective for a

system, subsystem, or component. Requirements are shown with the «requirement»

stereotype and optionally display a compartment for displaying text and identification

fields. Requirements are related to other modeling elements using various dependencies

such as the satisfy and verify dependencies. A dependency is a UML construct for

expressing different types of relationships between various modeling constructs. The use

of SysML requirements and dependencies is demonstrated in Figure 2.1 by the satisfy

dependency between WheelSuspension and the ReboundReq requirement.

2.2 Integrating Design and Analysis Models in SysML

“Currently it is common practice for systems engineers to use a wide

range of modeling languages, tools and techniques on large systems

projects. In a manner similar to how UML unified the modeling languages

used in the software industry, SysML is intended to unify the diverse

modeling languages currently used by systems engineers.” [9]

This excerpt from the SysML specification clearly indicates that the intent of the

language is to provide a platform for model unification (i.e. integration). The constructs

provided by the language are certainly capable of supporting model integration, but they

don’t necessarily endow a SysML user with the “out of the box” ability to perform model

 21

integration. Rather than relying on end users to enable model integration, this ability

should be cultivated by knowledgeable SysML champions.

One notable means of enabling model integration in SysML has been provided

through the development of Composable Objects (COBs) [20-22]. COBs provide both a

graphical and lexical representation of algebraic relationships that can be used to tie

design models to analysis models in a parametric fashion. COBs recently served as the

basis for the development of the SysML parametric diagrams [9]. By establishing a

mapping between COBs and SysML parametrics, the integration and execution of

engineering analyses (such as structural finite element analyses) within the context of

SysML has been demonstrated [23]. This thesis extends the work on COBs by focusing

on the integration of CD Modelica models into SysML.

Huang et al. [24] explore the model integration capabilities of SysML through the

SysML representation of design and simulation (i.e. analysis) models for manufacturing

processes. In particular, the authors present the creation of a flow shop model and

subsequently map it to a queuing analysis model. Additionally, the authors describe an

approach to automating the generation of an executable eM-Plant [25] flow shop model

via XPath [26]. This executable model is then used to simulate the SysML simulation

model.

The ability to integrate heterogeneous models in SysML has also been

demonstrated through the development of Multi-Aspect Component Models (MAsCoMs)

[27]. The MAsCoM framework is intended to support model reuse through the

establishment of relationships between design models of system components,

corresponding analysis models, and the many aspects of a model that pertain to analysis

 22

objectives, stakeholder perspectives, and other elements of MBSE. Within the

framework, analysis models are integrated with component models and aspect models

such that their semantics of intended use are captured and represented for reuse.

2.3 Integrating CD models into SysML

Recently, several researchers have also recognized the need to integrate models of

continuous dynamic system behavior into SysML. The approaches to integrating CD

models are as varied as the CD modeling languages being integrated. In this section,

several approaches are reviewed and contrasted with the approach outlined in Chapter 3

of this thesis.

Currently, Matlab/Simulink models of system dynamics are used extensively in

the development of engineered systems. Recognizing this dependency, Vanderperren and

Dehaene [28] have discussed the current and future states of UML/SysML and

Matlab/Simulink integration using two different approaches: co-simulation and reliance

upon a common execution language. The intent of both approaches is to test the design

of an embedded system and its control software by simultaneously executing a UML

model of the software and a Simulink model of the system dynamics. The co-simulation

approach involves data exchange between a UML tool and Simulink via an interface tool.

This approach is demonstrated by Hooman et al. [29] and implemented in Telelogic’s

Rhapsody [30] UML modeling tool. The other approach, demonstrated in the

GeneralStore integration platform [31], relies on the generation and coupling of

executable code (e.g. C/C++ code) from both the UML and Matlab/Simulink models.

The work presented in this thesis is very similar to these Matlab/Simulink and

UML/SysML integration efforts, but adopts the perspective that an information model

 23

should serve as an integration platform rather than as a means for describing only certain

aspects of the system.

Another common formalism for modeling continuous dynamic system behavior is

the bond graph. Developed in 1961 by Paynter [32], bond graphs are graphical models

used to describe continuous dynamics resulting from energy flow through a system and

its composition of discrete components. Due to the prevalence and history of bond

graphs in systems engineering analysis, Turki and Soriano [33] extended the capabilities

of SysML activity modeling to support the representation of bond graphs. While this

extension enables bond graph modelers to integrate their models into larger SysML

models, the authors only discuss the possibility of generating executable CD models and

do not provide guidance for relating SysML bond graph models to other SysML models.

Two groups have worked on the integration of Modelica CD models into

SysML/UML. The first work from Fritzson, Akhvlediani, and Pop [34] provides support

for modeling continuous dynamics in SysML via the ModelicaML profile for

UML/SysML. The ModelicaML profile enables users to depict a Modelica CD model

graphically alongside other aspects of a UML/SysML information models. The

ModelicaML profile reuses several UML and SysML constructs, but also introduces

completely new language constructs. Such constructs are the Modelica class diagram, the

equation diagram, and the simulation diagram.

The second work is a similar profile named UMLH. This profile was created by

Nytsch-Geusen [35] for developing and graphically depicting hybrid discrete and DAE

models in UML/SysML. The author presents hybrid models as Modelica models that are

based on a combination of DAEs and discrete state transitions modeled with the

 24

Modelica state chart extension. Using a UMLH editor and a Modelica tool that supports

code generation, Modelica stubs can be automatically generated from UMLH diagrams so

that the user must only insert the equation-based behavior of the system in question.

In this thesis, the capabilities of ModelicaML and UMLH are further extended by

demonstrating the integration of CD models with other SysML constructs for

requirements, structure, and design objectives. Additionally, this thesis demonstrates the

use of model transformations to enable the automated transformation of information

between SysML and Modelica models.

2.4 Performing Model Transformations

Model transformations, as conceptualized in the graph depicted in Figure 2.2, are

anticipated to play a major role in future MBSE endeavors [36].

Generally, model transformations are performed by transformation engines that can read

a source model conforming to a source metamodel and execute a transformation

specification to produce a target model conforming to a target metamodel. Current

applications of model transformations include model synchronization and the generation

of low-level models/code from high-level models. The work presented in this thesis (see

Chapter 4) demonstrates the potential of model transformations for MBSE through the

generation of executable, lower-level Modelica code from higher-level SysML CD

models.

Figure 2.2: The basics concept of model transformation [36].

 25

Many methods exist for completing model transformations between two or more

modeling languages (metamodels). Two common transformation tools are OMG’s

Queries/Views/Transformations (QVT) [37] and TGGs [15].

The QVT specification provides a set of languages for querying a source model

that complies with a source metamodel and transforming it into a target model that

complies with a target metamodel. Two QVT languages, Relations and Core, are used to

model declaratively the relationships between source and target metamodels at different

levels of fidelity. The Operational Mappings language is then used to perform

imperative transformations based on the relationships depicted in the Core or Relations

languages. The relations between the QVT languages are depicted in Figure 2.3.

Overall, QVT is a powerful and widely accepted model transformation tool; however, the

imperative nature of the Operational Mappings language hampers bidirectional

transformations.

 TGGs are similar to QVT in intent but are declarative by nature. Accordingly,

TGGs are particularly useful for completing complex, bidirectional model

transformations; however, others have shown that QVT is equally expressive and capable

[38]. In a TGG, two modeling languages (metamodels) are defined as graphs. The

mapping between the two metamodels is then represented by an intermediary graph

called the correspondence metamodel. This third graph is essential for defining graph

Figure 2.3: Relations between the QVT languages [37].

 26

transformation rules and maintaining traceability links between the two models. By

querying a model space containing SysML or Modelica models, transformations rules are

executed until the model space complies with the specified TGG. For example, Figure

2.4 displays a small TGG that relates a SysML block to a Modelica class using a

correspondence entity named block2class with one relation pointing to the block entity

(in the SysML metamodel graph) and one to the class entity (in the Modelica metamodel

graph).

A practical implementation of TGGs is also demonstrated extensively by Königs [39].

2.5 Summary

This chapter provides an overview of material that is highly relevant to model

integration via SysML. Section 2.1 is a general introduction to SysML and establishes

the context for the example SysML car model used throughout the rest of this thesis.

Section 2.2 is a review of some past and ongoing work on various types of model

integration via SysML. Section 2.3 is a more specific review of work regarding the

integration of CD models into SysML. Section 2.4 is a review of work related to the

automation of model synchronization and generation via model/graph transformations.

The work presented in this thesis is clearly part of a larger, ongoing effort to

improve MBSE through model integration. It builds upon past and current work in an

effort to increase the modeling capabilities of engineers designing complex systems.

Figure 2.4: An example TGG.

 27

This is accomplished by enabling the definition, automated transformation, and

integration of CD models into SysML. Moreover, generalizing the work presented in this

thesis provides a stencil for integrating other types of design or analysis models into

SysML via language mappings, graph transformations, and the depiction of simulations

and engineering analyses.

 28

CHAPTER 3

MODELING CONTINUOUS DYNAMIC

SYSTEM BEHAVIOR IN SYSML

In this chapter, an approach is described for representing CD models using

SysML modeling constructs. More specifically, the approach enables the integration of

Modelica-based CD models. First, an approach is outlined for creating fully detailed

“white box” CD models in SysML. Then, an approach is outlined for creating low

fidelity “black box” CD models in SysML that act as references to existing, external

Modelica models.

3.1 Objectives

A model is only valuable if it increases a decision maker’s ability to design a

better system at an acceptable cost [40] The model for representing CD models in

SysML is valuable if it strikes an appropriate balance between the benefits expected from

developing a model and the costs of encoding the required information. To develop a

valuable modeling approach, the following objectives are established:

1. The approach must enable the integration of continuous dynamics models into

broader SysML models. By integrating a Modelica-based CD model into SysML,

decision makers can formally recognize relationships between continuous dynamic

behavior and other aspects of the system.

2. The approach must facilitate the transformation of SysML CD models into

Modelica models and vice-versa. SysML is a language for describing information

and knowledge in the context of systems engineering, but is by itself not an

 29

executable language—model execution is relegated to simulation tools. Hence,

seamless connections should be established between SysML and CD simulation

tools via SysML-to-Modelica model transformations.

3. The approach must encourage model reuse. If a designer can avoid creating every

model from scratch by reusing or modifying pre-existing models, he or she can

realize significant reductions in the use of project resources.

4. The approach must facilitate efficient stakeholder communication. Unambiguous

communication is very important during the development of a complex system. By

relying on a formal, accepted approach for integrating CD models in SysML

information models, behavioral knowledge can be unambiguously shared amongst

designers or stakeholders.

3.2 Modelica as the Foundation

In this thesis, Modelica is the foundation for integrating CD models into SysML.

As discussed in Section 1.4, Modelica has emerged as a language of choice for modeling

continuous dynamic system behavior. In addition, both SysML and Modelica are similar

in that they use base modeling elements that adhere to the principles of object-oriented

modeling. Both languages also encourage model reuse through acausal equation-based

modeling. Unfortunately, enough differences exist between the languages such that a

one-to-one mapping is not possible. Since SysML is intended to be a general-purpose

modeling language, some of the specialized semantics of Modelica do not have direct

SysML equivalents. To overcome these differences, the approach has been to find an

appropriate balance between converting some implicit Modelica semantics into explicit

 30

constraints in SysML or, when that is not possible/valuable, extending SysML constructs

through UML stereotypes.

3.3 Integrating “White Box” CD Models into SysML

Through the mapping of essential Modelica modeling constructs to their SysML

counterparts, this section provides an approach to creating “white box” CD models in

SysML. This enables modelers to capture nearly every detail of a CD model using native

SysML constructs. Accordingly, modelers can create strictly “white box” SysML CD

models or hybrid “white/black box” system models (Section 3.4.3)

3.3.1 Model Declaration

The fundamental similarity between SysML and Modelica is the use of objects.

The primary modeling unit in Modelica is the class. Classes serve as definition templates

for modeling the components of other classes [41]. To make Modelica easier to read and

maintain, special restricted classes were developed for defining the intended function of a

class [11]. Example restrictions are models, connectors, types, and functions. While the

restrictions are useful, they are not necessary in most cases. One can usually maintain

model validity by replacing a restricted class with a regular class; however, exceptions to

this heuristic (the Modelica connector and type) are addressed later in this chapter.

The declaration of a Modelica class maps directly to that of a SysML block. This

mapping is established because both the class and the block serve as the base modeling

unit in their respective language while sharing similar structures. Blocks, like classes,

provide the structure for other objects by acting as block definition templates.

 31

Figure 3.1 is an engineering schematic of a Mass-Spring-Damper (MSD) system.

The system is composed of a spring and damper mounted in parallel between two system

nodes. A mass and a steady-state detection sensor are connected to the top node while

the bottom node is connected to the ground.

Figure 3.2 and Figure 3.3 illustrate the equivalence of SysML blocks and Modelica

classes through their representations of CD models corresponding to the schematic in

Figure 3.1.

mass

spring damper

ground

node2

node1

detect

Figure 3.1: An engineering schematic of a MSD system.

 32

Figure 3.2 is a lexical Modelica model of a Mass-Spring-Damper (MSD). Figure 3.3

displays the corresponding SysML declaration of the MSD CD model.

//The MSD declaration
class MSD
 //The system components
 Mass mass;
 Spring spring;
 Damper damper;
 Fixed ground;
 SteadyStateDetector detect;
 …
end MSD;

//The Mass declaration
class Mass
 //The variables
 SI.Position s;
 SI.Mass m;
 SI.Velocity v;
 SI.Acceleration a;
 //The interface component
 MechJunction j;
initial equation
 s = -0.1;
equation
 s = j.s;
 v = der (s);
 a = der (v);
 m*a = j.f;
end Mass;

//The MechJunction declaration
connector MechJunction
 SI.Position s;
 SI.Force f;
end MechJunction;

Figure 3.2: The declaration of a Modelica representation of a MSD system.

 33

The block MSD represents the declaration of the overall MSD system while the other

blocks (Mass, Spring, Damper, SteadyStateDetector, Fixed, and MechJunction) represent

the definitions of the system components.

In Modelica, the properties of a model are called components. A component can

represent a part (e.g. spring, damper) or characteristic (e.g. length, position) of the

system. One can tell whether a component represents a part or a characteristic by

identifying the class to which the component is typed. “Part” components are usages of

regular classes or models. These components map to SysML part properties typed to

other blocks. “Characteristic” components (i.e. variables) are usages of classes with the

type restriction. These components and type classes map directly to SysML value

properties typed to value types since both are used assign the units of measure or

dimension declared in its definition.

bdd MSD Definition

Mass

parts

j: MechJunction

values

s: SI.Position

m: SI.Mass

v: SI.Velocity

a: SI.Acceleration

constraints

{ {Modelica} s = j.s;

 v = der(s);

 a = der(v);

 m*a = j.f; }

{ s = -0.1; } «initial»

SteadyStateDetector

values

ssTime: Time

MechJunction

values

s: SI.Position

f: SI.Force

Spring

values

k: Real

Damper

values

d: Real

Fixed

spring

damper

ground

detect

MSD

mass

values

time: Time

Figure 3.3: The declaration of a SysML representation of a MSD system.

 34

The property-component mapping is illustrated in Figure 3.2 and Figure 3.3. For

example, in Figure 3.2 the class MSD owns a “part” component mass typed to the class

Mass. The class Mass owns a “characteristic” component s typed to the Modelica type

SI.Position. This is reproduced in Figure 3.3 by a block MSD that owns a part property

mass typed to the block Mass. The block mass owns a value property s typed to the value

type SI.Position.

3.3.2 Model Interface

To interact with other models in an object-oriented (OO) fashion, a given model

should have a well-defined interface. Models used in the description of a system’s

continuous dynamic behavior generally interact using across and through variables [32]

exposed to the rest of the system model. Since across and through variables are the only

means of interaction, they can be encapsulated inside of interface objects that are exposed

to other system components and subsystems

In Modelica, a model’s interface consists of components typed to connectors.

Modelica connectors are restricted classes that hold across and through variables, but

have no equations defining behavior. In Section 3.3.1, Modelica classes were mapped to

SysML blocks, so Modelica connectors can also map to blocks. Consequently, a SysML

model’s interface can be established by creating one or more part properties typed to

blocks encapsulating only across and through variables.

To illustrate the declaration of a model interface, Figure 3.3 depicts a block

named MechJunction. This is a reusable block that encapsulates position and force value

properties corresponding to translational across and through variables, respectively. To

define the interfaces for each component of MSD, the appropriate number of part

 35

properties are declared for each component and then typed to MechJunction. For

example, Mass has one part property j typed to MechJunction.

3.3.3 Abstraction, Inheritance, and Redefinition

Both languages support model reuse through the OO concepts of abstract classes,

inheritance, and redefinition. In this section, a mapping is defined between the SysML

and Modelica interpretations of these OO principles.

The first OO principle is the concept of an abstract or partial object. If a

Modelica class is tagged with the partial keyword, then the class is not fully defined and

cannot be instantiated, but serves as a template that can be extended through object

inheritance. Similarly, SysML supports the concept of an abstract block that exists as a

partially defined model.

The second OO principle is object inheritance. Inheritance is a modeling

mechanism that enables a child object to inherit and refine the definition of a parent. In

Modelica, inheritance is accomplished through the extends clause. When inserted in the

definition of a Modelica class, the extends clause automatically imports the entire

definition of the target (parent) class. Similarly, SysML blocks (and other modeling

elements) can be extended through the use of specialization/generalization relationships.

A generalization is depicted by an arrow with a white head.

Figure 3.4 illustrates the concepts of a partial class and class inheritance in

Modelica.

 36

As seen in the figure, the class SteadyStateDetector extends the partial class MechSensor.

This indicates that a SteadyStateDetector is a subtype of a MechSensor and inherits a

component typed to MechJunction. The equivalent SysML modeling constructs can be

seen in Figure 3.5.

The SysML block MechSensor is partially defined due to {abstract} appearing in the

block’s namespace. SteadyStateDetector extends this partial definition through the

specialization relationship.

Modelica also supports model reuse through the use of replaceable properties and

their redeclaration. A Modelica class can have components that are tagged by the

replaceable keyword. This allows the component to be redefined using the redeclare

construct when its owning class is typed by a component in another class. In SysML,

//The partial MechSensor declaration
partial class MechSensor
 MechJunction j;
 …
end MechSensor;

//The SteadyStateDetector declaration
class SteadyStateDetector
 extends MechSensor;
 …
end MSD;

Figure 3.4: Demonstration of Modelica OO modeling constructs.

Figure 3.5: Corresponding demonstration of SysML OO modeling constructs.

 37

every property of a block is considered to be replaceable using standard UML

mechanisms of redefinition.

3.3.4 DAE-Based Internal Behavior

DAEs are commonly used to define the continuous dynamic behavior of a system.

To define the DAE-based internal behavior of a class, Modelica employs the equation

clause in which equations can be used to maintain mathematical relationships between

the class’s components. Similarly, the creation of mathematical relationships between

SysML properties is accomplished by assigning constraints to a given block. Constraints

appear between braces and are displayed in a block’s constraints compartment.

Oftentimes, initial conditions must be placed on a model to ensure that a

mathematical solver can provide an analytical or numerical solution to a system of

differential equations. In the context of a numerical solution, initial conditions are held

true at the beginning of a simulation and can change thereafter. The creation of initial

conditions is generally accomplished in Modelica using the initial equation clause. To

map this concept into SysML, a distinction must be made between regular and initial

constraints. Such distinctions or semantic extensions are accomplished in SysML using

UML stereotypes. Accordingly, a constraint can be characterized as an initial condition

using the «initial» stereotype. This stereotype is an original extension to SysML and can

only be assigned to constraints. The stereotype specifies that the constraint must be true

at the beginning of a simulation.

To illustrate the use of Modelica equations, Figure 3.2 displays the class Mass and

its behavior as characterized by the initial equation and equation clauses. Equivalent

usages of SysML constraints and the «initial» stereotype are displayed in Figure 3.3. The

 38

internal behavior of the block Mass is defined using four regular constraints and one

initial constraint. Note that the constraints explicitly refer to the Modelica language, but

other syntax could be used according to the modeler’s preferred executable language.

3.3.5 Composing the System Model

Composing a system CD model comprises the description of energy and signal

interactions between system components. Generally, such component interactions are

modeled using the equivalent of Kirchhoff’s circuit laws: at a connection (i.e. system

node) all across variables are equal and all through variables add up to zero.

In Modelica, interactions between system components are modeled using

Modelica connectors, the flow prefix, and connect clauses. As discussed in Section 3.3.2,

connectors are used to encapsulate across and through variables. Other classes then use

these connector definitions to create interface components. The Modelica language

offers a unique modeling construct called the flow prefix that can be used to explicitly

identify a connector’s through variables. This is important when composing a system

model with Modelica connect clauses. A connect clause is a special equation used in a

system model’s equation section for connecting the interface components of the system

components. If two or more connector components are connected with connect clauses,

the following equations are implicitly defined: all flow variables sum to zero while any

other variables are equal. This is advantageous for modelers because they don’t need to

model system nodes—the circuit equations (i.e. the equivalent of Kirchhoff’s laws)

implicitly exist in the model. The lack of explicit system nodes is illustrated in the

Modelica connection diagram of Figure 3.6.

 39

While Modelica connectors, the flow prefix, and connect clauses are convenient

modeling tools, they have no direct equivalents in SysML. This could be resolved

through the creation of several SysML extensions via stereotypes, but this greatly

restricts the modeling approach outlined in this section (Section 3.3) to the creation of

Modelica models in SysML. The approach certainly relies on Modelica as a foundation,

but should still be general enough to facilitate the integration of a variety of CD modeling

languages. Furthermore, creating SysML extensions for the purpose of hiding the details

of a CD model seems to contradict the idea of “white box” modeling.

Figure 3.6: A Modelica connection diagram for a MSD CD model.

 40

To describe component interactions in SysML using a “white box” approach, the

system nodes must be represented explicitly. System nodes are used to impose common

constraints on system parts and don’t necessarily represent system components. To

recognize this notion, node definitions should be relegated to constraint blocks. A system

model can then own constraint properties (usages of constraint blocks) to represent

system nodes. Using a SysML parametric diagram, the parameters used in the definition

of a constraint block can be bound to the properties of another block or constraint block

using binding connectors. A binding connector implies a pure equality constraint

between two objects. If the objects are part properties, then all of the sub-properties

belonging to each part are equal. Hence, binding the interface of a system component to

a parameter of a system node implies that any nested value properties in the component

interface are equal to their counterparts in the node parameter. This corresponds to using

a Modelica connect clause to connect two interface components that don’t contain flow

variables.

Figure 3.7 illustrates the definition of two constraint blocks named MechNode3

and MechNode4.

 41

These constraint blocks have several parameters of the type MechJunction. The across

and through variables of these parameters are subject to the packaged constraints that

describe Kirchhoff’s circuit laws for a translational mechanical system. MSD owns one

usage of each constraint block to enable the interaction of its part properties. Figure 3.8

displays a parametric diagram that depicts the part interactions as a result of binding

usages of MechJunction. Note the resemblance of Figure 3.8 to Figure 3.1.

bdd MSD Node Definition

«constraint»

MechNode4

parameters

j1: MechJunction

j2: MechJunction

j3: MechJunction

j4: MechJunction

constraints

{ {Modelica} j1.s = j2.s;

 j1.s = j3.s;

 j1.s = j4.s;

 j1.f+j2.f+j3.f+j4.f = 0; }

«constraint»

MechNode3

parameters

j1: MechJunction

j2: MechJunction

j3: MechJunction

constraints

{ {Modelica} j1.s = j2.s;

 j1.s = j3.s;

 j1.f+j2.f+j3.f = 0; }

parts

mass: Mass

spring: Spring

damper: Damper

ground: Fixed

detect: SteadyStateDetector

MSD

n4n3

Figure 3.7: Declaration of the mechanical node constraint blocks.

 42

The Modelica equivalent to Figure 3.7 and Figure 3.8 can be seen in Figure 3.9.

Figure 3.8: The parametric diagram of the MSD block.

 43

3.4 Integrating “Black Box” CD Models into SysML

Oftentimes, engineers reuse existing computational models when solving systems

engineering problems. If an engineer wishes to reuse an existing Modelica CD model

and integrate it into a larger SysML information model, recreating the model in SysML

using the approach outlined in Section 3.3 could prove to be a cumbersome task. In this

section, a modeling approach is described for integrating pre-existing, external models

into SysML by representing only their most important details and an interface for user

//The MSD declaration
class MSD
 //The system components
 Mass mass;
 Spring spring;
 Damper damper;
 Fixed ground;
 SteadyStateDetector detect;
 //The system nodes
 MechNode3 n3;
 MechNode4 n4;
equation
 //The system composition
 connect (mass.j, n4.j3);
 connect (detect.j, n4.j4);
 connect (spring.j1, n4.j1);
 connect (damper.j1, n4.j2);
 connect (spring.j2, n3.j1);
 connect (damper.j2, n3.j2);
 connect (ground.j, n3.j3);
end MSD;

//The MechNode3 declaration
class MechNode3
 MechJunction j1, j2, j3;
equation
 j1.s = j2.s;
 j1.s = j3.s;
 j1.f+j2.f+j3.f = 0;
end MechNode3;

//The MechNode4 declaration
class MechNode4
 MechJunction j1, j2, j3, j4;
equation
 j1.s = j2.s;
 j1.s = j3.s;
 j1.s = j4.s;
 j1.f+j2.f+j3.f+j4.f = 0;
end MechNode4;

Figure 3.9: The Modelica representation of a fully composed MSD system model.

 44

and model interaction. System models can then be composed of these external models

using binding connectors and Modelica-specific system nodes.

3.4.1 Model Declaration

When building models using a “white box”, high-fidelity modeling approach such

as that outlined in Section 3.3, a modeler must declare every detail needed to define

completely the model of interest; however, when using a “black box”, low-fidelity

modeling approach, a modeler only needs to acknowledge sufficiently the referenced

model and its most important details.

The first step in referencing an external model is to create a SysML object

representing that model. Since the primary SysML modeling unit is the block and the

modeling approach outlined in Section 3.3 relies on the use of blocks, the representation

of an external model should be relegated to a block; however, using blocks to represent

both “white box” and “black box” could be confusing if a modeler can’t easily

distinguish between both types of blocks.

To identify a “black box” block referencing an external model, the «external»

stereotype is introduced to enable SysML modelers to acknowledge dependence upon an

external model. This stereotype is an original extension to SysML. When a block is

assigned the «external» stereotype, the modeler is obliged to include necessary model

metadata by adding the value properties url:String, fqn:String, and mime:String. These

properties enable the identification and high-level description of the external model.

While these properties are sufficient for the work done in this thesis, the «external»

stereotype could be extended or modified to impose other important metadata. The url

property takes on the value of the external model’s uniform resource locator (URL). This

 45

allows a SysML model transformer to locate the file containing the referenced model.

The fqn property takes on the value of the referenced model’s fully qualified name. This

identifies the model location within the file specified by url. The mime property

classifies the referenced model and takes on the value of a descriptive phrase or keyword.

Figure 3.10 demonstrates the declaration of external blocks through the creation

of an MSD system model that utilizes “black box” references to four external

translational-mechanics models from the Modelica Standard Library (MSL).

This BDD is very similar to Figure 3.3 in that a block representing the whole system of

interest owns usages of and is decomposed into blocks that describe the subsystems or

components. Note that the ExternalMSD block is the only block without the «external»

stereotype as it does not refer to an existing Modelica model. All of the other blocks do

have the stereotype and accordingly own url, fqn, and mime properties with appropriate

values. In the case of the MSLSlidingMass, its url points to the location of the MSL, fqn

Figure 3.10: The declaration of the ExternalMSD SysML CD model.

 46

identifies the actual name of the model in the MSL, and mime has the value

“model/modelica” to signify that the block is referencing a Modelica model.

A “black box” model is intended to hide details from a model user; however,

hiding all details is not permissible since a modeler often cares about certain properties in

the referenced model. Accordingly, most properties need not be shown in an external

block, but those representing model parameters or variables of interest must be exposed

to the user. Otherwise, the external block has a limited application base. To recognize

and utilize these properties, a user should acknowledge them in an external block by

adding value properties that have the same name and type as the actual property in the

referenced model. Figure 3.10 demonstrates this modeling approach by acknowledging

the parameter m owned by the Sliding Mass model in the MSL.

3.4.2 Model Interface

While many unnecessary details are omitted from the declaration of an external

block in SysML, the block’s interface must be explicitly defined to enable the creation of

system models composed of external models. Just as described in Section 3.3.2, the

interface for model interaction is declared using part properties typed to blocks

containing across and through variables. The major difference however is that when

declaring the typed interface blocks, the across and through variables don’t need to be

shown. Instead, the typed blocks are also assigned the «external» stereotype and given

appropriate metadata.

Figure 3.10 demonstrates the declaration of external interface blocks through the

depiction of a reference to the MSL Mechanical Flange model commonly used by MSL

Mechanics models. The other external blocks in Figure 3.10 contain usages of these

 47

flange blocks using the names of their counterpart Modelica connector components. For

example, MSLSlidingMass owns usages of MSLMechanicalFlange with names flange_a

and flange_b since the MSL Sliding Mass model owns usages of the MSL Mechanical

Flange model with the names flange_a and flange_b.

3.4.3 Composing a System Model

As discussed in Section 3.3.5, CD system models are composed by connecting

usages of blocks that represent a system’s component or subsystem. In a similar fashion,

modelers might need to create a CD system model that relies on connected usages of

external blocks. Just as Section 3.3.5 describes the use of system nodes enforcing

constraints upon the across and through variables exposed in the interfaces of system

parts, the approach to connecting usages of external blocks relies on Modelica-specific

system nodes that impose Modelica connect clauses. Connect clauses are used in place

of an explicit representation of an equivalent to Kirchhoff’s laws because most native

Modelica CD models own usages of connectors that employ the flow prefix. Hence, a

connect clause that connects two interfaces using the flow prefix implicitly imposes an

equivalent of Kirchhoff’s laws.

To demonstrate the use of Modelica-specific system nodes, Figure 3.11 displays

the declaration of a node constraint block owning a constraint that imposes two Modelica

connect clauses on its parameters.

 48

Each node block has MSLMechanicalFlange parameters that are referenced in its

constraint(s). Connecting a part’s usage of MSLMechanicalFlange (e.g. mass.flange_b:

MSLMechanicalFlange) to a flange belonging to a node in effect substitutes the system

component’s flange in the connect clause modeled by the node’s constraint. To compose

a system model, binding connectors are placed between system components and system

nodes using the same approach outlined in Section 3.3.5. This is demonstrated in Figure

3.12.

Figure 3.11: Declaration of a constraint block representing a Modelica-specific node.

 49

While the use of Modelica-specific system nodes explicitly captures Modelica

connect clause syntax, it can become cumbersome when composing system models. As

discussed in Section 3.3.5, a SysML binding connector maps directly to a Modelica

connect clause under the assumption that all variables contained in a SysML model’s

interface don’t rely on an equivalent of the Modelica flow prefix. Hence, any time a

SysML-to-Modelica transformer encounters a SysML connector, a Modelica connect

clause is created. Consequently, a “hack” of sorts is introduced in which a modeler can

substitute simple binding connector(s) in place of a Modelica-specific system node. In

par ExternalMSD

extNode1: ExternalMechNode3

flange1: MSLMechanicalFlange

flange3: MSLMechanicalFlange

flange2: MSLMechanicalFlange

extNode2: ExternalMechNode3

flange1: MSLMechanicalFlange

flange3: MechJunction

flange2: MSLMechanicalFlange

damper: MSLDamper

flange_b: MSLMechanicalFlange

mass: MSLSlidingMass

flange_a: MSLMechanicalFlange

spring: MSLSpring

flange_a: MSLMechanicalFlange

flange_b: MSLMechanicalFlange

flange_a: MSLMechanicalFlange

flange_b: MSLMechanicalFlange

ground: MSLFixed

flange_b: MSLMechanicalFlange

Figure 3.12: The parametric diagram of the ExternalMSD block.

 50

Figure 3.12, ground.flange_b is connected to extNode2.flange3 while extNode2.flange1 is

connected to spring.flange_b. The corresponding set of Modelica equations are

connect(ground.flange_b,extNode2.flange3), connect(extNode.flange1,extNode2.flange1)

(this comes from the constraints of the block ExternalMechanicalNode3), and

connect(extNode2.flange,spring.flange_b). This set of Modelica equations can be

reduced to connect(ground.flange_b, spring.flange_b) which corresponds to a SysML

connector placed directly between ground.flange_b and spring.flange_b. Hence,

Modelica-specific system nodes aren’t necessary, but their removal from a SysML model

portrays incorrect semantics since the binding connector replacements are used to

represent the imposition of circuit laws rather than pure equalities.

One option is to leave this modeling practice as a hack that is only effective when

dealing with external models that rely on the Modelica flow prefix. Alternatively, the

binding connector can be extended using a UML stereotype to ensure that a parametric

diagram of a CD model depicts the correct semantics. This original stereotype, named

«connectClause», can be applied to a binding connector placed between two part

properties typed to external blocks representing Modelica connectors. The semantics of

the stereotype state that the binding connector actually represents a Modelica connect

clause instead of simply pure equality. Examples of the «connectClause» binding

connector are displayed in Figure 3.13 and in the excavator model of Chapter 6.

 51

3.5 Summary

This chapter outlines in detail the approach to representing CD models using the

graphical modeling constructs provided in SysML. Section 3.1 first establishes the

objectives of the approach to ensure that its use provides a SysML modeler with a

valuable CD modeling ability. Section 3.2 initiates the explanation of the SysML CD

modeling approach by providing justification for using Modelica as the foundational CD

modeling language. Section 3.3 provides an exhaustive approach to creating fully-

detailed, “white box” CD models in SysML. To facilitate the simplification of CD

modeling in SysML, Section 3.4 provides a convenient approach to creating “black box”

SysML CD models that act as proxies for existing Modelica models.

Figure 3.13: Using «connectClause» binding connectors in place of system nodes.

 52

The SysML CD modeling constructs outlined in this chapter are the foundation

for integrating CD models with other SysML models. Using these constructs, modelers

can abstract important knowledge from system CD models into SysML such that

information can be shared amongst the various other models represented in a SysML

information model. Furthermore, the language mapping used to develop the SysML CD

modeling approach can be used to develop a graph transformation schema for automating

the transformation of information and knowledge between SysML and Modelica models.

 53

CHAPTER 4

TRANSFORMING BETWEEN

SYSML AND MODELICA MODELS

In Chapter 3, an approach was described for representing CD models in SysML

via a language mapping between SysML and Modelica. One of the objectives of the

approach was to enable the transformation of SysML CD models into Modelica models

for the purpose of model execution. In this chapter, the language mapping is extended

into a graph transformation schema and transformation rules that enable the automation

of SysML-to-Modelica model transformations.

4.1 The Need for Graph Transformations

If true model integration is to occur in SysML, engineers must be able to link

external models adhering to languages other than SysML to models existing in SysML.

Such a linkage permits the creation of dependencies between design and analysis models

authored in SysML or in other languages. In the context of CD modeling in SysML, the

linkage to Modelica models is partially established by the CD “white box” and “black

box” modeling approaches described in Chapter 3; however, the ability to abstract a

Modelica CD model into SysML doesn’t necessarily provide the ability to affect the

Modelica model through the representation of bindings and associations to the SysML

model. To provide this ability, a modeler must be able to transform

knowledge/information between SysML and Modelica models. Preferably, these

transformations are automated to ensure fast and error-free transformations.

 54

One option for automating the transformation process is by using a typical

computer programming language (e.g. Java, C/C++) to create software that is able to

query and transform SysML and Modelica models through the use of large, complex sets

of logical constructs (e.g. switch statements, if statements). While this is a feasible

approach to implementing model transformations, it might not be the most user-friendly

and adaptable approach.

Alternatively, another option for automating the transformation process is through

the use of a higher-level approach that is better suited for implementing model

transformations. One such high-level approach is the use of graph transformations.

Instead of using complex sets of low-level logic, graph transformations rely on pattern

matching abilities built into graph transformation tools (e.g. VIATRA) to identify

precondition patterns in a source model and to prescribe postcondition patterns in a target

model. In the context of SysML-Modelica transformations, graph transformations can be

used to locate and specify patterns in a graph of a SysML or Modelica model.

Outside of the relative ease of incorporating graph transformations, another

important benefit is the preservation of graph patterns between source and target models.

When performing graph transformations, the resultant graph can be preserved and reused

for future propagations of changes in a source or target model. This is not easily

accomplished using low-level logical constructs.

Overall, graph transformations provide a convenient mechanism for completing

model transformations. The implementation of graph transformations for the purpose of

transforming SysML and Modelica models provides the following potential functionality:

the generation of Modelica models from SysML models and vice-versa; and the

 55

propagation of changes in Modelica models to SysML models and vice-versa. When

these abilities are obtained, true “execution” links can be established between SysML and

Modelica models.

4.2 The Transformation Approach

Due to the benefits of performing model transformations with TGGs, the

transformation approach outlined in this chapter revolves around the creation of a TGG

and corresponding operational graph transformation rules. Operational graph

transformation rules are scenario-specific rules for transforming source modeling

elements into corresponding target modeling elements. In contrast, actual TGG graph

transformation rules are declarative by nature and more powerful since they enable

bidirectional model transformation and model synchronization; however, these rules are

difficult to implement because not all transformations are bidirectional and many model

transformation tools are not capable of executing bidirectional transformation rules. In

this chapter, operational rules are developed for performing SysML-to-Modelica

transformations because they sufficiently demonstrate the power of graph transformations

and their potential for improving MBSE. Moreover, the TGG described in this chapter

can still facilitate the development of actual TGG rules.

4.2.1 The SysML and Modelica Metamodel Subgraphs

The key to developing a TGG is the language mapping. By examining the

mapping in detail, the essential modeling elements from each language can be identified

and separated from the non-essential elements. For example, a clear mapping exists

between SysML blocks and Modelica classes, so both elements must be acknowledged in

 56

the SysML-to-Modelica transformation schema. In contrast, a clear mapping does not

exist between the Modelica flow prefix and a SysML modeling construct, so the flow

prefix is not included in the transformation schema. Once the necessary modeling

elements are identified, graph-based representations of each language are developed as

subgraphs of the TGG. These subgraph metamodels are not intended to represent a

modeling language in its entirety; instead, they are incomplete representations enabling

model transformations that adhere to the language mapping of interest.

Figure 4.1 displays the subgraph of the SysML metamodel used in the SysML-to-

Modelica TGG.

This representation of the SysML metamodel strikes a compromise between maintaining

accuracy and fostering ease of use. Additionally, modeling elements that are not required

in the SysML-to-Modelica transformation are excluded (e.g. requirements). Important

modeling elements such as blocks, packages, properties, and connectors are included

Figure 4.1: The SysML metamodel subgraph of the SysML-to-Modelica TGG.

 57

while unnecessary elements like connector ends and roles are replaced with the simple

relation endAssn pointing from a connector to a property.

Figure 4.2 displays the graph of the Modelica metamodel used in the development

of the SysML-to-Modelica TGG.

Again, the intent of this graph is not to reflect directly the Modelica language

specification [11], but to strike a balance between accuracy and ease of use.

4.2.2 The Correspondence Metamodel Subgraph

To develop the correspondence graph for the TGG, each mapping described in

Chapter 3 is translated into a correspondence element that points to the mapped elements.

This results in the specification of the SysML-to-Modelica TGG as depicted in Figure

4.3.

Figure 4.2: The Modelica metamodel subgraph of the SysML-to-Modelica TGG.

 58

Most correspondence modeling elements have been defined only if they were necessary

for ensuring model traceability. A complete correspondence metamodel would include

correspondence elements for every mapping between SysML and Modelica. For

example, the correspondence between a block and a class was deemed necessary while a

correspondence between UML multiplicities and Modelica array sizes was deemed

unnecessary.

Figure 4.3: The Correspondence metamodel subgraph of the SysML-to-Modelica TGG.

 59

4.2.3 The Graph Transformation Rules

When the TGG is complete, operational graph transformation rules can be

developed that force a source and target model to satisfy the TGG. As depicted in Figure

2.2, graph transformations are used to read a source model adhering to a source

metamodel and write a corresponding target model adhering to a target metamodel. In

the context of TGGs, a specific sequence of operational graph transformation rules is

used to search through source, target, and correspondence graphs to match a given

precondition pattern. When the precondition pattern is satisfied, a postcondition pattern

that satisfies the TGG is prescribed resulting in the creation of new correspondence and

target modeling elements.

In the SysML-to-Modelica graph transformation approach, a graph containing

instances of SysML metamodel elements is first parsed to identify all top-level (i.e. non-

contained) definition modeling elements (blocks, packages, value types, and units).

When a top-level definition element is found, instances of the appropriate correspondence

element and Modelica metamodel element are created and correspondence relationships

are defined. This is depicted in Figure 4.4 through Figure 4.6 (minus some details).

Figure 4.4: The TopBlock-to-Class transformation rule.

 60

While most top-level definition element transformation rules are simple, a special

rule is used to transform SysML blocks into Modelica connectors. As depicted in Figure

4.7, this rule states that instances of modelicaConnector and block2modelicaConnector

correspondence elements should exist if a block is used by a part that is the target of a

sysmlConnector’s endAssn relationship.

Once all instances of top-level SysML definition elements are transformed into

their Modelica counterparts, the transformation rule depicted in Figure 4.8 is applied to

the SysML model to transform contained blocks into contained classes.

Figure 4.5: The TopValueType-to-ModelicaType transformation rule.

Figure 4.6: The TopSysMLPackage-to-ModelicaPackage transformation rule.

Figure 4.7: The TopBlock-to-ModelicaConnector transformation rule.

 61

Similar rules exist for contained valueTypes, sysmlPackages, and units.

The last definition elements that are subject to transformation are blocks

stereotyped by the “external” keyword. As depicted in Figure 4.9, the transformation is

the nearly identical to that depicted in Figure 4.4, but the resulting class is flagged such

that a Modelica code exporter (see Section 4.4) doesn’t try to create new Modelica

classes that represent existing Modelica classes.

Once all of the instances of SysML definition elements are transformed, rules are

applied to transform SysML properties. The general Property-to-Component rule is

depicted in Figure 4.10, but specialized rules also exist for transforming specific subtypes

of SysML properties.

Figure 4.8: The ContainedBlock-to-Class transformation rule.

Figure 4.9: The ExternalBlock-to-Class transformation rule.

 62

The entity structure of the Property-to-Component transformation rule is very similar to

that of the ContainedBlock-to-Class transformation rule, but the relationships and

element instances have changed. Instead of searching for an instance of a sysmlPackage

containing an instance of a block, the rule searches for an instance of a block associated

with an instance of a property. This structure is also present in the Constraint-to-

Equation rule displayed in Figure 4.11 and specialized by the Constraint-to-

InitialEquation rule displayed in Figure 4.12.

Figure 4.10: The Property-to-Component transformation rule.

Figure 4.11: The Constraint-to-Equation transformation rule.

 63

Upon finishing the transformation of properties and constraints, SysML

connectors that connect two block properties are transformed into corresponding

Modelica connect clauses. By searching for sysmlConnectors that are the source of two

endAssns targeted at two different properties, the transformation rule can create a

connectClause that directs a componentRef relation to the two appropriate components.

This transformation rule is depicted in Figure 4.13.

After all SysML connectors have been transformed into Modelica connect

clauses, the sysml2modelica machine finishes the model transformation by transforming

simple SysML constructs like the abstract construct, import association, generalization

association, and UML multiplicities.

Figure 4.12: The Constraint-to-InitialEquation transformation rule.

Figure 4.13: The SysMLConnector-to-ConnectClause transformation rule.

 64

4.3 SysML-to-Modelica Transformations with VIATRA

To implement the SysML-to-Modelica model transformation approach, the TGG

and operational graph transformation rules were encoded using the VIATRA [16, 17]

plugin for Eclipse. The VIATRA framework was developed to provide general-purpose

support for completing model transformations between various engineering domains and

modeling languages. Additionally, it was designed to support many transformation

standards including OMG’s Query/View/Transformation (QVT) [37]. VIATRA is

comparable to other model transformation tools such as Fujaba [42] or MOFLON [43],

but offers unique features like recursive patterns and negative patterns with arbitrary

negation depths.

To capture patterns, models, and metamodels, VIATRA relies on its own

declarative modeling language called the VIATRA Textual Metamodeling Language

(VTML). VTML provides two main constructs for representing models or metamodels:

entities and relations. An entity represents a modeling concept (e.g. block, property)

while a relation represents a relationship between entities (e.g. property association

between a block and a property).

Using this entity-relation concept, the metamodels depicted in Figure 4.1 through

Figure 4.3 were described in VTML to create the SysML-to-Modelica TGG. Excerpts of

the VTML metamodels can be seen in Figure 4.14.

 65

As seen in Figure 4.14, the primary modeling elements in VTML are the entity and the

relation. For clarification, when specifying a relation the first argument is the relation

name, the second argument is the source entity type, and the third argument is the target

entity type. For example, a block can have a relation propAssn pointing from a block

(preferably itself) to a property.

//The SysML Metamodel
entity(SysML) {
 //The SysML block
 entity(block) {
 relation(propAssn, block, property);
 multiplicity(propAssn, one_to_one);
 isAggregation(propAssn, true);
 …
 }
 //The SysML Property
 entity(property) {
 relation(type, property, block);
 …
 }
 …
}
//The Modelica Metamodel
entity(Modelica) {
 //The Modelica class
 entity(class) {
 relation(composition, class, component);
 …
 }
 //The Modelica component
 entity(component) {
 relation(type, component, class);
 …
 }
}
//The Correspondence Metamodel
entity(Correspondence) {
 //The block2class correspondence
 entity(block2class) {
 relation(blockR, block2class, SysML.block);
 relation(classR, block2class, Modelica.class);
 }
 //The property2component correspondence
 entity(property2component) {
 relation(propertyR, property2component, SysML.property);
 relation(componentR, property2component, Modelica.component);
 }
 …
}

Figure 4.14: An excerpt of the SysML-to-Modelica TGG as represented in VTML.

 66

To specify model transformations performed using abstract state machines and

graph transformation rules, VIATRA relies on its own imperative command language

called the VIATRA Textual Command Language (VTCL). The VTCL language

provides a user with several general-purpose constructs used to compute graph

transformations. The first construct is the machine. A machine can contain a main rule

and various other rules (i.e. functions) that perform actions on the elements existing in a

VIATRA modelspace. A machine can also contain graph patterns written in VTML

syntax that are used to perform pattern matching in a VIATRA modelspace. For a

machine to perform graph transformations, VTCL employs a special rule appropriately

named the graph transformation rule (GTR) that can contain precondition, postcondition,

and action sections. The precondition section is written in VTML syntax and used to

specify a pattern that must be matched somewhere in the modelspace. The postcondition

pattern is also written in VTML syntax used to prescribe how the modelspace should be

changed once the precondition is satisfied. After a precondition and postcondition are

satisfied, a GTR can use the auxiliary action section to perform a set of imperative

actions on the modelspace (e.g. renaming entities and resetting entity values).

Using VTCL, a machine named sysml2modelica was developed for performing

SysML-to-Modelica model transformations. Excerpts of this machine can be seen in

Figure 4.15.

 67

The machine is divided into two important sections: a set of GTRs that reflect the graph

transformation rules described in Section 4.2.3 and a main rule that prescribes the

sequence in which the GTRs should be performed. When a user runs the sysml2modelica

//Importing the TGG metamodel
import SysML;
import Modelica;
import Correspondence;
//The sysml2modelica VTCL machine
machine(sysml2modelica) {
 …
 //The property2component graph transformation rul e
 gtrule property2componentRule(inout P) = {
 //The precondition pattern required to do trans formation
 precondition pattern lhs(B, P, PAssn, C, BCCorr, BR, CR) = {
 block(B) {
 property(P);
 block.propAssn(PAssn, B, P);
 }
 block2class(Corr);
 block2class.blockR(BR, Corr, B);
 block2class.classR(CR, Corr, C);
 class(C);
 }
 //The resulting postcondition pattern
 postcondition pattern rhs(P, PAssn, A, Comp) = {
 block(B) {
 property(P);
 block.propAssn(PAssn, B, P);
 }
 block2class(BCCorr);
 block2class.blockR(BR, BCCorr, B);
 block2class.classR(CR, BCCorr, C);
 property2component(PACorr);
 property2component.propertyR(PR, PACorr, P);
 property2component.componentR(AR, PACorr, A);
 class(C) {
 component(A);
 class.composition(Comp, C, A);
 }
 }
 //Renaming A and Comp and resetting the value o f A
 action {
 rename(A, name(P));
 rename(Comp, name(PAssn));
 setValue(A, value(P));
 }
 //The gtrule execution sequence
 rule main() = seq {
 …
 forall P apply property2componentRule(P);
 …
 }
}

Figure 4.15: An excerpt of the sysml2modelica machine as represented in VTCL.

 68

machine, the GTRs are applied to all SysML elements existing in a specific

transformation workspace belonging to a VIATRA modelspace.

Figure 4.16 through Figure 4.18 demonstrate the results of running the

sysml2modelica machine on an example VIATRA representation of a SysML model.

Figure 4.16: A VIATRA representation of a SysML model.

 69

Figure 4.17: Running the sysml2modelica machine.

 70

For more information about the VIATRA source code, the best resource is the

documentation in the code itself. Most every aspect of the code is well documented using

an easy-to-read commenting scheme. The code can be obtained by contacting the author

and obtaining the SysMLTransformers plugin [44] and source files.

4.4 Implementation in RSD

In this section, an overview is provided for the SysMLTransformers plugin for the

EmbeddedPlus (E+) SysML Toolkit [45] and IBM’s extended version of Eclipse called

Rational Systems Developer (RSD) [19]. This plugin is used to transform a visual E+

SysML CD model into a lexical Modelica model using VIATRA and the sysml2modelica

machine. Only the most important classes and details are discussed in the following

sections. For more information about the Java source code, the best resource is the

Figure 4.18: VIATRA modelspace resulting from running the sysml2modelica machine.

 71

documentation in the code itself. Again, this code can be found in SysMLTransformers

plugin and source files.

The plugin source code is divided amongst the nine classes seen in Figure 4.19.

The classes Activator, SysML2ModelicaAction, and SysML2ViatraAction all deal with

activating the plugin classes via the RSD project explorer’s pop-up menu. The class

SysMLSimulationBlock is used to store and pass along the properties of a SysML

simulation model (Chapter 5). To ease interaction with the VIATRA Application

Programming Interface (API), the ViatraManager class is used to provide original utility

methods and to access commonly used VIATRA API methods for manipulating a

VIATRA modelspace. The importer class SysML2ViatraImporter is used to access the

E+ API and translate a selected E+ SysML CD model into VIATRA syntax. The

exporter class Viatra2ModelicaExporter to access a VIATRA modelspace and generate

Modelica code from a VIATRA representation of a Modelica model. The

SysML2ViatraTransformer class packages an instance of the SysML2ViatraImporter in a

Figure 4.19: The project explorer view of the SysMLTransformers Java source code.

 72

fashion that enables easy execution from the project explorer pop-up menu. The

SysML2ModelicaTransformer class is very similar to the SysML2ViatraTransformer class

but is used to do a complete transformation of an E+ SysML CD model using instances

of both the SysML2ViatraImporter and Viatra2ModelicaExporter classes. The

functionality of the SysML2ModelicaTransformer class is illustrated in Figure 4.20.

Figure 4.21 through Figure 4.25 illustrate the results of transforming an E+ MSD

model by running the SysML2ModelicaTransformer through RSD’s project explorer pop-

up menu. Figure 4.21 shows a BDD of an E+ version of the MSD model that is

embedded inside of a SysML simulation model via a model context (Section 5.1 and

Section 5.2).

Figure 4.20: The functionality of SysML2ModelicaTransformer.

 73

MSDSystem is owned by MSDContext which has three value properties characterizing the

mass, spring, and damper part properties of analysisModel. These properties,

massParameter (set to 375 kilograms), springCoefParameter (set to 50,000 Newtons per

meter), and dampingCoefParameter (set to 6,000 Newton-seconds per meter), are

intended to represent realistic characteristics of a car suspension. Figure 4.22 displays a

parametric diagram of MSDSystem that is similar to the diagram shown in Figure 3.8.

Figure 4.21: A BDD of the E+ MSDSystem.

 74

Figure 4.22: An E+ SysML CD model of a MSD system.

 75

As depicted in Figure 4.23, this model can be transformed into a corresponding Modelica

model by right clicking it in the RSD project explorer and selecting “Generate Modelica

Model…”.

Figure 4.23: Generating a Modelica model from the E+ SysML CD model of a MSD system.

 76

When the SysML2ModelicaTransformer completes the transformation process, the

resulting Modelica model is placed in a Modelica Development Tooling (MDT) [46]

project and imported into Dymola [47] for simulation. This is shown in Figure 4.24 and

Figure 4.25.

Figure 4.24: An MDT view of the resultant Modelica MSD model.

 77

The simulation results of Figure 4.25 indicate that the MSD CD model authored

in E+ was transformed into a meaningful, executable Modelica model. In fact, the

performance of the simulated MSD system satisfies the ReboundReq requirement

specified for the WheelSuspension modeled in Figure 2.1. Moreover, the behavior of the

MSD model corresponds nicely with that of a true car suspension. When a suspension is

given a displacement and forced to respond, it typically overshoots its steady-state

position and gradually (i.e. with no residual vibration) settles.

Figure 4.25: The Dymola simulation of the Modelica MSD model.

 78

While transforming a SysML CD model into Modelica provides some benefits for

automating the simulation of the SysML model, the transformation of a model context

(Sections 5.1 and 6.4) provides much more functionality for a SysML user.

Transforming the model context enables the simulation of a CD model that includes

information regarding static or known aspects of the system of interest. Currently, an

unstable version of the SysMLTransformers plugin can handle some depictions of a CD

model’s context. This could be easily stabilized by continuing the development of graph

transformation rules and the Java code used to run the transformations; however, the

current abilities of the SysMLTransformers plugin provide promising examples for

creating other types of graph transformations in support of model integration in SysML.

4.5 Summary

In this chapter, a TGG and operational graph transformational rules are presented

to handle SysML-to-Modelica model transformations. Section 4.1 first justifies the

selection of graph transformations for automating SysML-to-Modelica model

transformations. Section 4.2 is a description of the SysML-Modelica TGG and the

SysML-to-Modelica operational graph transformation rules. Section 4.3 is a discussion

on the implementation of the SysML-Modelica TGG and graph transformation rules in

the VIATRA graph transformation tool. Section 4.4 provides an overview of the

SysMLTransformers plugin for RSD which is used to transform E+ SysML CD models

into lexical Modelica models.

By establishing the ability to transform SysML models into Modelica models via

graph transformations, a precedent has been set for enabling the execution of more

complex graph transformations. The TGG proposed in this chapter provides a foundation

 79

that can be reused or extended to support model transformations like Modelica-to-SysML

transformations and model synchronization transformations. Moreover, this chapter

provides a basic guide for creating a true link between SysML and other external models

via graph transformations. As support grows for creating transformation links between

various types of integrated models, engineers will be better able to ensure information

consistency and model traceability throughout the model-based design of a complex

system.

 80

CHAPTER 5

MODELING SIMULATIONS AND ANALYSES IN SYSML

In the context of model-based systems engineering, models and simulations allow

systems engineers to investigate and predict the behavior of system alternatives without

the need for physical prototyping. For example, a CD model of a MSD system can be

used to simulate and predict the behavior of a car suspension alternative. This chapter

describes how to relate a CD model to other relevant design information/knowledge in

SysML by binding of model parameters in a model context; defining an experiment

performed on a model in a simulation; defining a measure of effectiveness as the result of

a simulation; and using an abstracted simulation in the context of system analysis. This

complements the model transformation approach outlined in Chapter 4 and the model

integration effort in general because it enables the transformation and execution of CD

models that incorporate information from other SysML models.

5.1 Defining the Model Context

In systems engineering, a continuous dynamics model is always used in a

particular context. Within this model context the elements of a system’s structural model

are bound parametrically to the corresponding elements of the analysis model. For

example, when analyzing a set of car suspension alternatives, engineers can assume that

the mass used in a MSD CD model is always one quarter of the car’s mass even though

the suspension characteristics vary amongst the alternatives.

In current practice, engineers do not always distinguish between the physical

structure or system topology and the corresponding system behavior. For instance, it is

 81

common practice to use an electric circuit diagram as the representation for defining both

the circuit topology as well as the behavior of the circuit in a SPICE simulation [48]. As

systems become more complex engineers often need to represent a system with multiple

simulation models corresponding to different levels of abstraction or different

disciplinary perspectives. The use of an explicit model context as suggested here

facilitates the preservation of consistency amongst all the separate models. A similar

approach to setting the context for an analysis model is demonstrated with the MRA

CBAM concept [21].

To relate the structure to the behavior, a model context block is defined with two

part properties: one usage of the system model and one usage of the analysis model. If

mathematical relationships beyond simple equivalence exist between the known elements

of the system model and the corresponding elements of the analysis model, additional

constraint blocks can also be defined. Finally, a parametric diagram of the model context

block is created to bind the known system elements to the corresponding analysis

elements.

In the lower portion of Figure 5.1, the block ModelContext is defined as owning

usages of MSD, Car, and a constraint block named MassRelation.

 82

In Figure 5.2, a parametric diagram of ModelContext is used to establish the relationship

between the masses of the MSD and car models.

Inside of this parametric diagram, msd.mass.m is defined as one quarter of the mass of

mcCar.mass by connecting them to the appropriate parameters on the constraint property

massRel.

«simulation»

SuspensionSimulation

ModelContext

MSD Car

«constraint»

Sample&Hold

constraints

{ {Modelica} when time >= t then

 input = output;

 end when; }

parameters

input:

output:

time: Time

t: Time

«constraint»

MassRelation

constraints

{ {Modelica} m = 0.25*carMass }

parameters

m: SI.Mass

carMass: SI.Mass

values

startTime: Time = 0

stopTime: Time = 5

time: Time

kInput: Real

dInput: Real

ssTimeOutput: Time

msd mcCar

simModel

bdd Simulation Definition

massRel

sample&hold

Figure 5.1: Declaration of the SuspensionSimulation and ModelContext blocks.

par ModelContext

mcCar: Car

mass: SI.Mass

msd: MSD

mass.m: SI.Mass

massRel: MassRelation
m: SI.Mass

carMass: SI.Mass

Figure 5.2: The parametric diagram of ModelContext.

 83

5.2 Modeling the Simulation

A simulation is an experiment performed on a computational model [41]. Before

a simulation can be performed, the experiment must be fully defined. A fully defined

simulation includes a specification of initial conditions, boundary values, observed

outputs, and potentially the process steps one must follow to complete the experiment.

From a modeling perspective, all of these aspects can be captured in the computational

model itself or in extensions of the model defined using the same modeling constructs

described in Chapter 3. One can therefore assume that the “model” as defined in the

model context is fully specified—all the parameters are bound to values and the set of

system equations is non-singular. Under those assumptions, the only additional

information that needs to be provided is the start and end time of the simulation.

To make the semantics of a simulation explicit in SysML, modelers can utilize the

«simulation» stereotype. This original stereotype can be applied to a block that

represents a simulation of a fully specified computational model. As is illustrated in

Figure 5.1, this stereotype requires the inclusion of a time property, which represents the

simulation time; startTime and stopTime properties; and a part property (e.g. simModel)

that represents the computational model to be simulated. The semantics of the

«simulation» stereotype are that all the properties in the computational model are

evaluated as a function of time from startTime to stopTime. Note that the application of

this stereotype completely defines a simulation experiment in a fashion that is

independent of any particular simulation solver; however, other solver-specific properties

could be included (e.g. number of intervals). In addition, note that Modelica semantics

 84

differ from SysML semantics which require the explicit definition of a local simulation

time property to which all time-varying system properties can be bound.

5.3 Abstracting the Simulation

A simulation as defined in the previous section allows a systems engineer to

define an experiment in which the system behavior can be observed. However,

simulations are often used to make system-level design decisions. In that case, the same

experiment is often performed on multiple system alternatives. It then becomes

important to abstract this simulation formally for reuse purposes by clearly defining the

inputs (the properties that can take on different values from one simulation run to the

next), and the outputs (the properties that are of interest to a decision maker, for instance,

a measure of effectiveness that drives a design optimization). The relationship between

simulation inputs and outputs can then itself be considered as a model. Unlike the model

of the system, this model is an algebraic relationship, albeit a very complex one, that

requires running the entire simulation to compute the outputs from the inputs. When

abstracting a simulation in this fashion to support decision making, it is justifiable to

assume that the outputs of the simulation are scalar quantities (decisions can only be

made based on scalars because vectors cannot be rank-ordered [49]). Sometimes this

requires that a modeler include additional modeling elements in the CD model to define

these scalar measures of effectiveness. For instance, in the BDD in Figure 5.1 and the

corresponding parametric diagram in Figure 5.3, the suspension simulation has been

abstracted into an input-output model with inputs as the decision variables, dInput and

kInput (bound to the damping and stiffness of the suspension), and an output as the

measure of effectiveness, ssTimeOutput (the time to steady-state for the MSD system).

 85

The output has been bound to a property of MSD through a “sample and hold” constraint

property, sample&hold, making explicit that the output takes on the value of the time-

varying property detect.ssTime when the simulation time equals stopTime. In general,

more complex models may be necessary to relate scalar outputs to time-varying

simulation properties.

5.4 Embedding the Simulation into an Analysis

Once a simulation has been abstracted into an input-output model, it can be used

in support of analyzing system alternatives with respect to stakeholder requirements and

measures of effectiveness, as is illustrated in Figure 5.4 and Figure 5.5.

par SuspensionSimulation

kInput: Real

dInput: Real

stopTime: Time time: Time

simModel.msd: MSD

detect.ssTime: Time

spring.k: Real

damper.d: Real

sample&hold: Sample&Hold

input:output:

t: Time time: Time

ssTimeOutput: Time

time: Time

Figure 5.3: The parametric diagram of SuspensionSimulation.

 86

Analyses generally verify that a system alternative meets a certain system requirement.

This can be modeled explicitly in SysML using the «verify» dependency. A parametric

diagram of a block representing a system analysis can be used to connect the system

alternative to the abstracted simulation, as illustrated in Figure 5.5. Instead of binding the

simulation inputs and outputs directly to the corresponding value properties of the system

alternative, one could also define an optimization problem in which the stiffness and

damping are optimized with respect to one or more measures of effectiveness. Whenever

there is a need for repeated evaluation of the simulation with different inputs, it is

desirable to embed the simulation explicitly in an analysis as depicted in Figure 5.4.

Figure 5.4: Declaration of the SuspensionAnalysis block.

Figure 5.5: The parametric diagram of SuspensionAnalysis.

 87

5.5 Summary

This chapter presents the final facet of integrating a CD model into SysML by

describing an approach to relating a SysML CD model to other elements of a SysML

model via the creation of SysML models of simulations and engineering analyses.

Section 5.1 is a description of how to set the context of a CD model by binding its

properties to the properties of a SysML structural model. Section 5.2 is an explanation

on depicting simulations of SysML CD models using common SysML modeling

constructs. Section 5.3 describes the abstraction of simulation models for the purpose of

enabling simulation reusability. Section 5.4 then discusses the creation of SysML models

of engineering analyses that rely on abstracted simulation and system alternative models.

While others may approach the implementation of depicting system analyses

differently than the approach outlined in this chapter, the basic concepts of modeling

simulations and analyses in SysML are crucial for establishing meaningful relationships

between CD and other SysML models. An analysis model like a SysML CD model

provides little value to an engineer if it cannot answer a question about the system

through simulation; hence, simulations and their owning analyses are a primary means of

relating the knowledge contained in CD models and the knowledge contained in other

design and analysis models.

By enabling the relation of CD models to other SysML models (e.g. structural

model of a system alternative), the prospect of using model transformations as described

in Chapter 4 becomes even more promising. Transforming a SysML CD model whose

properties are bound to the properties of other SysML design or analysis models supplies

 88

an executable Modelica model with information that sets the context for simulating the

continuous behavior of a given system alternative.

 89

CHAPTER 6

THE HYDRAULICALLY POWERED EXCAVATOR MODEL

6.1 Introduction to the Excavator Example

The example model presented in this chapter is intended to demonstrate the

scalability of the CD model integration approach proposed in Chapter 3 through Chapter

5. If the approach is capable of handling the integration of complex models such as the

excavator model, then its use in a MBSE design process could benefit engineers

designing complex systems.

6.1.1 Overview of the Excavator Example

The model described in this chapter is meant to depict the continuous dynamic

behavior of an earth-moving, hydraulically powered excavator. These machines are used

extensively in the construction industry amongst others for performing a large variety of

tasks with the most common being digging and trenching. They are complex systems

composed of numerous interconnected subsystems and components and are typically

designed by large companies employing distributed services from engineers of multiple

disciplines.

Motion is provided to these systems through the complex control of multiple

hydraulic actuators linked to various mechanical structures like the driver’s carriage and

the digging arm. The carriage is allowed to rotate about its base through the use of a

hydraulic motor. The arm is composed of three main structures: the boom (the large

mechanical link connected to the carriage), the crowd (the smaller mechanical link

 90

between the boom and the bucket), and the digging bucket attached at the end of the

excavator arm. The arm is allowed to move in three degrees of freedom through the use

of four double-acting hydraulic cylinders: two parallel cylinders controlling the boom

rotation, one controlling the crowd rotation, and one controlling the bucket rotation. The

hydraulic actuators are powered by a load-sensing, pressure-compensating circuit

controlling the operation of a variable-displacement hydraulic pump. The pump is

typically driven by an internal-combustion engine. Flow is routed to the actuators through

the use of four load-sensing directional servo valves. The valve positions are

continuously controlled by an excavator operator through control signals typically input

from a joystick interface.

To model the digging motion of a hydraulically powered excavator, a Modelica

model can contain an enormous set of hybrid discrete-event and DAE models. Both the

SysML and Modelica excavator CD models depicted in this chapter represent a collection

of over 11,000 equations. The CD model primarily captures the energy-based,

continuous behavior of the rigid-body mechanics and the hydraulics, but also includes

simplified models of the control signals and the environment.

6.1.2 Appropriateness of the Example Model

This model was chosen to test the abilities of the model integration approach

outlined in this thesis due to its increased complexity and relevance to the systems

engineering community as compared to the simple car suspension model discussed in

Chapter 2 through Chapter 5. The excavator model is complex due to its multiple

degrees of freedom, subsystems, and encompassed engineering disciplines. Such a model

if deemed valid can provide a large amount of valuable information for a decision maker

 91

selecting or eliminating individual alternatives from large discrete or continuous design

spaces.

Under the assumption that the model is sufficiently complex for testing the

abilities of the SysML CD model integration approach, the rest of this chapter utilizes the

principles of the approach to integrate the excavator CD model into SysML via its

depiction using SysML modeling constructs, the transformation of the SysML CD model

into Modelica code, and the incorporation of the SysML CD model into a simulation and

engineering analysis model. The model is developed using the E+ toolkit for RSD which

imposes certain modeling limitations with respect to the integration approach proposed in

this thesis. These limitations are identified throughout the description of the E+ SysML

CD model.

6.2 Defining the SysML CD Model of the Excavator

To begin the integration process, the excavator CD model is first declared and

composed using the “white box” and “black box” approaches outlined in Sections 3.3 and

3.4, respectively. First, as seen in Figure 6.1, an original SysML block,

ExcavatorDigCycle, is declared in a BDD as a CD model of the excavator’s dig cycle.

 92

The block ExcavatorDigCycle is decomposed into various part properties typed to other

blocks: three external, “black box” blocks representing pre-existing Modelica models of

the excavator’s multi-body mechanical structure, dig-cycle command signals, and a world

reference frame; one original “white box” block representing the hydraulics subsystem;

and one block representing a system node for demonstrating the equivalence of

Modelica-specific system nodes and the «connectClause» binding connector.

At this point, it is necessary to discuss an E+ limitation affecting the depiction of

system nodes and constraint blocks in general. While the modeling approach outlined in

Sections 3.3.5 and 3.4.3 promotes the use of constraint blocks for depicting system nodes,

bugs in the E+ toolkit prevent a user from following the approach exactly. More

specifically, a constraint parameter typed to a block instead of a value or data type cannot

be connected to any other elements using assembly or binding connectors. This means

that a user cannot connect a component interface typed to a block (e.g. a part property

typed to MechanicalJunction) to a usage of a node constraint block since the constraint

Figure 6.1: The BDD of the ExcavatorDigCycle SysML CD model.

 93

parameter must be typed to the same block (e.g. a parameter typed to

MechanicalJunction). To overcome this issue, a modeler must represent nodes using

regular blocks instead of constraint blocks, as seen in Figure 6.1.

The hydraulics subsystem, modeled by Hydraulics in Figure 6.1, is further

depicted in its BDD seen in Figure 6.2.

Hydraulics is broken down into part properties representing its interface with the other

excavator subsystem models and other properties representing the hydraulic components.

Figure 6.2: The BDD of the Hydraulics SysML CD sub-model.

 94

More specifically, the hydraulics subsystem is composed of relations to six different

external blocks: PartialFluidCircuit, TJunction, DoubleActingCylinder, LSValveUnit,

and HydraulicMotor from the FluidPower [50] library for Modelica; and the

ConstantSpeed rotational-mechanical model from the MSL.

To compose the system CD model of the excavator, the multiple subsystems and

components must be bound together using the approaches outlined in Sections 3.3.5 and

3.4.3. First the high-level ExcavatorDigCycle model is composed in an Internal Block

Diagram (IBD) in place of a parametric diagram due to another E+ modeling limitation.

When modeling in an E+ parametric diagram, a binding connector isn’t owned by the

diagram owner if the connector is placed between nested properties belonging to two

different part properties. Instead, the connector is incorrectly owned by the definition

block of one of the part properties. For example, if a connector is drawn between A.b.c

and A.d.c in a parametric diagram of A while b is typed to B and d is typed to D, the

connector is incorrectly placed between B.c and D.c and owned by either B or D;

however, this is not the case when modeling in an IBD. When composing a system

model in an IBD, nested connector ends are correctly placed between nested properties.

To cope with this problem, system models are composed in E+ IBDs instead of

parametric diagrams. The IBD of ExcavatoDigCycle is illustrated in Figure 6.3.

 95

Figure 6.3: The IBD of ExcavatorDicCycle.

 96

Figure 6.3 depicts the equivalence between Modelica-specific system nodes and

«connectClause» binding connectors. Any connectors bypassing a system node are

assumed to have the «connectClause» stereotype. Figure 6.4 displays a much larger and

more complex model composition through the depiction of Hydraulic’s IBD.

Figure 6.4 also depicts a work-around for overcoming another E+ bug. When

making connections between multiple usages of the same block in an IBD, connectors are

often incorrectly and automatically placed in other parts of the same diagram. Suppose

that block A has two properties b and c. If another block D owns two usages of A, a1 and

a2, and a connector is drawn from a1.b to another property in D, say e.f, another

connector automatically appears in the IBD of D between a2.b and e.f. To overcome this

problem, every E+ definition block can only be typed by one property in a given block.

If a definition block is required for two or more properties of one block, it is copied and

renamed as many times as necessary. For instance, instead of creating four usages of

DoubleActingCylinder in Hydraulics (as seen in Figure 6.2), four part properties are

typed to four independent definition blocks containing the same definition:

DoubleActingCylinder1, DoubleActingCylinder2, DoubleActingCylinder3, and

DoubleActingCylinder4.

97

Figure 6.4: The IBD of Hydraulics.

 98

This intricate IBD demonstrates the ability of the CD modeling approach to capture the

behavior of complex engineered systems. This final diagram concludes the depiction of

the excavator CD model which is now ready to be transformed into a corresponding

Modelica model. One must note that this intricate SysML model was not the only way to

integrate an excavator CD model into SysML. Instead, a modeler could have modeled

the entire excavator model in Modelica and referred to it using an external block.

6.3 Transforming the SysML Excavator Model

This section builds upon the work presented in Section 6.2 by transforming the

SysML CD model of the excavator into an executable Modelica model. Just as the MSD

model was transformed in Section 4.4, the SysMLTransformers plugin for RSD/E+ is

used to transform the excavator SysML CD model using the SysML-Modelica TGG and

operational graph transformation rules implemented in VIATRA. An excerpt of the

resulting Modelica model as displayed in MDT can be seen in Figure 6.5.

 99

This Modelica model can then be imported into Dymola for execution. This is illustrated

in Figure 6.6.

Figure 6.5: An MDT view of the Modelica ExcavatorExample model.

 100

The results of the SysML-based Dymola simulation seen in Figure 6.6 correspond with

the results obtained by manually building the same excavator model directly in Modelica

Figure 6.6: A Dymola simulation and animation of the ExcavatorDigCycle model.

 101

syntax (thus validating that the new auto-generated approach produces the same model as

the traditional, manual method). In fact, the Modelica excavator model has been under

manual, iterative development for over a year and provides meaningful results with

respect to the actual behavior of a hydraulically powered excavator. This is encouraging

because the SysML representation is appropriately abstracting the behavior of a complex

model that has been painstakingly developed in support of testing the open source Fluid

Power Modelica library [50]. However, work still needs to be done on the model. Aside

from adding more detail (if higher fidelity results are desired), one can see from Figure

6.6 that the damping of the system should increase to combat the pressure fluctuations

seen in port A of the bucket cylinder past a time of 12 seconds during the dig cycle.

6.4 Integrating the Excavator Model into a Simulation and Analysis

The final step in completing the SysML integration of the excavator CD model is

the establishment of its relationships with other elements of the larger SysML

information model via models of a dig cycle simulation and corresponding engineering

analysis. First, Figure 6.7 and Figure 6.8 set the context for the excavator CD model by

binding one of its properties to the mass property of a Carriage structural model.

 102

Figure 6.7 also depicts the definition of a SysML simulation block named

DigCycleSimulation which is assigned the «simulation» stereotype and the accompanying

startTime, stopTime, and time value properties. The simulation model is abstracted into a

reusable input-output model, as seen in Figure 6.7 and Figure 6.9, by assigning it the

Figure 6.7: The BDD of DigCycleSimulation and ExcavatorModelContext.

Figure 6.8: The IBD of ExcavatorModelContext.

 103

values bucketCylDiameterInput and cycleTimeOutput and binding them to the

corresponding properties of emc.digCycle: ExcavatorDigCycle

Finally, the integration of the excavator CD model is completed by embedding the

abstracted simulation model into a model of an engineering analysis of a system

alternative model. This is illustrated in Figure 6.10 and Figure 6.11.

Figure 6.9: The simulation abstraction IBD of DigCycleSimulation.

 104

6.5 Summary

The intent of this chapter is provide an example of integrating into SysML a CD

model that goes far beyond the complexity of the MSD example initially presented in this

Figure 6.10: The BDD of DigCycleAnalysis.

Figure 6.11: The IBD of DigCycleAnalysis.

 105

thesis. Section 6.1 provides a brief introduction to the excavator example and a

justification of its use in this thesis. Section 6.2 begins the description of the excavator

example by declaring the ExcavatorDigCycle SysML CD model. Section 6.3 then

demonstrates the use of this SysML CD model for automatically generating a

corresponding, executable Modelica CD model. Finally, Section 6.4 completes the

model integration process by relating the excavator CD model to other elements in the

SysML information model through the creation of models representing the dig cycle

simulation and a corresponding dig cycle analysis.

 106

CHAPTER 7

DISCUSSION AND CLOSURE

In this thesis, CD models representing continuous dynamic system behavior are

integrated into SysML to further promote and support a shift to MBSE for complex

systems design. This final chapter discusses the integration abilities contributed in this

thesis by discussing their validity, limitations, and future prospects. The thesis is then

brought to a close with some final remarks.

7.1 Review and Evaluation of the Model Integration Approach

The driver behind this thesis is an open-ended question about the use of design

and analysis model integration via SysML for the promotion of information consistency,

model traceability, and automated model transformation. Many people have explored

model integration in SysML (e.g. Peak et al. [20], Hooman et al. [29], Huang et al. [24]),

but this thesis specifically focuses on the use of a language mapping; TGG and graph

transformation rules; and models of simulations and engineering analyses to support the

integration of Modelica representations of CD into SysML information models.

Consequently, a “model” of sorts is provided for integrating CD models and, if the

“model” is sufficiently generalized, other design and analysis models into larger SysML

models.

Whenever an engineer decides to use a model, he/she must ensure that the model

is valid with respect to the conditions under which the model is used. Hence, if

distributed engineers developing complex systems are to use or extend the model

 107

integration approach outlined in this thesis, they must be sure that the method is valid for

their purposes.

To verify and validate methods and models related to engineering design, one tool

that is commonly utilized is the validation square [51]. Due to high level of relevance

between the work presented in this thesis and the field of engineering design, the

validation square is used to evaluate the model integration approach. The validation

square, as seen in Figure 7.1, is decomposed into four quadrants representing the

necessary validation steps.

To validate some construct or piece of work, a user must first ensure that the construct

has theoretical structural validity. This requires the user to ensure that the construct is

logically consistent. When a user can confidently make that assertion, he/she can move

onto ensuring empirical structural validity. In this quadrant, the user must build

confidence in the example problems used to test the construct. If the user is confident in

his choice of example problems, he/she can move onto empirical performance validity.

During this phase of validation, the user has applied the construct to the example

problems and is using the results as supporting evidence. The user must accept that the

(1)
Theoretical
Structural
Validity

(2)
Empirical
Structural
Validity

(3)
Empirical

Performance
Validity

(4)
Theoretical

Performance
Validity

(1)
Theoretical
Structural
Validity

(2)
Empirical
Structural
Validity

(3)
Empirical

Performance
Validity

(4)
Theoretical

Performance
Validity

Figure 7.1: The validation square [51].

 108

example problems provide meaningful results. Upon satisfying this quadrant, the user can

move onto theoretical performance validity. In this quadrant, the user must take a “leap of

faith” by accepting that the construct is useful beyond the applications presented in the

example problems. If this quadrant is satisfied, the construct has been validated and is

generally applicable to the problems it was intended to solve.

To ensure that the integration approach maintains theoretical structural validity,

the approach must be logically consistent and adept at integrating CD models into SysML

to promote consistency, traceability, and automation. The steps used to integrate CD

models into SysML enable the establishment of consistency links amongst the sub-

models existing in the SysML information model. The integration approach also

promotes traceability by enabling the establishment of dependencies and associations

between various types of SysML models (e.g. requirements models) and models of

simulations and engineering analyses which incorporate SysML CD models.

Furthermore, the approach promotes automation by enabling the implementation of graph

transformations for automatically transforming information/knowledge between SysML

and Modelica models. Since the approach promotes consistency, traceability, and

automation and is consistent with the motivation described in Section 1.4, the approach is

deemed to be theoretically structurally valid.

To ensure empirical structural validity, confidence in the example problems (i.e.

the MSD and excavator models) must be established. While the MSD example CD

model is convenient for easily displaying the important aspects of the integration

approach, it is not representative of the complex models encountered in contemporary

systems engineering problems. On the other hand, the CD model of the hydraulically

 109

powered excavator is certainly comparable to the complexity of contemporary systems,

as argued in Section 6.1.2. When combined together, the MSD and excavator example

models demonstrate the applicability of this model integration approach to problems of

varying complexity. Hence, the work presented in this thesis is empirically structurally

valid.

The empirical performance validity of the work presented is ascertained through

the successful illustration of both the MSD and excavator example problems. When the

integration approach is applied to both CD model examples, the result is an

interconnected set of SysML constructs infusing an external CD model into a larger

MBSE problem. These integrated models now promote consistency, traceability, and

transformation automation in a way that better enables engineers to apply MBSE in the

design of complex systems. Hence, empirical performance validity is established for the

approach to integrating CD models into SysML.

To fulfill the last quadrant of the validation square, theoretical performance

validity must be ensured for the integration approach. In other words, the integration

approach must be applicable to problems outside of the MSD and excavator examples.

As mentioned before, both examples span a large range of complexity. One can assume

that the range represents or is close to the complexities encountered in the design of

contemporary systems. Moreover, the approach could be generalized and reapplied to the

integration of other design and analysis models further expanding its application base.

The major problem with the work presented in this thesis, however, is that it has not been

tested on the target audience: systems and disciplinary engineers working in distributed

design teams. One can assume that through improvement of implementation details this

 110

approach to CD model integration could be valuable for the target audience; however,

that value has yet to be confirmed. This can only occur through extensive user testing

and improved implementations of the integration approach. Hence, while the work

appears to be applicable to its intended audience and scenarios, theoretical performance

validity is not completely ensured.

7.2 Limitations

Language Inconsistencies

The most fundamental limitation of this work is that the integration approach is

based on a language mapping that is subject to various inconsistencies between SysML

and Modelica. The first notable inconsistency is that Modelica offers restricted classes

built in to the language for component definition while SysML only relies on the block

and value type for property definition. In the case of mapping Modelica connectors to a

SysML definition construct, the graph transformation in Figure 4.7 provides a suitable

work around; however, many other Modelica restricted class types are ignored in this

thesis. Another inconsistency between the two languages is Modelica’s use of the

variability prefixes like flow and parameter. While these have no direct equivalents in

SysML, SysML properties could be further extended with stereotypes to match the

semantics associated with the various Modelica variability prefixes. This lack of

variability prefixes in SysML also causes an inconsistency between the semantics of a

SysML binding connector and a Modelica connect clause. This inconsistency was

discussed at length and resolved in Section 3.4.3.

 111

Incomplete TGG subgraphs

Another fundamental limitation of this work is the use of incomplete and

simplified metamodels during the construction of the TGG. Both the SysML and

Modelica metamodel graphs omit some elements of and make questionable assumptions

about their respective languages in an attempt to balance accuracy and usability. These

simplifications and assumptions will not support all possible SysML and Modelica

models. In the SysML metamodel, only elements from Chapter 8 and Chapter 10 of the

SysML specification [9] are included in the metamodel. A complete metamodel would

include every modeling element from SysML (e.g. requirements, use cases, activities,

state machines). In the Modelica metamodel, different types of special equations are not

treated as individual modeling elements per the Modelica specification [11] and are

simply lumped together in the equation entity. Additionally, special variability prefixes

(e.g. input, output, constant, final) and restricted classes (e.g. functions, records, models)

are ignored. Moreover, the correspondence metamodel maintains traceability between

actual SysML and Modelica modeling entities but ignores the correspondence between

various SysML and Modelica modeling relations. The majority of the extensions

required to complete the TGG are implementation-oriented (i.e., they can be implemented

using the same concepts described in this thesis); however, others may require conceptual

extensions beyond the method described in this thesis. A complete TGG should relate

every aspect (entity or relation) of one language to another.

Reliance on Modelica 2.2

The work presented in this thesis also has limitations from the implementation

perspective. The first limitation is the dependence upon version 2.2 [11] of the Modelica

 112

language specification. During the course of this work, version 3.0 [52] Modelica was

released and some of its constructs are not supported by the language mapping and graph

transformations. For instance, the concept of a replaceable package (i.e. a package that

serves as a template package and can be later specialized through redefinition) has been

added to Modelica 3.0, but has not been addressed in this thesis.

Focus on Operational Graph Transformation Rules

Another implementation-oriented limitation of this work is its focus on

operational graph transformations for enabling the generation of Modelica CD models

from SysML CD models. While these transformation abilities showcase the potential of

using graph transformations for integrating SysML models with external models, they

don’t actually provide other necessary abilities. These include the ability to synchronize

SysML and Modelica models and the ability to generate SysML models from Modelica

code. Both of these abilities could be achieved through the creation of bidirectional

transformation rules that force a SysML and Modelica to adhere to the TGG described in

Section 4.2, but the development of such rules requires further development and an

increased understanding of graph transformation theory.

Non-executable Models of Engineering Analyses

One last implementation-oriented limitation of this work is the current inability to

execute SysML models of simulations and engineering analysis. Currently, simulations

and model contexts can be handled by an unstable version of the SysMLTransformers

plugin, but SysML models of engineering analyses are not handled. Such an ability is

crucial for increasing the credibility and power of MBSE. Without this ability, the work

 113

presented in Chapter 6 only enables systems engineers to design and document a

simulation or engineering analysis.

Practical Limitations

With respect to the practicality of the integration approach, the work presented in

this thesis is likely to only provide value to geographically distributed businesses

designing complex systems. Until model integration is better supported with easy-to-use

software tools, the added overhead of using advanced model integration in simpler design

projects is likely to detract value during the design process. Another practical limitation

of this work is that it has not been tested by its target audience. Moreover, performing

such tests in conjunction with this work is not currently a feasible prospect. To test the

utility of this work, large shifts would need to occur from document-centric design to

MBSE in the systems engineering community. Only then would a sufficient user base

exist for testing the approach to CD model integration.

7.3 Future Work

The direction of future work should first point towards the development of a more

robust and comprehensive SysML-Modelica mapping via the TGG schema, better

transformation rules, and a stable software tool that can be presented and tested in

industry and academia. As mentioned in Section 4.4, the current implementation of the

graph transformer is proficient at transforming a context-free SysML CD model, but not

fully able to transform CD models wrapped into a model context. To ensure the success

of SysML as a model integration platform, such functionality must be acquired to

 114

increase support for information consistency, model traceability, and automated CD

model transformation and execution.

Furthermore, consideration should be given to the integration of a powerful

engineering analysis tool/language, like ModelCenter [53], for actually executing a

SysML model of an engineering analysis composed of a heterogeneous set of smaller

design and analysis models bound or belonging to abstracted simulations. First of all,

such integration would enable system alternatives described in SysML to be analyzed

automatically in ModelCenter based on multiple system aspects (e.g. structural, CD,

cost). Such an accomplishment could push the boundaries of model integration and

advance the current state of concurrent engineering practices.

To increase credibility in the claim that this approach can be generalized and re-

specialized for integrating other design and analysis models into a SysML model, the

general approach should be applied to engineering modeling languages commonly used

in the development of complex systems. For instance, such languages include Maple

[54], CAD modeling languages, and finite element languages. In a fashion similar to the

approach outlined in this thesis, integration should be achieved through language

mappings, graph transformation schemas, and the formal representation of simulations

and engineering analyses.

7.4 Closing Remarks

As systems design becomes an increasingly complex endeavor, engineers must be

able to manage effectively the large quantities of associated design information and

knowledge. Moreover, as design teams continue to lose the sense of central locality, the

use of document-centric design continues to become an antiquated and error-prone

 115

approach to solving systems engineering problems. In contrast with document-centric

design, MBSE encourages designers to accept and adapt to the changes permeating the

field of systems engineering.

To improve support for MBSE, this thesis builds upon the notion that SysML is a

platform for model integration by exploring the synergy between SysML and Modelica.

By creating a language mapping between SysML and Modelica, an approach is provided

for representing system CD models alongside other SysML models used to capture a

systems engineering problem. Graph transformations are then utilized for creating

execution links between SysML and Modelica to support model generation and

synchronization. Finally, an approach is outlined for relating a CD model to other

SysML models via the specification of simulations and engineering analyses.

Hopefully, the work in this thesis not only enables the integration of CD models,

but also encourages and provides guidance for other researchers attempting to improve

support for model integration and MBSE in general. To succeed in the competitive

global marketplace, designers must be adaptable and forward-thinking. Clearly, the

continued development and adoption of MBSE is a useful tactic for adapting to the

changing times; however, MBSE is still a relatively young approach to systems design

and requires continuous nurturing from industrial and academic champions. The work

presented in this thesis is just one more stride towards realizing the wide-spread use of

model integration and MBSE.

 116

REFERENCES

[1] Sage, A. P., and Armstrong Jr., J. E., 2000, Introduction to Systems Engineering,
John Wiley & Sons, Inc., New York, NY.

[2] Pahl, G., Beitz, W., Feldhunen, J., and Grote, K.H., 2007, Engineering Design: A
Systematic Approach, Springer, London, UK.

[3] Forsberg, K., and Mooz, H., 1992, "The Relationship of Systems Engineering to
the Project Cycle," Engineering Management Journal, 4(3), pp. 36-43.

[4] Oliver, D., Kelliher, T. P., and Keegan, Jr., J. G, 1997, Engineering Complex
Systems with Models and Objects, McGraw-Hill, New York.

[5] Estefan, J., 2007, "Survey of Model-Based Systems Engineering (MBSE)
Methodologies," Jet Propulsion Laboratory, California Institute of Technology,
Pasedena, CA

[6] Gero, J. S., 1990, "Design Prototypes: A Knowledge Representation Schema for
Design," AI Magazine, 11(4), pp. 26-36.

[7] Mylopoulos, J., 1998, "Information Modeling in the Time of the Revolution,"
Information Systems, 23(3-4).

[8] ISO/IEC, 2005, "Unified Modeling Language Specification,"
http://www.omg.org/cgi-bin/apps/doc?formal/05-04-01.pdf, April 2008.

[9] Object Management Group, 2007, "OMG Systems Modeling Language
Specification," http://www.omg.org/cgi-bin/doc?ptc/07-09-01, April 2008.

[10] Booch, G., Jacobson, I., and Rumbaugh, J., 2005, The Unified Modeling
Language User Guide, Addison-Wesley Professional.

[11] Modelica Association, 2005, "Modelica Language Specification Version 2.2,"
http://www.modelica.org/documents/ModelicaSpec22.pdf, April 2008.

[12] The Mathworks, 2008, Simulink, http://www.mathworks.com/products/simulink/,
April 2008.

[13] Christen, E., and Bakalar, K., 1999, "VHDL-AMS - a Hardware Description
Language for Analog and Mixed-Signal Applications," IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, 40(10), pp. 1263-
1272.

[14] Mitchell, E. E. L., and Gauthier, J. S., 1976, "Advanced Continuous Simulation
Language (ACSL)," SIMULATION, 26(3), pp. 72-78.

 117

[15] Schürr, A., 1994, "Specification of Graph Translators with Triple Graph
Grammars," in WG'94 Workshop on Graph-Theoretic Concepts in Computer
Science.

[16] 2006, "The VIATRA 2 Model Transformation Framework: User's Guide,"
http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-
home/subprojects/VIATRA2/doc/viatratut_October2006.pdf, April 2008.

[17] Varró, D., 2003, VIATRA: Visual Automated Model Transformation, Thesis,
Department of Measurement and Information Systems, University of Technology
and Economics, Budapest.

[18] The Eclipse Foundation, 2008, Eclipse, http://www.eclipse.org/, April 2008.

[19] IBM, 2007, Rational Systems Developer (RSD),
http://www.ibm.com/developerworks/rational/products/rsd/, April 2008.

[20] Peak, R. S., Burkhart, R. M., Friedenthal, S. A., Wilson, M. W., Bajaj, M., and
Kim, I., 2007, "Simulation-Based Design Using SysML—Part 1: A Parametrics
Primer," INCOSE International Symposium, San Diego, CA.

[21] Peak, R. S., Burkhart, R. M., Friedenthal, S. A., Wilson, M. W., Bajaj, M., and
Kim, I., 2007, "Simulation-Based Design Using SysML—Part 2: Celebrating
Diversity by Example," INCOSE International Symposium, San Diego, CA.

[22] Peak, R. S., and Wilson, M. W., 2001, "Enhancing Engineering Design and
Analysis Interoperability Part 2: A High Diversity Example," First MIT
Conference Computational Fluid and Structural Mechanics (CFSM), Cambridge,
Massachusetts, USA.

[23] Peak, R., Friedenthal, S., Moore, A., Burkhart, R., Waterbury, S., Bajaj, M., and
Kim, I., 2005, "Experiences Using SysML Parametrics to Represent Constrained
Object-Based Analysis Templates," 7th NASA-ESA Workshop on Product Data
Exchange (PDE), Atlanta, GA, USA.

[24] Huang, E., Ramamurthy, R., and McGinnis, L., 2007, "System and Simulation
Modeling Using SysML," in The 2007 Winter Simulation Conference,
Washington, D. C.

[25] Tecnomatix, 2003, eM-Plant, http://www.emplant.com, April 2008.

[26] W3C, 2007, "XML Path Language (XPath) Version 1.0,"
http://www.w3.org/TR/xpath, April 2008.

[27] Jobe, J. M., Johnson, T. A., and Paredis, C. J. J., 2008, "Multi-Aspect Component
Models: A Framework for Model Reuse in SysML," in ASME 2008 International
Design Engineering Technical Conferences & Computers and Information in
Engineering Conference (IDETC/CIE 2008), Brooklyn, NY.

 118

[28] Vanderperren, Y., and Dehaene, W., 2006, "From UML/SysML to
Matlab/Simulink: Current State and Future Perspectives," in Design, Automation
and Test in Europe (DATE) Conference, Munich, Germany.

[29] Hooman, J., Mulyar, N., and Posta, L., 2004, "Coupling Simulink and UML
Models," in Symposium FORMS/FORMATS.

[30] Telelogic, 2008, Rhapsody,
http://modeling.telelogic.com/products/rhapsody/index.cfm, April 2008.

[31] Reichmann, C., Gebauer, D., and Müller-Glaser, K. D., 2004, "Model Level
Coupling of Hetergeneous Embedded Systems," in 2nd RTAS Workshop on
Model-Driven Embedded Systems.

[32] Paynter, H., 1961, Analysis and Design of Engineering Systems, MIT Press,
Cambridge, MA.

[33] Turki, S., Soriano, T., 2005, "A SysML Extension for Bond Graphs Support," in
5th International Conference on Technology and Automation, Thessaloniki,
Greece.

[34] Pop, A., and Akhvlediani, D., and Fritzson, P., 2007, "Towards Unified Systems
Modeling with the ModelicaML UML Profile," in International Workshop on
Equation-Based Object-Oriented Languages and Tools, Linköping University
Electronic Press, Berlin, Germany.

[35] Nytsch-Geusen, C., 2007, "The Use of UML within the Modelling Process of
Modelica-Models," in International Workshop on Equation-Based Object-
Oriented Languages and Tools, Linköping University Electronic Press, Berlin,
Germany.

[36] Czarnecki, K., Helsen, S., 2006, "Feature-Based Survey of Model Transformation
Approaches," IBM Systems Journal, 45(3), pp. 621-645.

[37] Object Management Group, 2007, "Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification," http://www.omg.org/docs/ptc/07-07-
07.pdf, April 2008.

[38] Greenyer, J., Kindler, E., 2007, "Reconciling TGGs with QVT," in Model Driven
Engineering Languages and Systems, MoDELS 2007, Springer, Berlin /
Heidelberg.

[39] Königs, A., 2005, "Model Transformation with Triple Graph Grammars," in
Model Transformations in Practice, Satellite Workshop of MODELS 2005
Montego Bay, Jamaica.

[40] Keeney, R. L., 1994, "Creativity in Decision Making with Value-Focused
Thinking," Sloan Management Review, 35(4), pp. 33-41.

 119

[41] Fritzson, P., 2004, Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1, IEEE Press, Piscataway, NJ.

[42] University of Paderborn Software Engineering Group, 2007, Fujaba Tool Suite 5,
http://wwwcs.uni-paderborn.de/cs/fujaba/, April 2008.

[43] Real-Time Systems Lab, 2007, Moflon, http://www.moflon.org/index.html, April
2008.

[44] Johnson, T. A., Paredis, C. J. J., and Kerzhner, A., 2008, "The SysML
Transformers Plugin for Embedded Plus: A User's Guide," Georgia Institute of
Technology, Atlanta, GA, http://srl.gatech.edu/Members/tjohnson/
SysMLTransformers.zip, April 2008.

[45] EmbeddedPlus Engineering, 2007, EmbeddedPlus SysML Toolkit,
http://www.embeddedplus.com/SysML.php, April 2008.

[46] Fritzson, P., et al., 2007, "OpenModelica System Documentation,"
http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/releases/1.4.3/doc/Open
ModelicaSystem.pdf, April 2008.

[47] Dynasim, 2008, Dymola 7.0, http://www.dynasim.se/index.htm, April 2008.

[48] Nagel, L. W., and Pederson, D. O., 1973, "Spice (Simulation Program with
Integrated Circuit Emphasis," University of California, Berkeley, CA

[49] Keeney, R. L., and Raiffa, H., 1976, Decisions with Multiple Objectives:
Preferences and Value Tradeoffs, Jon Wiley and Sons, New York.

[50] Paredis, C. J. J., 2008, FluidPower Library for Modelica.

[51] Pederson, K., Emblemsvåg, J., Bailey, R., Allen, J. K., and Mistree, F., 2000,
"Validating Design Methods & Research: The Validation Square," in ASME
Design Engineering Technical Conferences, AMSE, Baltimore, MD.

[52] Modelica Association, 2008, "Modelica Language Specification Version 3.0,"
http://www.modelica.org/documents/ModelicaSpec30.pdf, April 2008.

[53] Phoenix Integration, 2008, ModelCenter v7.0, http://www.phoenix-
int.com/products/modelcenter.php, April 2008.

[54] Maplesoft, 2008, Maple 11, http://www.maplesoft.com/, April 2008.

