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Abstract 

Background: The nitration of tyrosine residues in proteins is associated with nitrosative 

stress, resulting in the formation of 3-nitrotyrosine (3-NT). 3-NT levels in biological samples 

have been associated with numerous physiological and pathological conditions. For this 

reason, several attempts have been made in order to develop methods that accurately 

quantify 3-NT in biological samples. Regarding chromatographic methods, they seem to be 

very accurate, showing very good sensibility and specificity. However, accurate 

quantification of this molecule, which is present at very low concentrations both at 

physiological and pathological states, is always a complex task and a target of intense 

research.   

Objectives: We aimed to develop a simple, rapid, low-cost and sensitive 3-NT quantification 

method for use in medical laboratories as an additional tool for diagnosis and/or treatment 

monitoring of a wide range of pathologies. We also aimed to evaluate the performance of 

the HPLC-based method developed here in a wide range of biological matrices. 

Material and methods: All experiments were performed on a Hitachi LaChrom Elite® 

HPLC system and separation was carried out using a Lichrocart® 250-4 Lichrospher 100 

RP-18 (5µm) column. The method was further validated according to ICH guidelines. The 

biological matrices tested were serum, whole blood, urine, B16 F-10 melanoma cell line, 

growth medium conditioned with the same cell line, bacterial and yeast suspensions. 

Results: From all the protocols tested, the best results were obtained using 0.5% 

CH3COOH:MeOH:H2O (15:15:70) as the mobile phase, with detection at wavelengths 215, 

276 and 356 nm, at 25ºC, and using a flow rate of 1 mL/min. By using this protocol, it was 

possible to obtain a linear calibration curve (correlation coefficient = 1), limits of detection 

and quantification in the order of ng/mL, and a short analysis time (<15 minutes per sample). 

Additionally, the developed protocol allowed the successful detection and quantification of 

3-NT in all biological matrices tested, with detection at 356 nm.   

Conclusion: The method described in this study, which was successfully developed and 

validated for 3-NT quantification, is simple, cheap and fast, rendering it suitable for analysis 

in a wide range of biological matrices. 

Keywords: 3-nitrotyrosine, nitrosative stress, HPLC-DAD, quantification methods
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Resumo 

Introdução: A nitração de resíduos de tirosina em proteínas está associada ao stress 

nitrosativo, resultando na formação de 3-nitrotirosina (3-NT). Os níveis de 3-NT em 

amostras biológica têm sido associadas com numerosas condições fisiológicas e patológicas. 

Por esta razão, várias tentativas têm sido levadas a cabo no sentido de desenvolver métodos 

que quantifiquem 3-NT com precisão em amostras biológicas. Relativamente aos métodos 

cromatográficos, exibem, em geral, boa precisão, sensibilidade e especificidade. Contudo, a 

quantificação exata desta molécula, que está presente em concentrações muito baixas, tanto 

em condições fisiológicas como em patológicas, continua a ser uma tarefa complexa e alvo 

de investigação. 

Objetivos: Pretendeu-se desenvolver um método de quantificação de 3-NT rápido, 

económico, simples e sensível, para uso em laboratórios médicos como ferramenta adicional 

de diagnóstico e/ou monitorização do tratamento de diversas patologias. Pretendeu-se 

igualmente avaliar o desempenho do método desenvolvido numa variedade de matrizes 

biológicas.  

Material e métodos: As experiências foram realizadas no sistema HPLC Hitachi LaChrom 

Elite®, com separação na coluna RP-18 Lichrospher LiChroCART® 250-4 100 (5 um). O 

método foi validado de acordo com as diretrizes da ICH. As matrizes biológicas testadas 

foram soro, sangue total, urina, linha celular de melanoma B16 F-10, meio de crescimento 

condicionado com a mesma linha de celular, suspensões bacterianas e de levedura. 

Resultado: De todos os protocolos testados, os melhores resultados foram obtidos utilizando 

0.5% CH3COOH:MeOH (15:15:70) como fase móvel, com deteção a 215, 276 e 356 nm, a 

25ºC, e uma taxa defluxo de 1 mL/min. Utilizando este protocolo, foi possível obter curva 

de calibração linear (coeficiente de correlação = 1), limites de deteção equantificação na 

ordem dos ng/mL, e um tempo de análise reduido (<15 minutos por amostra). 

Adicionalmente, o protocolo desenvolvido permitiu a deteção e quantificação de 3.NT em 

todas as matrizes biológicas testadas, com deteção a 356 nm. 

Conclusão: O método descrito, que foi desenvolvido e validado com sucesso para 

quantificação de 3-NT, é simples, barato e rápido, tornando-o apropriado para análise de 

uma grande diversidade de matrizes biológicas. 

Palavras-chave: 3-nitrotirosina, stress nitrosativo, HPLC-DAD, métodos de quantificação 
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1.1. Biological markers of oxidative stress 

Oxidative stress is defined as an imbalance of antioxidants and pro-oxidants in favour of the 

latter, potentially leading to damage (de M Bandeira et al., 2013; Jones, 2006). On the other 

hand, Jones (2006) defines oxidative stress as a disruption of redox signalling and/or control 

of molecular damage. The reactive oxygen species (ROS) and reactive-nitrogen species 

(RNS) have function in redox signalling and are produced as by-products of normal 

metabolic process in all aerobic organisms, at very low concentrations in cells (Jones, 2006; 

Ogino & Wang, 2007). Increased oxidative/nitrosative stress is characterized by inadequate 

cellular antioxidant defences to efficiently inactivate the overproduced ROS and RNS. A 

major consequence of oxidative/nitrosative stress is the damage of nucleic acid bases, 

proteins, lipids (including phospholipids) and carbohydrates (Dalle-Donne, Rossi, Colombo, 

Giustarini, & Milzani, 2006; Ogino & Wang, 2007). This damage can compromise cell 

health and viability, as well as induce a variety of cellular responses like cell death by 

necrosis or apoptosis (Dalle-Donne et al., 2006).  

The molecules modified by interactions with ROS (including RNS) in the 

microenvironment, and those changed in response to increased redox stress are considered 

biomarkers of oxidative stress (Ho et al., 2013). Figure 1 represents a schematization of 

biomarkers of oxidative stress.  

A very promising approach for the assessment of oxidative stress is the detection of nitrated 

tyrosine (Tyr) residues in proteins (Safinowski et al., 2009). 

1.2. Nitrotyrosine in physiological conditions  

Tyr (4-hydroxyphenylalanine) is a non-essential amino acid and an element of the aromatic 

amino acids group. Most proteins found in nature contain Tyr residues in their composition, 

with an average abundance of about 3–4 mol % (Ahsan, 2013; Radi, 2013b). Tyr is 

moderately hydrophilic, which is explained by its hydrophobic aromatic benzene ring 

carrying a hydroxyl group (Bartesaghi et al., 2007; Ryberg & Caidahl, 2007). As a result, 

Tyr is frequently surface-exposed in proteins allowing further modification, namely 

nitration. The nitration of Tyr residues in proteins is associated with nitrosative stress, 

resulting in the formation of 3-nitrotyrosine (3-NT) or other Tyr-nitrated proteins residues 

(Ahsan, 2013; Tsikas, 2012).  



Biomarkers of Nitrosative Stress: 

Development and validation of a new analytical method for 3-Nitrotyrosine quantification 

   3 

  

 

When RNS reacts with L-tyrosine and protein-associated Tyr, free 3-nitro-L-tyrosine and 

protein-associated 3-nitro-L-tyrosine are formed (Figure 2) (Tsikas & Caidahl, 2005). 3-NT 

[(2-amino-3-(4-hydroxy-3-nitrophenyl) propanoic acid)] is the result of a post-translational 

modification in proteins carried by RNS, such as nitric oxide (NO), derived oxidants (e.g., 

peroxynitrite (ONOO-) and peroxynitrous acid (ONOOH)) and nitrogen dioxide radicals 

(•NO2). It is formed after the substitution of a hydrogen by a nitro group (NO2) in the ortho 

position of the phenolic ring of the Tyr residues (Ahsan, 2013; Radi, 2013b; Ryberg & 

Caidahl, 2007; Tsikas, 2012). 

The protein tyrosine nitration (PTN) is a stable post-translational modification process and 

does not happen randomly. The abundance of protein or Tyr residues cannot predict whether 

Figure 1. Formation pathways of selected biomarkers of oxidative stress. 

Oxidized Low-Density Lipoprotein (Ox-LDL). Protein oxidation markers: protein nitration (3-nitrotyrosine). 

Oxidative DNA damage biomarkers: 8-hydroxy-2′-deoxyguanosine (8-OHdG). Antioxidant enzymes and 

molecules: superoxide dismutase, catalase, glutathione peroxidase, oxidized glutathione, total antioxidant 

capacity. GS, glutathione; reduced glutathione (GSH); oxidized glutathione (GSSG); PUFA, polyunsaturated 

fatty acids. Nicotinamide adenine dinucleotide phosphate (NADPH), nitric oxide synthase (NOS), 

mieloperoxidase (MPO). Adapetd from (Ho, Karimi Galougahi, Liu, Bhindi, & Figtree, 2013) and (Shah, 

Mahajan, Sah, Nath, & Paudyal, 2014). 

https://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CDQQFjAB&url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3315351%2F&ei=pceIVIn4HIXgasa7gugL&usg=AFQjCNE492-0ZQsXFNhPMoTuuylZuPd_lw&sig2=BOvQP1PaYLc9geYyGY4HSQ&bvm=bv.81456516,d.d2s
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they will be the target of PTN. Furthermore, not all Tyr residues in a protein are available 

for nitration, which may depend on their accessibility to the solvent (Ahsan, 2013; Seeley, 

Fertig, Dufresne, Pinho, & Stevens, 2014). For instance, although the human serum albumin 

(HSA), a protein most abundantly found in plasma, contains 18 Tyr residues, an in vitro 

study showed that only two of its Tyr residues are predominantly susceptible to nitration 

(Jiao, Mandapati, Skipper, Tannenbaum, & Wishnok, 2001; Tsikas, 2012). 

The wide range of chemical and structural modifications of proteins, such as modifications 

affecting signal transduction pathways and cellular processes, are responsible for high levels 

of RNS and antioxidant enzymatic systems (Larsen, Bache, Gramsbergen, & Roepstorff, 

2011; Yeo, Lee, Lee, & Kim, 2008).  

 

 

 

 

Figure 2. Nitration of L-tyrosine to 3-nitro-L-tyrosine (Adapted fromTsikas and Caidahl (2005). 
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1.3. Metabolism of nitric oxide and its role in 3-nitrotyrosine biosynthesis 

The major pathway for NO metabolism is the stepwise oxidation to nitrite and nitrate (Bryan 

& Grisham, 2007). In biological fluids or buffers, NO systems are almost completely 

oxidised to nitrite (NO2
-), a biologically inert metabolite of NO oxidation (Shiva, 2013).  

The oxidation of NO by molecular oxygen (O2), physically dissolved in biological systems, 

originates NO2 (nitrogen dioxide), N2O3 (dinitrogen trioxide) and NO2
- (reactions 1, 2 and 

3). N2O3 is characterised as a potent nitrosating agent, since it gives rise to the formation of 

the nitrosonium ion (NO+). On the other hand, NO and NO2
- are rapidly oxidised to nitrate 

(NO3
-) in blood (Bryan & Grisham, 2007; Tsikas, 2012).  

 

2 NO + O2 → 2 NO2 (1)  

2 NO + 2 NO2 → 2 N2O3 (2)  

2 N2O3 + 2 H2O→ 4 NO2
– + 4 H+ (3)  

  

In erythrocytes, NO directly and rapidly reacts with O2 bound to haemoglobin (i.e. 

oxyhemoglobin (Hb[Fe2+]O2 )), to form the chemically quite inert anion NO3
- (reaction 4). 

 

Hb[Fe2+]O2 + NO → Hb[Fe3+] + NO3
- (4)  

 

Other proposed mechanism for NO3
- formation is via oxidation of NO2

- (derived from NO 

autoxidation – reaction 3) by certain oxyhemoproteins (Hb[Fe2+]O2), such as oxyhemoglobin 

or oxymyoglobin (reactions 5 and 6). 

  

2 Hb[Fe2+]O2 + O2 + 3 NO2
- + 2 H+ → Hb[Fe3+]+ 3 NO3

- + H2O (5)  

4 Hb[Fe2+]O2 + 4 NO2
– + 4 H+ → 4 Hb[Fe3+]O2 + 4 NO3

– + O2 + 2 H2O (6)  

 

Concerning free radical superoxide (O2
–), this may promptly interact with NO to produce 

the peroxynitrite anion (ONOO–) (reaction 7) (Radi, 2004; Surmeli, Litterman, Miller, & 

Groves, 2010).  

 

NO + O2
-→ ONOO- (7)  
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Peroxynitrite is the extremely reactive conjugate base of peroxynitrous acid (ONOOH) 

(reaction 8) (Bryan & Grisham, 2007; Tsikas, 2012).  

 

4 ONOO-+ 4 H+ ↔ 4 ONOOH → 2 NO3
- + 2 NO2

- + O2 + 4 H+ (8)  

 

In biological systems, ONOO-/ONOOH system is a very strong oxidant and a potent 

nitrating agent, thus it has been implicated as a culprit in many diseases (Goldstein & 

Merényi, 2008). Peroxynitrite promotes nitration and hydroxylation in different bioorganic 

molecules, including proteins, lipids, thiols, sulfhydryl groups, DNA bases, and 

preferentially nitrates Tyr residues of protein or non-protein origins (Bircan, Balabanli, 

Turkozkan, & Ozan, 2011; Radi, 2013a). Peroxynitrite reacts with CO2 to yield a 

nitrosoperoxycarbonate anion (ONOOCO2
−) that undergoes a fast homolysis to NO2 and 

carbonate radicals (CO3
−) (reaction 9) (Kikugawa, Hiramoto, & Ohkawa, 2004; Radi, 2013a; 

Yeo et al., 2008). 

 

ONOO–+ CO2 → ONOOCO2
–→ •NO2 + CO3

• – (9)  

 

The in vivo production of ONOO− leads to the nitration of Tyr residues in proteins, forming 

3-NT, although it does not directly react with Tyr. Instead, it forms secondary radicals, such 

as CO3
•–, •NO2 and oxo-metal complexes, which are indeed responsible for protein Tyr 

oxidation and nitration. The mechanism of Tyr nitration in biological systems is a two-step 

process (reactions 10 and 11) (Radi, 2013a). 

 

TyrH + CO3
• – →Tyr• + HCO3

− (10)  

Tyr• + •NO2  → Tyr-NO2 (11)  

 

Moreover, 3-NT may be generated through multiple pathways (Figure 3). Tyr can be nitrated 

by peroxidase (or heme/hemoprotein) through the in vivo hydrogen peroxide-dependent 

oxidation of nitrite to form NO2 (reactions 12-14) (Bryan & Grisham, 2007; Sun et al., 2007; 

Yeo et al., 2008).  

 

H2O2 + peroxidase (heme) → oxidant (porphyrin radical) (12)  

Oxidant + NO2- → •NO2 (13)  
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2 •NO2  + Try → 3-NT (14)  

 

  

 

1.4. Association between 3-nitrotyrosine and disease 

Several physiological and pathological conditions have been associated with increased 

nitration of proteins (Seeley et al., 2014; Surmeli et al., 2010). Among the pathological 

conditions, there is a wide range of cardiovascular diseases, such as myocardial 

inflammation, heart failure and arteriosclerosis (Daiber & Münzel, 2012; de M Bandeira et 

al., 2013; Kagota et al., 2010; Nuriel, Deeb, Hajjar, & Gross, 2008; Yakovlev & Mikkelsen, 

2010). For instance, Shishehbor et al. (2003) and Poufarzam et al. (2013) demonstrated that 

3-NT plasma levels are elevated in coronary artery disease (CAD) patients. Regarding 

atherosclerosis, it was found that atherosclerotic arteries have higher 3-NT levels than non-

atherosclerotic blood vessels (Sucu et al., 2003). Furthermore, there is also evidence of an 

accumulation of 3-NT during atherogenesis (Upmacis, 2008). 

Figure 3. Multiple pathways for the formation of 3-nitrotyrosine (Adapted from (Bryan & 

Grisham, 2007)). 
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In addition, diseases associated with immunological reactions appear to be connected at a 

very high degree with the increased formation of Tyr-nitrated proteins, such as asthma 

(Voraphani, Gladwin, Trudeau, & Wenzel, 2013), systemic sclerosis (Shimizu et al., 2007), 

renal complications (Shah et al., 2014), inflammatory bowel disease (Kruidenier, Kuiper, 

Lamers, & Verspaget, 2003), septic shock (Teng et al., 2011), rheumatoid arthritis and joint 

injury (Misko et al., 2013; Winyard et al., 2011). In relation to asthma, 3-NT expression was 

found to be increased in several asthmatic epithelial cells and essentially in asthmatic 

children (Baraldi et al., 2006; Voraphani et al., 2013). Concerning systemic sclerosis, 

Shimizu et al. (2007) suggested that serum 3-NT levels are significantly increased in 

systemic sclerosis patients compared to healthy controls. Regarding inflammatory bowel 

diseases, such as ulcerative colitis, the 3-NT expression is substantially increased in the 

inflamed colonic mucosa (Kruidenier et al., 2003). Furthermore, some neurological diseases 

and psychiatric disorders are also associated with an increased level of nitrated proteins. For 

example, Parakh et al. (2013) reported that nitrated proteins and high levels of 3-NT have 

been detected in cases of amyotrophic lateral sclerosis. Conversely, Mendonça et al. (2011) 

demonstrated that 3-NT was expressed in both amyotrophic lateral sclerosis and control 

samples, with no significant difference between them. Moreover, Dietrich-Muszalska et al. 

(2009) considered that the amount of 3-NT in plasma proteins may be important indicators 

of in vivo protein damage in schizophrenia. Besides, high levels of 3-NT have also been 

associated with other pathological conditions, such as Alzheimer’s disease (Mangialasche et 

al., 2009), Parkinson’s disease (Blanchard-Fillion et al., 2006), autism (Rose et al., 2012) 

and myalgic encephalomyelitis/ chronic fatigue syndrome (Morris & Maes, 2014).  

Other diseases are associated with increased protein nitration. Shu et al. (2014) demonstrated 

that 3-NT levels in plasma samples from patients with classical Fabry disease were about 

six-fold higher compared with age- and gender-matched controls. The 3-NT levels are also 

significantly increased in diabetic patients (de M Bandeira et al., 2013; Jialal, Devaraj, 

Adams-Huet, Chen, & Kaur, 2012), especially in patients with diabetic nephropathy 

(Thuraisingham, Nott, Dodd, & Yaqoob, 2000) or diabetic patients with microvascular 

complications (Devaraj et al., 2007). Regarding Chagas disease, Dhiman et al. (2008) 

considered that 3-NT-modified proteins is an important phase in the pathophysiology of such 

disease, and might be useful biomarkers of disease as well. Moreover, Shah et al. (2014) 

demonstrated that 3-NT levels were increased in plasma and serum of patients with systemic 

lupus erythematosus.  
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1.5. Quantification of 3-nitrotyrosine in biological samples 

Since 3-NT was suggested as a biomarker of nitrosative stress, a substantial effort has been 

made to develop analytical methods that can be applied to biological samples (Guvenç, 

Aksoy, Kursad, Atmaca, & Yavuz, 2014). Accurate quantification of substances present in 

biological samples at very low concentrations is, indeed, a complex task, and the particular 

case of 3-NT requires special concerns (Tsikas & Caidahl, 2005).  

3-NT has been detected in several biological tissues and fluids including plasma, serum, 

urine, cerebrospinal fluid, synovial fluid, tissue samples and other biological samples 

(Radabaugh, Nemirovskiy, Misko, Aggarwal, & Mathews, 2008). Recently, Mergola et al. 

(2013) developed for the first time the synthesis of a highly selective molecularly imprinted 

polymer (MIP) used as solid-phase extraction (SPE) sorbent for pre-concentration of 3-NT 

and the selective clean-up from biological sample. The results obtained suggest that this 

polymer can be used as an active site in a sensor so that the analyte can be directly identified 

in the urine of patients, where it is normally present at very low concentrations.  

Regarding quantification of 3-NT, the first approaches used different immunological 

methods. In fact, a large part of studies on quantification of 3-NT in biological samples has 

been performed using antibody-based methods, namely immunohistochemistry and western 

blot (Ryberg & Caidahl, 2007).  

1.5.1. Immunochemical methods 

1.5.1.1. Enzyme-linked immunosorbent assay  

ELISA (enzyme-linked immunosorbent assay) is based on the basic immunology concept of 

the binding properties of an antibody to its specific antigen. From a general point of view, 

this method employs enzyme-labelled antigens and antibodies to detect a wide variety of 

compounds. The antigen-antibody complex is further bound by a secondary enzyme-coupled 

antibody, followed by the addition of a chromogenic substrate which yields a visible colour 

change or fluorescence, allowing the quantification of the compound (Gan & Patel, 2013). 

One of the main advantages of ELISA technology is that it allows the simultaneous 

determination of standards and samples. Moreover, it does not require complex sample 

preparation steps (Gan & Patel, 2013). 

Regarding 3-NT quantification, there is a wide variety of ELISA-based methods for this 

purpose, namely indirect, competitive, sandwich-ELISA and ELISA microarrays (Jin & 



Biomarkers of Nitrosative Stress: 

Development and validation of a new analytical method for 3-Nitrotyrosine quantification 

   10 

  

Zangar, 2012; Weber et al., 2012). Table I lists some ELISA assays for the analysis of 3-NT 

in different biological specimens.  

 

 

One of the first ELISA methods for the analysis of nitrated proteins in biological fluids was 

based upon a competitive model (J. Khan et al., 1998). More recently, Safinowski et al. 

Table I. ELISA assays for the analysis of 3-NT in different biological specimens 

Compound  Biological specimen ELISA Type Reference 

3-NT Bronchoalveolar lavage Sandwich ELISA 
(Fitzpatrick, Brown, 

Holguin, & Teague, 2009) 

3-NT-containing 

proteins 
Plasma Competitive ELISA 

(Dietrich-Muszalska et al., 

2012) 

3-NT-modifed 

proteins 
Plasma Competitive ELISA (J. Khan et al., 1998) 

3-NT Plasma and serum 
Competitive luminescence 

assay (CLIA) 
(Safinowski et al., 2009) 

3-NT Plasma Solid phase ELISA (Safinowski et al., 2009) 

3-NT Plasma and serum Sandwich ELISA (Sun et al., 2007) 

3-NT Plasma and sputum ELISA microarray (Jin & Zangar, 2012) 

3-NT Plasma Sandwich ELISA (Jialal et al., 2012) 

3-NT Serum Sandwich ELISA (Shimizu et al., 2007) 

Protein bound  

3-NT 
Serum Sandwich ELISA 

(F. Khan, Siddiqui, & Ali, 

2006) 

Protein bound  

3-NT 
Plasma and serum Indirect ELISA (Weber et al., 2012) 
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(2009) performed a comparison of the performance of different commercially available 

immunoassays for 3-NT analysis, and concluded that all of them did not provide reliable 

results. They also concluded that the sandwich-based ELISA assay exhibited the worst 

performance, probably due to the low concentration levels of 3-NT in almost all investigated 

samples. ELISA requires at least two 3-NT residues for the capture and detection antibody 

and, in this sense, the sandwich ELISA measures only protein associated-3-NT (Safinowski 

et al., 2009; Sun et al., 2007; Weber et al., 2012). Actually, the poor performances exhibited 

by different ELISA can be due to different reasons: (i) the antibodies may reveal some 

nonspecific binding; (ii) 3-NT may not be totally accessible to the antibody in some protein 

sites; and (iii) monoclonal and polyclonal antibodies used by these methods may exhibit 

cross-reactivity with other compounds present in biological samples (Sodum, Akerkar, & 

Fiala, 2000).  

Regarding microarray-ELISA assays, one of their main advantages is that they use various 

physically separated capture antibodies (in isolated spots), allowing an efficient way for 

measuring low levels of the analyte (Jin & Zangar, 2012). 

1.5.2. Chromatographic methods 

Chromatography is a powerful analytical technique, and is widely available in different 

laboratory settings nowadays. Chromatography is a technique for separation of complex 

mixtures and was described at the beginning of the twentieth century by Russian–Italian 

botanist M. S. Tswett (Wixom & Gehrke, 2011). This technique is generally composed by 

two primary components: mobile phase and stationary phase (Naushad & Khan, 2014). 

Table II shows chromatography classifications according to the mobile and stationary phases 

used.  

Table II. Chromatographic techniques used based on samples characteristics 

Chromatographic 

technique 

Mobile 

phase 

Stationary 

phase 
Sample 

Gas chromatography Gas Solid/liquid 
Gaseous sample (ordinary temperatures) 

Samples that vaporise (when heated) 

Liquid 

chromatography 
Liquid Solid/liquid 

Liquid samples 

Solid samples (solvent-soluble) 
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1.5.2.1. Liquid chromatography methods using ultraviolet, fluorescence and 

electrochemical detection  

Liquid chromatography (LC) is one of the most extensively used methods for the 

determination of 3-NT (Table III). Several different detectors have been employed, such as 

ultra-violet (UV), electrochemical (ECD), diode-array (DAD) and mass spectrometry (MS) 

(Tsikas, 2012).    

HPLC (High Performance Liquid Chromatography) is a chromatographic technique that can 

separate a mixture of compounds, and is used in biochemistry and analytical chemistry to 

separate, identify, quantify and purify the active compounds of a mixture (Naushad & Khan, 

2014). The principle behind this technique relies on the injection of the sample into a column 

that holds packing material (stationary phase), with further pumping of the mobile phase(s) 

through the column, at high pressure, and the detection through the retention times exhibited 

by the molecules. The retention time is based on differences in the migration rate through 

the column arising from different partitions of the sample in the stationary phase, the 

molecules being analysed, and the solvent(s) used. Commonly used solvents contain 

miscible combinations of water and organic liquids, the most common being methanol and 

acetonitrile. The gradient elution is responsible for separating the analyte mixture as a 

function of the affinity of the analyte for the mobile phase. The choice of solvents, additives 

and gradient can be influenced by the nature of both the stationary phase and the analyte 

(Meyer, 2013).   

HPLC is the standard technique for analysing amino acids, being the technique used by most 

laboratories (Ryberg & Caidahl, 2007). One of the first chromatographic methods for 

quantifying 3-NT uses isocratic reversed phase HPLC and UV absorbance detection at 274 

nm, as first reported by Kaur and Halliwell (Kaur & Halliwell, 1994). This HPLC-based 

method uses column with C-18, eluent (500 mM KH2PO4-F3PO4 with 10% methanol (v/v)), 

an acidic mobile phase (pH 3.01), and with a detection limit of 0.2 µM (Kaur & Halliwell, 

1994). Variants of this method have been used in several studies to determine 3-NT. Hitomi 

et al. (2007) performed an optimization of 3-NT separation process, showing that it depends 

on the mobile phase used. Moreover, the retention time depends on two factors, (i) the pH 

of the mobile phase, and (ii) the concentration of acetonitrile. The retention time was 

prolonged by a powerfully acidic mobile phase. 
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HPLC-UV detector. The HPLC-UV allows the detection of 3-NT as free amino acid, and 

associated with peptides and proteins as well (Yang, Zhang, & Pöschl, 2010) . Tyr and 3-

NT have a maximum absorbance at 280 nm in solution at pH 3.5. Additionally, 3-NT has a 

second absorbance at 357 nm. However, this second wavelength is more selective and, 

therefore, more suitable for detection purposes. In basic solutions (pH 9.5), 3-NT has a 

maximum absorbance at 430 nm (Herce-Pagliai, Kotecha, & Shuker, 1998; Yang et al., 

2010). The main drawback of this method is the lack of selectivity and sensitivity. HPLC 

coupled to ECD has the potential to be more selective than HPLC-UV or HPLC-fluorescent 

methods (Ryberg & Caidahl, 2007). 

  

HPLC-Diode Array Detector. Comparatively to UV detection, DAD allows the 

simultaneous detection at different wavelengths (Dong, 2006). Although HPLC-DAD is the 

most commonly used method for in vitro 3-NT analysis, it is not enough sensitive for in vivo 

quantitative analysis (Mergola et al., 2013). Recently, Selzle et al. (2013) developed a simple 

and efficient HPLC-DAD method for the determination of the nitration degree of small 

amounts of the birch pollen allergen Bet v 1. This method can be photometrically calibrated 

by the amino acids Tyr and 3-NT without the need for nitrated protein standards. The study 

also reported that this new method can be used in the investigation of the reaction kinetics 

and mechanism of protein nitration (Selzle et al., 2013).  

 

HPLC-fluorescence detection. Since 3-NT is not a fluorescent compound, it can only be 

detected using a fluorescence detector after structural modifications, such as the reaction of 

the amino group of 3-NT with a suitable derivatizing reagent (Herce-Pagliai et al., 1998). 

For instance, Pourfarzam et al. (2013) used 4-fluoro-7-nitrobenzo-2-oxa-l,3-diazole (NBD-

F) as derivatization reagent. This reagent has been reported in several studies and the results 

obtained were comparable among them (Pourfarzam et al., 2013). The fluorescent dyes used 

in the derivatization step of amino acids significantly improve the sensitivity and specificity 

of detection. NBD-F has a 10-fold higher sensitivity than ortho-phthaldialdehyde (OPA) 

(W.-Z. Zhang, Lang, & Kaye, 2007). The limitation of this method is that several fluorescent 

compounds are produced during the derivatization process (Herce-Pagliai et al., 1998). 

 

HPLC-Electrochemical detector. HPLC using ECD is relatively low-cost and has sufficient 

sensitivity for the measurement of 3-NT at moderately low basal levels found in most 
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biological samples from healthy individuals. These ECD-based methods have the potential 

to be more selective than HPLC-UV or HPLC-fluorescence methods, with a sensitivity about 

100-fold greater (Nuriel et al., 2008). 

The reproducibility of chromatogram signal intensity and retention time of 3-NT are 

determined by the quality of the C18 column used, as well as the appropriate maintenance 

of the electrochemical cell. Such reproducibility is ensured by (i) routine washing of the 

column with methanol, (ii) ensuring that potentials are not applied when the mobile phase is 

not flowing, and (iii) periodic reconditioning of the electrode when a performance loss is 

detected (Nuriel et al., 2008).  

1.5.2.2. Liquid chromatography-mass spectrometry methods 

One of the ways to overcome the limitations of HPLC is to couple it with an MS. This 

combination is advantageous for robust and unambiguous identification of compounds, 

especially when in the MS/MS mode (Ryberg & Caidahl, 2007; Tsikas & Duncan, 2014). 

Analytical methods based on MS-methodology are normally accepted as gold standards for 

the analysis of endogenous substances in biological fluids, owing to their high accuracy 

(Tsikas & Caidahl, 2005). The advantage of this technique is that it does not require sample 

derivatization to increase its volatility, unlike gas chromatography-mass spectrometry (GC-

MS), since it increases the likelihood of artefacts formation (Ryberg & Caidahl, 2007; Tsikas 

& Duncan, 2014).  

Nevertheless, liquid chromatography-mass spectrometry (LC-MS) does not offer the 

necessary selectivity for 3-NT measurement in biological sample, especially in human 

plasma (Ryberg & Caidahl, 2007; Tsikas & Duncan, 2014). One way to improve the 

selectivity and sensitivity for measurement is to use HPLC Hypercarb columns in triple-

stage quadrupole LC–ESI (Electrospray ionization) -MS/MS. The Hypercarb columns are 

composed of porous spherical carbon particles and the separation is based on the stronger 

retention time for polar compounds (Ryberg & Caidahl, 2007). 

Chen & Chiu (2008) developed a highly specific and accurate LC/MS/MS assay that allows 

simultaneous analysis of protein-bound 3-NT and 3-bromotyrosine (3-BT) in human urine. 

This proteins function as non-invasive biomarkers for in vivo PTN and bromination.  

In Table IV are described several liquid chromatography-based methods/ protocols for 

determination of 3-NT in biological samples that have been published over the last year. 
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Table III. Different HPLC-based methods used for the determination of 3-NT in biological samples 

Compound Sample Columna Eluents 
Flow rate 

(mL/min) 

Detection 

method 

3-NT, Tyr  

(Guvenç et al., 2014) 
Brain tissue 

Inertsil® ODS C18 

4.6 x 250; 5 

50 mM sodium  acetate (pH 4.2), 10% 

methanol (v/v) 
0.8 

DAD 

278 nm 

3-NT 

 (Sodum et al., 2000) 

Proteins from blood 

plasma 

Two ultrasphere ODS 

4.6 x 150; 3 

4.6 x 46; 5 

50 mM sodium acetate (pH 4.7), 5% 

methanol (v/v) 
0.7 

UV 

280 nm 

3-NT, p-nitro-L-

phenylalanine, and L-Tyr  

(Tsikas, Mitschke, Suchy, 

Gutzki, & Stichtenoth, 2005) 

Urine 
Nucleosil 100-5 C18 

4.0 x 250; 5 

50 mM (NH4)2SO4 in water-methanol (95:5, 

v/v)  (pH 5.5) 
1.0 

UV 

276 nm 

3-NT, Tyr  

(W.-Z. Zhang et al., 2007) 
Plasma 

Nova-Pak C18 

3.9 × 150; 4 

Mobile phase A: ACN and 0.02M  

phosphate buffer (pH 6.5; 90:10 v/v), 375 

µL/L TFA,  

5 mL/L 2-propanol (pH=4.5) 

Mobile phase B:  ACN and 0.02M  

phosphate buffer (pH 6.5; 10:90 v/v), 500 

µL/L TFA (pH 3.5) 

1.0 (34°C) 
UV 

540 nm 

3-NT  

(Ishida, Hasegawa, Mukai, 

Watanabe, & Nishino, 2002) 

Plasma 
SD ODS 

3.0 x 150; 5 

100 mM phosphate buffer solution, 5% 

methanol (v/v) 
0.5 (25°C) ECD 

3-NT  

(Hitomi et al., 2007) 
Rat plasma 

SC-50ODS 

3.0 x 150; 5 

200 mM phosphate buffer containing 

5mg/mL EDTA, 2% ACN 
0.5 ECD 
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Table III. (continued) 

Compound Sample Columna Eluents 
Flow rate 

(mL/min) 

Detection 

method 

3-NT  

(Bircan et al., 2011) 
Animal spleen tissues 

Microtech Scientific C18 

1.0 x 50; 5 

50 mM H3PO4, 50 mM citric acid, 40 mg/L 

EDTA, 100 mg/L octane sulfonic acid, 5% 

methanol (v/v) (pH 3.1 with KOH) 

0.05 ECD 

Free 3-NT Assay  

(Pourfarzam et al., 2013) 
Plasma 

Nova-Pak C18 

3.9 × 150; 4 

Sodium phosphate buffer (0.1 M, pH 7.2), 

methanol (52.5:47.5 v/v) 
1.0 

UV 

470 and 540 nm 

3-NT residues in protein  

(Yang et al., 2010) 

Bovine serum albumin 

and ovalbumin 

Grace Vydac 

2.1 x 250; 5 
0.1% (v/v) TFA in water and ACN 0.3 

DAD 

280 and 357 nm 

Tyr and 3-NT metabolites 

(Blanchard-Fillion et al., 

2006) 

Undifferentiated human 

teratocarcinoma NT2 and 

rat pheochromocytoma 

PC12 cell lines 

Octadodecyl silica gel 

reverse-phase column 

4.6 x 250; 5 

0.1% TFA in ultra pure water (solvent A) 

and 100% ACN (solvent B) 
1.0 

DAD 

215, 275, 365 

nm 

Tyr and 3-NT 

 (Kikugawa et al., 2004) 

Gaseous nitrogen oxide 

species 

Inertsil ODS-2 

4.6 x 250; 5 
0.5% (v/v) acetic acid:methanol (29:1, v/v) 1.0 

UV-VIS 

detector  

280 nm  

3-NT  

(Ueshima et al., 2007) 
Sputum and saliva 

C18 reversed phase 

column 

3.0 × 150; 5 

100 mM sodium phosphate buffer 

(pH 5.0), 5% methanol (v/v) 
0.5 ECD 

Free 3-NT 

 (F. Khan et al., 2006) 
Serum 

C18 reversed phase 

column 

4.6 x 250; 5 

500 mM potassium phosphate buffer  

(pH 3.5), 10% methanol (v/v) 
0.8 

UV 

274 nm 

a Column dimensions in the following order: internal diameter (in mm) x length (in mm); particle size (in µm).  

ACN, acetonitrile; EDTA, ethylenediamine tetraacetic acid; TFA, trifluoroacetic acid. 
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Table IV. Different liquid chromatography-based methods used for the determination of 3-NT in biological samples 

Compound Sample Columna Eluents Flow rate Detection method 

3-NT  

(Seeley et al., 2014) 

Microglial 

Cell Lysate 

EASY-Spray™ 

250 × 0.075; 2 

0.1% formic acid in water (mobile phase 

A) and 0.1% formic acid in ACN (mobile 

phase solvent B) 

350 nL/mim LC-MS/MS 

3-chlorotyrosine, 3-BT, 

and 3-NT  

(Gaut, Byun, Tran, & 

Heinecke, 2002) 

Plasma 

C18 reversed phase column 

Zorbax 

1.0 x 150;5 

Methanol/water/acetic acid (4/95/1,v/v/v, 

pH 3 – solvent A)  

+ 

methanol/water/acetic acid (95/4/1, v/v/v, 

pH=3.2 -solvent B) 

0.05 mL/min LC–MS/MS 

3-NT and 3-BT 

 (Chen & Chiu, 2008) 
Urine 

Reversed phase C18 column 

2.0 × 150; 5 

0.01% formic acid (pH 3.2) to 25% 

methanol in 0.01% formic acid 
0.2 mL/min LC–ESI/MS/MS 

3-NT 

 (Thornalley et al., 2003) 
Urine 

HypercarbTMc 

2.1 × 50; 5 

0.1% TFA with a linear 

gradient of 10–50% acetonitrile 
0.2 mL/min LC-MS/MS 

Free amino acid and 

protein 3-NT 

(Radabaugh et al., 2008) 

Biological 

fluids 

Immunoaffinity column: 

Targa 

4.6 x 30 

C18 reversed-phase 

column: Betasil 

2.1 x 100;5 

Immunoaffinity column: 1% formic acid 

C18 reversed-phase column: 100% 10 mM 

ammonium acetate acetonitrile 

Immunoaffinity 

column: 1 mL/min 

C18 reversed-phase 

column: 0.3 mL/min 

Immunoaffinity 

LC–MS/MS 
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Table IV. (continued) 

Compound Sample Columna Eluents Flow rate Detection method 

3-NT, 3-BT, 

Dibromotyrosine  

(Kato et al., 2009) 

Urine 
ODS-SR 

2 × 150; 5 
0.05% formic acid/CH3CN (95:5) Not stated LC/MS/MS 

Free 3-NT  

(Hui et al., 2012) 
Plasma 

Altima HP 

100 × 2.1 mm; 3 

Kinetex 

100 × 2.1; 2.6 

0.01% acetic acid in ultrapure water 

(mobile phase A)  

+ 

0.01% acetic acid in ACN ( mobile phase 

B) 

0.2 mL/min LC-MS/MS 

3-NT 

 (Nemirovskiy et al., 

2009) 

Plasma 

Immunoaffinity column: 

Targa 4.6 x 30 

C18 reversed-phase 

column: 2.1 x 100 

Immunoaffinity column: 1% formic acid 

solution 

C18 reversed-phase column: 100% 10 mM 

NH4OAc in H2O and 80% ACN 

1 mL/min 2D LC–MS/MS 

a Column dimensions in the following order: internal diameter (in mm) x length (in mm); particle size (in µm) 

ACN, acetonitrile; TFA, trifluoroacetic acid. 
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1.5.2.3. Gas chromatography-mass spectrometry methods  

GC-MS methodology is used for the analysis of volatile and thermally stable small 

molecules (Ryberg & Caidahl, 2007). When molecules to be analysed, such as amino acids, 

do not meet these features, a further derivatization step is required. In this sense, analysis of 

3-NT by this methodology requires prior chemical derivatization and/or modification of the 

functional groups (i.e., p-OH, a-NH2, and COOH) to increase volatility and thermal stability 

(i.e., reduction of the aromatic NO2 group). In addition, derivatization improves GC and MS 

behaviour of 3-NT (Tsikas & Duncan, 2014). Derivatization, however, often accounts for 3-

NT artefact formation, which is may be responsible for high variation of basal plasmatic 3-

NT levels (Tsikas & Caidahl, 2005). Nevertheless, GC-tandem MS is described as a 

methodology that allows the accurate quantification of free 3-NT in human plasma at basal 

levels. GC-tandem MS is more accurate than GC-MS (Tsikas & Caidahl, 2005; Tsikas et al., 

2005). Table V summarises different gas chromatography-based methods for determination 

of 3-NT in biological samples. 

The GC-MS and GC-MS/MS methods for the analysis of 3-NT involve the preparation of 

perfluorinated derivatives. Perfluorinated compounds are strong electron-capturing species, 

thus offering assays of particularly high sensitivity (Tsikas & Duncan, 2014). 

Gaut et al. (2002) reported that GC–MS was 100-fold more sensitive than LC–tandem MS 

for the analysis of 3-NT. The major drawback of this method is that 3-NT is not suitably 

separated from Tyr, nitrite and nitrate prior to GC–MS analysis or derivatization. Such 

separation could potentially be achieved, for instance, by HPLC (Tsikas, 2012).  

In the study performed by Söderling et al. (2003), the derivatization method used was based 

on the reduction of the nitro group of 3-NT by dithionite, heptafluorobutyric acylation and 

subsequent methyl derivatization. Their results demonstrated excellent GC and MS 

properties, namely low background and a favourable fragmentation pattern (Söderling et al., 

2003). 

In fact, the major strategies used to avoid artifacts formation are (i) isolation of 3-NT by SPE 

and HPLC; (ii) reduction of 3-NT to 3-amimotyrosine before sample derivatization, thus 

artifactual nitration of Tyr does not influence the measurement; (iii) use of high 

concentrations of reactive aromatic compounds (i.e., phenol) to capture nitrosating species; 

and (iv) quantification of artifactual 3-NT formation, by incorporating stable-isotope 

labelled Tyr (e.g., 13 C6 -Tyr) into each sample (Tsikas & Duncan, 2014). Overall, the main 
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disadvantage of using chromatographic methods is that they involve time-consuming sample 

preparation procedures (Weber et al., 2012).  
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Table V. Different gas chromatography-based methods used for the determination of 3-NT in biological samples 

Compound Sample Columna Eluents Detection method 

3-NT 

(Tsikas et al., 2005) 

Urine 

Optima 5-MS 

30 x 0.25; 0.25 

Helium (55 kPa); Methane (530 Pa) and Argon 

(0.27 Pa collision pressure) 
GC–MS/MS 

Protein-associated 3-NT and 

3-nitrotyrosinoalbumin 

(Tsikas et al., 2003) 

Plasma 

Optima 5-MS 

30 x 0.25; 0.25 

Helium (55 kPa); Methane (530 Pa) and Argon 

(0.27 Pa) 
GC–MS/MS 

3-NT 

(Ryberg et al., 2004) 

CSF 

DB-1 MS column 

15 × 0.32 ; 0.25 

Helium (3psi); Methane (750-800 Pa) GC–MS/MS 

3-NT 

(Söderling et al., 2003) 

Plasma 
DB5-MS column 30 

x 0.25; 0.25 
Helium (41 kPa); Methane (0.27-1.1 kPa) GC–MS/MS 

Free 3-NT 

(Lärstad, Söderling, Caidahl, & 

Olin, 2005) 

Exhaled breath 

condensate (EBC) 

DB5-MS column 

30  x 0.25; 0.25 

Helium (38 kPa); Methane (0.97-0.99 kPa) GC/NICI/tandem MS 

a Column dimensions in the following order: internal diameter (in m) x length (in mm); particle size (in µm) 
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1.6. Objectives of this thesis 

As previously stated, nitration of proteins is a common process that occurs under 

physiological conditions. On the other hand, a significant increase in the extent of this 

process, induced by an increased nitrosative stress state, has been associated with a wide 

range of diseases.  Previous published studies have shown that other biomarkers of oxidative 

stress may be a useful tool for therapeutic monitoring (Joly & Grunfeld, 2014; Peixoto, 

2012). In this sense, the main goal of this project was to develop a sensitive, simple, low-

cost 3-NT quantification method for use in medical laboratories as a tool for diagnosis and/ 

or treatment monitoring of a wide range of pathologies.  

This goal was achieved through the following tasks: 

(i) Development and validation of the method for 3-nitrotyrosine quantification (chapter 

II); 

(ii) Evaluation of the applicability of the aforementioned chromatographic method in 

different samples (chapter III).  

Lastly, chapter IV shows the overall conclusions, limitations as well as future perspectives 

of this study.  

 

 

 

 

 

 

 

 

  

 



  

    

 

 

Chapter II 

Development and validation of the method for 3-nitrotyrosine quantification 
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2.1. Introduction  

2.1.1. General concept of a High-performance liquid chromatography system  

An HPLC system is composed by several specialized sectors interconnected to each other 

by a thin tube system that allows the movement of the mobile phase between them (Figure 

4). The major components of a classic HPLC system are described in detail below (Dong, 

2006; Rouessac & Rouessac, 2013). 

Pump. The role of the pump is to force the mobile phase through the column which packing 

is fairly compact. The pump allows to maintain a constant flow regardless of the pressure. 

The pressure depends on (i) the flow rate, (ii) the viscosity of the mobile phase and (iii) the 

particle size of the stationary phase. Generally, the pump contains two pistons, and is capable 

of delivering an eluent of fixed (isocratic) or variable composition to create an elution 

gradient (Baker, Dunn, Lajtha, & Holt, 2007; Rouessac & Rouessac, 2013).  

Injector. The injector allows to introduce a precise volume of sample onto the head of the 

column in a rapid manner. The importance of these injectors relies on the minimization of 

flow disturbances due to the dynamic regime of the mobile phase, which permits a stable 

flow from the column to the detector (Rouessac & Rouessac, 2013).  

 Figure 4 Schematic representation of a modular HPLC instrument. 

The chromatography allows the separation of a complex mixture into its individual compounds. The 

separation is performed between a mobile phase and a stationary phase. The HPLC is composed by mobile-

phase reservoirs, pumps, mixer to mix the solvents, a valve into which the sample is injected, a guard column, 

a column containing the stationary phase, a detector, and a recorder. 
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Column. The column is regarded as the major component of an HPLC system. The column 

is a straight stainless steel calibrated tube and coated with an inert material, such as spherical 

silica gel beads, polymers and alumina (Kazakevich & LoBrutto, 2007).  This column should 

be changed from time to time and it is recommended, prior to analysis, to pass the samples 

through a filter of pore size less than 0.5µm  in order to enlarge column’s time of life 

(Rouessac & Rouessac, 2013).   

Stationary phase. The stationary phase is the second medium in which the compounds 

initially dissolved in the mobile phase will interact. The spherical silica gel is the basic 

material mostly used in HPLC columns packaging (Rouessac & Rouessac, 2013). The silica 

matrices are robust and very polar and form a three-dimensional network. This matrix can 

be chemically modified by a derivatisation process through hydrophobic ligands, providing 

the original surface with a higher level of hydrophobicity. For instance, the ligand dimethyl 

octadecylsilane (ODS) is often used in such derivatisation process, being mostly applied in 

protocols for the reverse phase-HPLC (RP-HPLC) analysis of peptides and proteins (Fanali, 

Haddad, Poole, Schoenmakers, & Lloyd, 2013; Rouessac & Rouessac, 2013).  

Mobile phase. The interaction between the mobile and the stationary phases affects the 

retention time of the analytes. If the stationary phase is polar, the mobile phase should be 

less polar. On the other hand, if the stationary phase is non-polar, the mobile phase should 

be polar. Regarding the latter case, the mobile phase is often made up of water with a 

modifying organic solvent (e.g., methanol or acetonitrile) (Buszewski & Noga, 2012; 

Rouessac & Rouessac, 2013). 

Detector. Detectors permit continuous registration of specific physical and chemical 

proprieties of the column effluent (Kazakevich & LoBrutto, 2007). HPLC-based methods 

employ a wide range of detection strategies based on the analytes proprieties, such as 

spectrophotometry, fluorescence detection and refractive index (Baker et al., 2007; Rouessac 

& Rouessac, 2013). 

2.1.2. Theory of reversed phase chromatography  

In simplistic terms, chromatography involves passing a mixture dissolved in the mobile 

phase trough a stationary phase, which separates the analyte to be measured from other 

molecules present in the mixture. Such separation process is based on the differential 
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partitioning effect between the mobile and stationary phases (Mullangi, Sharma, & Srinivas, 

2012).   

Reversed-phase chromatography involves the separation of molecules on the basis of their 

hydrophobicity. This separation depends on the hydrophobic binding interaction between 

the solute molecules from the mobile phase and the immobilized hydrophobic ligands from 

the stationary phase (Fanali et al., 2013) (Figure 5).   

2.1.2.1. Critical parameters in reversed phase chromatography  

Column length. The essential parameters of any chromatographic column are its (i) 

permeability, (ii) efficiency, and (iii) retention ability (Guiochon, 2007) .  

The resolution of small organic molecules in reversed phase separations is more sensitive to 

column length than in high molecular weight molecules. The resolution of small peptides 

may sometimes be improved by increasing column length. In the case of small changes in 

the organic modifier concentration of the mobile phase, the resolution is increased by using 

a longer column (Biotech, 2002).  

The column length may not be a critical parameter in the separation resolution when gradient 

elution is used. Using elution gradient is particularly advantageous in biological samples that 

contain a mixture of molecules with different adsorption affinities (Gad, 2007).  

Flow rate. One important factor in the resolution of small molecules in reversed phase 

separations is the flow rate. Nevertheless, larger biomolecules appear to be insensitive to 

flow rate. In analytical protocols, the flow rate is especially important during the loading of 

Figure 5. Principle of separation of reversed-phase chromatography. 
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a large number of samples. Flow rate may also influence the dynamic binding capacity of 

the gel, which reflects the kinetics of the solute binding process during the loading stage 

(Biotech, 2002). 

Temperature. The temperature is a critical factor in reversed phase chromatography, 

particularly when analysing small molecules. It is known that column temperature affects 

both time retention and selectivity. In this case, increasing the temperature is theoretically 

effective (Guillarme, Heinisch, & Rocca, 2004). Increased temperatures are known to 

decrease mobile phase viscosity used in reversed phase chromatography (Guillarme et al., 

2004). In turn, viscosity influences the method resolution, as a decrease in this parameter 

leads to an increased resolution (Clark, 2004). 

Mobile phase. Mobile phase used in reversed phase chromatography is commonly made up 

of strong acids with large concentrations of organic solvents. However, and when 

physiological conditions needs to be mimicked, a buffer (e.g. phosphate buffer) is often used 

as mobile phase (Taylor, 2014). 

2.1.3. HPLC method development  

Analytical method development and validation is a four-step process. Briefly, HPLC method 

development includes (i) selection of the method and system, (ii) selection of initial 

conditions, (iii) method optimization, and (iv) validation. 

2.1.3.1. Selection of the method and initial system 

The first step is to check whether similar protocols have previously been published, allowing 

a more cohesive and less time consuming start point (Murugan et al., 2013). In this initial 

step, the type of HPLC is selected, and the physicochemical properties of the molecule as 

well as the sample preparation process are evaluated (Fergusom & Huet, 2011; Gupta, Jain, 

Gill, & Gupta, 2012; Murugan et al., 2013). 

Physicochemical proprieties of the molecule to study play an important role in method 

development (Carini, Kaiser, Ortega, & Bassani, 2013; Gupta et al., 2012). The properties 

to take into account usually include (i) solubility (which influences the solvent selection), 

(ii) polarity (to choose the solvent and composition of the mobile phase), (iii) pKa and (iv) 

pH (Gupta et al., 2012; Murugan et al., 2013). The sample should ideally be dissolved in the 

mobile phase. When not possible, additives may be used, such as formic acid, acetic acid 

and salts (Murugan et al., 2013). 
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2.1.3.2.  HPLC conditions  

Selection of the optimal conditions are pivotal for a successful method development process. 

However, a wide range of parameters needs to be carefully examined in advance. 

Buffer selection. The selection of buffer is based on the desired pH. The recommended pH 

range for reversed phase on silica-based packing is between 2 and 8. Buffers have a pKa 

close to the recommended pH range and are usually used to adjust the pH of the mobile 

phase (Fergusom & Huet, 2011). The pH of the mobile phase is an important parameter to 

bear in mind since it determines the chromatographic retention of various analytes with acid-

base properties (Roses, 2004). 

Buffer concentration. For small molecules, the buffer concentration range is usually 10-

50nM, with an organic solvent content <50%. The most common buffers used in reversed 

phase protocols are sodium and potassium salts (Gupta et al., 2012).   

Isocratic or gradient separations. Regarding the mobile phase composition, two main 

strategies are commonly used: isocratic or gradient elution. When applying an isocratic 

elution, the mobile phase composition and the velocity of the compounds moving through 

the column remains constant throughout the separation process (Gupta et al., 2012). On the 

other hand, a gradient elution implies that the mobile phase composition is changed during 

the analysis, which can be achieved through different approaches (linear, segment, convex 

and concave gradient). The selection of the gradient mode to be used should allow a reduced 

time analysis as well as a high resolution  (V. S. Joshi, Kumar, & Rathore, 2015).  

2.1.3.3. Method optimization  

After a general selection of the initial conditions, it is essential to optimize them so that 

satisfactory sensitivity and efficient chromatographic separation can be achieved. The 

optimization process comprises different stages, and the time consumed on this step depends 

on the number of variables to be adjusted. Experimental variables often include pressure, 

temperature, column length, mobile phase and flow rate (Wang, Carr, & Stoll, 2010).  

2.1.3.4. Method Validation 

The validation step is extremely important since it assures that the analytical method 

optimized is suitable for the intended purpose. Validation data should provide detailed 

description of the method, including demonstration of compliance with acceptance criteria 
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approved by a recognised entity following current good laboratory practice (FDA, 2015). 

This step is of particular importance for methods to be used in medical laboratories (Kumar, 

Sreenivasa Reddy, Managuli, & Pai K, 2015). 

Q2 (R1) guideline from International Conference on Harmonisation of Technical 

Requirements for Registration of Pharmaceuticals for Human Use (ICH) is considered the 

primary reference for recommendations and definitions on validation of analytical methods 

(FDA, 2015; ICH, 2005; Sonawane, Poul, Usnale, Waghmare, & Surwase, 2014). Directive 

96/23/EC concerns to the performance of analytical methods and to the interpretation of 

results (European Commission, 2002).  

2.1.3.5. Validation of parameters 

The parameters defined by ICH for validation of analytical methods are briefly described in 

Table VI. 

Table VI. Parameters defined by ICH for validation of analytical methods 

Parameters  Description  

Specificity ICH defines specificity as “the ability to assess unequivocally the analyte in the presence 

of components which may be expected to be present. Typically this might include 

impurities, degradants, matrix, etc.” This definition implies the identification of an analyte 

and a purity test.  

Linearity 
The linearity in an analytical procedure that allows to obtain test results directly 

proportional to the concentration (amount) of analyte in the sample;   

The linearity should be determined at least with a series of five patterns for which the 

expected concentrations should cover 80%-120% of the desired concentration. The result 

should be proportional to the concentrations of the analytes and it should be evaluated by 

appropriate statistical methods, for example, by calculation of a regression line by the 

method of least squares.  

Accuracy  
The accuracy of an analytical method is defined by the closeness of test results obtained 

by that method to the true value or to an accepted reference value.  

Accuracy may be determined through different ways: (i) by analysing a sample of known 

concentration (reference material), and comparing the measured value to the true value; 

(ii) by comparing test results from the new method with those of a second well-

characterized procedure, the accuracy of which is stated and/or defined; (iii) based on the 

recovery of known amounts of analyte (minimum to prepare in triplicate at three levels) 

and (iv) based on the recovery of spiked analyte with standard additions. 
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Table VI. (continued) 

Parameters  Description  

Precision Precision is an analytical procedure that enables to evaluate the closeness of agreement 

between a series of measurements obtained from multiple sampling of the same 

homogeneous sample under the prescribed conditions. 

Repeatability Repeatability express the precision operating over a short time 

interval under the same condition (intra-assay precision); 

It should be assessed using a minimum of nine determinations 

covering the specified range of the procedure (for example, three 

levels, three repetitions each), or from a minimum of six 

determinations at 100% of the test concentration. 

Intermediate 

precision 

The intermediate precision consists in the comparison of the results 

of a method run within a single laboratory over a number of days. 

This precision may reflect discrepancies in results obtained from 

different operators, different instruments standards and reagents 

from different suppliers or others.  

Reproducibility Reproducibility is assessed between laboratories by means of an 

inter-laboratorial trial.  

Range  The range of an analytical produce provides an acceptable degree of linearity, accuracy 

and precision when applied to samples containing amounts of analyte within or at the 

extremes of the specified range of the analytical procedure. 

Limit of 

detection 

The limit of detection (LoD) is the point at which the lowest concentration of analyte in a 

sample can be detected but not essentially quantitated as an exact value. 

 Visual evaluation Visual evaluation is determined by the (i) analysis of samples with 

known concentration of analyte and by (ii) establishing the minimum 

level at which the analyte can be reliably detected.  

 Signal-to-Noise The signal-to-noise ratio determination is performed by comparing 

measured signals from samples with known low concentrations of 

analyte with those of blank samples and establishing the minimum 

concentration at which the analyte can be reliably detected. A signal-

to-noise ratio between 3 or 2:1 is normally considered satisfactory 

for estimating the detection limit. 
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Table VI. (continued) 

Parameters Description 

 Standard 

deviation of the 

response and 

slope 

The LoD may be expressed as: 𝑳𝒐𝑫 =
𝟑.𝟑𝝈

𝑺
  

σ = the standard deviation of the response  

S = the slope of the calibration curve 

The σ may be estimated by the following  ways:  

Based on the Standard Deviation of the Blank - analysing an 

appropriate number of blank samples and calculating the standard 

deviation 

Based on the Calibration Curve - using samples containing an 

analyte in the range of LoD. The standard deviation may be 

calculated by the residual standard deviation of a regression line or 

by the standard deviation of y-intercepts of regression lines.  

Limit of 

quantification  

The limit of quantification (LoQ) is the lowest amount of analyte in a sample which can 

be quantitatively determined with suitable precision and accuracy.   

Visual evaluation Visual evaluation determined by the (i) analysis of samples with 

known concentrations of analyte and by (ii) setting the minimum 

level at which the analyte can be quantified with acceptable accuracy 

and precision 

Signal-to-Noise The signal-to-noise ratio determination is performed by comparing 

measured signals from samples with known low concentrations of 

analyte with those of blank samples and establishing the minimum 

concentration at which the analyte can be reliably detected.  

Standard 

deviation of the 

response and 

slope 

The LoQ may be expressed as: 𝑳𝒐𝑸 =
𝟏𝟎𝝈

𝑺
  

σ = the standard deviation of the response  

S = the slope of the calibration curve 

The σ may be estimated by following  ways:  

(i) Based on the Standard Deviation of the Blank - analysing an 

appropriate number of blank samples and calculating the standard 

deviation 

(ii) Based on the Calibration Curve - using samples containing an 

analyte in the range of LoQ. The standard deviation may be 

calculated by the residual standard deviation of a regression line or 

by the standard deviation of y-intercepts of regression lines. 
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Table VI. (continued) 

Parameters  Description  

Robustness Robustness should be determined during the development phase, and provides an 

indication of the procedure’s analysis reliability in relation to deliberate variations in 

method. 

Parameters that affect robustness often include (i) pH, (ii) mobile phase composition; (iii) 

flow rate, (iv) column temperature, and (v) column type.  

Reference: (FDA, 2015; Huber, 2010; ICH, 2005) 

2.1.4. Aim 

The aim of this chapter was to develop a suitable method for use in most clinical laboratories. 

Therefore, and taking into account all the positive and negative features of the methods 

described throughout Chapter I, we defined as major pre-requisites i) availability of the 

equipment in a wide range of medical laboratories, ii) reduced pre-analysis steps, and iii) 

cost-effective analysis. After an exhaustive analysis, we found that an HPLC-based method 

would perfectly meet the previous pre-requisites.  

In chapter II is described the first three steps of the method development stage: i) selection 

of the method and system, (ii) selection of initial conditions, (iii) method optimization and 

method validation. Regarding optimization, different mobile phases were tested in order to 

find one exhibiting well-defined peaks, a good LoD and LoQ, a good linearity and reduced 

time analysis. 

2.2. Material and Methods  

2.2.1. Instrument and software 

All experiments were performed on a Hitachi LaChrom Elite® HPLC system (Hitachi High 

- Technologies Corporation, Tokyo, Japan) composed by HTA L-2130 LaChrom Elite 

quaternary pumps (Hitachi High-Technologies Corporation), L-2200 LaChrom Elite 

autosampler (Hitachi High-Technologies Corporation), L-2300 LaChrom Elite column 

heater (Hitachi High-Technologies Corporation), L-2455 LaChrom Elite photo DAD 

(Hitachi High-Technologies Corporation). EZChrom Elite Compact Software Version 3.3.2. 

(Agilent Technologies, Inc., Santa Clara, CA, United States) was used for data collection 

and treatment.  
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2.2.2. Reagents and consumables  

3-Nitro-L-tyrosine was purchased from Santa Cruz Biotechnology, Inc. (Bergheimer, 

Heidelberg, Germany). L-Tyrosine was purchased from AppliChem - BioChemia GmbH 

(Ottoweg, Darmastadt, Germany). Glacial acetic acid (100%) was purchased from Merck 

S.A. (Algés, Portugal). Methanol (HPLC GOLD Ultra Gradient) was purchased from Carlo 

Erba Reagents (Chaussée du Vexin, Val de Reuil, France). Ultrapure water was obtained 

from the Water Purification System TKA Barnstead™ GenPure™ capsule 0.2µm (Thermo 

Fisher Scientific, Wilmington, DE, EUA). Trifluoroacetic acid was purchased from Biochem 

Chemopharma (Ligne, Cosne sur Loire, France). LiChrospher® 100 RP-18 (5 µm) 

LiChroCART® 250-4 was purchased from Merck S.A. (Algés, Portugal). Membrane filters 

0.45µm, 47mm, were purchased from Advantec®, Toyo Roshi Kaisha, Ltd. (Tokyo, Japan). 

PuradiscTM, 0.2 µm, 25mm sterile and endotoxin free filters were purchased from 

WhatmanTM (GE Healthcare UK Limited, Buckinghamshire, UK). 2 mL syringes were 

purchased from Terumo® Medical Corporation (Leuven, Belgium).  

2.2.3. Analytical procedure  

2.2.3.1. Mobile phase – 500 mM KH2PO4 (pH 3.5) 

KH2PO4 solutions were prepared in three different concentrations: 500 mM plus 10% MeOH, 

50 mM, and 25 mM. All solutions were adjusted to pH 3.5 using a 1M H3PO4 solution. 

2.2.3.2. Mobile phase – 0.5% CH3COOH:MeOH:H2O  

0.5% CH3COOH:MeOH:H2O solutions were prepared according the following proportions:  

29:1:70 (Kikugawa et al., 2004), 30:0:70, and 15:15:70.  

All mobile phases, including those prepared in 2.2.3.1, were filtered through a 0.45µm 

membrane. 

2.2.3.3. Calibration standards  

0.5 mg/mL 3-NT and Tyr stock solutions were made using the aforementioned mobile 

phases as solvents. All stock solutions were filtered through a filter membrane device. The 

first assays were performed using standard solutions containing either 3-NT or Tyr in the 

following concentrations (100000; 50000; 25000; 10000; 5000 ng/mL). In the subsequent 

assays, standard solutions containing both 3-NT and Tyr were prepared in the following 

concentrations (50000; 25000; 10000; 5000; 2500; 1250; 625 and 312.5 ng/mLStandard 
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solutions were prepared by diluting the respective stock solution into the desired mobile 

phase. When required, heat was used in order to better dissolve the reagents. These standard 

solutions were used for calibration purposes.  

2.2.3.4. Chromatographic conditions  

Table VII shows the chromatographic conditions used in all assays described in this study. 

 

2.2.4. Method optimization 

2.2.4.1. Optimization of Tyr standard preparation 

0.4 mg/mL Tyr stock solutions were prepared using the following solvents: 

(a) PBS pH 7.35; 

(b) ultrapure water; 

(c) acidified ultrapure water; 

(d) mobile phase (0.5% CH3COOH:MeOH:H2O 15:15:70, v/v) 

2.2.4.2. Optimization of the temperature  

In order to find out the best operating temperature, a wide range of temperatures (15, 20, 35, 

45, 55 and 65ºC) were assayed using two standard solutions (50000ng/mL and 25000 ng/mL) 

and two samples (serum). 

2.2.5. Method validation  

All the methods tested were validated according to ICH guidelines for validation of 

analytical procedures (ICH, 2005).  

2.2.5.1. Specificity 

The specificity of the methods was determined by comparing chromatograms obtained from 

3-NT and Tyr spiked-samples.  

Table VII. Chromatographic conditions 

Flow rate* Volume of injection Detection 

1mL/min 25 µL 190-400 nm 

* When 500 mM KH2PO4, 10% MeOH was used, assays were carried out at flow rate of 0.8 mL/min 
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2.2.5.2. Linearity  

Six to eight standard solution concentrations comprising the range between 312.5 - 50000 

ng/mL were assayed. Calibration curves were constructed by plotting average peak area 

versus concentrations. The linearity was evaluated using regression analysis.  

2.2.5.3.  Accuracy  

Accuracy was determined by measuring recovery in 3-NT-spiked serum samples (3 different 

concentration levels: 25000, 1000, and 50 ng/mL) and in standard solutions (50000, 25000, 

10000, 5000, 2500, 1250, 625, 312.5 ng/mL).  

2.2.5.4. Precision  

Precision was determined by means of the repeatability (intraday precision). The 

repeatability was evaluated by analysing standard solutions (8 concentration levels: 50000, 

25000, 10000, 5000, 2500, 1250, 625, 312.5 ng/mL) and 3-NT-spiked serum samples (3 

different concentration levels: 25000, 1000, 50 ng/mL). 

2.2.5.5. LoD and LoQ  

LoD and LoQ were determined using the following equations: 

𝑳𝒐𝑫 =
𝟑.𝟑𝝈

𝑺
  

𝑳𝒐𝑸 =
𝟏𝟎𝝈

𝑺
  

Where δ is the standard deviation of the blank and S is the slope retrieved from the calibration 

curve data. 

2.2.6. Statistical analysis 

Statistical analysis was performed using GraphPad Prism version 6.02 (La Jolla, CA, USA). 

Calibration curves equations were obtained using linear regression analysis. 

2.3. Results and discussion  

A wide range of methods for 3-NT detection and quantification has been developed during 

the last years, all of them presenting positive and negative aspects. Regarding ELISA-based 

methods, and despite being the least time-consuming and most straightforward methods, it 

has become clear that they do not provide the most accurate results. On the other hand, and 
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in relation to chromatographic methods, they seem to be very accurate, showing very good 

sensibility and specificity. GC-based methods exhibit the highest sensibility in the 

quantification of 3-NT. However, and owing to 3-NT chemical properties, a derivatization 

step prior to analysis is required, which ends up being time-consuming for the analyst. 

Moreover, derivatization reactions often induce artifacts formation, which may further 

influence the final analysis. Conversely, HPLC does not require such derivatization step, 

despite being not as accurate as GC.  

The development and validation of an HPLC-based method are, as for any other analytical 

method, an important requirement for quality assurance purposes. Thus, our HPLC assays 

were performed and the results interpreted according to ICH guidelines (ICH, 2005) and 

96/23/EC directive (European Commission, 2002). 

Firstly, the critical parameters (wavelength of detection, composition of mobile phase, 

optimum pH, temperature and concentrations of standard solutions) were studied in detail in 

order to develop an effective method for quantification of 3-NT. All chromatographic assays 

were performed using a C18 column, which is regarded as the most appropriate type for RP-

HPLC analysis of peptides and proteins (Aguilar, 2004). 

Concerning the wavelength of detection, DAD was used in order to obtain 3-NT and Tyr 

absorbance spectra. 3-NT and Tyr-containing solutions were run and detected within the 

ultraviolet range (190-400 nm). Maximum absorbance values were found at 215, 276 and 

356 nm for 3-NT (Figure 6), and 196, 223 and 274 nm for Tyr (Figure 7). Accordingly, we 

defined 215, 276 and 356 nm as the optimal wavelengths of detection for our subsequent 

assays. 

With regards to the second critical parameter, mobile phases were prepared with different 

methanol concentrations. The composition of the mobile phases to be assayed were selected 

based on the (i) information shown in Table VIII, and (ii) pH range (Ahuja & Dong, 2005; 

D. D. Joshi, 2012). In general, a pH range between 2-3 is a good starting point in a method 

development process. This pH range suppresses the ionization of most acidic compounds 

and the ionization of any silanol groups present on the column. On the other hand, basic 

compounds may be ionized under these conditions. Nevertheless, operating at high pH 

values to suppress such ionization process may be detrimental for most columns (Ahuja & 

Dong, 2005).  
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2.3.1. Mobile phase: KH2PO4 

The first step in our method development process was the selection of the mobile phase to 

be used in our assays. F. Khan et al. (2006) used potassium phosphate buffer (500 mM, pH 

3.5) with 10% MeOH (v/v), as mobile phase for detection and quantification of 3-NT, 

claiming good results. As a first approach, we also tested this mobile phase, which has 

revealed quite satisfactory results, well-defined peaks (Figure 7), short time of analysis, as 

well as LoD and LoQ on the order of tens of nanogram per mililiters (Table VIII). The LoD 

and LoQ were established by evaluating the minimum level at which the analyte could be 

readily detected and quantified accurately, respectively  (Thakkar, Saravaia, Ambasana, 

Kaila, & Shah, 2011).  

However, this mobile phase has also revealed a worrisome problem: the precipitation of 

potassium phosphate within the HPLC tubing system, leading to increased pressure and 

column clogging. Consequently, the results of the last samples were pretty difficult to 

analyse due to column obstruction.  

Figure 6. 3-NT and Tyr absorption spectra, obtained by DAD. 
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Table VIII. Description of the assays performed, and respective retention time (mean ± standard deviation), 

LoD and LoQ values; n/a not applicable 

Mobile phase Composition Assay 

KH2PO4 

500mM KH2PO4, 10% MeOH A 

50mM KH2PO4 B 

25mM KH2PO4 C and D 

0.5%CH3COOH:MeOH:H2O 

29:1:70 E and F 

30:0:70  G and H 

15:15:70 I and J 

(A) 
Retention time 

(min) 

LoD 

(ng/mL) 

LoQ 

(ng/mL) 

Flow 

(mL/min) 

Column oven 

temperature (ºC) 

Analysis 

time 

(min) 

3-NT (220nm) 9.959 ± 0.820 24.22 73.40 

0.800 35 15 

3-NT (276nm) 9.973 ± 0.818 40.38 122.37 

3-NT (356nm) 9.947 ± 0.806 87.33 264.63 

Tyr (220nm) 3.741 ± 0.120 21.40 64.84 

Tyr (276nm) 3.593 ± 0.224 37.15 112.58 

(B)       

3-NT (220nm) n/a n/a n/a 

1.000 25 15 

3-NT (276nm) n/a n/a n/a 

3-NT (356nm) n/a n/a n/a 

Tyr (220nm) 7.423 ± 0.058 0.06 0.17 

Tyr (276nm) 7.425 ± 0.055 0.33 1.01 

(C)       

3-NT (220nm) n/a n/a n/a 

1.000 25 25 

3-NT (276nm) n/a n/a n/a 

3-NT (356nm) n/a n/a n/a 

Tyr (220nm) 7.247 ± 0.011 0.17 0.51 

Tyr (276nm) 7.244 ± 0.023 0.86 2.62 

(E)       

3-NT (220nm) 28.683 ± 0.128 6.91 20.93 

1.000 25 40 

3-NT (276nm) 28.644 ± 0.110 1.76 5.32 

3-NT (356nm) 28.583 ± 0.220 71.32 216.11 

Tyr (220nm) 8.170 ± 0.031 0.45 1.36 

Tyr (276nm) 8.153 ± 0.043 0.76 2.29 

(F)       

3-NT (220nm) 18.819 ± 0.053 0.26 0.80 

1.000 40 30 

3-NT (276nm) 18.813 ± 0.055 0.44 1.33 

3-NT (356nm) 18.805 ± 0.082 44.05 133.48 

Tyr (220nm) 5.870 ± 0.017 0.17 0.52 

Tyr (276nm) 5.874 ± 0.021 60.85 184.39 
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Table VIII. (continued) 

(G) 
Retention time 

(min) 

LoD 

(ng/mL) 

LoQ 

(ng/mL) 

Flow 

(ml/min) 

Column oven 

temperature (ºC) 

Analysis 

time 

(min) 

3-NT (220nm) 34.178 ± 0.107 10.60 32.13 

1.000 25 40 

3-NT (276nm) 34.198 ± 0.118 36.97 112.02 

3-NT (356nm) 34.184 ± 0.161 36.15 109.53 

Tyr (220nm) 8.929 ± 0.049 0.72 2.18 

Tyr (276nm) 8.926 ± 0.064 66.82 202.50 

(H)       

3-NT (220nm) 21.801 ± 0.119 2.90 9.67 

1.000 40 35 

3-NT (276nm) 22.885 ± 0.125 44.35 134.40 

3-NT (356nm) 22.884 ± 0.148 8.46 25.65 

Tyr (220nm) 6.734 ± 0.051 0.61 1.84 

Tyr (276nm) 6.734 ± 0.050 1.37 4.15 

(I)       

3-NT (220nm) 7.133 ± 0.041 0.34 1.04 

1.000 25 15 

3-NT (276nm) 7.133 ± 0.043 0.85 2.56 

3-NT (356nm) 7.133 ± 0.042 1.22 3.71 

Tyr (220nm) 3.479 ± 0.019 0.10 0.29 

Tyr (276nm) 3.480 ± 0.019 0.26 0.78 

(J)       

3-NT(220nm) 9.878 ± 0.080 6.09 18.47 

1.000 25 15 

3-NT(276nm) 9.878 ± 0.079 0.93 2.81 

3-NT(356nm) 9.878 ± 0.081 5.11 15.49 

Tyr (220nm) 4.145 ± 0.023 1.81 5.49 

Tyr (276nm) 4.146 ± 0.022 0.53 1.60 

Figure 7. Representative chromatograms of (a) Tyr and (b) 3-NT analysis using mobile phase A 

(500mM KH2PO4, 10%MeOH). 

b) a) 
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In order to wash the HPLC system the following steps were carried out: (i) the column was 

removed and washed with ultrapure water between 40-50°C for about 30 min. (time required 

to remove phosphate precipitates); (ii) the column was put back and washed again with 

ultrapure water between 40-50°C during 10 min.; (iii) the steps (i) and (ii) were repeated 

until the pressure dropped down; (iv) once the pressure was stabilized, the column was 

washed with a mixture of MeOH:ultrapure water 50:50 for 10 minutes, and then washed 

with 100% MeOH. This last step was carried out after carefully ensuring that no precipitate 

remained in the system, otherwise the use of 100% MeOH would worsen the precipitate 

formation problem. Furthermore, caution was taken in order to minimize the contact time 

between the column and 100% ultrapure water. 

Common factors favouring buffer precipitation are (i) high phosphate buffer concentrations, 

and (ii) reaction between phosphate and the organic solvent. According to the literature, 

phosphate buffer concentration should be about 10-50 mM for analysis of small molecules, 

since this concentration range provides the required buffering capacity (Ahuja & Dong, 

2005; D. D. Joshi, 2012). In order to overcome the precipitation issue, we performed a 1:10 

dilution of the mobile phase (50mM KH2PO4) and removed the organic solvent.  

Reducing phosphate buffer concentration did not however solved the precipitation problem, 

thus a 25mM concentration was further tested. Chromatograms obtained with this mobile 

phase are shown in Figure 9. Unfortunately, and despite partially solving the precipitation 

problem, the resolution of the peaks was compromised (Figure 7 and Figure 9). Using this 

mobile phase, and testing standard solutions containing both compounds (assay D), a co-

elution phenomenon between 3-NT and Tyr was observed, hindering the analysis of this 

assay.  

The linearity of the methods using KH2PO4 as mobile phase was calculated through linear 

regression and correlation coefficient (Figure 8). The correlation coefficient is used to assess 

the strength of a linear relationship between pairs of variables (Mukaka, 2012). Overall, 

linear regression analysis of the calibration data showed good linear relationship, with 

correlation coefficients extremely close to 1.
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Figure 8. Calibration curves obtained using linear regression analysis for mobile phases composed by KH2PO4.
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The correlation coefficient determined for Tyr analysis using 500mM KH2PO4, 10% MeOH 

(assay A) was slightly lower in comparison with assays B and C. This fact may be partially 

explained by the aforementioned buffer precipitation issue, rendering the results at the end 

of the run not reliable 

2.3.2. Mobile phase: 0.5% CH3COOH:MeOH:H2O  

For mobile phases based on 0.5% CH3COOH:MeOH:H2O, three different proportions of 

these reagents were tested, as shown in Table VIII. The advantage of this mobile phase in 

relation to the previous one is the absence of phosphate buffer on its composition.  

Firstly, we tested 0.5% CH3COOH:MeOH:H2O (29:1:70, v/v) (assay E), which has already 

been used before for 3-NT and Tyr determination by (Kikugawa et al., 2004), although using 

different experimental conditions. Since the analysis time for assay E was about 40 minutes, 

we then proceeded to increase the oven temperature. A temperature increase leads to an 

increase in solute solubility and diffusivity, as well as a decrease in the viscosity of the 

mobile phase. This significantly improves the partition process kinetics and, consequently, 

the peak shape and the column efficiency (Clark, 2004; Roses, Subirats, & Bosch, 2009; 

Zhu, Goodall, & Wren, 2005). Temperature has also a large effect on the thermodynamics 

of the retention process that can leads to a reduction in the running time and selectivity 

(Roses et al., 2009). Running assay F with a temperature of 40ºC allowed to reduce the 

analysis time from 40 to 30 min. Furthermore, it also allowed to obtain an increased 

efficiency, since peaks showed better resolution using these new conditions (Figure 10). 

 

a) b) 

Figure 9. Representative chromatograms of (a) Tyr and (b) 3-NT using mobile phase C 

(25mM KH2PO4). 
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Afterwards, we tested 0.5% CH3COOH:MeOH:H2O (30:0:70, v/v)  (assays G and H). This 

mobile phase has the advantage of not making use of an organic solvent, rendering it an 

example of "green" liquid chromatographic analysis. Other researchers have already chosen 

similar strategies, namely mobile phases containing the nonionic surfactant Brij-35 instead 

of using an organic solvent (Fernandez-Navarro, Ruiz-Angel, & Garcia-Alvarez-Coque, 

2012). Since the analysis time of assay G was 40 minutes, we decided to follow the previous 

approach and proceed to increase the oven temperature to 40ºC (assay H). The analysis time 

was reduced to 35 minutes, although the resolution of the 3-NT peaks was the lowest among 

all tested proportions (Figure 11).  

 

   

a) 

Figure 10. Representative chromatograms of (a) Tyr and (b) 3-NT using mobile phase F 

(0.5% CH3COOH:MeOH:H2O (29:1:70, v/v)). 

b) 

Figure 11. Representative chromatogram of (a) Tyr and (b) 3-NT analysis using mobile phase H 

(0.5% CH3COOH:MeOH:H2O (30:0:70,v/v)). 

a) 
b) 
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The other proportion tested was 0.5% CH3COOH:MeOH:H2O (15:15:70, v/v) (assays I and 

J) which analysis time was 15 minutes. Thus reduced analysis time was obtained owing to 

an increase in methanol concentration, which is known to decrease the retention time of 

solutes (Q. Zhang, Feng, Yan, & Da, 1999). Therefore, this reduced analysis time was a 

significant advantage of this mobile phase composition over all the others. On the other hand, 

assay J was performed in a new column, which might have accounted for the increased 

retention time of both 3-NT and Tyr (Table VIII) comparatively with assay I. The increased 

retention times obtained with the new column was likely the result of an unstable column 

packing. Regarding the LoD and LoQ, this proportion exhibited great results, in the order of 

units of nanogram per mililiters, and the lowest time analysis as well (Table VIII). In Figure 

12 is shown a representative chromatogram obtained with assay J, where is possible to 

observe that the peaks shape is narrower in comparison with the other proportions tested.  

According to 96/23/EC directive, retention time in liquid chromatography should not vary 

0.10 minutes within technical replicates (Bartesaghi et al., 2007; European Commission, 

2002), which was the case when these proportions were tested (Table VIII)  

 

 

 

 

 

 

 

 

 

Linear regression analysis of the methods using 0.5% CH3COOH:MeOH:H2O as mobile 

phase also showed good linear relationship, with correlation coefficients very close to 1 

(Figure 13). Nevertheless, the proportion 30:0:70 (v/v) was the one which exhibited the 

lowest correlation coefficient for 3-NT.   

Figure 12. Representative chromatograms of (a) Tyr and (b) 3-NT analysis obtained in assay J 

(0.5% CH3COOH:MeOH:H2O (15:15:70,v/v). 

a) b) 
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2.3.3. Mobile phases comparison and selection  

All mobile phases tested for 3-NT detection and quantification exhibited pros and cons. 

Briefly, and as previously mentioned, KH2PO4-based mobile phases presented as major 

disadvantage the precipitation of potassium phosphate within the HPLC tubing system. For 

this reason, we considered this mobile phase to be not suitable for our purpose. 

Nevertheless, this kind of mobile phases had revealed satisfactory results regarding other 

parameters (Table VIII).  

Conversely, 0.5% CH3COOH:MeOH:H2O mobile phase was not affected by any kind of  

precipitation issue. Regarding the different proportions and oven temperatures tested, the 

proportions 29:1:70 (v/v) and 30:0:70 (v/v) at 25ºC exhibited a long analysis time, as well 

as 3-NT broad peaks. On the other hand, the proportion 15:15:70 showed the best results 

with regards to the different parameters evaluated, as can be seen from Table IX to Table 

XIII. Besides, it also exhibited a good resolution, with narrow peaks for both Tyr and 3-

NT. However, the larger concentration of organic solvent used in this proportion could be 

regarded as a disadvantage from an environmental point of view. As a result, and taking 

into account all the pros and cons, the mobile phase 0.5% CH3COOH:MeOH:H2O 

(15:15:70 (v/v)) was regarded as the most suitable for our purposes. 
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Figure 13. Calibration curves obtained using linear regression analysis for mobile phases composed by 0.5% CH3COOH:MeOH:H2O. 
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 Figure 13. (continued). 
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Figure 13. (continued). 
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Table IX. Validation results for 3-NT quantification at 276 nm 

 

 

 

 

 

Validation 

experiment 
(A) (E) (F) (G) (H) (I) (J) 

Specificity 
No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference with 

analyte peak 

LoD (ng/mL) 40.38 1.76 0.44 36.97 44.35 0.85 0.93 

LoQ (ng/mL) 122.37 5.32 1.33 112.02 134.40 2.56 2.81 

Linearity 

Co-relation 

coefficient 
0.9998 0.9989 0.9996 0.9820 0.9992 1.000 1.000 

Regression 

equation 

y=2.470x108X-

254293 

y= 4.638x108X-

30946 

y=1.8635x108X-

21842 

y=1.8635x108X-

21842 

y=1.30677x108X-

79582 

y=1.307x108X-

1008 

Y=1.595x108X+ 

10814 

Analysis time 15 40 30 40 35 15 15 
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Table X. Validation results for 3-NT quantification at 356 nm 

 

 

 

  

 

 

Validation 

experiment 
(A) (E) (F) (G) (H) (I) (J) 

Specificity 
No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

LoD(ng/mL) 87.33 71.32 44.05 36.15 8.46 1.22 5.11 

LoQ(ng/mL) 264.63 216.11 133.48 109.53 25.65 3.71 15.49 

Linearity 

Co-relation 

coefficient 
0.9997 0.9999 0.9999 0.9885 0.9994 0.9996 1.000 

Regression 

equation 

y=1.155x108X-

121751 

y=2.132x107X-

26729 

y=8.059x107X+ 

10638 

y=2.459x107X-

45728 

y=5.508x107X-

2954,1 

y=5.056x107X+ 

4432 

y=7.463 x107X+ 

10721 

Analysis time 15 40 30 40 35 15 15 
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Table XI. Validation results for 3-NT quantification at 215nm 

 

 

 

 

Validation 

experiment 
(A) (E) (F) (G) (H) (I) (J) 

Specificity 
No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

LoD(ng/mL) 24.22 6.91 0.26 10.60 2.90 0.34 6.09 

LoQ(ng/mL) 73.40 20.93 0.80 32.13 9.67 1.04 18.47 

Linearity 

Co-relation 

coefficient 
0.9998 

 

0.9942 

 

0.9998 0.9863 0.9979 0.9991 0.9998 

Regression 

equation 

y = 5.9142x108X - 

552720 

y = 1.1026x108X- 

103627 

y = 4.2281x108X - 

314 050 

y = 1.2349 x108X - 

248426 

y = 3.1054x108X - 

262515 

y = 2.6398x108X + 

201512 

y = 3.8061x108X + 

72837 

Analysis time 15 40 30 40 35 15 15 
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Table XII. Validation results for Tyr quantification at 215 nm 

 

 

  

 

Validation 

experiment 
(A) (E) (F) (G) (H) (I) (J) 

Specificity 
No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

LoD (ng/mL) 21.40 0.45 0.17 0.72 0.61 0.10 1.81 

LoQ (ng/mL) 64.84 1.36 0.52 2.18 1.84 0.29 5.49 

Linearity  

Co-relation 

coefficient 
0.99594 0.9977 0.9994 1.000 1.000 0.9998 1.000 

Regression 

equation 

y=1.3020x108X- 

336377 

y = 2.3130x108X+ 

197757 

y =2.2779x108X+ 

22815 

y = 3.1070x108X - 

53886 

y =  3.0565x108X+ 

51242 

y = 4.1258x108X+ 

205922 

y =  2.1995x108+ 

109 070 

Total analysis 

time 
15 40 30 40 35 15 15 
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Table XIII. Validation results for Tyr quantification at 276 nm 

 

 

 

Validation 

experiment 
(A) (E) (F) (G) (H) (I) (J) 

Specificity 
No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

No interference 

with analyte peak 

LoD (ng/mL) 37.15 0.76 60.85 66.82 1.37 0.26 0.53 

LoQ (ng/mL) 112.58 2.29 184.39 202.50 4.15 0.78 1.60 

Linearity  

Co-relation 

coefficient 
0.9974 0.9878 0.9998 1.000 

 

0.9999 

 

1.000 0.9999 

Regression 

equation 

y =   2.3391x107X- 

55398 

y =  3.5431x107X 

+ 39477 

y = 3.9245x107X 

+ 1065.7 

y = 5.0731x107X -

6355 

y= 4.9759x107X -

13209 

y = 6.7530x107X + 

10086 

y =  3.7935x107X 

+4312,5 

Total analysis 

time 
15 40 30 40 35 15 15 
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2.3.4. Optimization method  

2.3.4.1.  Optimization of Tyr standard preparation 

One trouble that was present throughout the study was the dissolution of Tyr. For that 

purpose, we tested four different solvents, as shown in Figure 14 . Dissolving Tyr in the 

selected mobile phase (0.5% CH3COOH:MeOH:H2O 15:15:70, v/v) using a water bath 

between 40-50ºC for 15 min ended up being the most effective way. Conversely, and 

regarding the acidified water, some chromatograms obtained showed nonspecific peaks. 

Moreover, the use of ultrapure water was not efficient since insoluble crystalline particles 

were observed after dissolution. Lastly, the main drawback of using PBS is that its pH (7.35) 

is different from the pH of the selected mobile phase (3.10).  

Optimization of the solubility of Tyrosine
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Figure 14.  Comparison of the solvents using for Tyr dissolved. 
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2.3.4.2. Optimization of the temperature 

Regarding the temperature of the method, a wide range (15, 20, 25, 35, 45, 55 and 65ºC) was 

assayed while maintaining the conditions of other parameters. When temperatures from 35 

to 65ºC, with detection at 215 and 276 nm, were tested, a 3-NT non-specific peak was 

obtained. A similar phenomenon was observed when testing at 15ºC. Temperatures between 

20 and 25ºC showed to be specific for 3-NT, with detection at 276 nm and 356 nm. 

Furthermore, and in order to obtain a higher peak resolution, running the assays at 20ºC with 

a flow rate of 1.2 mL/min is advisable. 

2.3.5. Method Validation  

2.3.5.1.  Specificity 

A specific 3-NT quantification method should have the ability to detect 3-NT unequivocally 

without any interference from tyrosine or other close structural relatives (Tsikas & Duncan, 

2014). In order to determine the specificity of the developed method in all assays, 3-NT and 

Tyr were spiked into different biological matrices (more details can be found in Chapter III). 

The method was specific for 3-NT with detection at 356 nm for all biological matrices. 

However, when quantification was carried out at 215 or 276 nm in whole blood, other 

unknown molecules were also present in the 3-NT peak. Consequently, these wavelengths 

are not recommended for 3-NT quantification in whole blood using this method. 

2.3.5.2.  Linearity, LoD and LoQ 

Table XIV lists the linearity parameters of the calibration curves for 3-NT (and Tyr). The 

LoD and LoQ are also given in this table.  

Table XIV. Linearity, retention time, LoD and LoQ 

 3-NT (ʎ=215nm) 3-NT (ʎ=276nm) 3-NT (ʎ=356nm) Tyr (ʎ=215nm) Tyr (ʎ=276nm) 

LoD (ng/mL) 0.655 0.367 1.862 0.213 1.380 

LoQ (ng/mL) 2.184 1.113 5.642 0.645 4.182 

Retention 

Time 

(min ± sd) 

10.164 ± 0.054 10.164 ± 0.053 10.165 ± 0.053 4.278 ± 0.020 4.278 ± 0.020 

Linearity 

Co-relation 

coefficient 
1.000 1.000 0.999 1.000 0.999 

Regression 

equation 

y = 7.0805x108x -

7475.6 

y = 2.5134x108x + 

25707 

y = 1.1970x108x + 

10814 

y = 1x108x + 

7175.6 

y = 3x107x + 

586.64 
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2.3.5.3.  Accuracy - recovery rate  

The accuracy of an analytical method is defined as the proximity of the mean concentration 

determined by the analytical method to the true concentration of the analyte (Hui et al., 

2012). Table XV presents the results of accuracy determined from standard solutions. The 

inaccuracy varied from 0.007 to -6.26%. Samples with the highest or lowest 3-NT 

concentrations (close to LoQ) were those which exhibited a higher relative error (RE). 

According to the literature, the RE mean value should be within 15% of the nominal value 

(Sonawane et al., 2014), which was the case of this method.  

Table XV. Analytical results of accuracy test by standard solutions  

Table XVI shows the results expressed as percent recoveries of 3-NT in serum samples. 

Regarding detection at 356 nm and 276 nm, the recovery value ranged from 90.92 to 113.12 

%, and RE values varied between 0.99 to 13.12%. The concentrations obtained were 

relatively close to the known concentrations, with RE or inaccuracy not greater than 13.12% 

in all cases, which is in accordance with the previous mentioned RE limit (<15%) (Sonawane 

 

Wavelength (nm) Concentration (ng/mL) REa  (%) No. of samples 

356 

50000 0.007 6 

25000 -3.49 6 

10000 0.51 6 

5000 -0.52 6 

2500 0.72 6 

1250 0.16 6 

625 -2.32 6 

312.5 -0.83 6 

276 

50000 -0.08 6 

25000 -3.05 6 

10000 0.24 6 

5000 -0.82 6 

2500 0.16 6 

1250 0.30 6 

625 -2.79 6 

312.5 -3.82 6 

215 

50000 0.12 6 

25000 -3.33 6 

10000 0.44 6 

5000 0.28 6 

2500 -0.03 6 

1250 1.88 6 

625 -3.31 6 

312.5 -6.26 6 

a)Relative error (RE) is derived by using the following equation: Relative error % = ((Mean cal. conc. - True conc.)/True 

conc.) × 100%. 
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et al., 2014). Concerning detection at 215 nm, inaccuracy was greater than 15% (79.62%), 

thereby not validated for this parameter.  

Table XVI. Analytical results for accuracy test from serum sample 

2.3.5.4. Precision 

Intra-day precision was assessed by standard solutions (50000, 25000, 10000, 5000, 2500, 

12500, 625, 312.5 ng/mL) as well as by spiking different commercial human serum samples 

with three different 3-NT concentrations (25000, 1000, 50 ng/mL). The precision of a 

bioanalytical method for each concentration level should be < 15% of relative standard 

deviation (RSD) or coefficient of variation (Sonawane et al., 2014). The precision of our 

method, which was determined using FDA guidelines for bioanalytical method validation 

(FDA, 2013), was 2.23% and 6.75% below the RSD for all standard solutions and serum 

samples, respectively (Table XVII and Table XVIII). 

Table XVII. Analytical results for repeatability (intraday test) from standard solutions  

Wavelength 

(nm) 

Spiked 

Concentration 

(ng/mL) 

Measured 

Concentration 

(ng/mL) 

REa  

(%) 

Recovery 

(%) 

No. of 

samples* 

356 

25000 23067,3 -7,73 92,27 6  

1000 910,7 -8,93 91,07 6 

50 50,5 0,99 100,99 6 

276 

25000 24519,8 -1,92 98,08 6 

1000 909,2 -9,08 90,92 6 

50 56,6 13,12 113,12 6 

215 

25000 21360 -14,56 85,44 6 

1000 848 -15,20 84,80 6 

50 90 79,62 179,62 6 

a)Relative error (RE) is derived by using equation: Relative error % =([Mean cal. conc.] – [True conc.])/[True conc.] × 100%. 

*Each sample performed in triplicated. 

Wavelength (nm) Concentration (ng/mL) RSD (%) No. of samples 

356 

50000 0.7 6 

25000 0.23 6 

10000 0.76 6 

5000 0.97 6 

2500 1.87 6 

1250 0.72 6 

625 2.23 6 

312.5 1.37 6 
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Table XVIII.  Analytical results for repeatability (intraday test) from serum samples 

 

2.4. Conclusions  

After a deep analysis of the results obtained with all the mobile phases tested, the best results 

were obtained using 0.5% CH3COOH:MeOH (15:15:70 (v/v)), at 25ºC, flow rate of 1 

mL/min, and with detection at wavelengths 215, 276 and 356 nm. By using this protocol, it 

was possible to obtain a linear calibration curve (correlation coefficient = 1), LOD/ LOQ in 

Table XVII. (continued) 

Wavelength (nm) Concentration (ng/mL) RSD (%) No. of samples 

276 

50000 1.26 6 

25000 0.16 6 

10000 0.56 6 

5000 0.54 6 

2500 0.62 6 

1250 0.88 6 

625 1.14 6 

312.5 2.03 6 

215 

50000 0.87 6 

25000 0.76 6 

10000 0.58 6 

5000 1.08 6 

2500 0.54 6 

1250 1.38 6 

625 1.36 6 

312.5 0.72 6 

Wavelength (nm) Concentration (ng/mL) RSD (%)a No. of samples* 

356 

25000 0.40 6 

1000 2.15 6 

50 2.93 6 

276 

25000 0.97 6 

1000 1.15 6 

50 6.75 6 

215 

25000 1,22 6 

1000 3,60 6 

50 4,75 6 

a Relative standard deviation is derived by using equation: RDS  % = (standard deviation )/(mean peak  

area) × 100%. 

*Each sample performed in triplicated.  
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the order of units ng/ml, and a reduced analysis time per sample (15 minutes). Moreover, 

and most importantly, the developed method exhibited a good specificity, with no 

interference observed with 3-NT structural relatives, namely Tyr. Lastly, the method 

revealed good precision and accuracy.



 

 

 

 

  



 

 

 

 

 

Chapter III         

Applicability of the developed method for 3-nitrotyrosine quantification 
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3.1. Introduction  

Most of 3-NT quantification methods developed throughout the last years have been applied 

in several biological matrices, such as biological tissues and fluids (plasma, serum, urine, 

cerebrospinal fluid, synovial fluid, etc.) (Radabaugh et al., 2008; Ryberg & Caidahl, 2007). 

The human plasma and serum are of special interest since they are widely used among 

clinical and biological studies (Yu et al., 2011). Furthermore, serum has been reported has 

showing higher sensitivity in biomarker detection, which is likely explained by the globally 

higher metabolite concentrations in serum than in plasma (Yu et al., 2011).   

On the other hand, urine has also been tested in biomarker research. Although it offers the 

possibility of a non-invasive measurement, these biological matrices are often referred to as 

giving rise to unreliable results (Ryberg & Caidahl, 2007). Regarding this, Misko et al. 

(2013) measured 3-NT levels in different biological matrices (urine, plasma and synovial 

fluid), demonstrating that urine exhibited different results in relation to the others samples 

tested. 

3-NT is ubiquitous in a wide range of biological samples, although each type of biological 

sample has different basal concentrations (Tsikas & Duncan, 2014). Depending on the 

biological sample, and according to the literature, the normal concentrations found in healthy 

individuals may vary. Table XIX shows the 3-NT concentration range usually found in both 

healthy and pathological states, as determined by different methods and biological samples.  

3.1.1. Aim  

Chapter III briefly describes the various biological samples that can be used for 3-NT 

quantification. The aim was to evaluate the performance of an HPLC-based protocol for 3-

NT quantification (described in Chapter II) in a wide range of biological matrices, namely 

(i) serum, (ii) urine, (iii) whole blood, (iv) B16 F-10 melanoma cell line, (v) growth medium 

conditioned with the same cell line, (vi) gram-negative (Escherichia coli) and (vii) gram 

positive (Staphylococcus aureus) bacterial and (viii) yeast (Saccharomyces cerevisiae)  

suspensions. 
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Table XIX. 3-NT concentration ranges found in different biological samples from both healthy and pathological states, as determined by different methodologies 

Reference Sample (mean age ± years) Biological sample Method Concentration 3-NT 

Söderling et al. (2003) 
12 healthy non-smoking 

volunteers (43±9) 
Plasma GC/NCI-MS/MS 0.74 ±  0.31 nM* 

Tsikas et al. (2003) 

10 healthy volunteers (51±10) Plasma GC tandem MS 1.149 ± 0.73 nM* 

6 healthy volunteers (25±3) Plasma GC tandem MS 2.677 ± 1.540nM* 

10 healthy volunteers (51±10) Plasma GC-MS 4.46 ± 4.49 nM* 

6 healthy volunteers (25±3) Plasma GC-MS 5.447 ± 2.783nM* 

W.-Z. Zhang et al. (2007) 

20 healthy non-smoking 

volunteers (41.2) 
Plasma LC-MS/MS 4.54 ± 2.75 nM* 

18 healthy smokers (42.0) Plasma LC-MS/MS 17.42 ± 11.6 nM* 

Radabaugh et al. (2008) 40 healthy volunteers Plasma LC–MS/MS 224–962 pg/mL (0.99-4.2 nM)# 

Misko et al. (2013) 

143 healthy volunteers Plasma 
Immunoaffinity two-dimensional 

LC-MS/MS 
536.4 pg/mL (2.49nM)# 

174 osteoarthritis patients Plasma 
Immunoaffinity two-dimensional 

LC-MS/MS 
704.1 pg/mL (3.11nM) # 

Pourfarzam et al. (2013) 

50 patients with no history of 

cardiac diseases (58.9 ± 10.3) 
Plasma 

HPLC-fluorescence detector  470 

nm 
4.4 ± 1.8 nM* 

50 stable CAD patients  

(61.2 ± 11.23) 
Plasma 

HPLC-fluorescence detector  470 

nm 
12.8 ± 3.9 nM* 

50 unstable CAD patients  

(59.9 ± 10.45) 
Plasma 

HPLC-fluorescence detector  470 

nm 
14.8 ± 4.8 nM* 

Sun et al. (2007) 70  healthy  Chinese volunteers Plasma Sandwich ELISA 7.9±7 nmol/L# 
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Table XIX. (continued)  

Reference Sample (mean age ± years) Biological sample Method Concentration 3-NT 

Radabaugh et al. (2008) 131 healthy volunteers Serum LC–MS/MS 179–1540 pg/mL (0.79 - 6.8 nM)# 

F. Khan et al. (2006) 

25 non-smoking healthy female 

volunteers (age 24–50) 
Serum Sandwich ELISA 1.1 ± 0.81 µM# 

24 systemic lupus erythematosus 

patients (age 18–50) 
Serum Sandwich ELISA 96.52 ± 21.12 µM# 

Tsikas et al. (2005) 10 healthy volunteers (36.5 ± 7.2) Urine GC–tandem MS 8.4 ± 10.4 nM 

Radabaugh et al. (2008) 8 healthy volunteers Urine LC–MS/MS 63.5–751 pg/mL (0.28-3.32nM)# 

Ryberg et al. (2004) 

19 patients without history or 

symptoms/ signs of 

psychiatric, neurological, 

malignant or systemic disorders 

Cerebrospinal fluid GC/NCI-MS/MS 0.35 ± 0.019 nM* 

17 Alzheimer’s disease  patients Cerebrospinal fluid GC/NCI-MS/MS 0.44 ± 0.031 nM* 

14 amyotrophic lateral sclerosis 

patients 
Cerebrospinal fluid GC/NCI-MS/MS 0.38± 0.034 nM* 

Radabaugh et al. (2008) 35 healthy volunteers Cerebrospinal fluid LC–MS/MS 335–5730 pg/mL (1.48-25.33nM)# 

Seven, Aslan, Incir, and 

Altintas (2013) 

15 volunteers with normal 

pressure hydrocephalia 
Cerebrospinal fluid ELISA based on the sandwich 573.54 ± 142.86 nM 

Seven et al. (2013) 

20 relapsing remitting multiple 

sclerosis  patients before methyl 

prednisolone therapy 

Cerebrospinal fluid ELISA based on the sandwich 927.89 ± 244.84 nM 
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Table XIX. (continued) 

Reference Sample (mean age ± years) Biological sample Method Concentration 3-NT 

Lärstad et al. (2005) 

10 healthy subjects (46 ± 2.6) Exhaled breath condensate GC/NICI/ tandem MS 31 pM* 

8 asthma patients (49 ± 5.1) Exhaled breath condensate GC/NICI/ tandem MS 31pM* 

Radabaugh et al. (2008) 40 healthy volunteers Synovial fluid LC–MS/MS 54.4–822 pg/mL (0.24-3.63nM)# 

Ueshima et al. (2007) 

5 chronic obstructive pulmonary 

disease patients (71.6 ± 2.4) 
Sputum HPLC-ECD 0.55 ± 0.15 pmol/mL# 

5 chronic obstructive pulmonary 

disease patients (71.6 ± 2.4) 
Saliva HPLC-ECD 0.02 ± 0.01 pmol/mL# 

* Free 3-NT; # Total 3-NT 
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3.2. Material and Methods  

3.2.1. Instrument and software 

As described in 2.2.1.  

3.2.2. Reagents and consumables  

As described in 2.2.2. 

3.2.3. Analytical procedure  

3.2.3.1. Mobile phase  

0.5% CH3COOH:MeOH:H2O solutions were prepared according to the proportion 15:15:70 

and filtered through a 0.45 µm membrane. 

3.2.3.2. Calibration standards  

0.5 mg/mL 3-NT and Tyr stock solutions were made using the mobile phase previously 

mentioned. All stock solutions were filtered through a filter membrane device. The first 

assays were performed using separate 3-NT and Tyr standard solutions in the following 

concentrations (50000; 25000; 10000; 5000; 2500; 1250; 625 and 312,5 ng/mL). Standard 

solutions were prepared by diluting the respective stock solution into the mobile phase. 

When required, warm was used in order to better dissolve the reagents. These standard 

solutions were used for calibration purposes.  

3.2.3.3.  Sample preparation: serum, urine, and whole blood 

The biological samples tested in this chapter are described in Table XX. All samples were 

initially submitted to a previously published protocol in order to precipitate proteins 

(Peixoto, 2012). Briefly, 1mL of 15% TFA (freshly prepared) was added to 1mL of each 

sample, and then vortexed for 20 seconds. Afterwards, samples were centrifuged at 8000 rcf 

during 10 min. The supernatant was then extracted and a new centrifugation was performed 

in order to pellet any remaining protein precipitates. Lastly, the obtained supernatants were 

filtered through a filter membrane device, and spiked with three different concentration 

levels of either 3-NT or Tyr (50, 1000, and 25000 ng/mL). Non-spiked supernatants were 

simultaneously tested.  
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Table XX. List of the biological matrices used to evaluate the applicability of the developed method 

 

3.2.3.4.  Sample preparation: B16 F10 melanoma cell line and conditioned growth 

medium  

B16 F10 murine (ATCC, No CRL®-6475) melanoma cell line was obtained from American 

Type Culture Collection (ATCC) and cultured in MEM supplemented with 10% heat-

inactivated fetal bovine serum (FBS; Gibco, Portugal), 1% penicillin/ streptomycin (Gibco) 

and 1% non-essential aminoacids (Gibco). Cells were grown at 37ºC in a humidified 5% 

CO2 atmosphere. B16 cells were tested at concentration 1x104 cells/mL. Cells stored at -

80ºC were initially submitted to a defrosting/freezing/defrosting cycle (15 min. each), 

followed by sonication for 10 min using two different systems: (A) Silent Crusher S 

(Heidolph Instruments GmbH & Co. KG, Germany), and (B) Bandelin Sonorex RK 100  

(Sigma-Aldrich®, Portugal), at 47-63 Hz and 35 kHz, respectively. Afterwards, samples 

were prepared as previously described in 3.2.3.3. Regarding this, 15% TFA was added prior 

(A1 and B1) or after (A2 and B2) the sonication step in order to assess the most suitable 

protocol. The medium used for cell growth (MEM, conditioned medium) was also tested for 

3-NT quantification, thus the same protocols for protein precipitation were also applied. 

Samples spiked with 25000 ng/mL of 3-NT were also tested. 

Sample 

ID 
Company Reference Designation Biological sample 

A Cormay 5-172 Cormay serum HN Human serum 

B Cormay 5-173 Cormay serum HP Human serum 

C Human 13951 
Serodo Universal control serum for 

Clinical Chemistry assayed 
Human serum 

D Cormay 5-174 Cormay multicalibrator level 1 Human serum 

E Randox UE  1557 Human precision control - level 2 Human serum 

F Randox UE  1558 Human precision control - level 3 Human serum 

G HOSLAB n/a HD normal control Human serum 

H Cormay 5-161 Cormay urine control level 1 Human urine 

I Cormay 5-162 Cormay urine control level 2 Human urine 

J Randox SD 126 RANSOD 
Bovine-based 

whole blood 

K Randox SC 692 RANDEL 
Bovine-based 

whole blood 

n/a, not applicable 
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3.2.3.5. Sample preparation: bacterial and yeast suspensions 

Gram-positive S. aureus (ATCC® 25923) and gram-negative E. coli (ATCC® 25922) 

bacteria, as well as the yeast S. cerevisiae were tested. Bacteria were inoculated into 

trypticase soy agar (TSA,VWR Chemicals Prolabo, Portugal), whereas yeast was inoculated 

into yeast extract peptone dextrose (YPD, VWR). Cultures were then incubated overnight at 

37ºC and adjusted to an optical density (OD) at 620 nm of 0.2 using sterile ultrapure water. 

Subsequently, cells were sonicated for 10 min (Silent Crusher S at 47-63 Hz). Afterwards, 

proteins were precipitated as described in 3.2.3.3. Samples spiked with 25000 ng/mL of 3-

NT were also tested. 

3.2.3.6. Recovery rate  

In order to assess whether the protein precipitation protocol affects the recovery rate of the 

developed method, a random serum sample was spiked with 25000 ng/mL of 3-NT prior or 

after the protein precipitation protocol has been applied. A non-spiked serum sample was 

use as control. Assays were performed twice, with technical triplicates.  

3.2.3.7. Chromatographic conditions  

The chromatographic conditions used were the same as described in 2.2.3.4. 

3.2.4. Statistical analysis 

Statistical analysis was performed using GraphPad Prism version 6.02 (La Jolla, CA, USA). 

Calibration curves/ equations were obtained using linear regression analysis. 

3.3. Results and discussion  

The purpose of this chapter was to assess which biological matrices are suitable for 3-NT 

quantification with our developed method, producing reliable results. Hence, a wide variety 

of samples was tested, ranging from human-associated matrices to microbial suspensions. 

A common approach for 3-NT quantification is the prior cleavage of peptide bonds in order 

to release the free amino acids from proteins in fluids or tissues. This cleavage may be 

achieved by acid hydrolysis or enzymatic digestion (Delatour et al., 2007; Radabaugh et al., 

2008; Tsikas, 2012). Delatour et al. (2007) compared both methods in terms of the reliability 

of the 3-NT measurement, providing evidence that acid hydrolysis leads to more reliable 

results. However, Radabaugh et al. (2008) pointed out that a prior acid hydrolysis step is 

more prone to artifact formation in comparison with enzymatic digestion. In fact, a concern 
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about 3-NT quantification residues in proteins is that the measurement of this Tyr nitration 

product may be subjected to artifacts and/or incomplete digestion of proteins. 

Vivekanandan-Giri, Byun, and Pennathur (2011) applied a protein precipitation protocol 

based on the addition of 10% trichloroacetic acid (final concentration) followed by a 

centrifugation step (3000g for 10 min), which is similar to the protocol used in this work. 

The protocol used in this work for protein precipitation was previously optimized by our 

group (Peixoto, 2012), providing evidence that 15% TFA is the optimum concentration for 

this kind of application. Moreover, the TFA solution should be prepared right before 

analysis, since older solutions may lead to erroneous results.  

 

3.3.1. Serum, urine and whole blood 

In this phase, several biological matrices from quality control samples were tested, such as 

serum, urine and whole blood. The linearity was determined for all the assays ( Table XXI). 

Each sample was spiked with three different 3-NT concentrations and a quantitative analysis 

was performed.  

 Table XXI. Linearity results obtained for all assays 

  

3.3.1.1. Serum 

As stated above, serum is one of the most tested biological matrices in routine diagnosis (Yu 

et al., 2011). The results drawn from this study revealed that 3-NT can be reliably quantified 

in serum samples, even when present at very high or low concentrations (Table XXII).  

 

Linearity  
3-NT 

(ʎ=215nm) 

3-NT 

(ʎ=276nm) 

3-NT 

(ʎ=356nm) 

Try 

(ʎ=215nm) 

Try 

(ʎ=276nm) 

Co-relation 

coefficient 
1.000 0.9997 0.9998 0.9997 0.9999 

Regression 

equation 

y =6.0545x108x 

-9563.5 

y =2.33 x108x + 

7823.4  
y =1.10x108x - 

2769,7  

y =1.78x108x -

9205.5 

y = 3.89x107x 

+8569.7 



Biomarkers of Nitrosative Stress. 

Development and validation of a new analytical method for 3-Nitrotyrosine quantification 

70 

 

Table XXII. 3-NT concentrations obtained in serum spiked-samples 

Sample_spiked 

concentration (ng/mL)    
3-NT concentration 

ng/mL (356nm)           

3-NT concentration 

ng/mL (276nm) 

3-NT concentration 

ng/mL (215nm) 

A_25000 22328 26070 22151 

A_1000 1035 897 1014 

A_50 84 84 216 

A_0 28 39 16 

B_25000 24403 24151 28619 

B_1000 799 973 1796 

B_50 83 198 1078 

B_0 29 39 17 

C_25000 22536 24324 20737 

C_1000 955 975 847 

C_50 82 75 94 

C_0 31 41 16 

D_25000 23258 24566 21509 

D_1000 911 943 812 

D_50 65 78 55 

D_0 43 54 30 

E_25000 23412 25026 21582 

E_1000 990 1017 843 

E_50 96 88 140 

E_0 32 40 19 

F_25000 22658 23538 20598 

F_1000 966 958 833 

F_50 80 66 46 

F_0 29 40 25 

G_25000 23512 24723 21704 

G_1000 939 961 860 

G_50 74 73 82 

G_0 29 39 16 

 

Moreover, it was possible to detect 3-NT at the three different wavelengths (215, 276 and 

356 nm) in all serums samples. As previously stated in Chapter II, 3-NT quantification at 

215 nm showed not good accuracy (RE >15%). With regards to the extraction efficiency in 

serum samples, the mean recovery rates were 94.31±4.43% at 356 nm, 100.46±9.81% at 276 

nm, and 214.92±209.76% at 215 nm. Figure 15 exhibits a representative chromatogram of a 

serum sample.  
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3.3.1.2. Urine  

Similarly to that observed for serum, a reliable 3-NT quantification was also possible in urine 

samples (Table XXIII). Urine is a biological sample with special characteristics, particularly 

its acidic nature, which is associated with 3-NT artefact formation (Mergola et al., 2013). 

Nevertheless, Mergola et al. (2013) have found a good 3-NT recovery rate (95%), especially 

in urine samples from patients with neurological diseases where low concentrations are 

usually found. Concerning the extraction efficiency in urine samples, the mean recovery 

rates were 95.03±5.12% at 356 nm, 97.93±23.51% at 276 nm, and 198.32±195.32 at 215 

nm. The recovery rate at 215 nm was due to the extremely high recovery rate observed for 

spiked-samples with 50 ng/mL 3-NT (423.65±373.12%). Representative chromatograms of 

a 3-NT-spiked urine sample with detection at 276 and 356 nm are shown in Figure 16 and 

Figure 17 , respectively.  

Overall, the recovery rates observed for serum and urine were > 90% (356 and 276nm).  

 

 

 

 

3-NT 

Figure 15. Representative chromatogram of a 3-NT-spiked serum sample (detection 276 nm). 
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3-NT 

Figure 16. Representative chromatogram of a 3-NT-spiked urine sample (detection at 276 nm). 

Figure 17. Representative chromatogram of a 3-NT-spiked urine sample (detection at 356 nm). 

3-NT 
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Table XXIII. 3-NT concentrations obtained in urine spiked-samples 

 

3.3.1.3. Whole blood 

Besides serum and urine, this study has also shown that 3-NT quantification is possible in a 

biological matrix like whole blood (Table XXIV). However, and contrary to that observed 

for all serum and urine samples, which detection was possible at three different wavelengths, 

detection in whole blood was possible only at 356 nm (Figure 18). Nevertheless, and as 

previously reported by Herce-Pagliai et al. (1998), 356 nm is the most specific wavelength 

for 3-NT detection (Figure 18 – c) and d)). Therefore, the mobile phase developed and 

validated in this study is suitable for 3-NT quantification in the three different sample types 

(serum, urine, and whole blood), with detection at 356 nm. On the other hand, Tyr 

quantification in whole blood was not possible, since an impure chromatographic peak for 

Tyr was observed in most cases.  

Regarding whole blood, the recovery rates at 356nm were 88.82±7.47% for 25000ng/mL, 

87.19±2.08% for 1000ng/mL, and 64.43±0.87% for 50ng/mL.  

Table XXIV. 3-NT concentrations obtained in whole blood spiked-samples; n/a not applicable 

Sample_spiked 

concentration (ng/mL) 
3-NT concentration 

ng/mL (356nm)           

3-NT concentration 

ng/mL (276nm) 

3-NT concentration 

ng/mL (215nm) 

H_25000 22794 23132 20437 
H_1000 937 771 762 
H_50 74 46 96 
H_0 31 39 16 

I_25000 23151 23042 20669 
I_1000 974 864 1050 

I_50 90 156 361 
I_0 33 39 17 

Sample_spiked 

concentration (ng/mL) 
3-NT concentration 

ng/mL (356nm) 
3-NT concentration 

ng/mL (276nm) 
3-NT concentration 

ng/mL (215nm) 

J_25000 23556 n/a  n/a.  

J_1000 916 n/a. n/a. 

J_50 62 n/a. n/a. 

J_0 29 n/a. n/a. 

K_25000 20914 n/a.  n/a.  

K_1000 887 n/a. n/a. 

K_50 62 n/a. n/a. 

K_0 30 n/a. n/a. 
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3.3.2. Other biological matrices 

In order to evaluate the applicability of the developed method in other biological matrices, 

we evaluated 3-NT detection/quantification in i) B16 F-10 melanoma cell line, ii) growth 

medium conditioned with the same cell line, iii) gram-negative (E. coli) and gram positive 

(S. aureus) bacterial and iv) yeast (S. cerevisiae)  suspensions.  

3.3.2.1. Melanoma cell line and growth medium conditioned 

Human melanoma cells express iNOS which is responsible for induced NO-based immune 

response. The expression of this molecule is associated with poor survival of patients with 

melanoma, thereby iNOS is a molecular marker of poor prognosis and a possible target for 

therapy (De Sanctis et al., 2014; Grimm, Ellerhorst, & Ekmekcioglu, 2008). On the other 

hand, a significant association between iNOS expression and 3-NT production has been 

3-NT 

c) d) 

Figure 18. Representative chromatograms of a 3-NT-spiked whole blood sample with detection at a) 

and c) 276 nm and b) 356 nm and d) non-spiked whole blood sample (detection at 276 nm) 

a) b) 

3-NT 
3-NT 
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found in melanoma patients, using immunohistochemistry detection (Grimm et al., 2008; 

Winkler, Koedel, Kastenbauer, & Pfister, 2001). Therefore, the applicability of the 

developed method in these type of cell lines was also evaluated.  

In this study, B16 F10 melanoma cell line (Figure 19) was tested, since it is widely used in 

a variety of studies, and is also associated with high metastatic activity (Herlyn & Fukunaga-

Kalabis, 2010). This cell line (at a concentration of ~104 cells/mL), as well as the medium 

used for cell growth (Figure 20), were spiked with the same 3-NT concentration (25000 

ng/mL). 

 

 

 

 

 

 

 

 

  

 

 

3-NT 

Figure 19. Representative chromatogram of a 3-NT-spiked B16 F10 melanoma cell line sample 

(detection at 276 nm). 

Figure 20. Representative chromatogram of a 3-NT-spiked growth medium conditioned sample 

(detection at 276 nm). 
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3.3.2.1.1. Optimization of cell lysis and protein precipitation 

Since human cells are difficult to disrupt, four different sonication-based protocols for cell 

lysis and protein precipitation were applied to B16 F-10 melanoma cell line, as well as to 

the medium used for their growth (conditioned medium). Cellular lysis through sonication 

is an effective way for the recovery of periplasmic, membrane-bound, or insoluble 

recombinant proteins (Bystryak, Santockyte, & Peshkovsky, 2015). Moreover, sonication 

systems are usually rapid and easy-to-use. Overall, protocols B1 and B2 provided better 

results, although protocol B2 (sonication with ultrasound bath followed by addition of 15% 

TFA) was superior (Figure 21). The differences between the results originated by the two 

sonication systems was likely to be due to the frequency used.  

 

3.3.2.2. Bacterial and yeast suspensions 

Besides human biological matrices, the developed protocol was also tested for 3-NT 

quantification in bacterial and yeast suspensions, which was also successful (Figure 22 and 

23). Therefore, this study provides evidence that the developed method may also be applied 

to different fields other than human biology, for instance in microbial research.   

The same protocol used for B16 F-10 melanoma cell line and growth medium (sonication-

based method) was also applied to bacterial and yeast suspensions, since several studies has 

claimed that sonication for 10 min is effective to achieve bacterial cells lysis  (Joyce, Al-

Hashimi, & Mason, 2011; Monsen, Lövgren, Widerström, & Wallinder, 2009).  

Figure 21. Results obtained using the different cell lysis and protein precipitation protocols. 



Biomarkers of Nitrosative Stress. 

Development and validation of a new analytical method for 3-Nitrotyrosine quantification 

77 

 

Furthermore, bacterial and yeast suspensions were made with ultrapure water, allowing cell 

wall disruption. Figure 24, 25 and 26 show representative chromatograms of 3-NT-spiked 

bacterial and yeast suspensions.  
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Figure 22. 3-NT quantification in 3-NT spiked bacterial suspensions. 
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Figure 23. 3-NT quantification in 3-NT-spiked yeast suspensions. 
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3-NT 

Figure 25. Representative chromatogram of a 3-NT-spiked gram negative bacterial 

suspensions sample (detection at 276 nm). 

3-NT 

Figure 24. Representative chromatogram of a 3-NT-spiked gram positive bacterial 

suspensions sample (detection at 276 nm). 
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3.3.3. Influence of protein precipitation protocol on recovery rates 

The recovery rates using a random serum sample spiked with 25000 ng/mL of 3-NT were 

calculated in order to assess the degree of analyte loss when the protein precipitation protocol 

is applied. Overall, the recovery rates obtained for samples spiked before and after the 

protocol has been applied were fairly similar (about 1% difference between them). This is 

indicative that such protocol does not lead to a significant loss of 3-NT and, as a result, does 

not compromise the accuracy of the results.  

3.4. Conclusion  

The protocol used (0.5% CH3COOH:MeOH:H2O 15:15:70 (v/v) as the mobile phase with 

detection at 356  nm), allowed the successful 3-NT detection and quantification in all 

biological matrices tested. Whole blood was the only biological matrix which 3-NT detection 

and quantification at 276 nm and 215 nm was not possible. Nevertheless, and unlike other 

previously described methods for 3-NT quantification, our HPLC-based method was 

successfully applied to a wide range of biological matrices, exhibiting a great performance 

in all of them. 

Figure 26. Representative chromatogram of a 3-NT-spiked yeast suspension sample 

(detection at 276 nm). 
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Chapter IV  

Main conclusions and future directions
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4.1. Main conclusions  

Research on 3-NT has been focusing on its use as biomarker of oxidative/nitrosative stress 

in wide range the pathologies. In another research line, 3-NT has also been proposed as a 

target for therapeutic interventions in pathologies involving oxidative stress (Joly & 

Grunfeld, 2014).  

Recognising the potential use of 3-NT as a tool for diagnosis and/ or treatment monitoring 

of several pathological conditions, we developed a simple, fast, and cost-effective HPLC-

based method, and validated it at the level of specificity, linearity, LoD and LoQ, accuracy 

and precision. Considering the availability of HPLC equipment in a wide range of laboratory 

settings nowadays, as is the case of clinical biochemistry laboratories, we chose this 

methodology as the base for our method development process.   

The first step of this study was the evaluation of different mobile phases in the detection and 

quantification of 3-NT. The KH2PO4-based mobile phases have presented the disadvantage 

of precipitation of potassium phosphate as opposed to 0.5% CH3COOH:MeOH:H2O-based 

mobile phase. Regarding the three concentrations of 0.5% CH3COOH:MeOH:H2O tested, 

the proportion 15:15:70 showed the best results and chromatograms exhibited well defined 

peaks. In this sense, mobile phase 0.5% CH3COOH:MeOH:H2O (15:15:70 (v/v)) was 

regarded as the most suitable for our purposes. 

The second step relied on the optimization and further validation of the selected method, 

which exhibited a good specificity, precision, accuracy and linearity. Moreover, LOD/ LOQ 

were in the order of units ng/mL, and the analysis time per sample was about 15 minutes.  

The next step was to evaluate the applicability of such method in different biological 

samples. Firstly, we evaluated its performance in the most tested biological matrices in 

clinical biochemistry laboratories, namely serum, urine, and whole blood. Regarding this, 

the method allowed the successful detection and quantification of 3-NT at 356 nm, although 

accurate quantification in serum and urine was also possible at other wavelengths (215 and 

276 nm). Additionally, and for the sake of increasing the applicability of the method, other 

biological matrices were tested, namely B16 F-10 melanoma cell line and respective 

conditioned medium, as well as bacterial and yeast suspensions. Again, detection and 

quantification of 3-NT was also successful at the aforementioned wavelengths. Up to date, 

and as far as we know, there is no published work describing 3-NT quantification methods 

the previous biological matrices by using HPLC or other chromatographic equipment. 
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Therefore, and besides the applicability of our method for clinical purposes, we gathered 

evidence in the present study that it might also be used for scientific research purposes, 

particularly, in the field of oxidative/ nitrosative stress. 

4.2. Future directions  

According to the main purpose of the present study, a major limitation of this study is the 

fact that real biological samples from both healthy volunteers and patients with different 

pathologies were not tested for our developed protocol. Therefore, it is pivotal in a near 

future to perform such analysis. If successful, the applicability of this method may be further 

evaluated, for instance, in the treatment monitoring of pathologies involving increased 

nitrosative stress state (e.g., CAD, neurodegenerative diseases, among others). 

Regarding technical aspects, it would be interesting to assess the protein content of the 

biological samples tested in this study, thus the efficacy of the protocol for protein 

precipitation could be better assessed. Moreover, the performance of our method should be 

compared with the performance exhibited by other methods already described and validated. 

For instance, the samples used in the present study could be tested using commercially 

available ELISA kits for 3-NT quantification. 

Moreover, it would be important to develop fast and easy protocols for sample concentration 

in order to obtain a more accurate quantification. Additionally, and given the current 

importance of the use of ecological methods, it would be interesting to find out whether more 

environment-friendly solvents, also called green solvents, could replace methanol in our 

developed method. Regarding this, ionic liquids might be a suitable alternative (Polyakova, 

Koo, & Row, 2006).  
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