
An Aspect-Oriented Framework for Orthogonal
Persistence

Rui Humberto R. Pereira
ISCAP

Instituto Politécnico do Porto
Porto, Portugal

rhp@iscap.ipp.pt

J.Baltasar García Perez-Schofield
Departamento de Informática

Universidad de Vigo
Vigo, España

jbgarcia@uvigo.es

Abstract— The life cycle of software applications in general is
very short and with extreme volatile requirements. Within these
conditions programmers need development tools and techniques
with an extreme level of productivity. We consider the code reuse
as the most prominent approach to solve that problem. Our
proposal uses the advantages provided by the Aspect-Oriented
Programming in order to build a reusable framework capable to
turn both programmer and application oblivious as far as data
persistence is concerned, thus avoiding the need to write any line
of code about that concern. Besides the benefits to productivity,
the software quality increases.

This paper describes the actual state of the art, identifying the
main challenge to build a complete and reusable framework for
Orthogonal Persistence in concurrent environments with support
for transactions. The present work also includes a successfully
developed prototype of that framework, capable of freeing the
programmer of implementing any read or write data operations.
This prototype is supported by an object oriented database and,
in the future, will also use a relational database and have support
for transactions.

Keywords: aspect, oriented, programming, orthogonal,
persistence

I. INTRODUCTION
An Orthogonal Persistent system aims at giving [1-4]

programming transparency, more productivity and a
programming less prone to errors, in what the persistence
aspect is concerned. This paper analyzes the requirements of a
system on that paradigm and the viability of the
implementation of that concern in a framework that is truly
aspect-oriented [5] in the context of the Object Oriented
Programming. A successful implementation of that concern as
an aspect turns it possible to modularize completely the code
responsible for storing and retrieving the object data on the
secondary storage device, in a way that the program doesn’t
need to be prepared to take care of that work. Moreover, that
implementation could be totally reused, as a generic

framework, in any other program without any modifications.
Despite the Orthogonal Persistence benefits, the programmer
can still be oblivious about that concern.

Section II provides an overview of the aspect-oriented
paradigm presenting the main concepts. In the following
section are presented the motivations and challenges of
applying an aspect-oriented programming in order to
implement orthogonal persistence in object-oriented
applications. On the section IV we present our prototype, a
reusable aspect oriented framework for object Orthogonal
Persistence in Java environment. The section V discusses some
related work and the last two sections present our plans to
future work and some conclusions obtained during the present
work.

II. ASPECT-ORIENED PROGRAMMING
In general, any software application has one or more

concerns: Logic, Presentation, Distribution, Persistence, etc.
The programmer tries to modularize the code, with the best
organization, in order to minimize the tangle of those concerns
and maximize de code reusing. The procedures, the inheritance
and the classes, in the Object Oriented Programming, as well as
programming patterns provide a good level of code reusing.
However, they are incapable of cross-cutting the application
concerns, separating it completely.

The Aspect Oriented Programming (AOP) [5] consists in a
programming technique that allows the separation of those
concerns. In an object oriented context, a concern that is
transversal to all objects could be segregated from those objects
and putted in a specialized object called Aspect, while the
remaining concerns, that are specific from each object,
maintain themselves implemented in the object class.

The ability of quantification [6] of all join points in the
objects code make it possible to turn those objects oblivious [6]
about the concern aspects. This characteristic of Quantification,
present in the AOP, allows the definition of crosscutting
expressions that identify the points where the aspect code must
be woven. By doing this, the object code doesn’t need to be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47142829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

prepared to use aspects. To this second characteristic present in
the AOP is called Obliviousness [6]

III. DATA PERSISTENCE AS AN ASPECT
The persistence is a concern that is transversal to any

component (objects, functions or procedures) in the majority of
the software. Due to that, it is frequently considered as good
example of crosscutting concern that can be aspectized.

Being the persistence one of the many aspects that a
developer has to deal with, during software development,
certainly it is not the most important one for the software
project. The modularisation of the code responsible of data
storage and retrieval, as an aspect, eliminates the work of
writing any line of code by the application programmer
transferring that concern to an underlined framework. The
application, in this scenario, is developed without any need of
explicitly write or read the persistent data from the storage
device. The programmer only need to distinguish which objects
are short lived, in memory, or long lived on a storage device,
independently of its type. It is notorious the extreme level of
code reutilization that can be achieved by this kind of
framework. However, as you will see forward, in the related
work, nowadays there are still no systems able to fully
aspectize that crosscutting concern [7].

A. Orthogonality on object persistence
In the last years several researchers have study the data

persistence theme introducing several new concepts as long the
as the research was evolving. The persistence, as Atkinson et al
[1] conceptualized, introduced the concept of Orthogonal
Persistence, and later, for objects, by following the three
principles that Atkinson and Morrison [8; 9] formulated, giving
to the programmers total abstraction of their data on objects,
allowing code reuse, the focus on application logic and data
consistency. Those tree principles are desirable characteristics
that any system should have in its persistent layer.

Persistence independence - The same code should be
applicable for both transient objects and persistence objects.
The advantages are obvious allowing the code reusability by
the abstraction of the kind data object. This also indicates that
the persistence framework semantics must not be changed in
both cases. This principle is also known as transparent
persistence.

Type orthogonality - All objects can be persistent or
transient irrespective of their types, sizes or any other property.
Any type of object, without exception, can be long-lived or
transient.

Persistence Identification – The form of identifies and
persist object is orthogonal, i.e., all objects are available from
one, or more, common root [9], and all it’s related, are accessed
on same way. This compromise guaranties a uniform
mechanism of retrieve the stored objects and its relations. This
principle is also referred as reachability for many researchers
[1] but this initial term was superseded for Transitive
Persistence a more suggestive ODMG1 term.

1 http://www.odmg.org

This paradigm of persistence gives total transparency to the
programming language while it interacts with the existent data
on the underline repository, whatever be the model, Relational
or Object Oriented, its technology or location. On this field,
concepts like Safe Queries [10] and Native Queries [11], may
help the better understanding of the orthogonalitly of the
persistence and it potentialities.

However, all this carelessness given to the programmer
puts several challenges to the management system database
designers and many of them are not yet have been solved. In
fact, this paradigm of data object persistence turns the problem
very complex and, moreover, also introduces performance
issues, special at system main memory management level.
These issues motivated some authors like Cooper and Wise
[12], to criticise the Orthogonal Persistence and advocate
another alternative model less restrictive named as Type-
Orthogonal Persistence opposing to the unrestricted model of
Orthogonal Persistence presented by Atkinson and Morrison
[9]. Analyzing the Cooper and Wise arguments we conclude
that are essentially performance issues and not for restrictions
made to the programmer or the language.

Despite of the many challenges posed by this form of object
persistence, the advantages are tremendous not only at level of
code reuse, as already mentioned, but also on others point of
view like the data type safety checking, reducing the coding
errors, promoting a better code organization, on the improving
the applications refactoring processes, a practices very
common on most modern agile methodologies of software
developing, and also on solving the object-relational
impedance mismatch when repository is a relational databases.

This form of persistence has several implementations, in
some cases not totally compliant with the concept. PJama [3],
OPJ [4], Visual Zero [2; 13] and Thor [14], are examples of
those systems that implement Orthogonal Persistence. Some
object oriented databases, as well some object-relational
mapping tools, also implement some level of orthogonality.

B. Is AOP suitable for Orthogonal Persistence?
An AOP language allows quantify programmatic assertions

over the code, at any point, that is oblivious to those assertions.
This ability turns the AOP well suited to develop the
orthogonal persistence concern for that system as an aspect.
Since this kind of persistence advocate total transparency to
application and programmer, two objects of the same class
could have completely different persistence behaviours in
multiple distinct contexts.

Regarding to the Type Orthgonality principle, all objects, of
any class, could be persistent or transient. In the generally of
the frameworks (like Hibernate, EJB or JDO), the persistence
of an object is achieved by inheritance or by implementing
special class or interfaces, that conditions completely that
principle of orthogonality. Using AOP, because we can
quantify any pointcut, on any type object, the weaver
mechanism could weave the code responsible for persistence
on the object. This avoids the requirement of that object
extending any super class or implements any interface.

Considering the Persistence Identification principle, the fact
of an object is long lived or transient depends only if it is

related directly or indirectly from a persistent root (an object).
Since the aspect code have conditions to know the semantic of
relationship among the objects, it is possible to achieve that
principle by examining the data contained in objects and their
relationships.

Considering the last two arguments, that any object can be
persistent, despite of its type, and the orthogonal way of
identification of those objects, so it is not needed to have a
special care handling those persistent objects in comparison to
transient ones. Since the aspect code can by itself distinguish a
short-term from long-term object, by examining the
relationships among objects up to the persistent root, the code
contributed by the persistence aspect makes the logic
orthogonal to the persistence concern. This way, the principle
of persistence independence is achieved.

C. Issues when aspectizing object persistence
The aspectization of the persistence concern raises several

implementation problems that need to be solved. As described
early, at conceptual level it may seem easy, the persistence is a
concern and the AOP is a programming technique used to
implement concerns, but in practice isn’t so easy.

During the analysis of the persistence concern to implement
as an aspect, that provides a CRUD (Create, read, update and
delete) group of four operations while meeting the ACID
(Atomicity, Consistency, Isolation, Durability) properties on
transactions, emerges a vast and diverse set of issues. From the
importance of the role played by the Object Id, the capability of
distinguishing transient and persistent objects instances of the
same class, object creation versus object instantiation, object
deletion versus object instance destruction, until the
performance challenges are issues that have different contours
depending of the underling type (relation/object) of persistent
storage.

IV. FRAMEWORK FOR ORTHOGONAL PERSISTENCE
In our study we have developed a prototype [15] using

AspectJ, a compile-time Java based AOP language [16]. This
prototype, in order to provide object persistence services, uses
db4objects a pure object database [17]. On next versions of this
prototype, also it will be able to use a relational data base. The
prototype conceptual basis modularizes, in a natural way, the
system architecture on aspects turning the use of an object or
relational database as system aspect as any other.

This prototype is actually a framework capable to be totally
reused in any Java application, providing orthogonal
persistence services to that applications in a oblivious [6] way.
Those applications don’t care about the persistence aspect
because this framework takes care all about it.

Like in the Atkison and Morrison model [9], this
framework provides a special object, that we have called
PersistentRoot, that gives access to all persistent data objects,
besides other low level services like caching. The persistent
data object can be of any class since it source code it is
available at compile moment, an AspectJ limitation.

The following code it is one of the demonstration program
of this framework.

Figure 1. Application example with an n-n relationship

At line 01, the persistent root it is created. In the next four
lines several data objects are instantiated, by it constructors,
and interrelated. At this moment, all those objects are transient.
In the other next four lines those objects, and new others, are
made persistent simply by the fact of be related with the
persistent root object. At the line 10, the student address object
it is deleted from the database by the fact it student object be
persistent and it reference to the address object it is made null.
Next it is created again in a new Address object. Obviously the
line 10 isn’t necessary.

No data object needs to call any method to achieve
persistence. There is not a special class implementing a specific
Java interface or extending a super class, as well. That
behaviour is implemented as aspects coded in AspectJ.

The framework architecture, presented in figure 2, it is
organized in three main components/layers: the PersistentRoot
object, object persistence aspect and database persistence
aspect. The first element acts as interface between the upper
layer application and the framework itself. The second
implements the object persistence aspect, independently of the
type of the underline data storage. Intercepts all read and write
operations on object fields and also manages the object cache.
The third element, the database persistence aspect, takes care of
all issues related with database connection and cache data
persistence. At the lowest level it is the object database.

This framework prototype uses intensively the Java
Reflection API to know the internal structure of the object and
it fields. This is crucial to the object data hierarchy drilldown
until the object primitive data types. The prototype provides
support to object arrays. This particular type of object needs a
specialized treatment since it must be disaggregated in all
individuals objects of one or more types. This procedure isn’t
need in an object database, like the one used, it was an option
made to achieve a normalized mechanism in the object
persistence aspect to enable a system future evolution to a
relational databases, and for cache performance issues allowing
a granularity until the elementary object.

Figure 2. System and framework architecture

In order to the object persistence aspect distinguish between
two objects, of a same class, to know which one is persistent or
is transient, that is done by a search on the system cache and
also on all related objects. An instantiated object that is referred
in cache has an Object Id, so it is long-lived. This solution
avoids any preparation at type, code or object level [7]. By this
way, the prototype meets the Persistence independence and
Type Orthogonality principles.

The use of the framework it is very simple. As already
referred, the application objects source code it is needed for the
woven and compiling process.

To write an application, just add the framework package
and start write code with any hurry about persistence. To
achieve final binary code, the process it is very simple and
completely automated by the Integrated Development
Environment (IDE)2. The following diagram illustrates all the
phases since the source to the final executable in bytecode.

Figure 3. Executable generation

V. RELATED WORK
Soares et al [18; 19] present their experience while

refactoring a web application, a Health Watcher system,
modularizing all code related with distribution and persistence
concerns in AspectJ aspects.

2 We have used Eclipse - http://eclipse.org

This experience demonstrates the viability and shows some
benefits of apply aspects in real word applications while also
indentified some drawbacks of the AspectJ. But the way that
those two aspects were implemented, in our opinion, moves
away from the essential idea of aspect-oriented programming
by the fact of limiting the done work to a reorganization of the
code, specific the application, transferring that code to
specialized modules, the AspectJ aspects. This way of
aspectization does only allow to reuse the specific code inside
the application or on the several modules (client, server and
other in future). Code reusability is limited to some interfaces
and, on other hand, all SQL statements are hard-coded in the
aspects. The distributed architecture, applying a Facade pattern,
itself, already enables a good level of code reuse.

On specific concern of persistence, a data abstraction layer,
based on business data collections that allow the application
works transparently in two versions of data, persistent and non-
persistent data, was implemented in aspects. This interesting
idea it is a common programming pattern used in many
applications, in this case was implemented on aspects that turns
their work an important experience.

Another important work [20], that really presents the
persistence as an aspect, describes an aspect-oriented
framework for persistence. This solution, by using the
reflection capabilities, on the presented case the Java
Reflection API, and a specialized aspect for translation Object-
Relational, frees the programmer of doing any mapping from
objects in memory to their related tables on the relational data
base.

In order to identify the persistent objects, this framework
requires that all those objects must have a special and common
class as their super class. The PersistentRoot, beside of
providing deletion functionalities, also provides a mean to
define a pointcut that quantify the join points where the
persistence code must be woven. This super class can be totally
reused in any other application, but this solution breaks the
Atkinson and Morrison principle of the type Orthogonality [9]
conditioning the applicability to objects that extend the
PersistentRoot class.

The authors of this work also identified two issues difficult
of aspectize in an oblivious way: the data retrieval, because it’s
declarative nature, and the deletion of objects because the
difficult of know when an object is eliminated. In fact, the
mechanisms of data retrieval have a declarative nature. But that
nature also exists when we are searching objects in memory
with large data collections. So the question is how to obtain a
common mechanism capable of be applied both in persistent
and non-persistent data. On this matter, the obliviousness about
the semantic of the data, doesn’t have sense, because that
semantic is part of the application logic. Native Queries, in our
opinion, already provide the needed transparency allowing a
safe and common way to manipulate objects. A second issue is
the difficulty in detection when the object is deleted, because in
Java, and many other platforms, there is a garbage collector
that do the job of eliminate the unneeded objects from the
memory. So to resolve this problem, they introduce a field, it
getter method and a method that allow an explicit object
deletion invoking. This field and methods, implemented in the

super class PersistentRoot, allows the aspect code to know
when the object must be deleted from persistent store. Our
prototype doesn’t suffer of those two limitations as described
above.

Al-Mansari et al [7] presented a complete solution for
Orthogonal Persistence based on two new concepts: Path
Expression Pointcuts (PEP) and Persisting Containers. The
Path Expression Pointcuts [21] are a new pointcut construct
that applies path expressions on object relationships in the
same fashion that XPath do in a XML file to find a node. PEP
are a powerful quantify mechanism that is capable of identify
transversally all join points that match with a given object
relationship path expression, providing the aspects with access
to non-local object information. As explained above, this non-
local information it is crucial to identify which object are
directed or indirectly related with the Persistent Root [9]. The
following expression exemplifies this concept.

pointcut trapUpdates(PersistentList pl,Object o):
set(* *) && target(o) && path(pl -/->o);

example extracted from:[7]

In this example, the path expression “pl -/-> o” match with
all objects relations, with any length, from an PersistentList
object pl to a object o. The pl object is the root and the object o
is the aspect target object.

The Persisting Container [7] is a special object maintained
by a aspect to provide persistent services. The idea is similar to
spontaneous containers [22]. This container, besides play the
role of Persistent Root, is capable of spontaneously give
persistence capabilities to objects related with.

This work was the most relevant one of all the reviewed
research projects and that goes closest to Orthogonal
Persistence and Obliviousness. Don’t require any preparation at
type, code or object level [7] as happens in the previous
presented works. But this solution does not yet have an
efficient implementation of Path Expression Pointcuts. This
issue is referred by the authors as future work. As already
referred, on our prototype, we have used the information cache
to obtain that object non-local information.

Transactions and failure has been referred by authors [7;
19; 20; 23; 24] as impossible to be totally aspectizable and turn
the programmer oblivious about both issues. Kienzle and
Guerraoui [24] made a detailed study about the aspectazition of
those concerns and classify that in three levels of different
ambition of aspectization:

� Transaction semantics – All semantic about the
transaction is hidden. They consider as impossible to
achieve.

� Transaction interfaces – On this approach, the
transaction interfaces (begin, commit, abort, etc) are
transferred from the functional parts to specific
aspects. With this solution, a method can be made
transactional by encapsulating it in a around advice
surrounding the advice proceed statement with the
transaction interfaces. This approach leads to some
problems. The roll back operation must be done
externally to the aspect turning it an intricate code

where part of then is in the aspect and the failure
treatment remain on the functional part of the
program. The authors also refer this level of
aspectization as impeditive to collaboration among
threads, by the fact they can’t enter in each other
transactions. They also argue that makes no sense to
turn all applications objects into transactional objects,
only methods that have transactional behavior must be
intercepted and aspectized.

� Transaction mechanisms – This less ambitious level,
it is very close to our plans to implement transactions,
despite in this case the recovery and undo
mechanisms are implemented in the OPTIMA [24],
the framework used in their experiences. Our
approach extends this one, by providing a special
Transaction Context object that implements all those
mechanisms and give selectively transactional
behavior to the method objects.

The system architecture presented by Soares et al. [19]
naturally resolve most of the transaction problems by using a
Facade pattern, moreover, the implemented aspects are too
specific for the developed system allowing a very low level of
code reuse.

VI. FUTURE WORK
The Al-Mansari et al [7] proposed solution puts a practical

problem when developing a prototype because the essential
mechanism, the Path Expressions Pointcut, does not yet have
any implementation. So, the developed prototype presented in
this work, implement an alternative mechanism that provides
the same non-local information. So the future work will may
pass to find a solution to get that precious information, using
Path Expressions Pointcut. With this kind of expressions, the
advice is called with much less often than our actual solution.

This work presented the PersistentRoot object that provides
persistence services on the prototype. Those services, at current
version, don’t include any transaction capabilities. Future work
will use important Kienzle and Guerraoui [24] work results.
Our approach aspectizes the transaction mechanisms and
provides an interface to the application interact with objects in
a transactional context. A special object, that we have called
TransactionContext, together with the existing PersistentRoot,
will be able to save the transaction state, give transaction
behaviour and failure treatment mechanisms, to any associated
object in the same paradigm that PersistentRoot gives
persistence services to any object related with it.

As already referred above, our prototype use an object
oriented data base. Considering the actual importance of the
relational databases at the performance level and because they
have a considerable market share, the prototype must be able to
use them as information repository in order apply our
framework on a real life production system.

VII. CONCLUSIONS
The existence of an object root [9] (in the present work, the

PersistentRoot), plays an important role to any system that
really wants to be obliviousness about the persistence concern.
This element works as interface between the upper layer of

applications and the underlying data store mechanism. It
provides the needed persistence mechanisms enabling the
conditions to aspectization of the persistence concern.
Initalization and finalization of connection, data reads and
writes can easily be wrapped by an advice that does the all job.
Thus, it is possible to obtain a framework that is capable of
supply orthogonal persistence services in an oblivious fashion.

In the specific case of failed transactions, we among other
authors [24] consider that does not make sense to fully
aspectize those concerns, because that is part of the application
logic concern.

The developed prototype it is a generic and reusable
framework and it is capable turn programmer and application
oblivious about the persistence concern. We believe that
freeing the programmer of taking care of that concern improves
the quality of the code, besides of giving a valuable boost in
productivity.

REFERENCES

[1] Atkinson MP, Bailey PJ, Chisholm KJ, Cockshott PW and
Morrison R. "An approach to persistent programming," In The
Computer Journal, pp. 360-365, 1983.

[2] García Perez-Schofield B, García Roselló E, Pérez Cota M and
Ortín Soler F. "Technical Report - PROWL, a computer language
for prototype-based objectoriented programming.,"Universidad de
Vigo - Departamento de Informática, 2008.

[3] Atkinson MP, Daynès L, Jordan MJ, Printezis T and Spence S.
"An orthogonally persistent Java," In SIGMOD Rec., pp. 68-75,
1996.

[4] Marquez A, Blackburn S, Mercer G and Zigman JN.
"Implementing orthogonally persistent Java," In Pos-9: revised
papers from the 9th international workshop on persistent object
systems, pp. 247-261, 2001.

[5] Kiczales JG, Lamping J, Mendhekar A, Maeda C, Lopes C,
Loingtier J and Irwin J. "Aspect-Oriented Programming," In
European Conference on Object-Oriented Programming, pp. 220-
242, 1997.

[6] Filman RE and Friedman DP. "Aspect-oriented programming is
quantification and obliviousness," RIACS, 2000.

[7] Al-Mansari M, Hanenberg S and Unland R. "Orthogonal
persistence and AOP: a balancing act," In Acp4is '07:
proceedings of the 6th workshop on aspects, components, and
patterns for infrastructure software, pp. 2,2007.

[8] Atkinson MP. "Persistence and Java - A Balancing Act," In
Proceedings of Objects and Databases, International Symposium at
ECOOP 2000. Sophia Antipolis, France, June 2000. Published as
Lecture Notes in Computer Science, (Dittrich, KR et al Eds).
Volume No. 1944., pp. 1-31, 2000.

[9] Atkinson M and Morrison R. "Orthogonally persistent object
systems," In The VLDB Journal, pp. 319-402, 1995.

[10] Cook WR and Rai S. "Safe query objects: statically typed objects
as remotely executable queries," In Icse '05: proceedings of the
27th international conference on software engineering, pp. 97-
106,2005.

[11] Cook WR and Rosenberger C. "Native Queries for persistent
objects, A design white paper," db4objects inc.,2005.

[12] Cooper T and Wise M. "Critique of orthogonal persistence," In
Iwooos '96: proceedings of the 5th international workshop on
object orientation in operating systems (iwooos '96), pp. 122, 1996.

[13] Perez-Schofield JBG, Rosello EG, Soler FO and Cota MP. "Visual
Zero: A persistent and interactive object-oriented programming
environment," In Journal of Visual Languages & Computing, pp.
380 - 398, 2008.

[14] Liskov B, Adya A, Castro M, Ghemawat S, Gruber R, Maheshwari
U, Myers AC, Day M and Shrira L. "Safe and efficient sharing of
persistent objects in Thor," In SIGMOD Rec., pp. 318-329,1996.

[15] { http://www.iscap.ipp.pt/~rhp/aof4oop }
[16] Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J and

Griswold WG. "An overview of AspectJ," In Ecoop '01:
proceedings of the 15th european conference on object-oriented
programming, pp. 327-353, 2001.

[17] Paterson J, Edlich S, Hörning H and Hörning R , "The definitive
guide to db4o," ,Apress, 2006.

[18] Soares S, Laureano E and Borba P. "Implementing distribution
and persistence aspects with aspectJ," In SIGPLAN Not., pp. 174-
190, 2002.

[19] Soares S, Borba P and Laureano E. "Distribution and persistence
as aspects," In Softw. Pract. Exper., pp. 711-759, 2006.

[20] Rashid A and Chitchyan R. "Persistence as an aspect," In Aosd
'03: proceedings of the 2nd international conference on aspect-
oriented software development, pp. 120-129, 2003.

[21] Al-Mansari M and Hanenberg S. "Path Expression Pointcuts:
abstracting over non-local object relationships in aspect-oriented
languages," In Node/gsem, pp. 81-96, 2006.

[22] Popovici A, Alonso G and Gross T. "Spontaneous container
services," In Ecoop 2003 -- object-oriented programming, pp.
499-551, 2003.

[23] Soares S and Borba P. "Towards reusable and modular aspect-
oriented concurrency control," In Sac '07: proceedings of the
2007 acm symposium on applied computing, pp. 1293-1294, 2007.

[24] Kienzle J and Guerraoui R. "AOP: Does it make sense? The case
of concurrency and failures," In Ecoop '02: proceedings of the
16th european conference on object-oriented programming, pp. 37-
61, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

