
Orthogonal Persistence in Java supported by Aspect-

Oriented Programming and Reflection

Rui Humbero R. Pereira

Instituto Superior Contabilidade e Administração do Porto

ISCAP/IPP

Porto, Portugal

rhp@iscap.ipp.pt

J.Baltasar García Perez-Schofield

Departamento de Informática

Universidad de Vigo

Vigo, España

jbgarcia@uvigo.es

Abstract — The persistence concern implemented as an aspect

has been studied since the appearance of the Aspect-Oriented

paradigm. Frequently, persistence is given as an example that

can be aspectized, but until today no real world solution has

applied that paradigm. Such solution should be able to enhance

the programmer productivity and make the application less

prone to errors. To test the viability of that concept, in a previous

study we developed a prototype that implements Orthogonal

Persistence as an aspect. This first version of the prototype was

already fully functional with all Java types including arrays.

In this work the results of our new research to overcome some

limitations that we have identified on the data type abstraction

and transparency in the prototype are presented. One of our

goals was to avoid the Java standard idiom for genericity, based

on casts, type tests and subtyping. Moreover, we also find the

need to introduce some dynamic data type abilities. We consider

that the Reflection is the solution to those issues. To achieve that,

we have extended our prototype with a new static weaver that

preprocesses the application source code in order to introduce

changes to the normal behavior of the Java compiler with a new

generated reflective code.

Keywords-component; aspect-oriented programming; reflection;

genericity, type inference; type erasure; framework;

I. INTRODUCTION

The initial version of the aof4oop [1][2] framework was

already a fully functional system capable of providing

Orthogonal Persistence [3] on any Java type, including arrays,

to a software application. Using this framework prototype, the

application can easily and transparently manage its data objects

physically stored in a database. The current version only

supports DB4Objects [4] as backend database and was not

developed with performance goals.

This prototype, despite its limitations, demonstrated

some of the advantages of Orthogonal Persistence in terms of

productivity and final code quality. It implements the

persistence concern as an Aspect, maintaining the application

oblivious [5] of any technical details about the interaction with

the database. It was designed to be totally reusable without the

need of any kind of adaption on the code. The following code

fragment shows the way an application can interact with data

objects.

CPersistentRoot psRoot;

Student student;

Student student2;

Course course;

// get a persistent root (psRoot)

psRoot=new CPersistentRoot();

//Get one Student object from the psRoot (the

database)

student=psRoot.getRootObject("rui");

//Get one Course object from the psRoot (the

database)

course=psRoot.getRootObject("TO");

//Associate the persistent Student object with the

persistent Course

course.addStudent(student);

// Instantiates a new Student object (still

transient)

student2=new Student(1234,”Student Name”,”Student

Address”);

// Turns the student2 persistent simply because it

is associated to another persistent object

course.addStudent(student2);

This form of persistence treats orthogonally all objects,

following the three principles formulated by Atkinson and

Morrison [3]. Their state persistence is only dependent if they

are associated with another persistent object, or not, that is, if

they are reachable by another persistent object [3].

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47142828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In the next section we will briefly describe the system

architecture of the developed framework.

In the section III we will discuss the implementation of

Genericity in the Java platform and the drawbacks of the type

erasure approach adopted in the version 5.0 of this platform.

We will also debate the implications of the type erasure for the

parametric polymorphism and the persistence.

Sections IV and V will present the recently

improvements supported on Generics to the transparency and

data abstraction of the prototype. We will also describe a new

extension to our prototype that allows going even further into

its orthogonality.

In the section VI we will debate the drawbacks of that

improvement and finish this study with some conclusions.

II. THE PROTOTYPE FRAMEWORK

The developed framework provides orthogonal

persistence services to an application that can easily and

transparently manage its data objects physically stored in a

database. Those persistence services were implemented as an

Aspect in terms of Aspect-Oriented Programming (AOP) [6].

The AOP consists on a programming technique that

allows the transversal separation of concerns. In an object

oriented context, a concern that is transversal to all objects can

be segregated from those objects and put in a specialized object

called Aspect, while the remaining concerns, which are specific

to each object, maintain themselves implemented in the object

class.

The persistence is a concern that is transversal to any

component (objects, functions or procedures) in the majority of

the software. Due to that, it is frequently considered as a good

example of crosscutting concern that can be aspectized. The

main goal of the prototype is to test that concept.

The following diagram presents the system architecture.

Figure 1- System architecture

III. GENERITICY

Since the objects obtained from persistent root

psRoot can be from any type, the method

getRootObject(String rootName) must return an

object from the class Object. But when that return value is

assigned to a Student, a Course or any other type of reference,

the static type checking rules of the compiler requires a cast

from Object to the actual type of the persistent object

obtained from database.

Generics support came with the 5.0 version of the Java

platform. This new feature was introduced to solve similar

problems, such as type checking on data collections. Before

support for generics appeared, the object references when put

on a collection (an ArrayList for instance) were considered

as Object, the top level class in the hierarchy of the Java

classes. The types of those objects were not tested, so any type

could be added to that collection. A cast is mandatory in the

opposite phase, when any object is retrieved from that data

structure. The compiler does not allow for the assigning of an

object pertaining to a super class to a reference of a subclass.

This Java generic idiom [7], supported by the standard

libraries based on casts, type tests and the Object class as a

generic type, allows the programmer to deal with the data type

generiticity, but the expressiveness and the type safety of the

language is very compromised. Consequently, the presented

framework in this work is also compromised.

A. Parametric Polimorphism and type erasure

With the Parametric Polymorphism [7] present in the

Java 5.0, classes can be generic through types parameters. The

instantiation code statement of a collection should use a

parameter with a type but, as a result, those problems

described above are solved. The compiler does consider that

all objects on that collection pertain to a single type, the class

specified in the type parameter. It will only accept that class of

objects and when objects are retrieved it will not require any

cast, because the compiler will insert it automatically. This

new approach is based on a type erasure idiom [8] and frees

the programmer of all those concerns. When the generic class

is instantiated the compiler statically replaces (erases) that

parametric data type by a raw data type, typically an Object.

The compiler also introduces the necessary type checks at

compile-time and uses bridge methods to ensure the type

security of the retrieved objects.

The authors [7] of this approach justify their option, of

using raw types, because serves two important purposes: the

support of interfacing with legacy code, retrofitting all existing

and used libraries in many production applications; and they

support writing code in those few situations where it is

necessary to downcast from an unparameterized type (like

Object) to a parameterized type (like ArrayList<A>),

and one cannot determine the value of the type parameter.

The adopted solution in the Java platform 5.0, as

already described, allows a normal coexistence of non-generic

and generic code. That it is achieved by the compatibility of

the binary class files that represents each class. That

compatibility it a complex issue to solve that results of the

multiple versions of structure that a polymorphic class may

have, depending of the polymorphic parameters. That multiple

representations of the same class are not suitable of being

represented within a pure homogeneous translation [9][10],

applied in the previous versions of the Java platform. Another

considered alternative was the heterogeneous translation

[9][10]. This one maps a parameterised class into a separate

class for each instantiation. For example, the heterogeneous

translation of the Pizza class Hashtable<Key,Value>

replaces the instance Hashtable<String,Class> by the

class Hashtable$_String_$_Class_$ [9]. But, this

other type of translation, besides of obvious disadvantages

such as the extra needs of disk and memory space, is

incompatible with class files structure used in the previous

versions of the Java platform.

Despite of the advantages of the adopted solution,

many authors are very critic about this implementation option

arguing that compromises the type safety, the type

orthogonality and others important characteristics of the Java

language [11][12][13]. These criticisms are specially harsh in

regard to implementation decisions (based in the type erasure

idiom [8]) while the chosen syntax has been well received

[11].

In the concern the persistence, the adopted approach

compromises the implementation of Java orthogonal persistent

systems [12][13][14][15]. The erasure process, which consists

of eliminating the type parameters at the end of compile-time,

affects Reflection on the parametric polymorphic classes since

the type information is not available at run-time. As well

known, the Reflection it is particular important to persistence

mechanisms and database systems, moreover, the incorrect

run-time type information also affects the Reachability of the

objects [12]. If an object contain references to a

Collection<Person> there is a risk of all that person

objects to be stored as pertaining to class Object. And if a

query is applied to those collection elements, looking for

Person objects, it obtains an empty wrong result set, beside of

require a casts.

B. Generic Methods

Parametric polymorphism is also applied on methods to

provide them with Genericity. A given method is identified as

generic if it declares one or more type variables (using the

same syntax, as in parametric polymorphic classes with type

parameters [8]). A type parameterized method has the ability

of inference their return type value in same scenarios. Those

characteristics have been explored in our prototype framework

and it explained in detail in the next section.

IV. STEP FORWARD INTO TRANSPARENCY AND DATA

ABSTRACTION

Recently, we have applied Genericity to the

CPersistentRoot class of the developed prototyped. The

getRootObject(String rootName) now it is a

generic method that returns a generic type. That gives the

opportunity to the compiler to decide, in each case, what kind

of class the method effectively returns by doing type inference

[16]. The underling process of calculating persistence closures

continues to be the same one, based on subtyping. The added

value is given by the support for generics. The following

listing presents the signature of that method.

public <T extends Object> T

getRootObject(String rootName) {...}

This type of return value has a great importance, since

it enhances the level of data type abstraction and transparency

of the framework turning unnecessary any cast of data type.

That transparency is evident in the two lines of code

below, where the same method of same object instance returns

two distinct classes of objects.

...

student=psRoot.getRootObject("rui");

...

course=psRoot.getRootObject("TO");

...

This is achieved by the generic type being replaced by

the correspondent type at compile-time. An implicit cast is

actually taking place through type inference, by means of the

generic return type to a specific type of object reference. This

is happening in the example with the reference to a Student

(student) and a reference to a Course (course). This process is

similar to the one above with the generic classes. The return

type of the method is erased and replaced by a raw type,

commonly an Object class. In our prototype that type it is

explicitly made by declaring T as a subtype of Object. At

the end, the inference process does an automatic cast to the

corresponding type of variable.

The prototype already provides a considerable level of

transparency and orthogonal data type treatment, by freeing

the programmer of doing casts and systematically data type

tests, improving the data abstraction. With the obtained object

reference the programmer can call all its methods or access all

its properties. For instance:

student=psRoot.getRootObject("rui");

System.out.println(“Street:”+student.getAddress().g

etStreet());

The object is pointed by a reference of the appropriate

type (Student), thus all class structure is available to the

compiler or the IDE allowing, for instance, auto-completion

facilities.

A common procedure for any programmer is to avoid

the splitting this code in two lines. Unfortunately, in this case

everything changes, and type inference is not really possible.

System.out.println(“Street:”+psRoot.getRootObject("

rui").getAddress().getStreet());

For a good understanding of what follows, this case

will be identified as Case A.

As already explained above, the compiler infers the

obtained reference through the program variable chosen by the

programmer. But in this new situation, the compiler has no

way to apply the inference algorithm and find what class the

generic value pertains to. It is actually impossible at all to

obtain that information at compile time. Only at run-time the

system will be able to determine what is the class of the

objects activated from the database. Since the generic method

returns a generic type the compiler does subtyping and

assumes that the result is an Object instance, where the

getAddress() method does not exist. Because of that the

result it is an illegal source Java code. The compiler gets an

error while parses that source line.

We consider that the use of Reflection and a change on

the normal behavior of the Java compiler, the best way to deal

with this issue. An alternative reflective code must be

generated at compile-time to serve as replacement code. This

technique allows the access to the internal data class of the

activated objects and the invocation of all it methods at run-

time. That can be achieved by very different approaches, but

all of them share the common goal of generate an alternative

version of the code, this one already is legal from the point

view of the compiler. For the given example, of this Case A,

that alternative code could be similar to the following:

Object o1=psRoot.getRootObject("rui");

Object

o2=o1.getClass().getMethod("getStudent").invoke(o1,

(Object[])null);

Object

o3=o2.getClass().getMethod("getAddress").invoke(o2,

(Object[])null);

System.out.println(“Street:”+o3);

Type inference also does not work in a second kind of

situations that we identify as Case B. This case prevents the

method overloading to work properly at compile-time.

Supposing that we a have a method called

printPersonalData(Student student) that prints

to the screen the student personal data. When using this

method as presented below the compiler consider the

argument an Object class.

printPersonalData(psRoot.getRootObject("rui"));

In those cases the compiler does not accept an Object

in the place of a Student class, neither the overloading

works correctly if exists another method with the signature

printPersonalData(Teacher teacher). Cabana,

Alagic and Faulkner, have identified a very similar problem

result of the type erasure on parametric classes [13]. As

happens with Case A, in this case the code is also illegal to the

Java compiler.

We also consider that this second problem also can be

solved with Reflection. The process it is very simple and

somewhat similar to the previous one, because at compile-time

all this code situations are also replaced for another version of

code. This alternative code test the generic object returned,

determining if there is any method with correct signature for

the corresponding argument class. As already explained, only

at run-time it is possible to know what is the class of the

generic object, so the method overloading must occur at that

moment.

Our proposal to meet a solution to those two cases is a

preprocessor extension to the Java compiler and the prototype,

applying code manipulations in order to turn possible the

compilation, extending the Genericity of the language and the

framework prototype in the direction to dynamic typing.

V. EXTENDING THE PROTOTYPE

Our most recent research was an extension to the Java

compiler thorough a preprocessor that parses the source code

identifying all statements where the data type of the retrieved

object could not be inferred at compile-time. The applied

techniques on the preprocessor are presented in this section.

A. Method Genericity (Case A)

For the case A described above, we consider that can

be easily achieved by a searching in the source code for any

direct method call from the CPersistentRoot instance

object. For each point on the code we replace the nested

method calls for a special method that accepts the generic

object as an argument and invokes all each methods in a

Reflective way. This replacement process already was

explained above. That special method is rendered at compile-

time and stays as a private method of class where the

occurrence happens. The following fragment of code shows

how the problem identified it is handled by our framework.

System.out.println(“Street:”+_aof4oop0getAddress$

getStreet(psRoot.getRootObject("rui"));

The name of this method it is obtained by the result of

the concatenation of all nested method names. If a same

method sequence occurs again, with different arguments,

another method with a different version number it is created.

B. Method overloading(Case B)

At present time this preprocessor already handle with

the first described case (A) and we are working on new

developments to resolve the second kind of situations (B). The

algorithm that is being applied is similar and already was

described with some detail above. For the given example the

actual called method will be the following one:

private void _aof4oop$printPersonalData(Object arg1)

throws Exception

{

 if(arg1==null)

 throw new NullPointerException();

 else if(arg1 instanceof Student)

 printPersonalData((Student)arg1);

 else if(arg1 instanceof Teacher)

printPersonalData((Teacher)arg1)

 else

 throw new ClassCastException(“No such method”);
}

Besides of the simple working principle, this case B

raises some complex implementation requirements. The

algorithm of overloading method inference must be able to

deal type all variety of method signatures requiring a very

sophisticated parsing process. In this example the

implementation it is quite simplistic, but in other studied

examples it is not.

C. Static Weaver

Analyzing both implementations, A and B cases, we

can conclude that they follow the same basic principles and

techniques of the Aspect-Oriented Programming (AOP)

turning this new extension of the prototype, as all the rest of

the system, an aspect-oriented component. The rendered

method it can be considered as an Advice [6] and the locals in

the code where they are invoked are Pointcuts [6]. Due to that,

the preprocessor works as a static weaver [6] that necessary

applies the dynamic data type mechanisms at run-time. With

this new static weaver (the preprocessor) we have bridged a

gap that exists in all studied AOP frameworks. In any one of

them we do not find any syntax of Pointcut Expression [6]

capable of answer to all requirements of the presented

problem. Because the advantages to dynamic weaving, this

gap it is exacerbated by the actual tendency in all AOP

frameworks of apply the aspects at load-time or run-time in

the byte-code after the compilation. It must be noted that in

our two cases, where the reflective code must be injected, the

source code at beginning is not even legal for the compiler. As

final result, the prototype now has two weavers: a static one

that modifies the type checking rules of the Java compiler; and

another one that provides the application with persistence

services.

D. Side effects

Our approaches, to solve the case A and B, apparently

have two drawbacks. The first is the disturbance on the error

exception handling. If an exception occurs within the code that

was replaced (the Advice) the stack information it not correct,

because will give information of code that not exists from the

programmer point of view. But, this problem it is already

known in aspect-oriented environments, because happens

every time that strange code (the aspect code in the Advice) is

also injected in an application. The second drawback is the

performance penalty introduced with the code generated by

the framework. This second one it is inevitable and must be

considered as necessary consequence of the needs of dynamic

type behavior.

VI. POTENTIAL RISK OF THE TOTAL DATA TYPE

ABSTRACTION

Besides the two drawbacks already exposed, we

consider the proposed level of data type abstraction and

dynamic type achieved by the compiler extension reduces the

type safety granted by the Java language by the absence of

static type checking mechanisms. By requiring an explicit cast

of returned value the programmer takes full consciences that

object is of some specific type. And most important, the

correct method invocation syntax can be statically checked at

compile-time. That can anticipate numerous possible run-time

errors to the compiler-time.

Considering the facts, it is questionable if that level

abstraction, enabling the dynamic typing in Java, by changing

the normal behavior of the compiler, is actually desirable.

Naturally, we argue that should be the programmer to decide,

as happens in some other program languages, if should apply

the type inference and if it is decidable or undecidable.

VII. RELATED RESEARCH

In the early versions of the Java Language the lack of

parametric polymorphism led to intensive research [7][9][14]

[15][17][18] to find solutions to that problem. But the adopted

solution [7][8] was not consensual. Several researchers have

studied the same problem and the pros and cons of the solution

adopted based in type erasure.

Cabana et al. [13] have studied the limitations of the

type erasure and have find several pitfalls: violations of Java

Type System; violations on subtyping rules; problems on

method overloading and on the Java Core Reflection (JCR).

To address those problems they proposed a technique mainly

based on the representation of the parametric class or interface

in the standard class file format with some subtle changes on:

Java class files – introducing optional fields without affecting

the compatibility with older versions, since those are ignored

on a legacy JVM; extending the JCR to be able of obtain

information about the type parameters; Modifications on the

class loading process.

The relevance of the above work and others [11][12]

[15] is about the concern of orthogonal persistence on

parametric polymorphic classes that compromises our future

work. This problem was already described above.

On specific concern of the persistence implemented as

aspects, other research works also have applied AOP to

provide applications with persistence. Soares et al [19] present

their experience while refactoring a web application, a Health

Watcher system, modularizing all code related with

distribution and persistence concerns in AspectJ aspects. On

our opinion, this work was limited to apply commons

persistence design patterns with AOP.

Rashid et al. [20] has an interesting work that really

present the persistence concern as an aspect, describing an

aspect-oriented framework for persistence. This solution, by

using the Reflection capabilities and a specialized aspect for

translation Object-Relational, frees the programmer from

doing any mapping from objects in memory to their related

tables on the relational data base.

Kienzle and Guerraoui [21] made a detailed study

about the aspectazition of transactions and failures, within

persistence context, classifying that goal in three levels of

different ambition of aspectization.

VIII. FUTURE WORK

Our prototype aims to treat the persistence in an

orthogonal form. Currently, two of the three Atkinson

principles are compromised, since the parametric classes are

not correctly stored in a database, breaking the Type

Orthogonality and, consequently, the reachability.

This work presents the CPersistentRoot object

that provides persistence services on the prototype. Those

services, at current version, do not include any transaction

capabilities. Future work will use important Kienzle and

Guerraoui [21] work results.

As already referred above, our prototype use an object

oriented data base. Considering the actual importance of the

relational databases at the performance level and because they

have a considerable market share, the prototype must be able

to use them as information repository in order apply our

framework on a real life production system.

IX. CONCLUSIONS

The prototype Aspect-Oriented Framework for

Orthogonal Persistence (aof4oop) presents a high level of data

type abstraction and access transparency, and reduces the

database impedance mismatch with programming language.

Those characteristics were enhanced through the

introduction of changes on the normal compiler behavior. To

achieve that goal, a static weaver was developed based on a

preprocessor, and is now part of the prototype.

The generics in Java 5.0, despite all the limitations

universally acknowledged, have contributed to the

enforcement of the type safety on our prototype, avoiding the

use of the Java standard generic idiom. However, the Java

parametric polymorphism does not provides a satisfactory

solution to the issue of orthogonal persistence [12]. As a

result, our prototype suffers from the consequences of the fact

that type erasure does not allow a fully type orthogonality in

the concern of persistence of parametric class instances.

REFERENCES

[1] . http://www.iscap.ipp.pt/~rhp/aof4oop/.

[2] Pereira R & Perez-Schofield J. An aspect-

oriented framework for orthogonal persistence. In Information

systems and technologies (cisti), 2010 5th iberian conference

on. 2010.

[3] Atkinson M & Morrison R. Orthogonally

persistent object systems. The VLDB Journal (1995) 4: pp.

319-402.

[4] Paterson J, Edlich S, Hörning H & Hörning

R. The Definitive Guide to db4o. . Apress, 2006.

[5] Filman R & Friedman D. Aspect-Oriented

Programming is Quantification and Obliviousness. (2000) : .

[6] Kiczales G, Lamping J, Mendhekar A,

Maeda C, Lopes C, Loingtier J & Irwin J. Aspect-oriented

programming. In Ecoop. 1997.

[7] Bracha G, Odersky M, Stoutamire D &

Wadler P. Making the future safe for the past: adding

genericity to the Java programming language. SIGPLAN Not.

(1998) 33: pp. 183-200.

[8] Gosling J, Joy B, Steele G & Bracha G.

Java(TM) Language Specification, The (3rd Edition) (Java

(Addison-Wesley)). . Addison-Wesley Professional, 2005.

[9] Odersky M, Runne E & Wadler P. Two

Ways to Bake Your Pizza - Translating Parameterised Types

into Java. In Selected papers from the international seminar

on generic programming. 2000.

[10] Odersky M & Wadler P. Pizza into Java:

translating theory into practice. In Proceedings of the 24th

acm sigplan-sigact symposium on principles of programming

languages. 1997.

[11] Radenski A, Furlong J & Zanev V. The Java

5 generics compromise orthogonality to keep compatibility. J.

Syst. Softw. (2008) 81: pp. 2069-2078.

[12] Alagić S & Royer M. Genericity in Java:

persistent and database systems implications. The VLDB

Journal (2008) 17: pp. 847-878.

[13] Cabana B, Alagić S & Faulkner J.

Parametric polymorphism for Java: is there any hope in sight?.

SIGPLAN Not. (2004) 39: pp. 22-31.

[14] Solorzano JH & Alagić S. Parametric

polymorphism for Java: a reflective solution. SIGPLAN Not.

(1998) 33: pp. 216-225.

[15] Alagić S & Nguyen T. Parametric

Polymorphism and Orthogonal Persistence. In Proceedings of

the international symposium on objects and databases. 2001.

[16] Milner R. A theory of type polymorphism in

programming.. Journal of Computer and System Sciences

(1978) 17: pp. 348-375.

[17] Agesen O, Freund SN & Mitchell JC.

Adding type parameterization to the Java language. SIGPLAN

Not. (1997) 32: pp. 49-65.

[18] Bank JA, Myers AC & Liskov B.

Parameterized types for Java. In Proceedings of the 24th acm

sigplan-sigact symposium on principles of programming

languages. 1997.

[19] Soares S, Borba P & Laureano E.

Distribution and persistence as aspects. Softw. Pract. Exper.

(2006) 36: pp. 711-759.

[20] Rashid A & Chitchyan R. Persistence as an

aspect. In Proceedings of the 2nd international conference on

aspect-oriented software development. 2003.

[21] Kienzle J & Guerraoui R. AOP: Does It

Make Sense? The Case of Concurrency and Failures. In

Lecture Notes in Computer Science. Magnusson B (Ed.). Vol.

2374.2006.

