|
INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO I S e‘
MESTRADO EM ENGENHARIA INFORMATICA ‘

Implementation of an loT-based Sensor
Network Integrating loT-based Sensor
Networks with Large-Scale Message
Distribution

FERNANDO PEDRO TEIXEIRA BESSA
Outubro de 2015

POLITECNICO
DO PORTO

n
I s e Instituto Superior de
Engenharia do Porto

Implementation of an loT-based Sensor Network
Integrating loT-based Sensor Networks with Large-
Scale Message Distribution

Fernando Pedro Teixeira Bessa

Dissertation to obtain Master degree in Computer Science,
Specialization in Architectures, Systems and Networks.

Advisor: Nuno Alexandre Pereira

Porto, Maio de 2015 Calibri, 12pt

Abstract

As technology advances not only do new standards and programming styles appear but also
some of the previously established ones gain relevance. In a new Internet paradigm where
interconnection between small devices is key to the development of new businesses and
scientific advancement there is the need to find simple solutions that anyone can implement in
order to allow ideas to become more than that, ideas.

Open-source software is still alive and well, especially in the area of the Internet of Things. This
opens windows for many low capital entrepreneurs to experiment with their ideas and actually
develop prototypes, which can help identify problems with a project or shine light on possible
new features and interactions.

As programming becomes more and more popular between people of fields not related to
software there is the need for guidance in developing something other than basic algorithms,
which is where this thesis comes in: A comprehensive document explaining the challenges and
available choices of developing a sensor data and message delivery system, which scales well
and implements the delivery of critical messages. Modularity and extensibility were also given
much importance, making this an affordable tool for anyone that wants to build a sensor
network of the kind.

Keywords: Sensor Network, Programming, Internet of Things, Message Trading

Acknowledgments

| have ISEP to thank the most for making equipment available for me to implement a solution
and for always keeping their door open to their students in times of need, such as making
classrooms for the development of this project available.

| also want to thank my thesis coordinator Nuno Pereira for doing his best to guide me
through the making of this document and for trying his hardest to understand and critique
most aspects of the project. Even when at times, time itself was scarce, there was always an
opportunity for one more meeting before class.

To everyone who closely followed my thesis project, such as many friends and fellow ISEP
students, thank you for showing interest in other people’s work, for such is a mark of a truly
exceptional engineer.

And finally, | would like to express my extended thank you to every engineer, graduated or
not, who sees software development and programming not as a way to make money but as a
tool to develop a better World.

vi

Index

1

1.1
1.2
1.3

1.4

2

2.1

2.2

2.3

2.4

INErOTUCHION .ttt iietiiiietenieeeeneeeeeaseeeesseecesscecssseecssssccssssecssssacssssaasnnns 1
0 Y7 1 ¥ TN 2
(070 31 1o YU 1T o 2
=1 o Yo N 3
TSI ST UCTUIE vt tttteteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeessnnnnnnnnnsnnnnnsnnnnnnnnnnnnnnnnnnnen 3
WSN’s State Of the a@rt.....cuuiiiiiiiiiiiiiiiieeeteenneeeeeeeeeesesseeeccesssssssececsnnes 5
(0] 1= o= 14 oY= 2y 1Y o PPN 5
2.1.1 Operating Systems ArchiteCtUIre «.vuuuiiiie ittt iiiieeeeeeeenneaaaananns 5
VoY a ol Lo o TToly Yool o 11 £ ot U] <R 5
Microkernel ArChitECTUIE........oooiiiiiiiii 6
Layered arChitECIUIE ...oii e e e e e e rarae e e s aaeee s 7
Programming models in small Operating Systems ...ccvvuuiiiiiiiiruiieiereeernnneeeeeeennnnnnes 8
2.2.1 EVENt-driVen Programming «ou..ueeeeeeeeeeeueeeeeeeeennsseseeessenssseseessessssssseeennnnns 9
2.2.2 Thread-driven Programming «uuu.eeeeeeeeeieeeeeeeeenneeeeeeeessneseseessssnneeeeesssnnnnns 9
Available Operating Systems alternatives ..ovveeeeeiiiiiiiiiiiiieiiienieieeeeenneeeeeeeeennnnnns 9
2.3.1 (070 0 11 1 10
20 707 101770 13 11
2.3.3 Comparison and dECISION . .uuueeeeseeeeeieteeeeteeeeeeeeeeeeeeeeeeesasaasasaaasaaaannnnnn 11
loT communication stack and related standardsoeeeiiiiiiiiiiiiiiiiieeiiieeeeneeeenneenns 12
2.4.1 T8 G 7= 7= 13
I 3 RN 13
Bluetooth SMart (802.15.1)..uvviieiiiriieeieee ettt eetre e et e eeareeeeenbeeeeenreeeeenrees 15
WI-Fi (802,118) ceovveeiiie et e eieeeite ettt e et e e sttt e et e e etaeesabeeetaeesateesbaeesaseesnsaeensseesnsaeessseenns 17
IEEE 802,054 .ottt ettt e e et e e e e b e e et e e e ta e e raa e e et e e rraan s 17
2.4.2 N =] Yo T QI V7= 18
[S1 Mo 10V = AN 19
ZIBBBR e aan 20
e T 1 - 0 1 o To T o 1 1V 20
B I OO 21
U] RPNt 23
D S Y oY o] [T AT Y I V7= o 24
(000 7Y = 25
[I I RPN 26
1Y (O L 1 [P TURUPRRN 27

3 Message delivery state of the artc.vieeiiiieiiiieeiiieerenieccencecceneccenneeess 29

N {1 = o 29
700 0 =T o T = 30
0 Y 1 = 1ol I PP 31

0 A 1V 32
7070 R ¥ 1 Yo 1 1 PR 33

3.3 Other implementations and architeCtUIresevvueiiiieeiiiiiiiiieeitiiieeeeeeeennneeaeeannns 34
T8 TR B (1771 PPN 34
20 T8 2 I Y10 7= 1,1 o o 35

q Project Architecture and technologies.....c...eeeeiiieeeeeeeenreeeeeeeennnnseececeeneees 37

B VS 1= 4 T €0 1 Yot (U = PPN 37
4.1.1 WSN — SeNSOr NEEWOIK. ctteetittteiitteeeiteeeaiteeeireeeeaeeeesseeessseeesnsesesnsasenns 38
4.1.2 LiNUX GAEEWAY teuttteeeeeeeeieeeeeeeennnnseeeeesesensssseeesennnseseeessennsssseeeennnnns 39
4.1.3 LINUX GBIVt tttttettteeteeeeeeeeanaeeennaeeessseesnsasesnsesesnsesesnsesesnsesennseeenns 42
L S (Vo To [o1 T Y o« PPN 42

4.2 RejeCted aPPrOaCHES coeiiittiiii ittt tiieeeeettttteeeeetetaaeeaeeataaaeaeeeaaannnnn 42

5 System implementationeieeeiiieeeenieerenieeeenseceenseccssseccssseccssseccsncees 4D

5.1 SOME CONSIAEIATIONS tuuuureeeteeeeieeeeeeeeennneeeeeeesnnneeeessssnnnesssssssnnnnsssssesannnes 45

70 Y=Y o Yo T ol [Lo =3 PPN 45

T B < To T [T e Y] =] P PPN 47

5.4 LINUX GAlEWAY teeettteinneeeeteeenaneeeeeeeeennsseeseeesennssseeeesennsseseesennnnssseeeeennnns 49

DD LiNMUX BV .t ttttttteeiieeeeeeeeanneeeeeeesenseeesesesnnnsessessssnnssssssssssnnssssssessnnnns 51

LT ST 1Y/ T o1 L= Y o T 53

6 CONCIUSION. e ceeteeeeeeeeeeeeennnceeeeeesecanscssecesssnnssssacccsssnnsssssccssssnsssssaces DD

7 WOIKS Cited..eeeuiiieiiieeetiieereeeereneeesseeeessecsessscsosssssosssssosssssonssccans D7

viii

List of Figures

Figure 1 - Visual representation of a Monolithic kernel [3].....ccccovvvieiiiiiiiiiciee e 6
Figure 2 - Comparison between the previous monolithic system and a microkernel system..... 7
Figure 3 - Contiki-OS, an example of a layered architecture that became extremely popular [6]

.. 8
Figure 4 - Cooja running a simulation of 40+ nodes loaded with Contiki.......ccccceeeevveeercinennnns 10
Figure 5 - TOSSIM Simulating nearly 30 motes and with its debug messages tab open [3]...... 11
Figure 6 - Communication stack - LINK LAYETcoiiviiiiiiiiiiee ettt e e 13
Figure 7 - LTE vs other technologies, compared by SPeed.........ccccecvveeieciieeicciiee e 14
Figure 8 - A comparison between classic Bluetooth and Bluetooth Smartccoceevivcieeenns 16
Figure 9 - The difference between ZigBee and 802.15.4cccvvviivciiieiiriiiee e cereeeesviee e 17
Figure 10 - Comparison between different technologies in terms of power usage................... 18
Figure 11 - Communication stack - NetWork Layer........cccuveeieciieeiiiiiee e csieeeesiveeeesvneee e 19
Figure 12 - Mesh under and Route-over forwardingcccoecvieeieciiei e 20
Figure 13 - Communication stack - TranSport LAYercueeeeeciieeieciiieeeeieeeeeciteee e ecvtee e e eveee e 21
Figure 14 - Machines trading messages by TCP, illustrating TCP’s re-ordering feature............. 22
FIUIE 15 - TCP NEAUEN . .eviiie ettt ettt ettt e e st e e e st e e e e s bte e e e sbteeeesbeeeesssteeaesans 23
Figure 16 - Representation of UDP PacKet.........cceiiiiiiiieiiiie ettt eree e 24
Figure 17 - Communication stack - Application Layer........cccoecvieeiiciieiiciieee e 25
Figure 18 - Visual Representation of a COAP message header [25].......ccoceeeecieeeeecieeeeccieeeennns 26
Figure 19 - Setup pages on Openfire, illustrating the use of external databases..................... 31
Figure 20 - XiVely @archit@CtUIEcocuviiiieiiiee ettt e s e e et e e e sbae e e e e 35
Figure 21 - ThingSWOrX @arChit@CTUIE.....c.viiieeeiieee ettt et e e ate e e e e tte e e e ebreeeeeaes 36
Figure 22 - General ArChIitECTUIE........oii ittt e et e e e e tte e e e e ebre e e e ereeeaeeaes 38
Figure 23 - WSN detailed VIEWccoeuiiii ittt e st e e st e e s sbee e e e eaes 39
Figure 24 - Size comparison between a modern smartphone (left, iPhone 4s) and a Raspberry

o (g T=d o 2 R ' To o 1]) U PURPRUNt 40
Figure 25 - Energy consumption of various embedded boards.ccccecvveeivciieiincieee e 40
Figure 26 - Example of communication between the Linux Gateway and a WSN node 41
Figure 27 - General Architecture, as proposed initially.ccoceeeeeiiieiicciiie e 43
Figure 28 - DAG netowrk captured in COOJA with radio environmentccoceevvcieeeiicieeennns 48
Figure 29 - Openfire admin console, displaying information about the installation................. 52
Figure 30 - The crud REST services running in the LINUX SEIVEroocccviiieeeeeeeccciirieeee e 53
Figure 31 - First idea of project to develop.....ceveiciieie it 61

Figure 32 - Early idea of sensor's data members and methods..........cccccoeeeeeciiieecciiee e, 62

List of Tables

Table 1 - A comparison between the operating systems

Xi

Xii

Acronimos e Simbolos

Lista de Acronimos

DAG

CoAP

6LoWPAN

loT

XMPP

REST

QoS

RPL

XML

XEP

HTTP

Directed Acyclic Graph: Collection of vertices and directed edges with no
loops.

Constrained Application Protocol: Communication protocol.
IPv6 over Low power Wireless Personal Area Networks.
Internet of Things

Extensible Messaging and Presence Protocol

RESTful architecture

Quality of Service

Routing Protocol for Low power and Lossy Networks
eXtensible Markup Language

XMPP Extension Protocols

HyperText Transfer Protocol

Xiii

Xiv

1 Introduction

Wireless Sensor Networks have an array of uses and have been applied to the most varied
environments. There are home monitoring systems that often emphasize security and offer
some kind of cost-reduction from existing services, there are also professional application
WSNs at high-end establishments that count the number of visitors. Other applications such
as agriculture-aimed or fire protection WSNs have been deployed and studied.

In the recent years development for this kind of distributed systems became increasingly
popular given the all-time low prices of small sensors and processors. The hardware side of
these systems scales well in terms of cost and make it easy to sell components for a good
margin, therefore attracting both entrepreneurs and venture capitalists alike. This, aligned
with the strong craze and popularity of tech start-ups gave way to many uncommon and one-
of-a-kind use cases, i.e. full-fledged entertainment systems, upgrades for high-end homes or
even an affordable monitoring system to aid the elderly and allow for quick action in case of a
fall or other disaster.

The majority of applications are directed towards the common tech addict, someone who
wants to be part of the technological advancement and is looking for entertainment. This is
due to the fact that it is proven that selling technology nowadays is a particularly good way of
making money, innovation for the sake of advancing the World has been neglected. Whether
that’s good, bad or irrelevant is debatable and not the purpose of this thesis. It does bring,
however, the opportunity to develop a new tool based on different principles: Open source
software, availability of information and modularity.

It was decided this software should also implement a new or uncommon functionality, as that
is part of this thesis’ requirements. Taking that into account it was ultimately decided to build
a program that would put together the user-friendliness of mobile apps, the capabilities of a
decentralized system, and the importance of critical messaging. The ultimate goal is for it to
become a relevant tool that aids the monitoring of physicals spaces at a low cost using,
whenever possible, readily-available components. One important contribution of this thesis is

the structured analysis of the several technology components and the proposal of an
architecture that combines them.

1.1 Motivation

Partly because they are new and exciting and partly because research is expensive, there
aren’t many Wireless Network implementations that are open-source, or at least free. Even if
someone wanted to install their own home-automation system and support the hardware
costs they would have to have at least a deep understanding of low-level programming to
achieve something functional. Frameworks aren’t particularly popular yet and guides and
architecture is still an open subject often discussed in technical papers.

Though the majority agrees that software engineering will play a big part in the development
of these systems there are few specific tools for them. There are, however, programming
tools that aid a lot of the development processes.

Examples of use cases of this tool could be:

e A biology research laboratory with plenty of cold chambers and delicate equipment
that wants to make sure their results haven’t been spoiled by a temperature variation
or on the other hand, that want to seek environmental causes for the failure of an
expected result.

e Monitoring of an aquarium containing algae that are very sensitive to temperature, to
something as huge as monitoring the state of important equipment in an expedition.

The fact is that extensibility and modularity are key to anyone wanting to use these tools for
various projects, and most wireless network software doesn’t allow for those features, while
this tool does.

1.2 Contribution

The following list give provides the reader with a summarized view of what the author has
contributed to the subject, which and can be used by others in the following ways:

e The gathering of an extensive state of the art, properly organized and
documented in this report, described in chapters 2 and 3.

¢ The Implementation of a Wireless Sensor Network and Message Delivery System
according to the technologies studied, with an analysis of a proper architecture
for these projects.

e A demonstration on how a project of this kind would work.

1.3 Method

The making of this thesis was composed of three main parts:

e A profound study of existing technologies, how they interact and which were more
suitable for the use cases of the project. This included searching online for papers and
articles on the subject of WSN’s and instant messaging.

e A development phase, which went on for several months and where various different
sets of technologies were considered and eventually discarded or accepted into the
project. Some of the important extracts of code will be presented in chapter 5.

e A writing phase, where all the knowledge gained from the previous phases was
condensed into a full thesis report. Here, not only the accepted technologies are
studied, there is also discussion on other hypothesis if they are viable options when
building a distributed system such as this. Some previous reports on the subject were
studied to figure out which technologies and parts of the development process were
usually studied and presented in these reports in order to make it more interesting.

All these phases spanned across the whole development of the project even though some
were given more time and attention at the beginning, and others at the end. Still, even
nearing the end of the project some small architectural decisions were made and
development occurred. This stemmed from the fact that some new, better tools or versions
came out after the part of the development that concerns them was made; the fact that as
more and more knowledge of the subject was gained, some windows of opportunity of new
ways of implementing the system appeared; and the fact that the writing had to take into
account all of these changes.

The development phase took up much more time than planned. This ended up being a big
system with several independent components running in several machines, so the amount of
environments used to program the software escalated beyond expectation.

1.4 Thesis structure

This document is divided in six main chapters. Firstly it gives the reader an introduction on the
subject and it follows with why it was decided to do such a project. It then presents some
insight on what it does that’s new and how it can be used and which use cases it covers.

Following that are two chapters dedicated fully to the state of the art. Since this thesis
features a distributed system and covers two distinct sets of technologies, these chapters
correspond to two main subjects:

The Wireless Sensor Network state of the art, which has information on available loT
operating systems, their features and types of Operating System architectures. This is
useful information since the architecture of the Operating system has much influence
in the performance of the nodes. Some types of WSN’s might benefit from one type,
while others can benefit from another. There is also space in that subchapter to
present information on the most common programming models, which suit some
Operating Systems more than others. And finally a comparison is done between
available OS’s, which is a very short, graphical view of all that was talked about. In this
same subchapter the whole loT communication stack is presented. In each layer of
the stack the available technologies are compared and explained.

The Instant messaging state of the art, which refers to the technologies used outside
the WSN. They cover everything from the receiving of data from the WSN until it is
delivered to the Android app. There’s a final subchapter that studies other
implementations with existing services

2 WSN'’s State of the art

This is an analysis to the state of the art of WSN’s and technologies used in constrained
environments. That means every layer of communications was studied and alternatives of
methods of communication are presented. In order to try and make this analysis more
comprehensive and make sure the reader doesn’t get lost in the information and the
chapters, an explanatory image is displayed in each of the subchapters that displays where
the layer is situated in the stack.

2.1 Operating Systems

This subsection an analysis of the different Operating Systems used when building WSN’s.
They take into account a very different core of features from desktop computers OS’s and are
mostly focused on architecture, programming models, memory management, communication
protocols support and resource usage.

Operating system models seem to influence the programming model of Operating Systems for
WSN’s that use them. Some might fit better in sensor-only networks and others for
architectures where heavier data transmission is needed. The following study contains
information on these properties and its purpose is to help decipher which type fits best for a
certain architecture.

2.1.1 Operating Systems Architecture

The fact that architecture is considered stems from the importance of balancing the quality of
the OS with its size. Because modularity and layering may require additional interfaces it also
increases the size of the software and therefore the cost of the hardware.

Monolithic Architecture

A monolithic architecture is basic, and was the starting point when developing many systems.
DOS for example had a monolithic architecture, so did BSD.

This kind of design allows for smaller OS’s but lacks in other fields. Monolithic OS’s are hard to
understand and modify and that might slow down the development and release of new
versions. [1]

All things considered the most obvious reason to consider this kind of architecture would be
the small OS memory usage. To bet every bit of success of the OS in this feature could be a big

risk, so other types of OS for WSNs also have their place in the scene, even if they have to
sacrifice a bit of memory size. [2]

Monolithic Kernel
based Operating System

Application

System

Operating system

Figure 1 - Visual representation of a Monolithic kernel [3]

As represented above every service of the systems runs in the same kernel thread, meaning
they all occupy the same memory area.

Even though is allows for powerful hardware access the fact that it's not modular represents a
great danger: a small bug on a tiny part of the OS might very well crash the entire system. It's
still a very popular architecture but it might not be good choice for rapidly evolving,
complicated systems.

Microkernel Architecture

Microkernel architectures contradict mostly every principle of monolithic ones, they focus on
implementing minimum functionality inside the kernel.

Since the rest of the functionality is usually provided in user-level servers, which are often
independent, you can expand or contract a version of the OS to deploy it in various types of
WSN nodes.

When (and this is might very well be the case in the future) someone figures out the very
small WSN OS their company built needs another server for bigger and more powerful motes

they can be added with much less effort than in monolithic systems and with much less
dependency.

Theoretically, and without considering anything else, microkernels might seem useless since a
microkernel implementation provides poor performance when kernel calls are made.
However, it’s important to remember these calls are much reduced compared to a full
desktop system. The fact that this allows for a very tiny kernel core is a great plus. [4]

Monolithic Kernel Microkernel
based Operating System based Operating System
Ganleioy System Call

Application UNIX Device
IPC

Server Driver

kernel
mode

Figure 2 - Comparison between the previous monolithic system and a microkernel system

Though there aren’t many WSN systems following this structure the fact that hardware is
becoming cheaper and cheaper represents a great opportunity for these OS’s. There is the
opportunity to tailor the size, complexity and functionality of the OS and adjust to what
current popular sensors are capable of doing.

While development of monolithic OS’s will become harder and more expensive microkernel
ones will keep their costs and complexity more or less the same.

Layered architecture

Layered architectures aren’t about performance, they’re more about reliability and easiness
to understand.

0OS’s built in this architecture are usually not ideal if the goal is the fastest, smallest application
possible but since many researchers and programmer hobbyists are new to the subject they
present the only reliable alternative.

These WSNs use different technologies than what contemporary programmers are used to.
Popular programming skills nowadays are typically high level languages, frameworks and
programming standards, which have replaced low level programming.

From a purist view a layered architecture isn’t at all ideal for WSNs, but when you consider
the time and cost of learning a big array of new technologies for just a small project the idea

makes much more sense.

Since our goal isn’t speed or size and it’s a more abstract concept of critical messaging, this
architecture is very attractive and is the architecture of the OS that was ultimately chosen for
development: Contiki OS [5].

Contiki Operating Node Management
System _
5 .
- =)
o S ®
= o 5
3 =
- o =z -) - =
= = = = = = =]
=] 2 =] [- =] [&]
= = =] -] (=% o ot
R 3 8 5 > 5 5
=t = = @ Rt 2 =
:% 2— E:’ @ =] 7] ©
7] (] o =
Contiki Core
ulP Loader ProtoThreads
F 3 'y A A -~
L 4 v W L L 4
Driver
Radio CPU Sensors Oscillator
Hardware
h 4 L 4 h 4
Radio CPU Sensors Oscillatar

Figure 3 - Contiki-OS, an example of a layered architecture that became extremely popular [6]

2.2 Programming models in small Operating Systems

Two paradigms rule this aspect of the systems: Event-driven and multithreaded programming.
The choice of using one, another or both will impact greatly the development of the

application.

2.2.1 Event-driven programming

This type of programming isn’t very convenient for who is programming but it’s less resource-
intensive. [7] The fact that it wasn’t well accepted led to the development of alternate
versions of threads, more pleasing to programmers. In here, the flow of the program is
determined by events. In a sensor network, these can be button presses or even the arrival of
a communication message.

This is, however, implemented in one of the most popular Operating Systems for the Internet
of Things: TinyOs [8]. It’s also the main barrier to overcome when deciding whether to
develop for it.

2.2.2 Thread-driven programming

Multithreading is actually very widely spread and well accepted by programmers. The
problem with using this in WSNs is that it’s very resource intensive and therefore not at all
suited for devices with very poor memory and processing resources.

Contiki-OS has adopted this paradigm with a catch: an extremely lightweight version of a
thread, called a protothread. In reality, a protothread is event-driven but has the convenient
threaded programming style. Their main features are their single stack and a very low
overhead. Once again we can see that convenience and easiness are very well favoured in
these systems nowadays. [9]

The difference between these two paradigms is easily explained with an example, whenever a
process is requested to do something:

e An event-driven runtime will dispatch the event, which will be eventually picked up by
a handler.
e A thread-driven runtime will create a new thread to deal with the event.

As a result threads are very independent from one another, if a thread it stuck with an
intensive task it won’t affect the others a lot. If an event is stuck with a handler it might not be
able to do anything else in the meantime.

2.3 Available Operating Systems alternatives

There are a couple of very popular alternatives as far as Operating Systems go. Considering

the fact that this kind of development is hard, only popular active and documented systems
were considered. The two main candidates were Contiki-OS and TinyOs, two very different

systems.

2.3.1 Contiki-OS

This 12 years old system was made specifically for the Internet of Things. It's an open source,
lightweight and modular system. It runs under a BSD license and is currently in version 2.7,
undergoing development for versions 3.x. It has consistently been used in many loT
applications, particularly monitoring projects. It's designed specifically to deal with memory
constrained and power-starved devices. [5]

Contiki only needs about 10KB of RAM and 30KB of ROM, so even though it’s a system with a
layered architecture it will fit it mostly any device. If a GUI is needed the system can be
expanded and will still only take 30KB of RAM. With these values it’s easy to see why it has
been so well accepted. It's slower bigger than some competitors but not so much that it
becomes unusable.

Contiki is distributed in Ubuntu with some examples, documentation, code, compilers and a
simulator called COOJA where a network of Contiki systems can be built and run, aiding the
development of applications and allowing developers to test the limits of their systems
without investing a lot of money in hardware. [10]

My simulation - Cooja: The Contiki Network Simulator
File Simulation Motes Tools Settings Help
£2] Metwork IES simulation control [-)(O)(x)

View Zoom Run Speed limit

Start Pause Step Reload

Time: 00:07,737
Speed: 40.76%

1]
o)
x|

(%]

() Mote output =)[E3 I
File Edit ‘iew
Time ms | Mote | Message |
1270 I0:32 MAC 00:12:74:20,.. 4
1275 ID:23 IPv6 addresses: ... |
1279 ID:32 CsSMA ContikiMAC, ..
1282 I0:23 fe80::212:7417: ... |
1295 ID:32 Tentative link-...
1298 I0:32 Starting 'Unica. ..
1308 I0:32 IPv6 addresses:...
1314 I0:32 fe80::212:7420:... |¥
Filter:

File Edit Wiew Zoom Events Motes

Timeline showing 41 motes

~ U Wk
k
k

-%

Figure 4 - Cooja running a simulation of 40+ nodes loaded with Contiki

10

Cooja seems to perform its duties well and is a great ally to any developer working with
Contiki.

2.3.2 TinyOs

TinyOS has been released three years prior to Contiki and presents a monolithic architecture.
It’s also under a BSD License. Programming is done in the nesC language. One of the most well
received features about TinyOs is that it's completely non-blocking. 1/0O either last
microseconds or are done asynchronously and have a callback. [11]

It boasts a complete 6Lowpan/RPL IPv6 stack that is on par with Contiki’s and there is
documentation widely available. It can be installed in either Linux, Mac OS X or Windows
machines and some virtual machines with it pre-installed are also distributed. [8]

Simulations is done primarily in TOSSIM. TOSSIM is a library that is analog to Contiki’s Cooja
and can also simulate entire TinyOS applications. Debugging is TOSSIM is much more powerful
than in Contiki’s Cooja, especially with its Python interface

e inom o arer] s 22z oo P10 3] (B (] [©) PN
Fadis linka Funn Rus Ingges o non disablel
et oo boe [T —
g DC Mensings | set beeagesan | Gt conriia | Comoe poves Db mersages floiscien sran
o r L1 | SEMECTEN fRER Gnly Mk
&
% r 0 CIE] Bt Moo <TRHe [wdbd0n] [hppesfedfl [pow=iifi]l DhargtheeZl DwinsielD G 60 Ged O e Ol
= r3 . CIN] et TingicH: e qwvding. awcoares L
e L& [13] TartTinbiel: Ducurmed mamagn From 21
h c (221 5 Mescagee (TIGHGE. [abraied] [nyamORt] CoaielsTll Clogifet] (R0 00 06l Kl 0 D60 Bl ©
! | G21 RETIRFH: Dee e, SKoesiel
1 . [18] FarcTinga: §areiog mmcuace T race 13
Py g { .
| - (18] Gare Herasge T [sbdraled] [mfselet) [poapelelol] [lawgchebd] (it G el b ol o &4 0
¥ 3 [U] TarrTieHrH: Daa amntvg, asccatia t
2 & (23] WEETIRMIH: LETsd WaTicn ook 7
5 (3] St Feangs TS [WMChN] [GrAcOC] [Grogcicid] [legehchz] (il 0o R 0o ko 0 0o B
a (/ [TeaiTirg¥ich: Daws suading, auccezrel
i L21 TariTing¥iH: Sasting ruarags b0 node 3
| CIE] TarTimyizh: Racwhd mamagn Fros 2
at Hoarg MBSy Docrmbed] I #1 Lgrmged
i E L2 TartMrg#ieH: Dums samding. mucearsl
s (6] TartFirs¥icH: Samtbg muzmgn o node 20
[1] WarTimdind: hecrrand meszagn from o
[=
:‘
15 4
€ [4 i &
) " rl
T Highsain Shear
Smullion puned

Figure 5 - TOSSIM Simulating nearly 30 motes and with its debug messages tab open [12]

2.3.3 Comparison and decision

Both systems have weaknesses and strengths. Although TinyOS includes powerful
development tools, that doesn’t translate into more quality in the end application. [13]
11

There’s a lot of documentation about the OS and its tools but the technologies used are much
less known and programming bigger systems in TinyOS has its obstacles. This was the main
reason why Contiki was chosen.

Since the developed WSN was small project Contiki’s familiar style and language and the fact
that it follows the latest programming standards were deemed more important than a
powerful debugging tool and small size. Furthermore, Contiki’s weaknesses weren’t a problem
in this specific project. Although bigger than TinyOs, the compiled code will fit in the same
nodes and even though the project is more mature, help and examples for Contiki are widely

available.
Table 1 - A comparison between the operating systems.
TinyOs ContikiOs
Linking Static Dynamic
Base OS memory usage 400 bytes 40kb
Programming language NesC c

Programming model

Event-driven

Hybrid (Based on
protothreads)

License

BSD

BSD

Thread support

Partial(TinyThreads)

Full thread support

Simulation

Supported

Supported

Release Date

2000

2003

2.4 loT communication stack and related standards

12

Low-power networks have plenty limitations and require a different set of standards from
normal applications. IEFT and OASIS standardized some protocols which have been adopted
by nearly every OS designed for the loT. [14]

In the following subchapters available technologies will be presented along with an analysis
on their relevance for this project. Technologies will only be compared to others in their
communication stack level and levels will be presented from the physical layer to application
layer. In the beginning of each subchapter an image will guide readers, with layers being
discussed signaled in blue, while the rest of the stack is painted in orange.

2.4.1 Link Layer

The link layer is comprised of the Physical and MAC layers. Only the relevant technologies will
be discussed here. There are dozens of available protocols that were not adopted by some
reason or another, and this report focus solely in viable alternatives to implement a sensor
network.

Communication stack for this project

1 I Constrained
Normal IP stack : : networks stack

Figure 6 - Communication stack - Link Layer

LTE 4G

LTE, commonly marketed as 4G LTE, is a standard for wireless communication. It is currently
marketed towards mobile phones and laptops but it could potentially be used in smaller, less

13

powerful devices. LTE 4G main attraction is its coverage, so it could it theory be used in a
mobile sensor network, such as in a car or a plane. It could also have a place in a sensor
system to aid the elderly.

A use case could be when an elderly person goes out for a walk, he or she could take a myriad
of sensors attached to them, such as a smartwatch, a cell phone, or small sensor modules to
monitor vital signs. In this case, LTE might be the best available option for the sensor nodes to
communicate an alert message since other types of networks are not available everywhere,
whereas LTE normally has a nation-wide coverage in developed countries.

Another example could be a can or commercial plane being equipped with all kinds of sensors
for increased security. Imagine a car is parked and the owner is away, if the car is broken into
what usually happens is that the alarm goes off for a while, which does little to increase the
chances of recovering the vehicle should it be also stolen. Besides, alarm systems can be
overridden and silenced quickly, or may not be functioning well at all.

A car equipped with a movement sensor and a LTE 4G antenna could gather information from
its GPS to alert the owner that something is wrong since Wi-Fi or other technologies might not
be available. The main problem with 4G LTE is its cost. The service to connect to other devices
with this technology is usually sold by telecommunications companies.

In a 2012 research study, the World’s average price per 4G/LTE GB transfer is around 4.86
dollars. In Europe this number is lower, but that is not true for every developed country. In
the United States of America for example, Verizon charged 7.50 dollars per GB. The price is
not exorbitant for small sensor networks that trade very little data. But it’s an extra cost that
can be avoided by using other technologies. [15]

LTE SPEED VS OTHER TECHNOLOGIES

LTE download speed in Mbps vs speeds experienced on other connection types

10.4

Download speed in Mbps

3.2 3.4

1.5
0.3

Wi-Fi 2G 3G 4G HSPA+ 4G LTE

Figure 7 - LTE vs other technologies, compared by speed

14

4G LTE boasts higher speeds than home broadband services [16], but while such data rate
might be suitable for entertainment systems, it would hardly have any use in a sensor network
that trades small amounts of data. Besides, images like the one below provide distorted
results that aren’t always achieved in the real world. LTE coverage is stronger in some places
and weaker in others, leading to varying speed in different places.

Bluetooth Smart (802.15.1)

Bluetooth Low Energy, or Bluetooth Smart, as it is commonly marketed, is a wireless personal
area network technology. Its main attraction is the amount of energy it uses. Compared to
classic Bluetooth, one gets nearly the same communications area with considerably less
energy consumption. This technology is marketed at healthcare, fitness, security and
entertainment devices. The fact that nearly every popular computer and OS natively supports
Bluetooth 4.0 makes it a very attractive choice for a communication protocol.

There are some drawbacks to this technology. Older devices won’t be compatible, even if they
already supported the classic Bluetooth. Since Bluetooth Smart is not backwards compatible
every device in the network has to support version 4.0 of Bluetooth specifically in order for
communication to work. [17]

Below is a comparison of classic and Smart Bluetooth. Notice how Bluetooth Smart sacrifices
some of its functionality in order to leech less energy, while still improving on some areas.

15

Security 64/128-bit and application layer | 128-bit AES and application layer
user defined user defined
Robustness Adaptive fast frequency hopping,
FEC, fastACK

Adaptlve fast frequency hoppmg

Latency (from a non-connected

Nococupate [s | Veswsonsimuaton |
—

Peak current consumptlon
Service discovery

Profile concept __

Mobile phones, gaming, PCs,
Mobile phones, gaming, watches, sports and fitness,
Primary use cases headsets, stereo audio healthcare, security & proximity,
streaming, automotive, PCs etc. automotive, home electronics,
automation, Industrial, etc.

Figure 8 - A comparison between classic Bluetooth and Bluetooth Smart

Its main features are:

e Avery easy way of implementation

e Averylow power consumption in both peak, average and idle modes

e The components (i.e. antennas, chips, etc.) are of very small size and cost
e Range up to 15 meters

e Bitrate of 1Mbps

This last feature makes Bluetooth Smart a weak choice for heavier content such as high
quality video streaming, but is not a real obstacle for the use cases of this project.

16

In conclusion, Bluetooth is a viable alternative for communicating across loT devices, including
the ones on this project.

Wi-Fi (802.11g)

Despite being the most popular and widespread of all the technologies, Wi-Fi has not been
thriving in the low power devices of the loT because this technology requires very high
amounts of power to operate, and therefore drains battery life quickly. The main feature Wi-
Fi offers that other technologies don’t is a very high data rate and communication distance,
which can go up to 54 mbps and 300 meters, respectively.

Wi-Fi is still viable for some devices, namely any device that streams audio, video or caps the
use of other technologies data rate and distance. As long as an loT device is not battery
powered, i.e. has some kind of external source of energy like a power outlet, power
consumption is not a problem, and the network is not going to scale in terms of number of
these devices Wi-Fi is still a viable alternative, hence why it was analysed in this subchapter.

IEEE 802.15.4

As a brief note, the reader should understand that this IEEE standard is sometimes wrongfully
named ZigBee. While ZigBee and 802.15.4 are often used together [18], 802.15.4 is actually
just a standard for the link layer, while ZigBee operates on top of 802.15.4, on the network,
transport and application layers as the below image suggests. ZigBee will be studied further
down this document.

Communication stack for this project

Network Layer

802.15.4

Figure 9 - The difference between ZigBee and 802.15.4

17

This standard is was built with low data rate networks in mind, in order to provide a low
power alternative to other established standards. The emphasis really is on very low cost
communication, making this the perfect standard for a sensor network. [19]

The 802.15.4 protocol initially supported transfer rates of only 20-40 kbit/s, but a new 250
kbit/s was added in the current version. When put together with the technologies in the
upper levels of the stack, 802.15.4 consumes the following amount power compared to

Bluetooth Low Energy and Wi-Fi:

Low Power Technologies

Technologies | ZigBee/ Bluetooth Low

6LoWPAN Energy

(over 802.15.4)

IEEE spec 802.15.4 802.15.1
Frequency 868/915 MHz; 2.4 GHz
Band 2.4 GHz

Nominal 10-100 m 10 m
Range

Chipset cc2531 cc2540
RX 25 mA 19.6 mA
X 34 mA 31.6 mA

802.11 a/b/g

2.4 GHz;
5 GHz

100 m

cx53111
219 mA
215 mA

Figure 10 - Comparison between different technologies in terms of power usage

2.4.2 Network Layer

The network layer is responsible for packet forwarding, including routing. Protocols commonly
used outside loT networks include IPv4, IPv6, ICMP, IGMP, IPsec and others.

18

Communication stack for this project

Constrained |
I networks stack :

Figure 11 - Communication stack - Network Layer

6LowPAN

6LowPAN is an acronym for IPv6 over Low power Personal Area Networks. Its main attraction
is the use of IP, making communication between IoT nodes simple and familiar.

It allows, through header compression and encapsulation, that IPv6 packets are sent over IEEE
802.15.4 networks. It’s a competitor of ZigBee, which it is often compared to. It is widely
accepted and every relevant player’s chips can be used for 6LowPAN. [20]

Security has been given much attention in this standard since applications for the loT often
include valuable data like a way to open a door and to trigger or turn off alarms. It takes
advantage of AES-128 link layer security, which is defined in IEEE 802.15.4. It provides link
authentication, transport layer security (which runs over TCP, and requires the hardware to
possess an encryption engine) and encryption. Since some |oT systems are very resource
starved and might need to use UDP in favor of TCP, 6LowPAN also supports the RFC 6347
(datagram transport layer security) can be used to provide security at the transport layer.

To transmit packages 6LowPAN makes use of two different types of routing which are
dependent on where the routing mechanism is defined. When the source and destination
nodes are more than one hop away Route-over forwarding makes packets travel over the
network layer whereas Mesh-under forwarding makes packets travel in the data-link layer.
[21]

19

Route-over (layer three) forwarding

SOurce destination
5. Application layer [5. Application layer] [5. Application layer 5. Application layer
4. Transport Layer [4. Transport Layer [4. Transport Layer 4. Tranaport Layer
3. Matwork Layer e ~retr—re 3. Metwork Layer

2. Data Link Layer

2. Data Link Layer

2. Data Link Layer

2. Dwata Link Layer

e, e,

1. Physical Layer

A A A A

e

1. Physical Layer

)
|
|
1

1. Physical Layer

1. Physical Layer

e T S, R

sSource

Mesh-under (layer two) forwarding

destination

5. Application layer

rr) |

5. Application layer

5. Application layar

4. Transport Layer

4. Transport Layer

4. Transport Layer

4. Tranaport Layer

3. Metwork Layer

3. Metwork Layer

3. Metwork Layer

2. Data Link Layer

L N

[
[
[
=

|

2. Data Link Layer

1. Physical Layer

1. Physical Layer

. . SRR SRR S
e ————

j;

Figure 12 - Mesh under and Route-over forwarding

ZigBee

Unlike 6LOWPAN, ZigBee doesn’t allow the option to apply ipv6 on 802.15.4 based nodes. It
does however, allow for full interoperability between ZigBee devices from different
manufacturers.

While 6LoWPAN requires extensive knowledge of IPv6 to be well implemented and therefore
an extensive development time, ZigBee allows for significantly reduced development time by
already implemented functions such as over-the-air firmware updates, channel agility, low-
power mode, and the usage of safety certificates as well as different pre-assembled
application profiles. [22]

2.4.3 Transport Layer

In this subchapter we will be focusing on the two most popular transport layer protocols,
inside and outside the IoT: UDP and TCP.

20

Communication stack for this project

' I :
I Normal IP stack | Constrained
I

I
I I networks stack :

Figure 13 - Communication stack - Transport Layer

TCP

This protocol is currently the most used protocol in the Internet. TCP has many features
including error correction, guaranteed delivery, recovery from congestion, etc.

TCP works by establishing a connection between the sender and the receiver in a 3-way
handshake model. A 3-way handshake works as follows:

MachineA sends a SYN packet to MachineB.

MachineB receives the SYN packet, responds with a SYN-ACK packet
MachineA receives the SYN-ACK packet, responds with an ACK packet
MachineB receives the ACK packet. A connection is now established.

S

SYN and ACK messages are indicated by a either the SYN bit, or the ACK bit inside the TCP
header, and the SYN-ACK message has both the SYN and the ACK bits turned on (set to 1) in
the TCP header.

This model presents an opportunity for an attack. A malicious MachineA could not respond
with the ACK packet in step 3, and instead send successive SYN packets as shown in step 1.
This would allow for a type of attack called SYN Flood, which is a denial-of-service attack. The

21

main goal of this attack is to consume MachineB’s resources to the point where it can no
longer provide a connection to other legitimate machines.

After a connection has been successfully established, MachineA can now begin to send data
packets to MachineB. MachineB will respond with an ACK packet after receiving them, but
that doesn’t mean the sequence of messages traded is always Data->ACK->DATA->ACK and so
on. Since the machines have an established connection, and TCP does re-order packets if need
be, MachineA can send multiple data packets even before receiving the ACK for the first. If a
data packet is received by MachineB out of order it will respond with an ACK of the last
received packet in order, so that MachineA will know what to re-transmit. The following
image illustrates this point exactly.

Initiator Acceptor
Er‘h::lI:l»'.J-lr'lLI 1 SYN I_End;_mlnt
. 2. SYN-ACK —

3.ACK
4: DATA 5600 341 ackno 1 -
f _ﬁ_j 5 ACK ackno 342] ty

g DATA _ seqno1460 ackno 372
"~ il . DATA___ seqno 2555 ackno332

B-ACK ackno 2553 TIME
o FIN
10: FIN-ACK
11: FIN —
12: FIN-ACHK
Hunit_uring Hc-nit_uring
Point 1 Point 2

Figure 14 - Machines trading messages by TCP, illustrating TCP’s re-ordering feature

As pointed out in the image above, the connection closing protocol also includes the trading
of messages between the machines.

TCP has other features which might be interesting for this project, the most relevant of which
might be its sliding window. This is a protocol that ensures TCP messages are not being sent
too fast for the receiver to capture. This is another way to ensure the receiver can process
incoming messages reliably.

The way sliding window works is by specifying a receive window size in the side of the
receiver. This represents the number of bytes the receiver can buffer. When the sender fills
the window size it stops sending messages and starts a persist timer. This is used to protect
TCP from deadlocking, in case the update for the next window size never arrives for some
reason, and the sender is locked in a waiting state, unable to send data.

22

When the receiver updates the sender with a message window that is not 0, the sender will
start to send messages again. This can lead to some problems, however, especially in loT
devices with little memory. As an example imagine the receiver is only able to process data in
very small increments.

32 BITS WriDE

g 78

< > < >
& < > < > | < > < >
¥ l fi) l Ii) = I &
SOURCE PORT [DESTIMATION PORT
SEQUENCE MNUAMBER
ACEMNOWILEDSEFAMENT MNUAMBER
Bow_ o= | 2| ampwen winpow
CHECK SUIA I LIRSEMNT POTMNTER
[OPTIOMNS PADDIMNG
PAYLOAD (DATA)

Figure 15 - TCP header

The advertised window will always be close to 0, so the sender is sending lots of packets with
very little data, creating a huge overhead for a small message. This is commonly referred to as
the silly window syndrome.

ubpP

UDP has none of the features presented in the TCP chapter. It’s unreliable, has no flow
control, doesn’t allow for delivery assurance and it’s connectionless.

Still, many if not all loT Operating Systems implement a stack that supports UDP. There are
white papers defending UDP usage in the loT and articles in reference web pages list UDP
more often than TCP for loT stacks and architectures. Why?

To answer that question lets first look at common cases where UDP is a viable solution. These
include:

e Streaming audio
e Streaming video

23

e Continuous weather data
e Continuous stock market data feeds

These use cases have 3 things in common: Speed, the ability to handle unreliable data and the
need for low overhead.

Below is a graphical representation of a UDP packet, compare it to the TCP packet above.

F2 BITS WiDE

SOURCE PORT DESTIMNATION PORT

LEMNGTH I CHECKSUAM

PAYLOAD (DATA)

Figure 16 - Representation of UDP packet

Notice how TCP uses a minimum size of 224 bytes to send one message. Notice as well how
UDP only uses a fragment of that, 96 bytes, to send the same message.

Although computers have evolved and became cheaper and more powerful, programming for
the loT can’t take the current capabilities of computers and develop for them. In networks
where the number of hardware devices can increase by a factor of 10 or 100, programming
has to take into account the hardware restrictions of these devices.

UDP is faster because it has very little features, and very little overhead. UDP is not concerned
whether the receiving end is able to save every bit of information effectively. UDP is the
technology to go for if speed is more important than reliability.

In a sensor network, how serious is it that one sensor out of 100 fails a message that it is
sending every 5 seconds anyway? If the new data is coming in and is going to replace the
previous one, then missing one message once in a while has no real impact in the quality of
information flowing through the system.

2.4.4 Application Layer

In this layer it might be necessary to import libraries that are foreign to the Operating System
we are using. There are several different technologies to choose from, this analysis will focus

24

on only three of those, which are the most common in loT systems. They are HTTP, MQTT and
CoAP.

Communication stack for this project

1 Constrained
Normal IP stack : : networks stack

Figure 17 - Communication stack - Application Layer

CoAP

CoAP is short for Constrained Application Protocol and was designed for very simple hardware
components to communicate over the Internet [23]. Its description is in line with what we
want to achieve in our project and the technology targets specifically low power nodes. It’s
easily translatable to HTTP and supports multicast communication but still maintains a very
low overhead, which is mighty important in a WSN since it decreases bandwidth usage. [24]

Its message formats are divided into requests and responses and it is bound by default to
UDP. Below is a visual representation of a CoAP header. As you can seg, it uses only 4
mandatory bytes of header information if no other options or tokens are chosen, making it
extremely lightweight compared to HTTP, which uses no less than 16 bytes (or 18 bytes for
HTTP 1.0 and 1.1 which expects headers and therefore an empty line to signify their end).

25

Version | T-len | Type | Code | ID

Exchange handle for client

Header Options

m Representation

Figure 18 - Visual Representation of a CoOAP message header [25]

Low overhead is not CoAP’s only strength. This protocol allows for the discovery of resources
provided by known CoAP services. This is incredibly useful since it allows us to connect to our
network via REST services which potentially can become easily available to other devices in
the future and not only to our Linux gateway.

CoAP features something called resources. These are available routines in a program than can
be discoverable by querying a conventional resource path. These can even be subscribed to,
which result in push notifications.

HTTP

HTTP is the most commonly used commonly used application protocol today. It's even
considered to be the foundation for communication in the World Wide Web. It's a much more
complete and powerful technology than CoAP but it takes up much more ROM and RAM
space and requires powerful WSN nodes to operate in.

Its main features include, amongst others [26]:

e Authentication
e Statelessness

26

e Status codes
e Persistent connections
e Encrypted connections (HTTPS)

Regardless, its operation specifications are compatible with our system, there are compiled
versions of http clients and servers for Contiki and ways to take advantage of its architecture.
As electronics evolve the cost difference between a 512 KB ROM node and an 8 MB Rom one
may become irrelevant but for now HTTP, when compiled, takes up so much space that other
lighter, swifter communication protocols become relevant. ’

MQTT

MAQTT is advertised as a lightweight messaging protocol for small sensors and mobile devices.
According to mqtt.org it is optimized for high-latency and unreliable networks and is
implemented in a publish/subscribe architecture. [27]

MQTT is not just a good fit for the 10T, it was built exactly for the loT. It is not a standard yet,
but as of March, 2013 it is undergoing standardisation at OASIS. It supports security in the
form of username/password fields in a MQTT packet. Encryption across the network can be
handled with SSL.

The notion of publisher and subscriber in MQTT can be explained as follows:

1. A MachineX publishes a message that contains a topic A.
2. A MachineY subscribes to messages with topic A.

A message server, also known as a broker will then match publications with subscriptions,
meaning it will deliver the message published by MachineX to every machine that subscribes
to topic A, MachineY included. This kind of architecture is very efficient in One to Many
messaging, which does not match this project’s decided architecture, presented in chapter 4
of this document. [28]

Nevertheless, MQTT is a very useful protocol in constrained networks. It has a smallest
possible package size of two bytes and is compressed into bit-wise headers, having also
variable length fields. MQTT also features some interesting connection properties such as
supporting always-connected and sometimes-connected models, session awareness (which
includes configurable keep-alives and last will and testament which enables applications to
know when a client goes offline abnormally).

Its networks are usually TCP-based, implement web sockets and QoS is also present in MQTT,
and allows the sender to know whether the message was delivered at most once (Code 0),
delivered at least once (Code 1), or delivered exactly once (Code 2)

27

28

3 Message delivery state of the art

This chapter provides a description of technologies used to deliver the data of the WSN to
different entities. There are several ways to implement this type of distribution of data but as
everything else in this project.

The idea behind this part of the system is that there is a pair of machines trading real-time
messages in both ways, which is comparable to a chat between humans except for machines
deciding who to talk to and what to say. Therefore, a message trading (or chatting)
architecture is suitable for this project.

There are several message trading protocols available. Their components usually include a
server and several clients which trade messages. This analysis will focus some of the most
used around the World and what software they’re usually used with. It will also include an
analysis on alternative message delivery services or architectures.

3.1 XMPP

XMPP is short for Extensible Messaging and Presence Protocol and it’s a communications
protocol. It’s based on XML and enables real-time message trading between two agents. Being
based on XML means that the traded information is extensible and structured. This brings
some problems of course, an XML structure is very heavy to handle and retrieving a high
number of offline messages in a slow network can take a while.

If this system tried to deliver every sensor message it receives to a client over the internet the
initial fetch of offline messages would take an unreasonable amount of time, making XMPP
unviable for this project. However, since the goal is to real-time talk between sensors and an
Android app and to store only critical offline messages, XMPP will be a viable protocol.

29

One of the main selling points of this protocol is that, like everything else used in the project,
it's an open standard [29]. Another selling point is that XMPP follows a decentralized
structure, meaning anyone can implement and host any kind of XMPP service in their own
machines. XMPP is also flexible, things can and have been built on top of XMPP, there are
several well-known extensions that can be used like publish-subscribe ones (Note: To
maintain interoperability, common extensions are managed by the XMPP Standards
Foundation.).

The value of XMPP has been shown by many of the technology giants. Facebook’s IM system
is based on XMPP. Google Talk is based on XMPP and is not discontinued, despite reports of
the contrary. The following subchapters specify software commonly used to implement this
protocol.

3.1.1 Openfire

Openfire is the server which handles the messaging between two clients since they do not talk
directly to each other. It is a real time collaboration (RTC) server licensed under the Open
Source Apache License.

Being built to handle the XMPP protocol, Openfire can receive and send messages from/to
any client that also implements XMPP. This means that receiving of the messages sent by our
system is not locked to our application. Should you need to check them on an iPhone or a
BlackBerry in an emergency you could very well use a XMPP client like Crosstalk or
Vayusphere to read raw data.

This server supports multi-user chat by the XMPP extension XEP-0045 [30] and has a user-
friendly web-based installation that makes it in line with all the other components in this
project. It supports Offline messages, Server-to-Server connectivity, and database connectivity
with MySqgl for example.

30

¥) Openfire Setup: Database Settings - Standard Connection - Mozilla Firefox = |5 |_>Q

File Edit ‘iew History Bookmarks Tools Help

<E| v [v @ Q IG http:/jabber. mydomain.com: 9090/setup/setup-datasource-standard. jsp ‘l‘l‘ l@'fG

{J openfire” Setup

Setup Progress

S Lariguaie calecion Database Settings - Standard Connection
« Server Settings) . ; y . ; y
5 Specify a JDBC driver and connection properties to connect to your database. If you need more information about this process
please see the database documentation distributed with Openfire.
Profile Settings
Adrnin Account Note: Database scripts for most popular databases are included in the server distribution at
ire_ HOME]/: /datab. 3

Setup Progress

- Database Driver Presets: |+ MySQL vI

JOBC Driver Class: [com.mysqljdbeDriver

Database URL: [idbcmysql:/flocalhost 3306/openfire

Usermame: W
Password: |essssss

Minimum Connections: [g ?
Maximum Connections: [15
Connection Timeout: [0 Days

Note, it might take between 30-60 seconds to connect to your database.

[Stopped

Figure 19 - Setup pages on Openfire, illustrating the use of external databases

Another interesting feature that could be used in a future version of this project is the ability
to archive and log messages. It’s just another example of how the decisions on the
technologies to be used was made to make the system modular, decentralized and extensible,
and not by which were theoretically the best or the most popular, or even the easiest to
implement.

3.1.2 Smack API

Smack is the APl on which the clients trading messages will be built with. Since the goal is to
have machines trade messages and not humans, the installation of a regular XMPP client like
Spark would not suffice. Hacking the clients to accept messages from a machine instead of
keyboard input is not the way to go in this scenario. Why Smack? It’s a pure Java library for
JVMs/ Android and has integration with Openfire, so Smack can be implemented inside a Java
program to run on any machine.

Recently versions 4.1.+ up have been released after a long time of little to no updates. [31]
Before 4.1, smack could not run natively and unmodified on Android. This version was
released after the development of this project started, and until then a wrapper for versions
3.x of Smack was used in Android. This library was called aSmack and was not official, poorly

31

documented and unreliable, but it was the only available alternative. Fortunately all these
problems were fixed by migrating from aSmack to Smack 4.1.+.

3.2 AMQP

Advanced Message Queuing Protocol (AMQP) is an open standard application layer protocol
for message-oriented middleware. Is has been approved as an international standard which is
often used in enterprise-level applications and it’s often referred to as the Internet Protocol
for Business Messaging.

This protocol’s features include [32]:

o All AMQP clients interoperate with all AMQP servers

e Diverse programming languages can communicate easily

e Legacy message brokers can be retrofitted to remove proprietary protocols from your
networks

e Enables messaging as a cloud service

e Advanced publish-and-subscribe

e Transactional messaging functionality

o Delivery of offline messages

e Encrypted transactions

e Sending of one big message while still receiving status updates on the same network

o Implementation in most popular operating systems and languages

The broker concept in AMQP is very important, since AMQP works in a publish-subscribe
architecture brokers receive messages from the publishers and route those messages to all
the subscribers of that publisher. When the subscribers receive the messages an
acknowledgment is sent, ensuring the delivery of the message which usually terminates the
transaction. However, in AMQP an acknowledgement can have one of two types:

e Normal acknowledgement, using the basic.ack AMQP method which announces
everything went well with the receiving.

e Negative acknowledgements, using the basic.reject AMQP method, which announces
that either there was a problem with the transmission or the processing of the
message after receiving.

If a negative acknowledgement is sent, the subscriber can also ask the message broker to
either discard it or repeat the sending. Below is described a popular software implementation
of this protocol, RabbitMQ. There are many others, notably Windows Azure Service Bus.
However, since other implementations are often not open source or widely accepted they
aren’t of much interest to this project.

32

3.2.1 RabbitMQ

RabbitMQ is an open source message broker project which has its code released under the
Mozilla Public License. The project consists of [33]:

e The RabbitMQ exchange server itself
e Gateways for HTTP, Streaming Text Oriented Messaging Protocol (STOMP), and MQTT
protocols
e AMAQP client libraries for Java, .NET Framework, and Erlang. (AMQP clients for other
languages are available from other vendors.)
e A plug-in platform for custom additions, with a pre-defined collection of supported
plug-ins, including:
o A '"Shovel" plug-in that takes care of moving or copying (replicating) messages
from one broker to another.
o A '"Federation" plug-in that enables efficient sharing of messages between
brokers (at the exchange level).
o A "Management" plug-in that enables monitoring and control of brokers and
clusters of brokers.

Setting up a connection between RabbitMQ clients is pretty simple. The programmer has to
import the connection libraries of the client:

import com.rabbitmg.client.ConnectionFactory;

import com.rabbitmg.client.Connection;

import com.rabbitmg.client.Channel;

And subsequently create a connection and channel:

ConnectionFactory factory = new ConnectionFactory();
factory.setHost("localhost");
Connection connection = factory.newConnection();
Channel channel = connection.createChannel();

After that the only thing to do is to declare a channel and publish the message to it:
channel.queueDeclare(QUEUE_NAME, false, false, false, null);
channel.basicPublish("", QUEUE_NAME, null, message.getBytes());

The client only has to subscribe the messages to that queue to receive them:

Consumer consumer = new DefaultConsumer(channel) {
@Override

33

public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties
properties, byte[] body)
throws |IOException {
String message = new String(body, "UTF-8");
System.out.printIn(" [x] Received " + message +"""');

}
b

channel.basicConsume(QUEUE_NAME, true, consumer);

3.3 Other implementations and architectures

Implementing the whole message trading system is not the only option, nowadays there are
several cloud based services that allow you to send them your loT sensors information which
is stored and possibly even processed online.

3.3.1 Xively

Xively [34] is a PaaS for the Internet of Things. It allows for cloud messaging, data archiving,
directory services and provisioning to be accessible from Xively API. The difference from the
previous architectures is that such services allow a developer to not implement or host a
server with the message trading logic. This simplifies work and removes worrying risks such as
problems in the server configurations and uptime.

Xively seems to have a strong security component, including:

e From and to connections can be done with HTTPS

e Access to the APl is done using APl access keys which allow for fine-grained access
controls

e Support for OAuth to allow third party applications to access your resources securely
without giving them access to your username and password

e Public and Private feeds, which specify whether or not search engines can index your
data

The following image provides a good explanation of Xively API:

34

DIRECTORY SERVICES DATA SERVICES BUSINESS SERVICES

Searchable directory of Time-Series Archiving Device provisioning,
objects and permissions activation and management

MESSAGE BUS Real-time message management and routing

Xively™ APl REST, Sockets, MQTT

- ~ » ”
v v A o
@ @ s
Xively™ Customer Backend Applications Connected
Applications Services Objects
Developer Workbench Customer CRM

Service

Device Management
Console

Figure 20 - Xively architecture

3.3.2 ThingWorx

ThingWorx [35] is similar to Xively in that it is also a PaaS for the Internet of Things. The
promise is that you can save time and reduce risk and cost by implementing this platform over
your own server. Features include:

e Speed - Deploy 10 times faster with model-based development
e Flexibility - Deploy how you like

e Scalability - Evolve and grow your application over time

e Modern and complete platform

e Mashup people, systems & machines

ThingWorx offers a wide range of tools to aid development of applications for the Internet of
Things such as a codeless mashup builder for network and application planning. In fact, this is

35

probably the main selling point of this service and makes it more of a framework than just a
service. There are tools for:

e Application modelling

e Search-based intelligence

e Dynamic collaboration

e Business Process Management

e “Thing” Management, where thing is how the company refers to what in our project
are the sensors, the “things” in the Internet of Things.

The following image mirrors this service’s architecture:

CONMNECTED APPS

Tl o
3 a2z .) twilio
S0CIAL SERVICES CLOUD SERVICES
MASHUP BUILDER I I PARTY TOOLS
. —
t‘?‘; ‘fl O
1 ¥ . Ill —
| AT Maximo [] [—
ORACLE
BUSINESS SYSTEMS BIG DATA ANALYTICS
[ERP. CRM)

DEVICE DEVICE
CLOUDS cLouDs

$oam TFH el

Figure 21 - ThingsWorx architecture

If you compare it to Xively’s architecture you can tell how ThingsWorx relies heavily in their
tools to provide a more complete service.

36

4 Project Architecture and technologies

There are several hardware and software components in this project. Some decisions had to
be made regarding the types of communication protocols and whether or not to have cloud-
based processing of data. This report describes the options considered and offers insight on
the decisions that were made. Initial proposals and rejected approaches are also presented in
Section 4.2.

4.1 System architecture

The following diagram represents the system physical architecture. It contains every piece of
hardware this system acts on and is captioned with a small text about each type of
component. An effort was made to make the system use as much open source software and
well known formats as possible. Since the aim of the project is to deliver a free and Open
Source option to data gathering any technology with a costly license was automatically
discarded.

37

m Message Delivery system

Borq.'ér-Rauter B . . Q
[\ 5 . 8as
| \ - L | ey

lava appli:atim..n ey Server

User

Figure 22 - General Architecture

The system architecture has four main components: The WSN (divided into sensor nodes and
border router), Linux Gateway, Linux Server and Mobile App. The following subsections have
detailed explanations on every component of the architecture. They include reasoning behind
every design choice.

4.1.1 WSN - Sensor network

Every Sensor node in this network would be at the very least composed of a board with the
actual sensor, a microprocessor and an antenna. Loaded into the node is Contiki-OS, an
operating system for the Internet of Things. Each node is running a different program written
for Contiki-OS. The routines of these programmes gather sensor data and send them to the
Border Router.

Every Sensor has its own IPV6 address in the network and can communicate with every other
node in the network. Furthermore, since this network uses a routing protocol called RPL, even
sensors that are not connected directly to the border router can send him messages. They will
simply be transported through a route in the network defined by the algorithm. [36]

The reason why the Linux Gateway is directly gathering sensor data from these sensors is
because of hardware limitations. There would be a need for more advanced and therefore
expensive nodes which could store information to act as sinks for the Linux Gateway to
connect to, or at least to upgrade the sensor nodes themselves.

This option was actually largely considered as the best approach for some time while
developing the project, simply because it was a simpler way of communicating with the
outside of the network. However, after trying to run a simulation considering the storage of
values in the nodes it was verified that the cost of the network would quickly increase as the

38

number of sensors increased, while the current approach allows for a much slower increase in
costs, even though the initial cost is higher.

* Manages routing in the network
* Bridges the WSN with the outside of the network

BorderiRouter

* Gather sensor data

* Have REST services available to:
+ Describe themselves
+ Return sensor data

Figure 23 - WSN detailed view

The Border Router will not have any kind of sensor installed. It is simply router with the
responsibility to coordinate the network and communicate with the outside.

4.1.2 Linux Gateway

Any small computer, the likes of the popular Raspberry Pi, can be used to run this module. It
can also use the users home or laboratory computer.

Once again, this was thought so that the cost of building the network was as low as possible.
Even in the event a Raspberry Pi has to be bought to continuously run this application, the
cost of doing so would be negligible compared to existing solutions. The physical space one
would need to run such a computer is also very small.

39

Figure 24 - Size comparison between a modern smartphone (left, iPhone 4s) and a Raspberry Pi
(right, B+ model)

Another interesting feature of using these small computers is their low energy consumption.
Once again this is in line with the mission of developing a cost effective solution. Below is a
graph comparing the energy consumption of various mini PCs. The graph shows values for
different models of the Rasp Pi and even other boards. The main difference between model A

and model B are the hardware specs.

40

Current (milliamps)

Board Power Usage

Idle Benchmark Running —— Arduino Yun
—— Beaglebone Black

—— Intel Galileo
—— Raspberry Pi Model A
Raspberry Pi Model B

600

500

U

300

AL

200

100
0 100 200 300 400 500 600 700 800

Time (seconds)

Figure 25 - Energy consumption of various embedded boards.

Notice how much more energy the model B consumes than the model A. The upgraded model
B+ (presented above) already addresses this concern and is slightly more energy efficient.
However, we are talking differences of milliamps, and although they add up the more you
keep your Raspberry Pi on, the difference in the final energy bill will be negligible, especially
when we have only one computer running. For a long running operation it might actually be
cheaper to buy a model A, though the cost won’t differ astronomically.

It’s also important to notice how these values are the minimum required to run the boards.
Add a monitor and the milliamp usage will spike, add a keyboard and you will also feel some
difference. Even connecting the Ethernet cable and sending packets via 802.11 will consume
noticeably more energy. However, there is little or nothing that can be done in this regard.
Hardware components cost energy to use and it is not the goal of this thesis to manage
energy consumption of hardware devices.

It runs a Java application, and therefore can be ran anywhere where a Java VM is installed. It
sends (and can potentially receive, this is a two-way chat, although not implemented yet),
XMPP messages to the Openfire server, which will be received by the Android App when it is
online.

A typical message will be composed of the sensor node identification string, the value and the
time at which that data was recorded, along with a flag that determines whether or not a
message is critical. As far as communication with the WSN goes, the Gateways uses a CoAP
library to connect to the nodes and reach out to their REST services.

Linux Gateway W5N

j —
lava application

BorderRouter

1

Java Application sends a CoAP message E V4 i

to a node in the network, the nodeiis /
identified by it's IPv6 address. A REST @

service implemented by the sensor / - L
) . <
could be made available @/ @D

HTTPGet(aaaa::212:1/getSensorData) 2

|pv6: aaaa:212:1

The message is routed by the border
router, which knows all the nodes and
paths in the network, to the end node.

In this example the followed route
could be that marked in orange

Figure 26 - Example of communication between the Linux Gateway and a WSN node

41

4.1.3 Linux Server

Arguably the most complex of all the components, this server is a virtual machine that was
generously provided by the Instituto Superior de Engenharia do Porto for the duration of this
thesis.

In order to keep costs low for whoever is building the system, Linux, a free Operating System
that requires no purchase to use, was installed. The server is currently running the latest LTS
version of Ubuntu, 14.04.2. Software installed includes:

e Openfire, the XMPP server that handles the trading of the messages is running in
port :9090.

e Apache Tomcat is running on port :8080 and handles the incoming web service calls to
the users database.

e MySql, the chosen database in charge of being storing Openfire tables

Jersey RESTful services were deployed in a project to Apache Tomcat, they contain endpoints
for GET, PUT, POST and DELETE methods that perform operations in the database, although
they are not operational at this point and serve no real function.

4.1.4 Android App

The Android application the main interface used by the User to access the data transmitted
through the system. The earliest version of Android that can be used in this project is 4.2 and
the target version is 5.0.

The Interface is simple, it has the following activities:

e A main page with some lists displaying live sensor values, with special attention for
critical values

e A page with a list of all available sensors

e A page which presents with the sensor details

e A settings page to adjust things like automatic login

The app first connects to the Server to retrieve all offline messages flagged as critical. Then
establishes a chat with the Linux Gateway through the server and starts receiving live
messages from it. If the message is signalled with the critical flag it is displayed automatically
in the main activity, if not it will just appear in the sensor details page.

4.2 Rejected approaches

The first big decision was in regard to the devices of network we would build for. The thesis
proposal presented in the beginning of the year still included a WSN composed of various low

42

power sensors, a Java application, installed in a computer around the networks that would

gather the sensors data and have an offline persistence ability, an online database, which

holds important user data and receives and permanently stores sensor data and an android

app that would display important values to its user about sensors he owns.

802.15.4 Sensor network

Contiki-os sensors

Serjsor

Serjsor

Sensor

Bluetooth network (Piconet)

/
Via Bluetooth Via Bluetooth
/
/
/
/

/
/
v
/
N
)
N\

Via 802.11

Liffux Gateway \
/ Ipve
Bldetooth antenna '\
£02.15.4 antenna
/ 80211 antenna

\
Via 802.11
/

\pve

Stream (

/
Via 802.11

P §
/
/

Figure 27 - General Architecture, as proposed initially.

/ d
Lip(ix Server w/ database
R

N\
MysaL

This was the first proposed architecture diagram, however, the following decisions were

made:

e Toignore the proposed Bluetooth network for now as it would take its time to
implement, time that could be used to further study the WSN (A type of network

students never programmed for during the course). Furthermore a Bluetooth network

was already built in another project and had its analysis made in a four page paper,
linked as annex.

e Toinclude a node in the WSN to act as a border router.

e Todrop the user database and the pretty Linux Gateway GUI, since it was mostly an
extra feature that doesn’t really make much of a difference in a research thesis such

as this.

e To focus on the standards for the loT and their implementation instead of a good

looking system on top of basic programs.

43

44

5 System implementation

In this chapter it will be shown how the application is working as of now and bits of critical
code will be presented. This is your guide to the implementation of the developed prototype
and will clarify how things were built and how you can interact with the application. It also
describes most proposed use cases. It is presented in a specific order: The flow of information
since it is captured by the sensor until it arrives at the Android app.

5.1 Some considerations

A random function call is being used to simulate values from the sensors. Actual algorithms
that will gather actual sensor information were developed and will be presented in this
chapter, but since when running the program in a sensor network simulator such as COOJA no
real sensor is attached to a real microcontroller loaded with the program, it’s necessary to
simulate those values somehow, and COOJA won't do that automatically.

It should be noted that the RPL algorithm, and subsequently the majority of the border router
program was not written by the author of this report. That would constitute a thesis on its
own. RPL is a standard for the loT and is used more like a tool in this project. Still, this is a
research project and explaining the way RPL was used is absolutely necessary to comprehend
how the WSN works, so the implementation of the RPL algorithm Contiki comes bundled with
will be presented in chapter 5.3.

5.2 Sensor Nodes

This is where the data gathering occurs. Each sensor node has code to extract values from its
sensors. This code is obviously dependant on which sensor is going to be used, in this
demonstration a temperature value is fetched from the sht11 sensor which tracks both
humidity and temperature. A node will also have to make rest resources available for the
Linux Gateway to call. So let’s start by declaring and implementing the main process, which
will run as soon as the nod is added to the network and powered on.

PROCESS(thesis_temp_sensor, "Temperature Sensor");
AUTOSTART_PROCESSES(&thesis_temp_sensor);

PROCESS_THREAD(thesis_temp_sensor, ev, data)
{
PROCESS_BEGIN();

shtll_init();
SENSORS_ACTIVATE(sht11_sensor);

45

rest_init();
rest_activate_resource(&resource_sensor);
rest_activate_resource(&resource_helloworld);

rest_activate_resource(&resource_discover);

PROCESS_END();

The sht11_init() line is required to use the sensor. According to its specification and library it
powers up the device, which can be used an additional 11 milliseconds after the call.

The rest_init() line is necessary to setup the RESTful library. After this line is called you can
activate REST resources by calling rest_activate_resource(&resource_name);

Since REST resources need to have logic implemented, each sensor has the following definitions:

RESOURCE(discover, METHOD_GET, ".well-known/core");
RESOURCE(sensor, METHOD_GET, "sensor");
RESOURCE(helloworld, METHOD_GET, "helloworld");

The first one is a standard for discoverable REST resources for CoAP clients. It is convention that
this URI path will return all the available resources of a node, making them self-identifiable, the
implemented logic of this resource is coded as follows:

void discover_handler(REQUEST* request, RESPONSE* response)
{
char temp[100];
intindex = 0;
index += sprintf(temp + index, "%s,", "</helloworld>;n=\"HelloWorld\"");

index += sprintf(temp + index, "%s", "</sensor>;n=\"Sensor\"");

rest_set_response_payload(response, (uint8_t*)temp, strlen(temp));
rest_set_header_content_type(response, APPLICATION_LINK_FORMAT);

The name of these methods is also convention, it needs to be the resource variable given in the
declaration (RESOURCE(discover, METHOD_GET, ".well-known/core")) followed by an underscore and
the word handler.

The second one contains more or less the same signature but has a call to the data gathering
method.

46

uintl6_t temperature;
RESOURCE(sensor, METHOD_GET, "sensor");
Void sensor_handler(REQUEST* request, RESPONSE* response)
{
temperature = ((sht11_sensor.value(SHT11_SENSOR_TEMP) / 10) -396) / 10;

sprintf(temp,"Temp:%u\n", temperature);

rest_set_header_content_type(response, TEXT_PLAIN);
rest_set_response_payload(response, (uint8_t*)temp, strlen(temp));

1
The mathematical operations applied to the temperature

((sht11_sensor.value(SHT11_SENSOR_TEMP) / 10) -396) / 10; are guidelines from the specification and
manuals of the sensor.

5.3 Border Router

The Border router only coordinates the communication inside the WSN, it has no sensor data
gathering or storage capabilities. This coordination is done mainly by implementing the RPL
algorithm.

This is still a node running under Contiki, so it still follows the syntax explained earlier. The
execution starts with the following protothread:

PROCESS_THREAD(border_router_process, ev, data)
{

static struct etimer et;

rpl_dag_t *dag;

PROCESS_BEGIN();

prefix_set =0;
NETSTACK_MAC.off(0);

/* Request prefix until it has been received */
while(!prefix_set) {
etimer_set(&et, CLOCK_SECOND);
request_prefix();
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));

}

dag =rpl_set_root(RPL_DEFAULT_INSTANCE,(uip_ip6addr_t *)dag_id);
if(dag != NULL) {
rpl_set_prefix(dag, &prefix, 64);
PRINTF("created a new RPL dag\n");
1
/* Now turn the radio on, but disable radio duty cycling.
* Since we are the DAG root, reception delays would constrain mesh throughbut.
*/
NETSTACK_MAC.off(1);

#if DEBUG || 1
print_local_addresses();

#endif

while(1) {

PROCESS_YIELD();
if (ev == sensors_event && data == &button_sensor) {

47

PRINTF("Initiating global repair\n");
rpl_repair_root(RPL_DEFAULT_INSTANCE);

}
}

PROCESS_END();

Let’s look at some critical lines of code:

The timer that was declared in this line: static struct etimer et; is a timer commonly used in Contiki
programs, and in this case it serves as a waiting time for the setting of the network prefix inside
the while block.

The reason we turn off the radio with NETSTACK_MAC.off(0); is because the border router might
accidentally join an existing DAG as a parent or child , or acquire a default router that will later
take precedence over the SLIP fallback interface.

After the network prefix is received, we can put together a DAG network with our border router
as the root node. As happens with any DAG, all the structure has one and only one root to which
all the other nodes are directed towards, the following picture took from a COOJA simulation
with the border router and some sensor nodes explains nicely the structure of the network.

% - — My simulation - Cooja: The Contiki Network Simulator
File Simulation Motes Tools Settings Help
Network 5= simulation contrel (=JO)x]| (=) Note:
View Zoom Run Speed limit Enter notes here
\ | St
[RN ® I ! Start Pause Step Reload
aaaai212:7401:1:101
\\ e o / | Time: 17:38.587
\ J ‘ Speed: 663,95%
\ i o £ — =
N il / 3] Mote output
) > 0 y File Edit View
aaa==212?749§a&ﬁ£an2m7404-4-404 A
a N i X 3G 3Time | Mote | Message
- d

i 100:01.202 ID:3 Starting 'Rest Server Example'
i | 00:01.202 1ID:3 COAP Server
|04:10,693 ID:1 # [1024 bytes, no line ending]: ?P?P?P?P?P...
}04:10.694 ID:1 message of type P
04:10,696 1ID:1 Setting prefix aaaa::
‘04:11.686 ID:1 Server IPv6 addresses:
‘ 04:11.689 1ID:1 aaaa::212:7401:1:101
|04:11.692 ID:1 fed::212:7401:1:10L

Filter:
LZJ Serial Sacket {SERVER] {Sky 1)
Client connected: /127.0.0.1
socket ->= mote:159 bvtes mote -> socket 144 bvtes

Figure 28 - DAG netowrk captured in COOJA with radio environment

Node 1 is the border-router. In green we have the range of the border router. All the ranges of
the nodes are the same, so to ping node number 4 for example, the border router has to use a
route of nodes that are collectively within range of one another and make up a path between

48

the nodes 1 and 4. Since this is a DAG the structure of the network is like a tree and the border

router sees nodes directly connected to it as his direct sons and nodes connected to those as
sons of his sons, and so on.

In short. To get to node N, the border router does a search to see which of his sons (and his
son’s sons, and so forth) has a pointer to that node, and directs his request through that path.

5.4 Linux Gateway

The Linux Gateway starts with an implementation of the CoapClient interface of jcoap. AS an
interface, it needs to implement the following methods:

@Override

public void onConnectionFailed(CoapClientChannel channel, boolean notReachable, boolean
resetByServer) {

System.out.printIn("Connection Failed");

}

@Override
public void onResponse(CoapClientChannel channel, CoapResponse response) {
System.out.printIn("Received response " + new String(response.getPayload()));

}

The first thing Linux Gateway does is to query all the nodes for their CoAP services. This is done
by doing a CoAP request to a conventional .well-known/core path.

BasicCoapClient client = new BasicCoapClient();
client.channelManager = BasicCoapChannelManager.getinstance();

For(Sensor s : sensorNodes){

try {
clientChannel = channelManager.connect(this, InetAddress.getByName(s.SERVER_ADDRESS),
s.PORT);

CoapRequest coapRequest = clientChannel.createRequest(true, CoapRequestCode.GET);
coapRequest.setUriPath("/well-known/core");
clientChannel.sendMessage(coapRequest);
System.out.printIn("Sent Request");

} catch (UnknownHostException e) {
e.printStackTrace();

The responses for these requests are treated on the onResponse method, which adds to an
ArrayList<String> of the sensors the paths of the available resources.

After this is done, the Linux Gateway just does the same thing but using a different UriPath, the
new path is dependent on the responses the call to the well-known/core call produced. So if
the call returned a /sensor resource available on the sensor we can now query it and expect a
result which gives us the sensor data: coapRequest.setUriPath("/sensor");

49

After a timeout period defined by the user, for example 5 minutes, we establish a chat with our
mobile app using XMPP.

The first thing that needs to be done for this to happen is to build a TCP connection to our Linux
Server. In this case, the following settings were used

XMPPTCPConnectionConfiguration config = XMPPTCPConnectionConfiguration.builder()
.setUsernameAndPassword(myUsername, myPassword)
.setServiceName(myServiceName)

.setHost(myIP)
.setPort(myPort)
.build();

The serviceName, host ip and host port will be different for every user. These are chosen when
you first install Openfire in the Linux Server and have to be manually introduced in the Linux
Gateway for it to work.

After these are set, we can connect:
AbstractXMPPConnection connl = new XMPPTCPConnection(config);

connl.connect();

connl.login();

We get the roster, which represent the apps we are sending the values to:

Roster roster = Roster.getInstanceFor(conn1);

if (roster.isLoaded()) {
roster.reloadAndWait();

}

Collection<RosterEntry> entries = roster.getEntries();

And create the chat connection, keep in mind that the roster only contains the online users, so
if someone is not using the mobile app the chat will not start, as is intended:

If('entries.isEmpty()){
ChatManager chatmanager = ChatManager.getinstanceFor(conn1);

chatmanager.addChatListener(new ChatManagerListener() {
@Override
public void chatCreated(Chat chat, boolean createdLocally) {
setChat(chat);
chat.addMessagelistener(new ChatMessagelistener() {
@Override
public void processMessage(Chat chat, Message message) {
if (message.getType() == Message.Type.chat | | message.getType() ==
Message.Type.normal) {
if (message.getBody() != null) {
System.out.printIn("Message: " + message.getBody());

}

50

1
}
N

Chat newChat = chatmanager.createChat(entries.iterator().next().getUser());

sendValues();

}

Messages received by the Linux Gateway are currently not being processed for anything, and
are only being printed to the console, as this block suggests:

if (message.getBody() != null) {
System.out.printIn("Message: " + message.getBody());

}

The messages are being sent with the following code inside sendValues();

For(Sensor s : sensors){
For(String value : s.Values){
newChat.sendMessage(s.Name() + “.” + value);

}

5.5 Linux Server

There was no programming component in the Linux Server. All that is required is to setup
some programs, so this chapter will focus on what implementation choices were made.
Connection to this server is made through VMWare vSphere Client since it is a virtual machine
made available by ISEP.

Here we can see that Openfire is indeed installed in that machine and the admin console is
available at port :9090, the default admin console port.

You can also notice the port where the Linux Gateway and Mobile app will connect through, it
is the Client to Server port :5222. If an encrypted connection is required port :5223 can be
used.

51

¥ Openfire Admin Console: %

€ C [10.8.130.168:

openfire:
Se Users/Gi Sessi Group Ch:
& Ser: roups essions roup at
Server Manager Server Settings Media Services

» Server Information

Y L O

Plugins

Server Information

System Properties
Language and Time
Clustering

Cache Summary

Update information

Server version 3.10.2 is now available. Click here to download or read the change log for more information.

Database
Logs
Email Settings Below you will find server information, ports being used and latest news about Openfire.
Security Audit Viewer Server Properties e
Server Uptime: 6 days, 2 hours, 37 minutes — started Oct 11, 2015 Ignite Realtime News
431:11PM
Version: Openfire 3.10.0 The Ignite Realtime feed is currently
navailable.
Server Directory: /opt/openfire urayal
Server Name: uvm1100580 The Ignite Realtime feed is currently
unavailable.

Environment
Java Version:

Appserver:

Host Name:

OS / Hardware:
Locale / Timezone:
Java Memory

Server Ports

1.8.0_45 Oracle Corporation -- Java HotSpot(TM) Server
VM

jetty/9.2 z-SNAPSHOT
uvm1100580

Linux /i386

en /Western European Time (0 GMT)
BT 25,12 MB 0f92.81 MB (27.1%) used

Interface Port Type Description

0:0:0:0:0:0:0:0 52

Figure 29 - Openfire ad

Openfire was installed using a

the existing structure. Apache Tomcat was also installed and is running on port :8080, but as

of now it isn’t associated with

dropped from the project for now. It should be noted that the rest services were indeed

developed and are running in
a User table in mySql.

52

The standard port for clients to connect to the server.
22 3 Client to Server Connections may or may not be encrypted. You can
update the security settings for this port

min console, displaying information about the installation

mySql database so that functionality can be extended on top of

any functionality since the option to have a user database was

the Tomcat server, but they consist of only CRUD operations to

@.ﬁ'manager x \ Apacha Tomcat/8.0.21-E =

[C' | [3 10.8.130.168:8080/manager/html

“8me°Apache

Software Foundation
http://www.apache.org/

Tomcat Web Application Manager

Message: |DK |
List Applications HTML Manager Help Manager Help Server Status
Path Version Display Name Running | Sessi C d
Start | Stop | | Reload || Undeploy |
! None specified | Welcome to Tomcat true 0
| Expire sessions |with idle = ‘30 | minutes
Start | Stop | | Reload || Undeploy |
Idocs None specified |Tomcat Documentation true 0
| Expire sessions |with idle = ‘3[] | minutes
Start | Stop | | Reload || Undeploy |
lexamples None specified | Servlet and JSP Examples true 0
| Expire sessions |with idle = ‘30 | minutes
Start | Stop | | Reload || Undeploy |
[host-manager |None specified |Tomcat Host Manager Application true 1
| Expire sessions |with idle = ‘30 | minutes
Start Stop Reload Undeploy
[manager None specified | Tomcat Manager Application true 1
| Expire sessions |with idle = ‘3[] | minutes
Start | Stop | | Reload || Undeploy |
None specified | Restful Web Application true 0
| Expire sessions |with idle = ‘30 | minutes

Figure 30 - The crud REST services running in the Linux Server

Ultimately this shows how extensible this project is, that you can use whatever exists already
and build on top of it to expand functionality, just as it was intended.

5.6 Mobile App

In terms of implementation, the main Activity contains only lists and basic Ul components.
The real effort is in the connection to the Linux Gateway through the server.

If before we gave no importance to the receiving of messages, now the exact opposite is being
done. The app has no logic to transmit messages to the Linux Gateway, and instead only
consumes them. Firstly it’s necessary to build a chat listener to receive messages sent by the
Linux Gateway and then it’s necessary to register a message listening method to handle
incoming messages.

ChatManager chatmanager = connection.getChatManager();
connection.getChatManager().addChatListener(new ChatManagerListener()

{

public void chatCreated(final Chat chat, final boolean createdLocally)

chat.addMessagelistener(new Messagelistener()

{

public void processMessage(Chat chat, Message message)

{

//logic of the message receiving goes here
}
1;
}
1;

The logic of receiving messages is too long to insert here but it distributes messages across
ArrayLists<Message> inside Sensor instances. It also has logic to distribute critical messages to
a special List which is presented in the main page.

54

6 Conclusion

The quest to build a project that studies low-level programming and loT technologies proved
itself difficult. There is work to be done in the establishment of standards and the area needs
more scientific development and in-depth studies of technologies to become easier to pick up.

The hardware limitations lead to weird programming trends and standards which are not in
line with the much more mature software development seen in companies nowadays. It’s
almost as if building an IoT solution is to make the best of a bad situation as there is no widely
accepted set of standards that connect the 10T to the rest of the internet or to the
development process, i.e. there is a lack of software development methodologies like scrum
that work well in this kind of development; there are no real debug tools in Contiki; etc.

This, however, is not caused by incompetence or even lack of interest of the subject. This is
what every programming field passes through on its way to greatness. It is more of a privilege
than a curse to build this thesis in a time where new, completely revamped versions of loT
operating systems are coming out.

The final thought is that, despite all this, it is absolutely possible to build a solid loT solution or
project with the existing standards and technologies, that Contiki itself is a great operating
system for what it’s intended and that the 6LoWPAN stack covers a lot of problems that exist
in communication between nodes. The fact that many companies are building PaaS’s with a
high level of abstraction for this field means that the industry is evolving to fix the previously
reported problems, and that in years’ time development for the loT will be much quicker and
smoother and bring about a re-reawakening of the loT, complete with high-level programming
of low-power devices.

It was also possible to contribute to the field with the proposed characteristics of this system,
as well as build an extensive report of the state of the art of all these technologies.
Information about them is not scarce, even though there is very little consensus on the
various competing technologies, which often try to occupy one another’s fields.

55

56

7

(1]
(2]
(3]
(4]

(5]

(6]

(7]

(8]

(9]

Works Cited

“oreilly,” [Online]. Available:
http://www.oreilly.com/openbook/opensources/book/appa.html.

mff.cuni.cz. [Online]. Available:
https://d3s.mff.cuni.cz/~ceres/sch/osy/text/ch01s03s06.html.

“thelinuxdesk,” [Online]. Available: https://thelinuxdesk.wordpress.com/tag/monolithic-
kernel/.

J. N. Herder, “minix3,” [Online]. Available: http://www.minix3.org/theses/herder-true-
microkernel.pdf.

Contiki.org. [Online]. Available: http://www.contiki-os.org/.

M. O. F. a. T. K. *, “mdpi,” [Online]. Available: http://www.mdpi.com/1424-
8220/11/6/5900/htm.

c2. [Online]. Available: http://c2.com/cgi/wiki?EventDrivenProgramming.

J. Hill. [Online]. Available: http://www.cs.berkeley.edu/~culler/cs294-
f03/papers/tinyos.pdf.

B. G. T. V. Adam Dunkels, “dunkels,” [Online]. Available:
http://www.dunkels.com/adam/dunkelsO4contiki.pdf.

57

[10

[11

[12

[13

[14

[15

[16

[17

[18

[19

[20

[21

[22

[23

58

alignan, “github,” [Online]. Available: https://github.com/contiki-os/contiki/wiki/An-
Introduction-to-Cooja.

“stanford.edu,” [Online]. Available: http://tinyos.stanford.edu/tinyos-
wiki/index.php/TinyOS_Documentation_Wiki.

“TinyOs.net,” [Online]. Available: http://www.tinyos.net/tinyos-
1.x/doc/tutorial/lesson5.html.

T. Reusing. [Online]. Available: http://www.net.in.tum.de/fileadmin/TUM/NET/NET-
2012-08-2/NET-2012-08-2_02.pdf.

“OASIS-open.org,” [Online]. Available: https://www.oasis-open.org/standards.

1. Rogerson. [Online]. Available: http://www.techradar.com/news/phone-and-
communications/mobile-phones/4g-and-lte-everything-you-need-to-know-926835.

V. Beal, “webopedia,” [Online]. Available:
http://www.webopedia.com/TERM/4/4G_LTE.html.

M. Christiano. [Online]. Available: http://www.allaboutcircuits.com/technical-
articles/zigbee-vs-bluetooth-and-bluetooth-smart/.

“science.smith,” [Online]. Available:
http://www.science.smith.edu/~jcardell/Courses/EGR328/Readings/WSN_Zighee%200v
w.pdf.

J. Schonwalder, “Utwente,” [Online]. Available:
https://www.utwente.nl/ewi/dacs/colloquium/archive/2010/slides/2010-utwente-
6lowpan-rpl-coap.pdf.

“ti.com,” [Online]. Available:
http://www.ti.com/Isds/ti/wireless_connectivity/6lowpan/overview.page.

J. Olsson. [Online]. Available: http://www.ti.com/lit/wp/swry013/swry013.pdf.

D. Gascdn, “libelium.com,” [Online]. Available: http://www.libelium.com/802-15-4-vs-
zigbee/.

“coap,” [Online]. Available: http://coap.technology/.

[24

[25

[26

[27

[28

[29

[30

[31

[32

[33

[34

[35

[36

[37

T. Jaffey. [Online]. Available:
http://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php.

“slideshare,” [Online]. Available: http://www.slideshare.net/jvermillard/hands-on-with-
c0ap-36793005.

P.J. Mueller. [Online]. Available: http://muellerware.org/papers/oopsla-1996/oopsla96-
10.html.

B. SmartWorx. [Online]. Available: http://bb-smartsensing.com/basics-of-mqtt/.

“hivemq,” [Online]. Available: http://www.hivemq.com/blog/mqtt-essentials-part-3-

client-broker-connection-establishment.

xmpp.org. [Online]. Available: http://xmpp.org/about-xmpp/technology-overview/.

Wroot. [Online]. Available: https://community.igniterealtime.org/docs/DOC-2285.

Flow. [Online]. Available:

https://community.igniterealtime.org/blogs/ignite/2015/03/29/smack-410-released.

amgp.org. [Online]. Available: https://www.amqgp.org/product/features.

“Pivotal,” [Online]. Available: https://www.rabbitmg.com/features.html.

“Xively,” [Online]. Available: xively.com.

“ThingWorx,” [Online]. Available: http://www.thingworx.com/.

D. M. H. F. Mario Alves, “CISTER,” [Online]. Available:

https://www.cister.isep.ipp.pt/docs/mobile_iot__smart_hop_over_rpl/947/view.pdf.

“MQTT-OASIS-Webinar,” [Online]. Available: https://www.oasis-
open.org/committees/download.php/49205/MQTT-0ASIS-Webinar.pdf.

59

60

Annex 1

Figure 31 - First idea of project to develop

61

Annex 2

62

Light Sensor

-bool active
-int brightness

+oggle{);

+3j ustB rightness{int value];
-autoSendBrightress(int value);
+requestBrightness(id);

* o n]

Temperature Sensor

-float temperature
+checkTemperature(};
-autoSendTemperature(float valu=);
+requestTemperature(id);

.

N
|
v
1

-List=Temps> tempHistony
-List=Bright=> brightness History
-List=Toxc s> toxicity History
-List<Sensor: sensors

-connectToDB(user, pass);
~fillFromDB{Table);
-insertDB{Table, Row);

Figure 32 - Early idea of sensor's data members and methods

-int toxicitylewvel
+checkToxcityl);

-autodlertT oxidty{Date, value);
+requestToxicity(id);

-deleteDB({Table,id);
-updateDB({Table, id, Row);
-requestBrightness(id, Sensor};
-requestTemperature(id, Sensor);
-requestToxicity(id, Sensor);

-buildGraphFromList{List, DateRange|;

+recieveData(Sensor, datal;

L

