
INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO

Gestão de Afluências Indevidas em Redes de Águas Residuais Urbanas

DIOGO TAVARES BRANDÃO

Outubro de 2015

MESTRADO EM ENGENHARIA CIVIL – GESTÃO DA CONSTRUÇÃO

GESTÃO DE AFLUÊNCIAS INDEVIDAS EM REDES DE ÁGUAS RESIDUAIS URBANAS

Diogo Tavares Brandão

Relatório de estágio submetido para satisfação parcial dos requisitos do grau de Mestre em Engenharia Civil — Ramo de Gestão da Construção

Orientador: Professor Jaime Gabriel Silva

PORTO

OUTUBRO 2015

ÍNDICE GERAL

Res	umo	ii
Abs	tract	v
Agra	adecimentos	vi
Índi	ce de Texto	ix
Índi	ce de Figuras	xiii
Índi	ce de Tabelas	xv
Abr	eviaturas	xvi
1	Introdução	1
2	Apresentação de Empresas	5
3	Afluências Indevidas	13
4	Metodologias de Quantificação e Identificação de AI	33
5	Caracterização do Caso em Estudo	55
6	Aplicação do Método do Triângulo e Análise dos Resultados	63
7	Conclusão	79
Refe	erências Bibliográficas	81
Ane	хо І	
Ane	xo II	XVI
Ane	xo III	XVIII
Ane	xo IV	XXXI
Ane	exo V	XXXV

RESUMO

As afluências indevidas resultantes direta ou indiretamente da precipitação são um dos principais

fatores que provocam graves problemas de carácter ambiental, estrutural e económico, no âmbito de

um bom funcionamento dos sistemas separativos de saneamento e tratamento de águas residuais

urbanas.

Ao longo dos anos, com a expansão do serviço de saneamento à população, tem sido reconhecido que

os caudais excedentes às redes de drenagem de águas residuais e estações de tratamento são um

problema grave e para isso estão a ser criados critérios cada vez mais exigentes no domínio da gestão

e operação destes sistemas de saneamento.

Para uma melhor compreensão sobre a incidência das afluências indevidas nos sistemas de

saneamento e nas estações de tratamento de águas residuais, é necessário realizar estudos de

quantificação e caracterização no sistema de esgotos. Com a necessidade de compreender a plenitude

e natureza deste problema, tornou-se necessário desenvolver metodologias com o objetivo de

melhorar a eficiência e eficácia hidráulica dos sistemas de drenagem e de tratamento.

Este trabalho tem como objetivo a análise quantitativa das afluências indevidas, recorrendo a um caso

de estudo de uma bacia de drenagem de águas residuais. Para adquirir mais conhecimento sobre o

tema foi necessário recolher várias metodologias existentes de maneira a selecionar, estudar e aplicar

o método mais vantajoso.

Nesta dissertação, foram utilizados dados disponibilizados pela SIMRIA, no que respeita aos caudais

de bombagem da estação elevatória a que afluiu a rede em estudo, e pela INDAQUA Feira, no que

respeita aos dados de precipitação.

Palavras-chave: afluências indevidas, sistemas de saneamento, metodologias, precipitação.

iii

ABSTRACT

The improper inflows resulting of direct or indirect precipitation is one of the main factors which cause

major malfunctions of environmental, structural and economical character, in the ambit of a good

behaviour in separative sanitation wastewater and urban water treatment systems.

Throughout the years, with the expansion of sanitation services to the population, it has been noticed

that the overflows in draining networks and wastewater treatment plants are a serious issue, therefore

are being created standards more and more demanding in the management and operation of these

sanitation systems.

For a better understanding about the improper inflows incidence in sanitation systems and wastewater

treatment plants, it is necessary to conduct studies of quantification and characterization of the sewer

systems. With the necessity to comprehend the plenitude and nature of this problem it has become

necessary to develop methodologies with the objective of improving the hydraulic efficiency and

effectiveness of draining and treatment systems.

This paper main purpose is the quantitative analysis of improper inflows, resorting to a case study of

a drainage basin wastewater. To acquire more knowledge on the matter it was necessary to retrieve

an array of existing methodologies in view of sorting, studying and application of the most

advantageous method.

The used data in this dissertation was provided by SIMRIA, in the case of the pumping rate flow of the

loadinglift station that surged to the network case study, and by INDAQUA Feira, for the precipitation

data.

Keywords: improper inflows, sanitation systems, methodologies, precipitation.

٧

AGRADECIMENTOS

Com o terminar deste estágio, quero agradecer a todas as pessoas que, direta ou indiretamente, me ajudaram na realização deste trabalho e nesta etapa importante da minha vida.

À minha família, principalmente aos meus pais pelo crescimento, apoio e paciência ao longo dos anos, pois sem eles nada disto seria possível.

Aos meus amigos e colegas de curso, pela amizade e apoio que muito contribuiu para o meu crescimento pessoal e profissional.

Ao orientador Eng.º Gabriel Silva, gostaria de agradecer a contribuição e oportunidade que me foi concedida de realizar o Estágio na organização SIMRIA – Saneamento Integrado dos Municípios da Ria, SA.

Ao coorientador Eng.º Jorge Cunha, agradeço a orientação que sempre prestou, durante a realização do estágio e na elaboração do presente relatório.

Ao Eng.º David Pereira, um especial agradecimento por todo o apoio, orientação e disponibilidade prestado durante o período de estágio, que foi uma pessoa fundamental na concretização deste trabalho.

Aos colaboradores da INDAQUA, especialmente ao Eng.º Emerciano Lopes pela disponibilização de dados e conhecimentos que contribuíram para a realização deste trabalho.

ÍNDICE DE **T**EXTO

İr	ndice G	eral	i
R	esumo		iii
Α	bstract		. V
Α	gradec	imentosv	/ii
ĺr	ndice de	e Texto	ix
ĺr	ndice de	e Figurasxi	iii
ĺr	ndice de	e Tabelasx	(V
Α	breviat	urasxv	/ii
1	Intr	odução	1
	1.1	Apresentação e Enquadramento do Tema	1
	1.2	Âmbito e Objetivos	2
	1.3	Organização da Dissertação	3
2	Apr	esentação de Empresas	5
	2.1	Águas de Portugal	5
	2.2	SIMRIA	6
	2.3	INDAQUA Feira	.1
3	Aflu	ências Indevidas 1	.3
	3.1	Definição de Afluências Indevidas	.3
	3.2	Infiltração Direta1	.4
	3.3	Infiltração Indireta	.5
	3.4	Indicadores de Desempenho	.7

	3.5	Cus	tos Associados	28
	3.5	.1	Custos Operacionais	29
	3.5	5.2	Custos de Manutenção	29
	3.5	5.3	Custos de Investimento	29
	3.6	Con	itrolo da Infiltração	31
4	Me	etodo	logias de Quantificação e Identificação de AI	33
	4.1	Lev	antamento de Metodologias	33
	4.1	1	Técnicas Ultrassónicas (Sonar)	34
	4.1	2	Avaliação da Rede com Tecnologia Scanner	35
	4.1	3	Laser-Based Profiling	35
	4.1	4	Ensaios de Estanquidade	36
	4.1	5	Lamping	36
	4.1	6	Técnicas de Limpeza	37
	4.1	7	Técnicas com Traçadores	39
	4.1	8	Questionários a Residentes	40
	4.1	9	Projeto APUSS	40
	4.1	10	Método dos Isótopos Naturais	41
	4.1	11	Método das Séries Temporais	43
	4.2	Mé	todos Aprofundados no Presente Estudo	45
	4.2	2.1	Método do Triângulo	45
	4.2	2.2	Testes de Fumo	48
	4.2	2.3	Inspeção Visual	49
5	Cai	ractei	rização do Caso em Estudo	55
	5.1	Car	acterização da Bacia Hidrográfica da Barrinha de Esmoriz / Lagoa de Paramos	55
	5.2	Car	acterização da Rede de Drenagem em Alta	56
	5.2	2.1	ETAR de Espinho	56

	5.2.2	2	Estação Elevatoria de Rio Maior 1	58
	5.2.3	3	Estação Elevatória de Silvalde 1	58
	5.2.4	1	Rede Em Alta	59
	5.3	Cara	acterização da Bacia de Drenagem em Baixa	60
	5.3.1	L	Freguesia de Nogueira da Regedoura	60
6	Aplic	caçã	o do Método do Triângulo e Análise dos Resultados	63
	6.1	Apli	cação do Método do Triângulo	63
	6.2	Aná	lise dos Resultados	68
	6.3	Aná	lise de Sensibilidade do Método do Triângulo	71
	6.3.1	L	Caso 1	71
	6.3.2	2	Caso 2	74
	6.4	Test	tes de Fumo Realizados	77
7	Conc	clusã	ğo	79
	7.1	Sínt	ese e Conclusões	79
	7.2	Prop	postas de trabalho futuro	80
Re	eferênci	ias E	Bibliográficas	81
Ar	nexo I			III
Ar	nexo II			XVI
Ar	nexo III.			. XVIII
Ar	nexo IV			. XXXI
Ar	nexo V .			XXXV

ÍNDICE DE FIGURAS

Figura 2.1 Sistema Multimunicipal de Saneamento da Ria de Aveiro (Fonte: Relatório e Contas SIMI 2013).	
Figura 2.2 Estrutura organizacional da SIMRIA (Fonte: Relatório e Contas SIMRIA 2014)	8
Figura 2.3 Ciclo PDCA (Fonte: Relatório e Contas SIMRIA 2013)	9
Figura 2.4 Concelho de Santa Maria da Feira	12
Figura 3.1 Otimização do custo associado à redução da infiltração numa rede de drenagem (Amorii 2007)	
Figura 4.1 Imagem produzida pelo Sonar (Fonte: ASCE, 2009)	34
Figura 4.2 Secção SSET (Fonte: ASCE, 2009)	35
Figura 4.3 Secção Lateral SSET (Fonte: ASCE, 2009)	35
Figura 4.4 Camara fotográfica montada numa haste rígida (Fonte: ASCE, 2009)	37
Figura 4.5 Caracterização isotópica e decomposição do hidrograma diário nas suas (Bonito 2014)	43
Figura 4.6 Separação dos hidrogramas obtidos em duas bacias de drenagem na Suíça (Bonito, 2014	-
Figura 4.7 Diagrama cronológico de caudais medidos na ETAR de Mirandela e da precipitação registada durante o ano de 1999 (Almeida & Monteiro, 2005)	46
Figura 4.8 Aplicação do método do triângulo para a separação das parcelas de origem doméstica, infiltração e escoamento superficial - ETAR de Mirandela 1999 (Almeida & Monteiro, 2005)	47
Figura 4.9 Diagrama de Testes de Fumo (Fonte: ASCE, 2009)	49
Figura 4.10 Fissura ligeira (Fonte: ASCE, 2009)	50
Figura 4.11 Fissura com infiltração ligeira (Fonte: ASCE,2009)	50
Figura 4.12 Fissura com infiltração elevada (Fonte: ASCF, 2009)	50

Figura 4.13 Camara montada em estrutura com esquis (Fonte: ASCE, 2009)	51
Figura 4.14 Camara autopropulsionada (Fonte: ASCE, 2009)	52
Figura 4.15 Camara montada numa haste rígida (Fonte: ASCE, 2009)	52
Figura 4.16 Tubagem de grande diâmetro e válvula de câmara (Fonte: ASCE, 2009)	53
Figura 4.17 Exemplos de equipamentos e procedimentos usados durante a entrada de pessoas (Fonte: ASCE, 2009)	54
Figura 5.1 Barrinha de Esmoriz (Fonte: www.oln.pt)	56
Figura 5.2 ETAR de Espinho (Fonte: SIMRIA, 2014)	57
Figura 5.3 Estação Elevatória Rio Maior 1	58
Figura 5.4 Estação Elevatória de Silvalde 1	59
Figura 5.5 Rede em Baixa (Fonte: SIMRIA 2015)	60
Figura 5.6 Freguesia de Nogueira da Regedoura (Fonte: Google Maps)	61
Figura 5.7 Evolução do número de habitantes de Nogueira da Regedoura (Fonte: INE)	61
Figura 5.8 Variação percentual do nº de habitantes de Nogueira da Regedoura (Fonte: INE)	61
Figura 6.1 Diagrama cronológico de caudais da EESv1 e da precipitação durante o ano de 2013	65
Figura 6.2 Diagrama cronológico de caudais da EESv1 e da precipitação durante o ano de 2014	65
Figura 6.3 Diagrama de aplicação do método do triângulo 2013	69
Figura 6.4 Diagrama de aplicação do método do triângulo 2014	69
Figura 6.5 Diagrama de aplicação do método do triângulo 2013 — Caso 1	72
Figura 6.6 Diagrama de aplicação do método do triângulo 2014 — Caso 1	72
Figura 6.7 Diagrama de aplicação do método do triângulo 2013 — Caso 2	74
Figura 6.8 Diagrama de aplicação do método do triângulo 2014 — Caso 2	75
Figura 6.9 Balão insuflável	77
Figura 6.10 Máquina de Fumo e Bomba de pressão de Ar	77
Figura 6.11 Fumo saliente numa sarjeta	77
Figura 6.12 Fumo saliente numa sarjeta	77

ÍNDICE DE TABELAS

Tabela 3.1 Tipos de afluências indevidas (Rodrigues 2013)	14
Tabela 5.1 Componente de Tratamento de águas Residuais (ETAR Espinho e ETAR da Remolha)	57
Tabela 5.2 Componente de Recolha de Águas Residuais (Subsistema da Barrinha de Esmoriz)	57
Tabela 5.3 Componente de Rejeição (Exutor Submarino de Espinho)	57
Tabela 6.1 Tabela cronológica de caudais e precipitação medidos (excerto)	64
Tabela 6.2 Caudal médio anual por dia da semana de 2013	64
Tabela 6.3 Caudal médio anual por dia da semana de 2014	64
Tabela 6.4 Tabela de Resultados	68
Tabela 6.5 Tabelas de resultados das áreas	70
Tabela 6.6 Tabela de resultados – Caso 1	71
Tabela 6.7 Tabela de resultados das áreas – Caso 1	73
Tabela 6.8 Tabela de resultados – Caso 2	74
Tahela 6 9 Tahela de resultados das áreas — Caso 2	75

ABREVIATURAS

AdDP – Águas do Douro e Paiva, S.A.
AdP – Águas de Portugal, SGPS, SA
AdRA – Águas da Região de Aveiro
AI – Afluências Indevidas
APUSS - Assessing Infiltration and Exfiltration on the Performance of Urban Sewer Systems
AR – Águas Residuais
Cap – Capitação
C _{AR} – CQO das águas residuais domésticas
CCTV – Close Circuit Television
C _{inf} – CQO das águas infiltradas
CQO – Carência Química de Oxigénio
Ct – CQO do caudal total
DEC – Departamento de Engenharia Civil
DGEG – Direção Geral de Energia e Geologia
DL – Decreto de Lei
DR – Decreto Regulamentar
EE – Estação Elevatória

EN - Norma Europeia

ERSAR – Entidade Reguladora dos Serviços de Águas e Resíduos em Portugal

ETAR – Estação de Tratamento de Águas Residuais

IF – INDAQUA Feira, S.A.

INDAQUA – Industria e Gestão de Água, S.A.

ISEP – Instituto Superior de Engenharia do Porto

LNEC – Laboratório Nacional de Engenharia Civil

pH – Potencial de Hidrogénio

Pop – População

PRCE – Plano de Racionalização dos Consumos de Energia

PRCE – Plano de Racionalização dos Consumos de Energia

Q_{AR} – Caudal de água residual doméstica

Q_{inf} – Caudal Infiltrado

Qt - Caudal total

RM - Rio Maior

SGI – Sistema de Gestão Integrado

SIMC – Sistema Integrado de Medição de Caudal

SIMRIA - Saneamento Integrado dos Municípios da Ria, SA

SMF - Santa Maria da Feira

SMM Ria - Sistema Multimunicipal de Saneamento da Ria de Aveiro

SMOW – Standard Mean Oceanic Water

SV – Silvalde

^xO – Isótopo de Oxigénio de massa x

ZMC – Zona de Medição e Controlo

1 INTRODUÇÃO

1.1 APRESENTAÇÃO E ENQUADRAMENTO DO TEMA

A existência de afluências indevidas nas redes de coletores leva a uma maior dificuldade e a um aumento nos custos de operação, tanto do transporte do efluente recolhido como do seu tratamento pelas ETAR's. A descarga de esgotos nas redes coletoras e ETAR, variável no tempo, leva a uma sobrecarga em quantidade (superior à do dimensionamento) e a uma variação elevada em qualidade que podem comprometer o funcionamento do tratamento, levando muitas vezes a um efeito de "wash out" da biomassa existente nas ETAR, ou seja, a uma perda dos micro-organismos para o exterior do sistema de tratamento por arrastamento no efluente final. Este excesso pode também levar a descargas de efluente não tratado para o meio recetor, provocando impactos a nível ambiental.

Apesar dos vários investimentos elevados que têm sido feitos nos sistemas de águas residuais e pluviais, o desempenho nestes sistemas em maior parte dos casos está longe de ser satisfatório, e as entidades gestoras têm a noção que as Al são um grande contributo para esta situação. Esta problemática é uma causa importante na deterioração do desempenho funcional do sistema, e é bem conhecida pelos gestores dos sistemas de águas residuais e pluviais. O que não é conhecida é a dimensão total do problema, pois existe um número desconhecido de ligações ou descargas indevidas na rede, ou de circunstâncias de caudais excessivos que podem causar inundações, descargas, entre outros.

É recomendável atuar em face de casos mais evidentes da existência de AI, e não à sua eliminação em circunstâncias difíceis de localização de forma exaustiva. Para isso, a sua eliminação passa prioritariamente por definir um plano de reabilitação direcionado. É necessário adotar metodologias adequadas e selecionar mecanismos e ações apropriadas para promover a redução gradual das AI de maneira a aumentar a eficácia e a eficiência dos sistemas em termos económicos, ambientais e operacionais. Contudo a minimização das AI até a um nível aceitável, necessita da caracterização das causas predominantes e da identificação dos locais prioritários para atuação.

Os sistemas de saneamentos com problemas estruturais vão não só ter problemas de entrada de água na rede mas também a saída de caudais através de anomalias para o solo, processo este designado normalmente por exfiltração. Esta anomalia pode originar um arrastamento do solo e a criação de vazios, de maior ou menor dimensão. No caso de sistemas separativos domésticos e unitários, dá-se também a contaminação dos solos por águas residuais não tratadas. Apesar de não se tratar de uma AI, a exfiltração está associada ao mesmo tipo de anomalias que a infiltração, estando a ocorrência de uma ou outra principalmente dependente do nível freático e do tipo de solo.

1.2 ÂMBITO E OBJETIVOS

O estágio a realizar teve por base a perceção da real quantidade de afluências indevidas numa rede de saneamento em estudo da bacia de drenagem da Lagoa de Paramos do tipo separativo, de forma a conseguir proceder à sua redução.

Para uma análise eficaz e eficiente deste trabalho foi necessário conhecer as normas de dimensionamento de coletores para perceber bem o seu funcionamento. Também foi bastante importante pesquisar e estudar métodos de controlo de infiltrações que poderiam ser aplicados ao caso em estudo.

Para isso foi necessário ter um vasto leque de metodologias que podiam ser aplicadas a redes e perceber qual a mais adequada. Durante este estágio foi possível obter alguns dos métodos que podem ser aplicados. No entanto a prioridade foi estudar o Método do Triangulo, pois é a metodologia que está a ser aplicada, neste momento pela INDAQUA Feira, daí ser importante percebe-la para determinar se é a melhor opção a adotar.

Como não existem muitos estudos realizados com explicações concretas de como aplicar determinados métodos, este trabalho tem como objetivo ser claro em todos os parâmetros de aplicação do método, de forma a contribuir para outros possíveis estudos no futuro.

Com a realização deste estágio pretendeu-se fazer a aplicação prática dos conhecimentos adquiridos ao longo da formação em Engenharia Civil.

1.3 ORGANIZAÇÃO DA DISSERTAÇÃO

A presente dissertação desenvolve-se em 7 capítulos.

O Capitulo 1 diz respeito a uma introdução na qual se apresenta a temática abordada e utilizada no estágio, assim como os objetivos inicialmente propostos a atingir.

No Capitulo 2 é feita uma descrição aprofundada das empresas AdP, SIMRIA e IF, que estiveram envolvidas na realização deste estágio.

No Capítulo 3, realiza-se uma descrição da definição de Afluências Indevidas, desde as suas principais causas, custos e impactos, às estratégias de quantificação. Este capítulo permite abordar a temática das infiltrações em toda a sua extensão, úteis de ser empregues na realização dos trabalhos.

O Capitulo 4 apresenta todas as metodologias que foram estudadas durante o semestre, mostrando os seus procedimentos e fórmulas de cálculo, de forma a poder justificar a sua posterior utilização no caso estudo.

O Capítulo 5 passa para a caracterização do caso em estudo, descrevendo-se o Concelho e a bacia em questão realizando uma caracterização a nível do sistema em alta.

O Capitulo 6 mostra todos os dados recolhidos e descreve qual o seu processo de análise, de forma a conseguir quantificar e identificar quais são a afluências indevidas na rede em estudo.

No último capitulo, o Capitulo 7, descreve-se quais foram as conclusões que se conseguiu tirar com a realização deste trabalho e elabora-se uma análise de todo o estágio realizado durante o semestre.

2 APRESENTAÇÃO DE EMPRESAS

2.1 ÁGUAS DE PORTUGAL

A AdP – Águas de Portugal, SGPS, S.A foi constituída em 1993, ao abrigo do direito comercial privado com acionistas públicos, tendo como prioridade o desenvolvimento dos sistemas multimunicipais de abastecimento de água e de saneamento de águas residuais, no sentido de ultrapassar a fragmentação que caracterizava aqueles setores, condição necessária para a evolução pretendida.

O grupo AdP assume um papel de grande contribuidor para os objetivos operacionais dos planos estratégicos sectoriais do País, os quais nos domínios de abastecimento de água e de saneamento de águas residuais são servir cerca de 95% da população com sistemas públicos de abastecimento de água e cerca de 90% da população com sistemas públicos de saneamento de águas residuais urbanas.

O reconhecimento das potencialidades da experiência empresarial desenvolvida motivou a crescente adesão dos municípios ao estabelecimento de parcerias com a AdP para a gestão integrada de serviços públicos de água e saneamento. Hoje, as empresas do grupo AdP assumem já a responsabilidade pela prestação do serviço público nos domínios do abastecimento de água e do saneamento de águas residuais a mais de 234 municípios, num total de 308. O grupo AdP participa num conjunto de empresas que, em parceria com os municípios, prestam serviços a cerca de 80% da população portuguesa.

Próximo do final deste estágio, a AdP reestruturou o sector das águas passando de 19 sistemas de abastecimento e saneamento urbano em 5 de maior dimensão, sendo essencial para garantir a continuidade, universalidade, qualidade e sustentabilidade na prestação destes serviços públicos. Esta reorganização territorial e corporativa do setor de titularidade estatal permite a redução de custos e ganhos de eficiência essenciais à sustentabilidade das entidades gestoras, à qualidade dos serviços prestados e à contenção das tarifas e aporta elevados benefícios ao nível da promoção da equidade territorial e da coesão social por via da harmonização tarifária.

2.2 SIMRIA

A 29 de junho de 2015, a SIMRIA, onde se realizou o estágio, foi extinta, tendo sido constituída a Águas do Centro Litoral, através do Decreto-Lei n.º 92/2015, mediante a agregação das empresas SIMLIS, SIMRIA e Águas do Mondego, integradas no Grupo Águas de Portugal. No entanto por esta mudança só ter existido em finais do estágio, mantem-se a referência da SIMRIA ao longo desta dissertação.

A SIMRIA - Saneamento Integrado dos Municípios da Ria, SA, é a sociedade anónima responsável pela construção, gestão e exploração do Sistema Multimunicipal de Saneamento da Ria de Aveiro, criado através do Decreto-Lei nº 101/97, de 26 de Abril, com o objetivo de obter uma solução conjunta para a coleta, tratamento e destino final dos efluentes gerados na zona de abrangência da Ria de Aveiro. Em conformidade com o disposto no Decreto-Lei 329/2000 de 22 de dezembro, a intervenção da SIMRIA ao nível de requalificação ambiental, foi ampliada aos Municípios de Espinho e Santa Maria da Feira e alargada à restante área geográfica do Município de Ovar, no sentido de dar resposta à recuperação do ecossistema da Barrinha de Esmoriz / Lagoa de Paramos. A 19 de janeiro de 2009 foi celebrado o 2º Aditamento ao Contrato de Concessão que prolongou o período da concessão para 50 anos e ampliou a área de intervenção a Sul, aos Municípios de Oliveira do Bairro e Cantanhede. Nos termos do Despacho n.º 9976/2010 do Ministério do Ambiente e do Ordenamento do Território, publicado no Diário da República de 14 de junho de 2010, foi feito o alargamento geográfico do Sistema Multimunicipal da Ria de Aveiro à totalidade do município de Vagos. (Relatório e Contas SIMRIA 2014)

A SIMRIA tem implementado um Plano de Controlo Analítico, cuja elaboração teve por base o controlo dos afluentes ao sistema multimunicipal, o controlo do processo de tratamento das ETAR e o cumprimento da legislação, no que diz respeito aos Alvarás de Utilização de Domínio Hídrico. Este programa de monitorização ambiental tem uma componente cuja atividade é desenvolvida pelo Laboratório da SIMRIA, situado na ETAR de Ílhavo, e tem uma componente desenvolvida por laboratórios exteriores acreditados. Dentro desta última componente, inclui-se a avaliação da qualidade das águas balneares na zona de influência dos emissários submarinos.

A SIMRIA atua promovendo a requalificação ambiental dos ecossistemas num quadro de sustentabilidade económica, financeira e social. A sua atividade configura, assim, um serviço de interesse geral, com um papel determinante na melhoria da qualidade de vida dos cidadãos e na garantia da coesão económica e social da região, estando sujeita a um conjunto de obrigações de serviço público que importa salientar: universalidade, continuidade, acessibilidade, qualidade do serviço e proteção dos utilizadores.

SISTEMA MULTIMUNICIPAL

O Sistema Multimunicipal de Saneamento da Ria de Aveiro apresenta uma solução para a coleta, tratamento e destino final dos efluentes da Ria de Aveiro, cujo equilíbrio tem vindo a ser ameaçado pelos problemas de poluição devido às descargas de águas residuais domésticas e industriais na laguna.

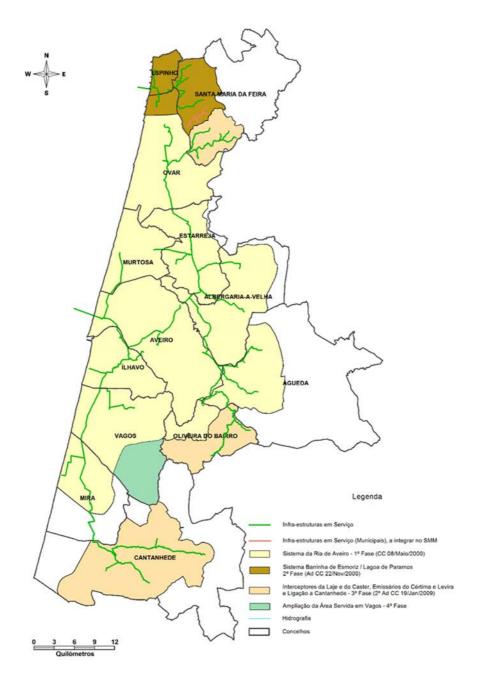


Figura 2.1 Sistema Multimunicipal de Saneamento da Ria de Aveiro (Fonte: Relatório e Contas SIMRIA 2013).

Atividade Operacional

A atividade da empresa assenta numa estrutura organizacional que compreende duas direções sob a tutela da Administração, a Direção de Operação e Infraestruturas e a Direção Administrativa e Financeira. A reportar à administração existem os seguintes órgãos Staff: o Sistema de Responsabilidade Empresarial, o Departamento de Qualidade do Processo, o Secretariado, a Assessoria Jurídica e a Comunicação e Imagem, conforme se apresenta no seguinte organigrama:

Figura 2.2 Estrutura organizacional da SIMRIA (Fonte: Relatório e Contas SIMRIA 2014)

Direção de Operação e Infraestruturas (DOI)

É responsável por toda a atividade associada à recolha, tratamento e rejeição de efluentes, bem como à manutenção dos equipamentos. Divide-se em três áreas funcionais: Centro Operacional I (CO I), responsável pela Operação e Manutenção da ETAR Norte; Centro Operacional II (CO II), responsável pela Operação e Manutenção das ETAR Sul, S. Jacinto, Salgueiro, Santa Catarina, Ouca e Ponte de Vagos e Operação e Manutenção de Condutas, Estações Elevatórias (EE) e Pontos de Entrada (PE). É igualmente responsável por toda a atividade associada à conceção e planeamento, através da área funcional Estudos e Planeamento, e por toda a atividade associada à construção e manutenção (na vertente de engenharia civil) das infraestruturas, através da área funcional Obras. Nesta direção está ainda inserida a área funcional Administração de Sistemas, responsável pela informática, telecomunicações, SIG (sistemas de informação geográfica) e automação. A reportar diretamente à Direção, existe ainda o órgão de staff Secretariado.

Direção Administrativa e Financeira (DAF)

É responsável pela gestão administrativa, económica, financeira e de recursos humanos e onde se encontram concentrados os diversos serviços: Contabilidade, Compras, Tesouraria, Recursos Humanos, Fundo de Coesão e Gestão de Frota.

Funcionamento da Empresa

Na sua generalidade, o funcionamento da empresa assenta em torno da execução da sua estratégia e no cumprimento de um conjunto de atividades que se sucedem respeitando as etapas do ciclo PDCA (Plan, Do, Check and Act), conforme figura a seguir apresentada.

Figura 2.3 Ciclo PDCA (Fonte: Relatório e Contas SIMRIA 2013)

Desta forma, pretende-se garantir que a implementação dessas atividades é desenvolvida de acordo com o planeado, sendo que, qualquer desvio verificado deve ser devidamente tratado a fim de ser corrigido e/ou permitir o desenvolvimento de melhorias que visem a sua prevenção em situações futuras.

Em termos de comunicação interna, a Empresa privilegia uma comunicação descendente e ascendente que garante que a informação é compreendida pelos colaboradores. Esta comunicação pode ser realizada via email interno, informações internas e reuniões. A suportar o desenvolvimento destas atividades existe uma estrutura documental devidamente registada, controlada e arquivada. Com o objetivo de melhorar a gestão dos fluxos documentais e de diminuir o recurso ao papel, a empresa implementou o sistema informático de Gestão Documental SIMDoc, estando a funcionar em pleno desde 2007.

Política de Gestão

A SIMRIA numa perspetiva de Desenvolvimento Sustentável desenvolve a sua atividade em prol da requalificação ambiental da Ria de Aveiro e Barrinha de Esmoriz / Lagoa de Paramos, tendo por base um Sistema de Gestão Integrado ao nível da Qualidade, Ambiente, Higiene, Saúde, Segurança e Responsabilidade Social.

Consciente das boas práticas de cidadania, considera e promove os interesses de todas as partes envolvidas, assumindo os seguintes princípios estratégicos:

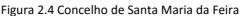
- Satisfação das necessidades atuais e futuras dos seus clientes utilizadores do Sistema Multimunicipal, através de construção e gestão de um sistema de saneamento em alta, autossustentável, nos termos do Contrato de Concessão celebrado com o Estado Português;
- Reforço das relações de parceria com o Concedente, Municípios e Entidades do Sector promovendo a confiança e a comunicação entre as partes;
- Recolha, tratamento e rejeição da totalidade das águas residuais urbanas da zona de abrangência do Sistema Multimunicipal, assente nos princípios de salvaguarda da saúde pública e promoção da qualidade de vida da população, garantindo elevados níveis de qualidade e fiabilidade numa ótica de melhoria contínua, em todas as vertentes de gestão;
- Identificação dos perigos, prevenção e minimização dos riscos, atuando na gestão de segurança no trabalho, na prevenção de lesões, ferimentos e danos para a saúde, bem como os impactes ambientais externos e internos, atuando no sentido da prevenção da poluição;
- Motivação e desenvolvimento dos seus colaboradores, assegurando e melhorando as condições laborais e sociais, em conformidade com os requisitos da norma SA8000;
- Sensibilização da Sociedade em geral para o desenvolvimento de uma consciência ambiental;
- Melhoria da eficácia e a eficiência dos processos da empresa, otimizando a utilização dos recursos técnicos, humanos e financeiros;
- A SIMRIA desenvolve as suas atividades em conformidade com os requisitos legais e outros que a organização subscreva, nas vertentes de qualidade, ambiente, segurança e responsabilidade social.

2.3 INDAQUA FEIRA

A INDAQUA Feira, S.A., é uma empresa concessionária, que atua no sector da água, sendo esta pertencente ao grupo empresarial INDAQUA - Industria e Gestão de Água, S.A.

A INDAQUA é um grupo empresarial português, integralmente detido por acionistas portugueses, que resulta de uma parceria estratégica para o sector da água, entre alguns grandes grupos económicos nacionais, com competências em diferentes áreas de negócio, e com grande presença internacional. Este grupo foi criado para operar, essencialmente, no âmbito das concessões municipais e parcerias público-privadas (PPP), representando uma clara aposta na área do ambiente em geral, e na gestão do sector da água em particular, integrando captação, tratamento, transporte e distribuição de água, e recolha, drenagem e tratamento de águas residuais.

Atualmente, opera em 7 municípios do norte de Portugal através das respetivas concessionárias (indaqua.pt, 2014):


- INDAQUA Fafe, S.A.;
- INDAQUA Santo-Tirso/Trofa, S.A.;
- INDAQUA Feira, S.A.;
- INDAQUA Matosinhos, S.A.;
- INDAQUA Vila do Conde, S.A.;
- Águas de São João, E.M., S.A.;
- INDAQUA Oliveira de Azeméis, S.A.

A IF foi constituída em 12 de Março de 1999, tendo por objeto o exercício em regime de concessão, das atividades de indústria e prestação de serviços relativos à exploração e gestão conjunta dos serviços públicos municipais de tratamento e distribuição de água para consumo público e de recolha, tratamento e rejeição de efluentes residuais no Concelho de Santa Maria da Feira, incluindo a construção, extensão, reparação, renovação, manutenção e melhoria de todas as instalações, infraestruturas e equipamentos que integram os sistemas concessionados, bem como a realização de

todas as obras necessárias à execução do Plano de Investimentos, no âmbito da concessão, e que consta no Contrato de Concessão, assinado a 3 de Dezembro de 1999 (indaqua.pt, 2013).

A IF opera no concelho de SMF, pertencente ao distrito de Aveiro e situada na grande Área Metropolitana do Porto, região Norte e sub-região de Entre Douro e Vouga. Este município é limitado a norte pelos municípios de Vila Nova de Gaia e de Gondomar, a leste por Arouca, a sudeste por Oliveira de Azeméis e São João da Madeira, a sudoeste por Ovar e a oeste por Espinho, conforme se encontra representado na Figura 2.4.

3 AFLUÊNCIAS INDEVIDAS

3.1 DEFINIÇÃO DE AFLUÊNCIAS INDEVIDAS

Considera-se como Afluências Indevidas a água que se infiltra de forma ilícita, numa rede de drenagem de águas residuais. Elas não só interferem ao nível técnico, como também na gestão e sustentabilidade da rede. Numa rede de saneamento, é muito difícil de quantificar com exatidão o volume de água infiltrada, pois é um aspeto muito ambíguo em termos espacial e temporal, pois tanto se pode registar um aumento rápido e abundante como lento e diminuto, pois trata-se de um problema específico de cada região.

O combate às AI é uma prioridade para as entidades gestoras de águas residuais, pois é uma forma de manter o bom funcionamento das ETAR's, pois a sobrecarga de volume de água infiltrada e a diluição da concentração de poluentes, reduz a eficiência de remoção dos poluentes, o que vai provocar um custo excessivo para o tratamento das águas residuais. Também é importante que na expansão dos sistemas de drenagem com o objetivo de aumentar o nível de atendimento às populações, as novas infraestruturas sejam concebidas e executadas de forma correta garantindo uma minimização de ocorrência de AI significativas (Bonito 2014).

No conceito de afluências indevidas existem dois tipos de caudais de infiltração, as águas pluviais e as águas subterrâneas, no entanto normalmente não é fácil identificar e quantificar, o tipo de infiltração. Também estão incluídas nas AI as descargas não licenciadas, que também levam à entrada de água indevida na rede. Como se tratam de situações pontuais de origens desconhecidas e impossíveis de prever, não são contabilizadas na análise de infiltração.

O problema das AI ainda é um tema muito pouco desenvolvido a nível global, onde os registos e resultados obtidos sobre a eficácia e eficiência de medidas aplicadas de redução de AI, são poucos e difíceis de generalizar. A maior dificuldade é a particularidade de cada sistema que o torna único e incomparável, onde uma vasta experiência sobre medidas de redução de AI de vários outros casos obtidos poderia solucionar mais eficazmente o problema.

Tabela 3.1 Tipos de afluências indevidas (Rodrigues 2013)

Tipo de afluência indevida	Definição	Origem
Infiltração de percurso	Entra nas infraestruturas enterradas do sistema de drenagem através de deficiências estruturais nos coletores (em juntas, fissuras) ou através das paredes das câmaras de visita.	Águas subterrâneas
Infiltração base	Entra deliberadamente no sistema de drenagem, proveniente de drenos, da bombagem de caves, de sistemas de arrefecimento ou de descargas de pequenos cursos de água naturais canalizados, e que é independente do estado de conservação do coletor.	Águas subterrâneas
Afluências pluviais diretas	Origem no escoamento de telhados ou em ligações indevidas de ramais pluviais de edificações e de sumidouros.	Águas pluviais
Afluências pluviais totais	Soma das afluências anteriores com outras possíveis descargas feitas a montante (descarregadores de tempestade, cruzamento com águas pluviais).	Águas pluviais
Afluências pluviais retardadas	Água pluvial que leva diversos dias a percorrer ou a entrar no sistema de drenagem (devido a reservas e empoçamentos na bacia natural, por exemplo).	Águas pluviais

A infiltração em sistemas de drenagem de águas residuais depende dos seguintes fatores:

- Pluviosidade
- Existência de ligações erróneas
- Proximidade dos aquíferos
- Estado de conservação da rede

3.2 INFILTRAÇÃO DIRETA

Caracteriza-se como infiltração direta a entrada de águas na rede de saneamento, que estão relacionas com eventos de precipitação e resultantes do escoamento superficial. Estas infiltrações diretas ocorrem devido à ligação de sistemas de águas pluviais e ligações prediais ilícitas, e influenciam o aumento do caudal diretamente quando existe precipitação.

Se estivéssemos a tratar de uma rede unitária não existiria qualquer problema pois as suas infraestruturas já estariam dimensionadas para recolher águas residuais e pluviais. No entanto numa rede separativa como não é dimensionada para receber a águas pluviais, essas infiltrações são consideradas indesejáveis.

Fontes de proveniência das infiltrações diretas (Amorim, 2007; Bonito 2014):

- Ligações erróneas ou trocadas entre ramais de sumidouros de rede pública ou de redes prediais ao sistema separativo doméstico;
- Mistura de caudais pluviais com domésticos na rede predial (parcial ou totalmente);
- Ligações erróneas ou trocadas entre coletores pluviais e coletores domésticos;
- Tampas de câmaras de visita dos coletores domésticos;

Os fatores de que dependem as infiltrações diretas são pouco complexos, porque os caudais entram diretamente na rede. De entre estes podem-se referir os seguintes (Amorim 2007):

- Topografia;
- Estado da rede de drenagem existência de ligações de águas pluviais provenientes da drenagem de telhados, pátios e jardins à rede separativa de águas residuais, vedação e estanqueidade das tampas das caixas de visita;
- Capacidade de transporte de caudal da rede de drenagem;

Para corrigir a infiltração direta na rede deve-se, realizar uma pesquisa dos locais de entrada de infiltração direta determinando a sua autenticidade e correspondência com a sua possível causa natural, e estabelecer políticas de controlo da infiltração, apoiadas de procedimentos de fiscalização e de aplicação. (Bonito 2014)

Normalmente, este tipo de AI é mais significativo nas redes em "baixa", pois existe uma maior concentração de câmaras de visita, maior extensão de coletores e uma ocorrência frequente de ligações ilegais de ramais pluviais domiciliários e sumidouros à rede separativa doméstica.

3.3 Infiltração Indireta

Designa-se como infiltração indireta a entrada de águas com origens subterrâneas na rede resultantes da infiltração de caudais do nível freático e fraca estanquidade da infraestrutura. Esta infiltração devido à subida do nível freático ocorre quando este se situa acima da cota de soleira dos intercetores, o que pode resultar na erosão do solo arrastando partículas finas para o interior das tubagens. O nível

freático varia conforme eventos de precipitação, variação de marés e variação da altura dos cursos de água naturais. (Amorim 2007; Bonito 2007)

Normalmente, este tipo de AI é mais significativo nas redes em "alta", pois os coletores encontram-se a cotas mais baixas, frequentemente, em linhas de vale ou linhas de água.

As fontes de afluentes indevidos na rede por infiltração indireta devem-se a vários fatores, que variam de caso para caso, destacando-se os seguintes (Amorim 2007; Coelho 2013; Bonito 2014):

- Densidade de ramais;
- Fugas existentes noutros sistemas, como pluviais;
- Tipo de tubagem e qualidade de construção;
- Estado físico da rede de saneamento;
- Construção deficiente e manutenção deficitária;
- Movimentos de terra junto às tubagens, provocando o assentamento dos coletores;
- Tipo de solo envolvente;
- Pressão hidrostática sobre os elementos da rede;
- Ataques químicos, provocando a corrosão dos coletores;
- Localização do nível freático;
- Maturação da rede;
- Qualidade e manutenção do sistema de drenagem;
- Materiais e estado da rede situada em domínio privado;
- Topografia;
- Proximidade de aquíferos;
- Ligações clandestinas.

Para se corrigir a infiltração indireta em redes de saneamento existentes, deve-se (Bonito 2014):

- Avaliar e interpretar as condições de afluxo das águas residuais permitindo determinar a presença e extensão da infiltração indireta;
- Localizar e medir os caudais excedentários;
- Eliminar as águas parasitas através de vários métodos de reparação e reabilitação da rede;
- Instalar um programa de manutenção e monitorização contínuo em toda a bacia de drenagem.

3.4 INDICADORES DE DESEMPENHO

Ao longo do tempo, os problemas de AI nos sistemas de drenagem urbana não foram encarados como prioritários, sendo os investimentos realizados na expansão e construção de novos sistemas. Por outro lado, a inexistência de uma quantificação dos caudais reais de AI existentes na rede, não permite ter uma noção exata e objetiva da dimensão do problema. Contudo os efeitos do envelhecimento dos sistemas têm vindo a sensibilizar os gestores para a necessidade de investir na sua reabilitação e, consequentemente no conhecimento do seu desempenho a nível técnico e económico, tendo a AI um papel importante em ambos os aspetos.

Antes de se realizar uma reabilitação é necessário uma análise correta e exaustiva da situação da infraestrutura de drenagem. Para tal deve-se seguir os seguintes passos para a contemplar:

- Avaliar a condição estrutural do ativo;
- Estimar o investimento a realizar para manter o nível do sistema de saneamento com a qualidade desejada;
- Avaliar o desempenho dos projetos de reabilitação e seus benefícios futuros.

Uma boa ferramenta de avaliação da composição estrutural de um ativo ou de um sistema é a utilização de indicadores de desempenho. Um indicador de desempenho é uma característica ou variável de estado que permite, em função dos valores que assume, traduzir em termos quantitativos o desempenho do sistema. Esta medida pode ser obtida com base em dados de monitorização ou de modelação da rede em análise, variando espacialmente, de elemento para elemento da rede e temporalmente, em função das solicitações do sistema. Uma vez definidos os indicadores poderá ser usada uma função de desempenho para transformar os valores que eles tomam em valores de desempenho.

Existem vários tipos de indicadores de desempenho relacionados com AI. Destacam-se os indicadores de desempenho propostos pelo LNEC no âmbito do projeto APUSS e os propostos pelo ERSAR.

O LNEC propõe os seguintes indicadores de desempenho técnico para avaliar o impacto da AI no desempenho dos sistemas separativos domésticos.

• Utilização da capacidade da secção cheia: esta medida indica qual é a percentagem do caudal de infiltração relativamente ao valor do caudal de secção cheia do coletor, que representa a sua capacidade. Permite avaliar a percentagem da capacidade do coletor que é utilizada em

consequência da ocorrência de infiltração. Este valor pode ser obtido elementarmente (num coletor), sectorialmente (num subsistema) ou globalmente (no coletor de jusante do sistema). É necessário conhecer a capacidade do coletor a avaliar, o que não apresenta dificuldade uma vez conhecida a topologia, a geometria e o material do coletor em análise. Este indicador fornece informação sobre o desempenho hidráulico, dando um valor relativo à capacidade do coletor em análise mas não traduzindo qualquer informação sobre a quantidade absoluta de infiltração ocorrida. Por exemplo, ao longo de um troço de rede, com três coletores sucessivos de capacidade crescente, o valor absoluto da infiltração mantinha-se, não havendo acréscimo de infiltração ao longo de todo o troço. Este indicador tomava os valores de 60%, 30% e 10% em cada coletor de montante para jusante, significando que a capacidade de cada coletor era ocupada naquela percentagem, respetivamente, por caudal de infiltração. No entanto, o valor real da infiltração era o mesmo nos três coletores.

$$\frac{Q_{inf}}{Q_{sc}} (\%) \tag{3.1}$$

Proporção do caudal de tempo seco: esta medida indica qual é a percentagem do caudal de infiltração relativamente ao valor do caudal médio diário de tempo seco. Permite comparar o peso da contribuição do caudal de infiltração relativamente ao do caudal médio diário de tempo seco no caudal que é transportado pelo sistema. Este valor pode ser obtido elementarmente (num coletor), sectorialmente (num subsistema) ou globalmente (no coletor de jusante do sistema). É necessário conhecer o caudal médio de tempo seco escoado pelo coletor a avaliar, dado obtido através de medições ou por estimativa. Este indicador tem o inconveniente de ser dependente da influência do caudal médio diário de tempo seco. Por exemplo, num troço de coletor de 1 km com 1000 mm de diâmetro, um caudal de infiltração de 50 m3/dia é considerado um valor baixo segundo o Decreto Regulamentar 23/95 e corresponderia a 0,5% num sistema que transportasse um caudal médio diário de tempo seco de 8640 m3/dia e a 1,2% noutro sistema que transportasse um caudal médio diário de tempo seco de 4320 m3/dia. Este indicador, se aplicado ao caudal que chega à estação de tratamento, permite dar informação sobre o peso que o caudal de infiltração pode ter nos gastos do tratamento. Neste caso, além de ser usado em termos de volume pode ser aplicado em termos de percentagem de custos.

$$\frac{Q_{inf}}{Q_{mts}} (\%) \tag{3.2}$$

Caudal unitário por câmara de visita: esta medida indica o caudal médio de infiltração por câmara de visita. As câmaras de visita são possíveis origens de infiltração. Assim, para avaliar a influência do número de câmaras de visita no caudal de infiltração, este valor deve ser determinado em troços de igual comprimento, de forma a que a influência do comprimento do coletor, outra origem de infiltração, não se sobreponha com a das câmaras de visita. No entanto, este indicador não entra em conta com a influência da infiltração ao longo do coletor, nem nas ligações domésticas. Este valor pode ser obtido, sectorialmente (num subsistema) ou globalmente (no coletor de jusante do sistema). Neste caso, é necessário conhecer o número de caixas de visita que contribuem para a avaliação em causa, o que pode condicionar a aplicação deste indicador. Em sistemas onde a origem da infiltração ocorra com predominância nas câmaras de visita, este pode ser um indicador importante para avaliar os benefícios de reabilitação.

$$\frac{Q_{inf}}{n^{9} C_{visita}} \left(\frac{m^{3}}{s}\right) \tag{3.3}$$

• Caudal unitário por comprimento do coletor: esta medida indica o caudal médio de infiltração que ocorre por km de comprimento do coletor. Este indicador não tem em conta a influência da infiltração nas câmaras de visita, nem nas ligações domésticas. Este valor pode ser obtido elementarmente (num coletor), sectorialmente (num subsistema) ou globalmente (no coletor de jusante do sistema). Neste caso, é necessário conhecer o comprimento total dos coletores que contribuem para a avaliação em causa, o que pode condicionar a aplicação deste indicador; no entanto, em sistemas onde a infiltração ocorra predominantemente ao longo do coletor pode ser um indicador importante para avaliar os benefícios de reabilitação.

$$\frac{Q_{inf}}{L_{coletor}} \left(m^3 / s / km \right) \tag{3.4}$$

• Caudal unitário por área de parede do coletor: esta medida indica o caudal médio de infiltração em função da área de parede do coletor exposta a possíveis infiltrações. Este indicador não entra em conta com a influência da infiltração nas câmaras de visita, nem nas ligações domésticas. Este valor pode ser obtido elementarmente (num coletor), sectorialmente (num subsistema) ou globalmente (no coletor de jusante do sistema). Neste caso, é necessário conhecer o valor total da área longitudinal dos coletores que contribuem para a avaliação em causa, o que pode condicionar a aplicação deste indicador; no entanto,

em sistemas onde a infiltração ocorra predominantemente ao longo do coletor, pode ser um indicador importante para avaliar os benefícios de reabilitação.

$$\frac{Q_{inf}}{(L_{coletor} \times P)} (m^3/dia/(cm.km))$$
(3.5)

Por seu lado, o ERSAR tem uma vasta lista de indicadores de desempenho para os serviços de águas residuais, que permite a cada entidade gestora, selecionar o subconjunto relevante de indicadores de desempenho em função dos objetivos da avaliação da rede. Estes indicadores estão representados no Guia Técnico nº 2 da ERSAR (2004) e estão subdivididos nos seguintes subconjuntos:

- Indicadores ambientais (wEn);
- Indicadores de recursos humanos (wPe);
- Indicadores infraestruturais (wPh);
- Indicadores operacionais (wOp);
- Indicadores de qualidade e serviço (wQS);
- Indicadores económicos financeiros (wFi).

Destes subconjuntos, os indicadores infraestruturais e indicadores operacionais são os que estão mais relacionados com as Al.

Os indicadores infraestruturais (wPh) destinam-se a avaliar se as infraestruturas de drenagem e de tratamento da água residual ainda dispõem de capacidade suficiente para operarem corretamente e em segurança, garantindo que os seus objetivos de serviço podem ser atingidos. É considerada a utilização de tratamento preliminar, primário, secundário e terciário, bem como o grau de sobrecarga dos coletores. Também se incluem a utilização da capacidade de bombeamento, a sua automação e grau de controlo. De seguida são descritos os indicadores de desempenho infraestruturais que estão mais relacionados com AI.

wPh1 – Utilização da capacidade de tratamento preliminar (%) - Máximo da soma dos volumes diários de efluente tratado em todas as instalações de tratamento preliminar / soma, para todas as instalações de tratamento preliminar, da capacidade máxima instalada de tratamento x100, durante o período de referência.

$$wPh1 = wA4 / wC12 \times 100$$

wA4 – Volume máximo diário de águas residuais com tratamento preliminar. (m³/dia)

wC12 – Capacidade diária do tratamento preliminar (m³/dia)

Este indicador pode ser calculado para períodos inferiores a um ano mas, tanto as comparações externas como internas à entidade gestora devem ser feitas com prudência.

wPh2 – Utilização da capacidade de tratamento primário (%) - Máximo da soma dos volumes diários de efluente tratado em todas as instalações de tratamento primário / soma, para todas as instalações de tratamento primário, da capacidade máxima instalada de tratamento x100, durante o período de referência.

 $wPh2 = wA6 / wC13 \times 100$

wA6 - Volume máximo diário de águas residuais com tratamento primário. (m³/dia)

wC13 - Capacidade diária do tratamento primário (m³/dia)

Este indicador pode ser calculado para períodos inferiores a um ano mas, tanto as comparações externas como internas à entidade gestora devem ser feitas com prudência.

wPh3 – Utilização da capacidade de tratamento secundário (%) - Máximo da soma dos volumes diários de efluente tratado em todas as instalações de tratamento secundário / soma, para todas as instalações de tratamento secundário, da capacidade máxima instalada de tratamento x100, durante o período de referência.

 $wPh3 = wA8 / wC14 \times 100$

wA8 - Volume máximo diário de águas residuais com tratamento secundário (m³/dia)

wC14 - Capacidade diária do tratamento secundário (m³/dia)

Este indicador pode ser calculado para períodos inferiores a um ano mas, tanto as comparações externas como internas à entidade gestora devem ser feitas com prudência.

wPh4 – Utilização da capacidade de tratamento terciário (%) - Máximo da soma dos volumes diários de efluente tratado em todas as instalações de tratamento terciário / soma, para todas as instalações de tratamento terciário, da capacidade máxima instalada de tratamento x100, durante o período de referência.

 $wPh4 = wA10 / wC15 \times 100$

wA10 - Volume máximo diário de águas residuais com tratamento terciário (m³/dia)

wC15 - Capacidade diária do tratamento terciário (m³/dia)

Este indicador pode ser calculado para períodos inferiores a um ano mas, tanto as comparações externas como internas à entidade gestora devem ser feitas com prudência.

wPh5 – Entrada em carga de coletores em tempo seco (%) - Comprimento dos coletores onde se verificou entrada em carga em tempo seco, durante o período de referência / comprimento total da rede de coletores na data de referência x 100.

 $wPh5 = wC2 / wC1 \times 100$

wC1 - Comprimento total da rede de coletores (km)

wC2 - Coletores em carga em tempo seco (m)

Este indicador pode ser calculado para períodos inferiores a um ano, ciente de que se pode incorrer em erros de interpretação pelo que se considera recomendável dispor de informação das variáveis para períodos de pelo menos um ano. Se o período de referência utilizado for inferior ao ano, as comparações internas devem ser feitas com prudência e devem ser evitadas comparações com entidades externas.

wPh6 – Entrada em carga de coletores em tempo de chuva (%) - Comprimento dos coletores onde se verificou entrada em carga em tempo de chuva, durante o período de referência / comprimento total da rede de coletores na data de referência x 100.

 $wPh6 = wC3 / wC1 \times 100$

wC1 - Comprimento total da rede de coletores (km)

wC3 - Coletores em carga em tempo de chuva (m)

Esta informação pode ser obtida tanto por monitorização como por modelação hidráulica da rede utilizando dados reais de precipitação. Este indicador pode ser calculado para períodos inferiores a um ano ciente de que se pode incorrer em erros de interpretação pelo que se considera recomendável dispor de informação das variáveis para períodos de pelo menos um ano. Se o período de referência utilizado for inferior ao ano, as comparações internas devem ser feitas com prudência e devem ser evitadas comparações com entidades externas.

wPh7 – Entrada em carga significativa de coletores (%) - Comprimento dos coletores onde se verificou entrada em carga significativa em tempo de chuva, durante o período de referência / comprimento total da rede de coletores na data de referência x 100.

 $wPh7 = wC4 / wC1 \times 100$

wC1 - Comprimento total da rede de coletores (km)

wC4 - Coletores em carga significativa (m)

Entrada em carga significativa corresponde a um nível de água atingido de, pelo menos, 0.5 m acima do topo do coletor. Este indicador pode ser calculado para períodos inferiores a um ano ciente de que se pode incorrer em erros de interpretação pelo que se considera recomendável dispor de informação das variáveis para períodos de pelo menos um ano. Se o período de referência utilizado for inferior ao ano, as comparações internas devem ser feitas com prudência e devem ser evitadas comparações com entidades externas.

Os indicadores operacionais destinam-se a avaliar o desempenho da entidade gestora no que se refere às atividades de operação e de manutenção. As áreas a serem avaliadas incluem os coletores, as instalações auxiliares, a inspeção e manutenção das bombas e estações elevatórias, a calibração do equipamento, a inspeção do equipamento elétrico, o consumo de energia, a reabilitação de coletores e de bombas, caudais entrados/infiltração/exfiltração, as falhas, a monitorização da qualidade da água residual e das lamas, a disponibilidade de veículos e o equipamento de segurança. De seguida são descritos os indicadores de desempenho operacionais que estão mais relacionados com Al.

wOp1 – Inspeção de coletores (%/ano) – (Comprimento de coletores inspecionados durante o período de referência x 365 / período de referência) / comprimento total da rede de coletores na data de referência x 100

 $wOp1 = (wD1 \times 365 / wH1) / wC1 \times 100$

wC1 - Comprimento total da rede de coletores (km)

wD1 - Coletores inspecionados (km)

wH1 - Duração do período de referência (dia)

Na inspeção inclui-se a inspeção visual, a inspeção recorrendo a câmara de vídeo e ainda a inspeção correspondente a sistemas de vigilância controlados remotamente. Este indicador pode ser calculado para períodos inferiores a um ano ciente de que se pode incorrer em erros de interpretação pelo que

se considera recomendável dispor de informação das variáveis para períodos de pelo menos um ano. Se o período de referência utilizado for inferior ao ano, as comparações internas devem ser feitas com prudência e devem ser evitadas comparações com entidades externas.

wOp2 – Limpeza de coletores (%/ano) – (Comprimento de coletores que foram sujeitos a limpeza durante o período de referência x 365 / período de referência) / comprimento total da rede de coletores na data de referência x100.

```
wOp2 = (wD2 x 365 / wH1) / wC1 x 100wC1 - Comprimento total da rede de coletores (km)wD2 - Coletores sujeitos a limpeza (km)
```

wH1 - Duração do período de referência (dia)

A limpeza de coletores refere-se a ações pró-ativas enquadradas numa estratégia de gestão da rede. A remoção de raízes deve ser incluída. Este indicador pode ser calculado para períodos inferiores a um ano ciente de que se pode incorrer em erros de interpretação pelo que se considera recomendável dispor de informação das variáveis para períodos de pelo menos um ano. Se o período de referência utilizado for inferior ao ano, as comparações internas devem ser feitas com prudência e devem ser evitadas comparações com entidades externas.

wOp3 – Inspeção de câmaras de visita (-/ano) - (Número de câmaras de visita inspecionadas durante o período de referência x 365 / período de referência) / Número total de câmaras de visita na data de referência.

```
wOp3 = (wD3 x 365 / wH1) / wC21
wC21 - Câmaras de visita (n.º)
wD3 - Câmaras de visita inspecionadas (n.º)
wH1 - Duração do período de referência (dia)
```

Este indicador pode ser calculado para períodos inferiores a um ano ciente de que se pode incorrer em erros de interpretação pelo que se considera recomendável dispor de informação das variáveis para períodos de pelo menos um ano. Se o período de referência utilizado for inferior ao ano, as comparações internas devem ser feitas com prudência e devem ser evitadas comparações com entidades externas.

wOp4 – Inspeção de recolha (-/ano) - (Número de dispositivos de recolha na rede (sarjetas ou sumidouros) inspecionados durante o período de referência x 365 / período de referência) / Número total de dispositivos de entrada na rede na data de referência.

```
wOp4 = (wD4 x 365 / wH1) / wC22
wC22 - Dispositivos de entrada (n.^{\circ})
wD4 - Dispositivos de recolha inspecionados (n.^{\circ})
```

wH1 - Duração do período de referência (dia)

A inspeção de dispositivos de entrada refere-se a ações pró-ativas enquadradas numa estratégia de gestão da rede. Se esta atividade não for da responsabilidade da entidade gestora este ID não é aplicável. Este indicador pode ser calculado para períodos inferiores a um ano ciente de que se pode incorrer em erros de interpretação pelo que se considera recomendável dispor de informação das variáveis para períodos de pelo menos um ano. Se o período de referência utilizado for inferior ao ano, as comparações internas devem ser feitas com prudência e devem ser evitadas comparações com entidades externas.

wOp5 – Limpeza de dispositivos de entrada (-/ano) - (Número de dispositivos de entrada na rede (sarjetas ou sumidouros) que foram sujeitos a limpeza durante o período de referência x 365 / período de referência) / Número total de dispositivos de recolha na rede na data de referência.

```
wOp5 = (wD5 x 365 / wH1) / wC22
wC22 - Dispositivos de entrada (n.º)
wD5 - Dispositivos de entrada sujeitos a limpeza (n.º)
wH1 - Duração do período de referência (dia)
```

A limpeza de dispositivos de entrada refere-se a ações pró-ativas enquadradas numa estratégia de gestão da rede. Se esta atividade não for da responsabilidade da entidade gestora este ID não é aplicável. Este indicador pode ser calculado para períodos inferiores a um ano ciente de que se pode incorrer em erros de interpretação pelo que se considera recomendável dispor de informação das variáveis para períodos de pelo menos um ano. Se o período de referência utilizado for inferior ao ano, as comparações internas devem ser feitas com prudência e devem ser evitadas comparações com entidades externas.

wOp6 – Frequência de inspeção de estruturas de armazenamento e de descarregadores de tempestade (n.º/estrutura de armazenamento ou descarregador/ano) - (Número de inspeções realizadas a estruturas de armazenamento e descarregadores de tempestade durante o período de referência x 365 / período de referência) / Número total de estruturas de armazenamento e descarregadores de tempestade na data de referência

 $wOp6 = (wD6 \times 365 / wH1) / (wC20 + wC23)$

wC20 - Descarregadores de tempestade (n.º)

wC23 - Número de estruturas de armazenamento (n.º)

wD6 - Número de inspeções a estruturas de armazenamento e a descarregadores de tempestade (n.º)

wH1 - Duração do período de referência (dia)

Este indicador pode ser calculado para períodos inferiores a um ano ciente de que se pode incorrer em erros de interpretação pelo que se considera recomendável dispor de informação das variáveis para períodos de pelo menos um ano. Se o período de referência utilizado for inferior ao ano, as comparações internas devem ser feitas com prudência e devem ser evitadas comparações com entidades externas.

wOp7 – Inspeção de estruturas de armazenamento e de descarregadores de tempestade (-/ano) - (Volume das estruturas de armazenamento e dos descarregadores de tempestade inspecionados durante o período de referência x 365 / período de referência) / Volume total das estruturas de armazenamento e dos descarregadores de tempestade na data de referência.

 $wOp7 = (wD7 \times 365 / wH1) / wC24$

wC24 - Volume de estruturas de armazenamento e de descarregadores de tempestade (m3)

wD7 - Volume de estruturas de armazenamento e de descarregadores de tempestade inspecionados (m³)

wH1 - Duração do período de referência (dia)

Só se incluem os descarregadores de tempestade com capacidade de armazenamento. Este indicador pode ser calculado para períodos inferiores a um ano ciente de que se pode incorrer em erros de interpretação pelo que se considera recomendável dispor de informação das variáveis para períodos de pelo menos um ano. Se o período de referência utilizado for inferior ao ano, as comparações internas devem ser feitas com prudência e devem ser evitadas comparações com entidades externas.

wOp8 – Inspeção de grades de estruturas de armazenamento e de descarregadores de tempestade (-/ano) - (Volume das estruturas de armazenamento e dos descarregadores de tempestade que foram sujeitos a limpeza durante o período de referência x 365 / período de referência) / Volume total das estruturas de armazenamento e dos descarregadores de tempestade na data de referência

 $wOp8 = (wD8 \times 365 / wH1) / wC24$

wC24 - Volume de estruturas de armazenamento e de descarregadores de tempestade (m³)

wD8 - Volume de estruturas de armazenamento e de descarregadores de tempestade sujeitos a limpeza (m3)

wH1 - Duração do período de referência (dia)

Só se incluem os descarregadores de tempestade com capacidade de armazenamento. Este indicador pode ser calculado para períodos inferiores a um ano ciente de que se pode incorrer em erros de interpretação pelo que se considera recomendável dispor de informação das variáveis para períodos de pelo menos um ano. Se o período de referência utilizado for inferior ao ano, as comparações internas devem ser feitas com prudência e devem ser evitadas comparações com entidades externas.

wOp9 – Limpeza de grades de estruturas de armazenamento e de descarregadores de tempestade (-/ano) - (Número de grades associadas a estruturas de armazenamento e a descarregadores de tempestade que foram inspecionados durante o período de referência x 365 / período de referência) / Número total de grades associadas a estruturas de armazenamento e a descarregadores de tempestade na data de referência.

 $wOp9 = (wD9 \times 365 / wH1) / wC25$

wC25 - Grades associadas a estruturas de armazenamento e a descarregadores de tempestade (n.9)

wD9 - Grades associadas a estruturas de armazenamento e a descarregadores de tempestade inspecionadas (n.º)

wH1 - Duração do período de referência (dia)

Este indicador pode ser calculado para períodos inferiores a um ano ciente de que se pode incorrer em erros de interpretação pelo que se considera recomendável dispor de informação das variáveis para períodos de pelo menos um ano. Se o período de referência utilizado for inferior ao ano, as comparações internas devem ser feitas com prudência e devem ser evitadas comparações com entidades externas.

wOp10 – Frequência de inspeção de instalações elevatórias (-/ano) - (Número de inspeções realizadas a instalações elevatórias durante o período de referência x 365 / período de referência) / Número total de instalações elevatórias na data de referência

 $wOp10 = (wD10 \times 365 / wH1) / wC6$

wC6 - Instalações elevatórias (n.º)

wD10 - Instalações elevatórias inspecionadas (n.º)

wH1 - Duração do período de referência (dia)

As bombas instaladas nas ETAR não devem ser incluídas. Este indicador pode ser calculado para períodos inferiores a um ano mas, nesse caso, tanto as comparações externas como internas à entidade gestora devem ser feitas com prudência.

Note-se que que para todos os ID operacionais referidos o parâmetro " x 365 / duração do período de referência" é uma expressão de conversão de unidades e não deve ser utilizada para extrapolações.

Comparando os ID recomendados pelo LNEC e pela ERSAR, consegue-se perceber que os impostos pela ERSAR são mais rigorosos, no entanto não sendo os ID obrigatórios que se deve aplicar, são os mais utilizados pelas entidades gestoras de águas residuais.

3.5 Custos Associados

Numa rede de saneamento de águas residuais urbanas, o ponto mais importante na gestão de um sistema de esgoto é o seu balanço financeiro e não o seu balanço hídrico, embora estejam os dois diretamente relacionados.

Isto é, apesar das influências indevidas provocarem impactos prejudiciais no saneamento de águas residuais urbanas, também vão ter custos financeiros associados, podendo ser otimizada a relação do investimento efetuado com a infiltração eliminada, que está dependente da determinação das componentes de infiltração direta e indireta e dos custos inerentes de cada uma delas. (Amorim 2007)

Estes custos associados à ocorrência de infiltrações podem estar divididos nos seguintes grupos:

- Custos Operacionais;
- Custos de Manutenção;
- Custos de Investimento.

Os custos relacionados com a mão-de-obra ou de equipamento não são contabilizados por não estarem diretamente influenciados com o aumento do volume afluente na rede e por também já estarem incluídos no custo de vida útil da rede.

3.5.1 Custos Operacionais

Os custos operacionais estão relacionados com os encargos financeiros provenientes do desempenho das atividades regulares do sistema. Estes são normalmente focados em Estações Elevatórias e nas ETAR, porque são nestes equipamentos que estão inseridos os custos de tratamento, devido à afluência a estas instalações de caudais excedentários.

O aumento do volume de água vai envolver um aumento nos encargos financeiros em:

- Bombagem;
- Tratamento do Afluente.

Os custos de bombagem podem ser estimados através do conhecimento do caudal bombeado e da altura manométrica de elevação dos grupos eletrobomba (Amorim, 2007).

Os custos de tratamento relacionam-se como os custos de arejamento, adição de produtos químicos e caudal bombeado que é diretamente proporcional ao número de etapas de elevação existentes na ETAR.

3.5.2 Custos de Manutenção

Os custos de manutenção são todos os custos associados com a reparação, substituição e renovação de material ou equipamento e limpeza da rede de drenagem à ocorrência de infiltração. Estes encargos são difíceis de determinar e de relacionar a sua causa efeito.

3.5.3 Custos de Investimento

Os custos de investimento são otimizados quando é determinado, numa primeira fase, a contribuição da infiltração direta e indireta na rede, e numa segunda fase, reabilitar a fonte de infiltração, para se poder definir qual das componentes deve de ser minimizada. A redução da infiltração pode minimizar os custos de investimento inicial necessários, reduzindo o diâmetro das tubagens, o tamanho dos descarregadores de tempestade e a dimensão das unidades de tratamento.

De forma a poder-se estimar os custos relacionados com a redução da infiltração, devem contabilizarse os custos das seguintes etapas (Amorim, 2007):

- Estudos incluindo a investigação, recolha de dados, estimativa da infiltração e modelação hidráulica;
- Medições in-situ medições de caudal e precipitação e medição do nível freático;
- Deteção das fontes de infiltração utilizando a inspeção de vídeo (CCTV), inspeção das câmaras de visita, execução de testes de estanquidade e recurso a testes de fumo para a identificação de ligações indevidas;
- Redução da infiltração direta eliminação das ligações de redes pluviais, reparação e manutenção de válvulas de maré e verificação da cobertura das caixas de visita;
- Redução da infiltração indireta renovação e substituição das redes de drenagem.

É importante adotar uma estratégia em que se consiga uma minimização dos custos totais relativos à redução da percentagem de infiltração, de forma a obter uma solução ótima para o problema de infiltração e conseguir obter lucro na gestão dessa rede, tratando-se de uma análise da viabilidade económica das intervenções realizadas.

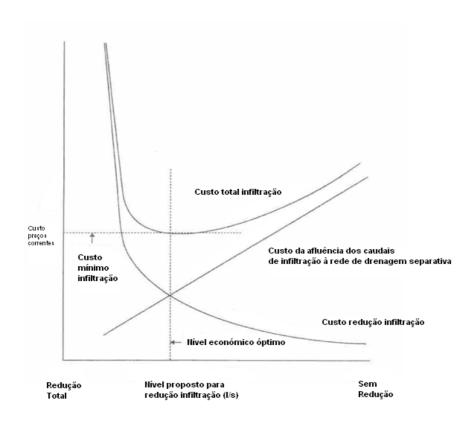


Figura 3.1 Otimização do custo associado à redução da infiltração numa rede de drenagem (Amorim 2007)

3.6 CONTROLO DA INFILTRAÇÃO

A ocorrência de Al é muitas vezes evidente e fácil de detetar, mas no entanto a ocorrência dessa infiltração não é uniforme ao longo da rede de esgoto. Para isso é necessário proceder a uma caracterização pormenorizada da rede, localizando as zonas mais críticas do sistema, como por exemplo:

- Comprimento e diâmetro de cada secção;
- Pontos baixos do terreno;
- Locais com maior proximidade a níveis freáticos;
- Locais com maior vegetação;
- Locais planos;
- Locais próximos de estrada com maior tráfego;
- Locais onde a rede seja unitária;
- Locais onde entram caudais industriais.

Existem vários métodos para a redução/controlo dos caudais de infiltração, o que envolve a realização de várias tarefas como:

- Quantificação dos caudais de infiltração e deteção de zonas prioritárias;
- Identificação das principais causas e dos elementos estruturais críticos;
- Seleção das tecnologias apropriadas a cada patologia;
- Reabilitação dos troços, de acordo com as prioridades definidas.

4 METODOLOGIAS DE QUANTIFICAÇÃO E IDENTIFICAÇÃO DE AI

Existem várias metodologias que permitem a quantificação e identificação de AI numa rede. Estas visam localizar e identificar focos de afluência, desde ligações à entrada de águas pluviais a ligações indevidas. É de lamentar que vários métodos encontrados não são completamente explícitos, e muitas vezes só revelam a parte teórica e nunca a parte prática, de forma a conseguir perceber e aplicar num caso prático.

Conforme o método a ser aplicado, a entidade gestora tem de acatar, antes da sua realização, todos os procedimentos legais, pois muitos deles, quando são aplicados podem invadir propriedade privada, e mesmo em espaço público é essencial uma sinalização correta e uma informação detalhada dos procedimentos a utilizar.

Neste capítulo são inumeradas as várias metodologias encontradas, subdividindo as várias metodologias em dois subcapítulos. O primeiro diz respeito ao Levantamento de Metodologias, em que é feita uma descrição resumida de várias metodologias encontradas. O segundo subcapítulo diz respeito a Métodos Estudados, onde é feita uma descrição mais pormenorizada de três métodos que posteriormente foram aplicados.

4.1 LEVANTAMENTO DE METODOLOGIAS

Neste subcapítulo são descritas as seguintes metodologias:

- Técnicas Ultrassónicas (Sonar);
- Avaliação da Rede com Tecnologia Scanner;
- Laser-Based Profiling;
- Ensaios de Estanquidade;
- Lamping;
- Técnicas de Limpeza;
- Técnicas com Traçadores;
- Questionários a Residentes;

- Projeto APUSS;
- Método dos Isótopos Naturais;
- Método das Séries Temporais.

4.1.1 Técnicas Ultrassónicas (Sonar)

Os coletores das redes de saneamento também podem ser inspecionados utilizando técnicas com um sonar. Normalmente este método é utilizado quando uma tubagem está inundada ou contem demasiados fluidos, o que não permite a utilização de métodos de inspeção visual como CCTV, Scanning ou Laser. A maior desvantagem da utilização de um sonar é que o equipamento é muito dispendioso e pesado, por isso é melhor analisar se fica mais económico utilizar um sonar ou drenar a rede (ASCE, 2009). A utilização do sonar permite obter informações dos seguintes pontos:

- Determinar a condição estrutural existente;
- Eliminar contingências em projetos de reabilitação;
- Determinar a quantidade existente de detritos;
- Determinar com rigor a melhoria da capacidade do coletor após limpeza.

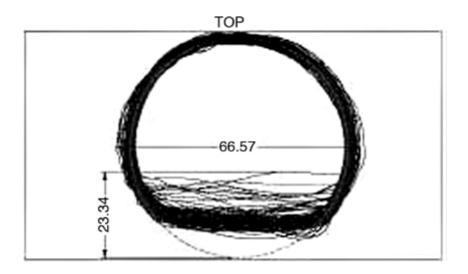


Figura 4.1 Imagem produzida pelo Sonar (Fonte: ASCE, 2009)

Está técnica utiliza um transdutor que percorre a rede e um sonar que é colocado á superfície, que utilizam impulsos emitidos e refletidos, em função do tempo e do percurso, permite obter uma imagem interior do tubo e até mesmo, dependendo do equipamento, pode-se obter uma imagem tridimensional das tubagens.

4.1.2 Avaliação da Rede com Tecnologia Scanner

Durante muitos anos a CCTV tem sido a técnica mais utilizada de inspeção visual remota em sistemas de esgotos, contudo a informação obtida varia conforme a capacidade técnica do operador a realizar o trabalho, podendo uma má realização resultar numa recomendação de reabilitação da rede incorreta (ASCE, 2009).

Novas tecnologias surgem para poder fornecer ao utilizador melhores informações e uma avaliação mais correta do estado estrutural do sistema de esgoto. Uma dessas novas tecnologias é SSET (Sewer Scanning and Evaluation Technology). O SSET proporciona uma imagem frontal, como a CCTV, mas também permite obter uma imagem de 360 graus do interior da superfície de dentro do tubo. Também consegue obter a inclinação do tubo e identificar potenciais locais de acumulação de sedimentação. Este sistema comparado com a CCTV é muito mais rápido pois consegue-se fazer uma analise do sistema em 2 ou 3 minutos, enquanto que com a CCTV demora-se entre 15 e 25 minutos.

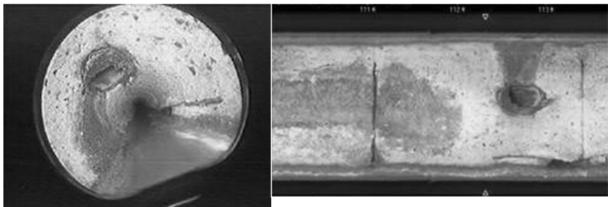


Figura 4.2 Secção SSET (Fonte: ASCE, 2009)

Figura 4.3 Secção Lateral SSET (Fonte: ASCE, 2009)

4.1.3 Laser-Based Profiling

A utilização de laser para traçar um perfil da rede é uma técnica avançada que consegue determinar com rigor o estado da superfície do tubo ou de outra estrutura. É um método económico e de fácil aplicação com resultados muitos precisos. Existem dois métodos em que esta técnica pode ser desenvolvida (ASCE, 2009).

O primeiro consiste em projetar um laser em formato de anel ao longo do interior das paredes do tubo. Conforme o equipamento se movimenta ao longo do tubo, a forma do anel modifica-se consoante as irregularidades estrutura do tubo. Estas deteções de irregularidades são gravadas por uma camara

montada atrás da estrutura do equipamento laser, que posteriormente serão processadas utilizando algoritmos que vão determinar com precisão as dimensões internas do tubo. Normalmente esta tecnologia só é aplicada em tubos com diâmetro inferior a 1500 mm. O segundo método para traçar um perfil da rede utiliza um tipo de laser mais disperso que forma um tipo de nuvem dentro do tubo, que permite mapear a forma e condição interna do esgoto (ASCE, 2009).

A tecnologia Laser tem como usos os seguintes pontos:

- Determinação da forma estrutural, área da secção transversal e defeitos;
- Estimar a quantidade de detritos;
- Calcular a capacidade do tubo antes e depois da limpeza;
- Definir uma reabilitação/substituição para melhorar a secção.

Esta tecnologia também inclui a possibilidade de obter modelos tridimensionais que depois são processados por técnicos competentes utilizando software avançado com o equipamento laser. O rigor deste método varia conforme o diâmetro da tubagem, tendo este uma tolerância de 0,3 cm.

4.1.4 Ensaios de Estanquidade

Os ensaios de estanquidade permitem ter bons resultados no que toca a infiltração e exfiltração numa rede de saneamento e são regra geral, realizados em sistemas novos de drenagem de águas residuais antes de estes entrarem em funcionamento. De acordo com a norma europeia NP EN 1610:2008, o ensaio de componentes pode ser efetuado com ar, com água, podendo ser necessário o recurso a ensaio com água após o ensaio de ar se os resultados forem ambíguos, ou menos frequente com vácuo. (ERSAR, 2010)

Existem novos métodos robóticos que permitem a colocação de tampões para permitir a realização de ensaios de estanquidade em coletores ou ramais existentes, no entanto são muito demorados e trabalhosos, só sendo utilizados em último caso. Os testes podem ser feitos separadamente em troços de coletor e câmaras de visita, com recurso a tampões para isolar a parte a ser ensaiada.

4.1.5 Lamping

O método "Lamping" é um sistema muito básico mas com muitas limitações. Este consiste na inserção de uma camara fotográfica numa caixa de visita da rede, em que esta é alinhada pelo centro da caixa

e baixada, com o auxílio de uma haste rigida, até intercetar o coletor das águas residuais, podendo assim visualizar toda essa área, revelando por exemplo raízes acumuladas, juntas dilatadas ou deslocadas e extensas áreas de detritos (ASCE, 2009).

No entanto, está limitada a só conseguir filmar poucos metros da conduta a montante e a jusante, não podendo assim tirar muitos resultados da situação existente na rede. Esta técnica torna-se vantajosa no que toca á inspeção visual das caixas de visita, pois evita a entrada de operários nas caixas quando os espaços são muito confinados e de difícil acesso. Também se torna vantajosa pela pouca quantidade de equipamento necessário e também pela sua rápida preparação e execução.

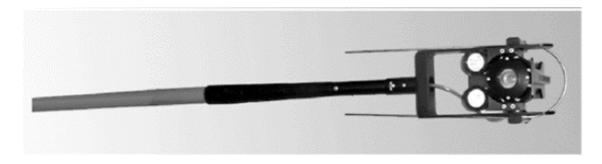


Figura 4.4 Camara fotográfica montada numa haste rígida (Fonte: ASCE, 2009)

4.1.6 Técnicas de Limpeza

Existem várias técnicas de limpeza que são utilizadas nos sistemas urbanos de águas residuais. De seguida são descritas algumas técnicas de limpeza recomendadas pelo Guia Técnico nº 17 da ERSAR (2010).

Corrente de varrer

Esta técnica (flushing) consiste na colocação de uma barreira transversal ao escoamento, como uma comporta ou válvula de limpeza, a montante da zona a limpar, de forma a reter um volume significativo de água que é, depois libertado provocando uma grande onda. Esta onda origina velocidades elevadas no escoamento, que arrastam as partículas.

Devem tomar-se cuidados, assegurando que não existe pessoal nos coletores a jusante, durante a operação. Esta técnica é aplicável a depósitos não consolidados, que são transportados, mantendo-se no sistema de águas residuais.

Jato de água

A limpeza das tubagens utiliza a injeção de jatos de água (jetting) na rede de esgotos é um processo muito simples. Este procedimento é o primeiro a ser feito antes de qualquer exame interno às tubagens significativo, pois este vai limpar toda a sujidade existente como cascalho, areia, raízes, lodo, lama e pedras de canalizações, caixas de visita e estações de bombeamento de poços, para depois poderem ser devidamente inspecionados.

A limpeza das tubagens tem duas finalidades:

- Limpar todas as linhas de escoamento do esgoto, por meios apropriados e com equipamento adequado, imediatamente antes da inspeção interna ou medição da velocidade;
- Determinar quando é possível todos os obstáculos e detritos que estejam a obstruir a redes em termos de condições correntes de escoamento ou de conexão que visem interferir ou impedir a inserção e circulação dos equipamentos de inspeção.

Jato de água de alta pressão com sucção

Esta técnica (high pressure water jetting with high volume suction), que permite a remoção de depósitos sedimentados ou incrustados, consiste na combinação de jato de água de alta pressão com sucção, utilizando alta pressão e baixas unidades de volume.

Quando este equipamento é incorporado num único veículo, designa-se por jato combinado. Em muitos casos esta combinação inclui recirculação de água, permitindo utilizar maiores caudais de água.

Arrasto

Esta técnica (winching) consiste em arrastar um dispositivo, geralmente um recipiente em forma adequada, através de um cabo entre duas câmaras de visita adjacentes. Devem ser tomadas medidas que evitem danos devidos á abrasão entre o cabo e o material da câmara, assim como no coletor ou ramais. O tipo de dispositivo a utilizar depende da natureza dos depósitos. A dimensão do dispositivo deve, inicialmente, ser pequena e ir aumentando, progressivamente, até atingir a dimensão do coletor. O esforço de tração no cabo deve ser monitorizado e a operação efetua-se, em geral, nos dois sentidos. Esta técnica pode ser aplicada a coletores de grandes dimensões e permite retirar grandes quantidades de depósitos.

Varejamento

Esta técnica (rodding) consiste em empurrar um dispositivo colocado na extremidade de uma barra flexível, através do coletor. O dispositivo tem um movimento de rotação destruindo os depósitos e raízes. Geralmente aplica-se a coletores com diâmetro inferior a 250 mm, instalados a menos de 2m de profundidade, para a remoção de obstruções. O tipo de dispositivo a selecionar depende da natureza dos depósitos.

Equipamento comandado à distância

Existe uma variedade de equipamento que pode ser controlado remotamente, incluindo manguais (flails) com correntes, corta-raízes mecânicos, equipamento robotizado de corte por jato de água a alta pressão. O equipamento a escolher depende da natureza dos depósitos e do material do coletor.

Esferas de limpeza ou placas de raspagem

Nesta técnica (cleaning balls/scour plates) move-se uma placa ou uma esfera, de dimensão ligeiramente inferior ao coletor, para jusante no coletor. O efeito do aumento de velocidade provocado pela passagem do escoamento nesta obstrução móvel, liberta os sedimentos que são arrastados para jusante. Geralmente, as esferas de limpeza são dentadas para permitirem maximizar a turbulência localizada para soltar os depósitos. Não é possível remover os sedimentos do coletor, sendo estes transportados no sistema.

Escavação manual ou mecânica

Esta técnica (manual or mechanical escavation) é possível em coletores de grande diâmetro e, geralmente, usa-se quando as outras técnicas não são aplicáveis. A utilização desta técnica deve ser minimizada devido aos riscos para a saúde e segurança, por envolver entrada de pessoal nos coletores. A escavação mecânica pode ser feita recorrendo a escavadoras pequenas ou a veículos adequados, que empurrem ou arrastem os sedimentos para um ponto de recolha. A utilização de equipamento de escavação requer a sua proteção para minimizar o risco de explosão.

4.1.7 Técnicas com Traçadores

Os testes com traçadores são uma técnica tradicional de aplicação simples e de baixo custo, que se têm mostrado muito eficaz em vários propósitos. Normalmente, este método é utilizado após os testes de fumo ou inspeções visuais, onde os defeitos detetados que podem permitir a infiltração no sistema coletor na rede são registados. Os testes com traçadores são uma forma de verificar a magnitude desses defeitos na rede de saneamento.

O método utiliza um traçador fluorescente com vários tipos de caraterísticas químicas, radioativas ou físicas, em que a sua seleção deve ser cuidada para que não haja risco de poluição ou para a saúde pública. Os traçadores fluorescentes são os mais frequentes pois necessitam de uma quantidade muito pequena para a sua utilização, pois estes conseguem ser detetados a uma concentração inferior a 1 µg/l com recurso a equipamento específico.

O traçador é introduzido a montante da ligação em que um defeito foi detetado na tubagem por outros métodos, e observado o seu percurso através de inspeção de vídeo para uma melhor análise do problema. Em determinados casos também pode ser utilizado sal diluído num pequeno volume de água sendo a deteção da passagem do pico de concentração detetado com um condutivimetro.

4.1.8 Questionários a Residentes

Em alguns casos os residentes e proprietários de uma determinada região, podem já ter conhecimento onde existam problemas na rede o que podem levar à identificação de afluências indevidas. Através de um questionário bem estruturado aos residentes, é possível recolher informação relevante para o caso em estudo e levar a uma redução do tempo de trabalho e de custos.

4.1.9 Projeto APUSS

O Projeto APUSS (Assessing infiltration and exfiltration on the Performance of Urban Sewer Systems) foi realizado entre 2001 a 2004, associado com várias universidades, pequenas e médias empresas e vários municípios em sete países Europeus incluindo Portugal. Este projeto foi financiado pela Comissão Europeia no âmbito do 5º programa Quadro de Investigação e Desenvolvimento e foi dedicado a resolver problemas relacionados com infiltrações e exfiltrações numa rede de saneamento. Foram estabelecidas quatro áreas principais de trabalho (Kracht, 2007):

- Desenvolvimento de novos métodos de medição;
- Testes e aplicações no campo de novos métodos;
- Implementação de modelos e ferramentas associados;

• Aspetos socioeconómicos relacionados com infiltração e exfiltração.

O projeto APUSS foi definido e desenvolvido por dez parceiros científicos, de sete países europeus, entre os quais se encontrava o representante português, o LNEC (Laboratório Nacional de Engenharia Civil). Este projeto também fez parte integrante do cluster CityNet, do 5º Programa Quadro de Investigação e Desenvolvimento da Comissão Europeia, que incluiu seis projetos independentes relacionados com os sistemas integrados de água em meio urbano.

Os principais objetivos deste projeto foram os seguintes (Kracht, 2007):

- Desenvolver novos métodos e técnicas com recurso a traçadores químicos e naturais, de forma a poder quantificar a infiltração e exfiltração no sistema de esgotos em diferentes escalas e condições;
- Desenvolver métodos volumétricos para a medição de infiltração e exfiltração em ligações domésticas;
- Estabelecer modelos e ferramentas de acompanhamento, para aplicações em grande escala e de apoio à decisão do utilizador;
- Implementação de software específico que permita calibrar e verificar os métodos de análise propostos, através de registos observados em cidades modelo, facilitando assim o processo de decisão, assim como, a gestão e manutenção da rede;
- Integração de métodos económicos analíticos, que permitam diferenciar e avaliar a performance económica da rede, pela criação de indicadores de desempenho e multicritérios numa perspetiva de investimento/ reabilitação.

4.1.10 Método dos Isótopos Naturais

O princípio do método dos isótopos naturais, é utilizar um traçador natural para identificar e quantificar dois componentes de escoamento de águas residuais durante o período de tempo seco. Estes dois componentes são os de água de abastecimento e o de água infiltrada. Este método assume que cada componente que flui para dentro do sistema de esgoto tem um conteúdo específico no traçador, que é significativamente diferente do outro componente e constante, qualquer que sejam as condições (De Bénédittis and Bertrand-Krajewski, 2004).

O conteúdo não deverá ser alterado por fenómenos como absorção de sedimentos de esgoto, variações em valores de pH, presença de detergentes ou variações de temperatura na água. Os traçadores que foram considerados mais apropriados para este propósito, durante o período de tempo

seco, foram os isótopos de hidrogénio e oxigénio da molécula da água. Na maior parte dos casos registados para aplicação deste método, o isótopo que é mais utilizado é o de oxigénio. A composição isotópica de uma amostra aleatória de água é geralmente expresso como um desvio a partir de uma amostra de referência do SMOW (Standart Mean Ocean Water), que provem da razão entre os átomos 16 O e 18 O, designada por δ^{18} (De Bénédittis and Bertrand-Krajewski, 2004).

$$(\delta^{18}O)_{amostra} = \left(\frac{(^{18}O/^{16}O)_{amostra}}{(^{18}O/^{16}O)_{SMOW}} - 1\right)$$
(4.1)

Estes desvios são geralmente muito pequenos, e são normalmente expressos em permilagem (‰). O método dos isótopos naturais tem por base que a qualquer momento durante o tempo seco o caudal total num tubo de esgoto (QCTS) é o soma do caudal de águas residuais (QAR) com o caudal de infiltração (QINF).

$$Q_{CTS} = Q_{AR} + Q_{INF} \tag{4.2}$$

A quantidade existente de um determinado isótopo nas águas residuais varia conforme vários fatores relacionados com eventos de precipitação (altitude, latitude, distância ao oceano), da ocorrência de trocas minerais ou do ciclo de evaporação/condensação (De Bénédittis and Bertrand-Krajewski, 2004).

Como já foi referido anteriormente, a utilização deste método só permite estudar duas origens distintas, e ainda necessita que as características isotópicas sejam homogénias, o que torna que a sua aplicação seja limitada. São usados traçadores de isótopos diferentes para a água infiltrada e para a água de abastecimento. A água infiltrada refere-se á água subterrânea do nível freático do terreno, e a água de abastecimento corresponde á água residual doméstica, considerando que esta ultima é uma consequência direta (De Bénédittis & Bertrand-Krajewski, 2004).

Com os dados recolhidos, com base no hidrograma diário do caudal, dos dois traçadores de fontes diferentes, é possível realizar uma comparação das duas componentes.

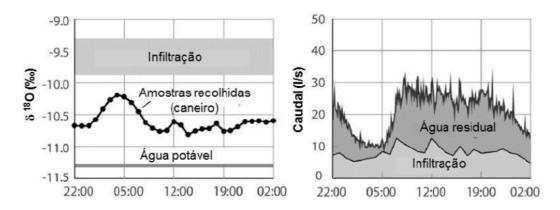


Figura 4.5 Caracterização isotópica e decomposição do hidrograma diário nas suas (Bonito 2014)

Segundo vários trabalhos realizados nesta área, concluiu-se que este método tem um erro de 5% na estimativa da taxa de infiltração, podendo-se dizer que este método de avaliação de infiltração é preciso. No entanto a sua aplicação utiliza muitas simplificações e despreza muitas outras origens de águas parasíticas. (Bonito, 2014)

4.1.11 Método das Séries Temporais

O Método da Series Temporais permite quantificar as AI numa rede de saneamento. Este método utiliza um traçador natural adequado e um modelo de mistura com parâmetros apropriados na separação química hidrógrafa da descarga de águas residuais, permitindo a identificação de diferentes componentes do fluxo.

Um parâmetro adequado para a aplicação deste método é a Carência Química de Oxigénio (CQO) das águas residuais, que na maioria dos casos a sua concentração nas águas residuais, pode ser assumida como insignificante por ser baixa. Isto evita certas dificuldades que poderiam surgir da necessidade de caracterizar com precisão a contribuição de massa da substância do traçador que provêm da própria infiltração. São utilizadas sondas de espectrometria submersíveis que permitem uma medição direta da CQO equivalente através de meios de absorção de luz UV-VIS. A utilização destes dispositivos de medição automática proporciona a obtenção de séries temporais com elevada resolução temporal, o que melhora significativamente a documentação dos resultados obtidos da composição das águas residuais comparado com outros métodos convencionais de análise laboratorial (Kracht, 2007)

Para se poder definir um modelo de mistura começa-se por partir da suposição geral que a quantidade de águas residuais é composto por um volume variável de esgoto total real e um volume de infiltração.

$$Q_{\acute{a}gua\ residual} = Q_{esgoto\ total} + Q_{infiltraç\~{a}o} \tag{4.3}$$

Quando o intervalo de observação é alargado, a quantidade de infiltração normalmente revela variações temporais consideráveis e tendências sazonais. Em particular quando largos períodos de chuva causam um aumento do nível freático do terreno e um aumento do grau de saturação da zona vadosa do terreno. Dependendo da capacidade de retenção hidráulica do solo, isto provoca um atraso temporário de infiltração.

A quantificação da infiltração, utilizando este método pode ser feita utilizando os seguintes passos:

- Medição simultânea e contínua do caudal e da CQO de um determinado poluente;
- Análise das séries temporais de concentrações e caudal obtidas;
- Construção de um modelo matemático que permita descrever a concentração de um dado poluente em ordem ao caudal medido.

Com a construção do modelo matemático, consegue-se determinar o caudal infiltrado através do balanço da massa, a partir da seguinte expressão:

$$Ct = \frac{Q_{AR} \times C_{AR} + Q_{INF} \times C_{INF}}{Qt}$$
 (4.4)

Em que:

- Qt Caudal total (m³);
- Ct CQO do caudal total;
- Q_{AR} Caudal de água residual doméstica (m³);
- C_{AR} CQO das águas residuais domésticas;
- Q_{INF} Caudal infiltrado (m³);
- C_{INF} CQO das águas infiltradas.

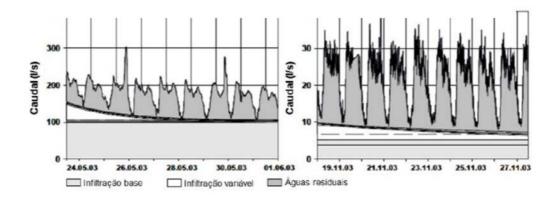


Figura 4.6 Separação dos hidrogramas obtidos em duas bacias de drenagem na Suíça (Bonito, 2014)

A Figura 4.6 demonstra a aplicação deste método numa ETAR e numa secção da rede de drenagem de águas residuais. É curioso verificar a similaridade entre os dois casos. A única diferença é a componente de infiltração base (infiltração indireta) ser mais preponderante no caso da ETAR, do que no caso da secção da rede. Também a assinalar o caudal mínimo noturno, no qual, o escoamento fica unicamente a dever-se às afluências indevidas, estas, mesmo sem ocorrência de precipitação, mantêm constantemente a presença, com elevada quantidade. (Bonito, 2014)

4.2 MÉTODOS APROFUNDADOS NO PRESENTE ESTUDO

Neste subcapítulo são descritas as seguintes metodologias:

- Método do Triângulo;
- Testes de Fumo;
- Inspeção Visual.

4.2.1 Método do Triângulo

O Método do Triângulo é utilizado para a separação das várias componentes do caudal afluente nos vários pontos da rede de saneamento e à ETAR, e foi proposto por Weiß em 2002, baseado no Método da Separação Hidrográfica, que é uma metodologia genérica e aleatória na determinação das diferentes parcelas de infiltração (Almeida & Monteiro, 2005).

Numa primeira fase é realizada uma representação gráfica de um diagrama dos volumes diários registados na ETAR, juntamente com o volume de precipitação registado, organizados por ordem cronológica no período de estudo considerado. Com a obtenção deste gráfico é possível observar se

existe uma relação direta entre estes dois parâmetros, nomeadamente para verificar se a existência de determinados picos dos volumes diários são provocados pela precipitação .

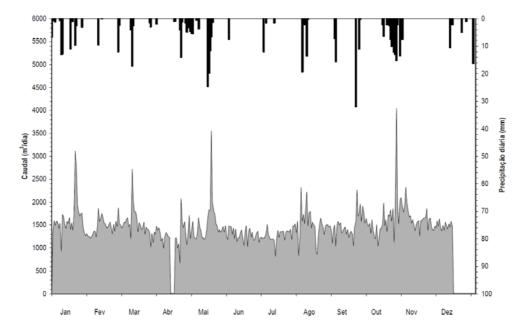


Figura 4.7 Diagrama cronológico de caudais medidos na ETAR de Mirandela e da precipitação registada durante o ano de 1999 (Almeida & Monteiro, 2005)

A aplicação do método do triângulo consiste na ordenação e representação dos volumes diários registados na ETAR, desta vez por ordem crescente de grandeza e em percentagem do valor máximo verificado no período considerado no estudo. É considerado um caudal de origem doméstica, que se mantém constante ao longo do tempo de estudo, ou caudal médio diário em período "seco", que é calculado através da seleção de caudais diários relativos a períodos de tempo "seco" durante a época estival. Assim admite-se que não há influência de precipitação, através das suas componentes de escoamento direto e drenagem rápida, assim como, do nível freático do solo, através da componente de infiltração no caudal afluente à ETAR, assumindo-se assim que este caudal tem origem exclusivamente doméstica.

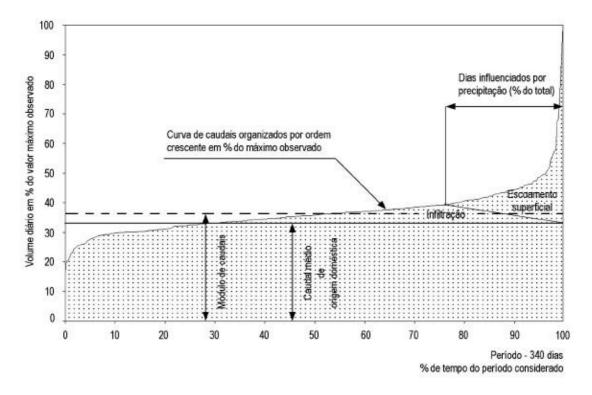


Figura 4.8 Aplicação do método do triângulo para a separação das parcelas de origem doméstica, infiltração e escoamento superficial - ETAR de Mirandela 1999 (Almeida & Monteiro, 2005)

Ao obtermos a curva de caudais e a linha horizontal relativa ao caudal de origem doméstica, pode-se desde já obter resultados conforme as áreas existentes no gráfico. A área que se situa abaixo da linha característica do caudal de origem doméstica, corresponde ao volume de água residual doméstica do tempo em estudo. Por consequente, a área que se localiza acima da linha horizontal do caudal de origem doméstica, corresponde ao volume anual excedente que aflui á ETAR resultante de escoamento superficial e infiltração.

Define-se como escoamento superficial, caudais resultantes diretamente da precipitação que se podem distinguir em escoamento direto e drenagem rápida. O escoamento direto refere-se às ligações domiciliárias indevidas de ramais de descarga de águas pluviais em coletores separativos de águas residuais domésticas, uma vez que esta parcela resulta diretamente da ocorrência temporal aleatória de precipitação. Normalmente os caudais de ponta que ocorrem nos coletores e nas estações de tratamento resultam do escoamento direto. A drenagem rápida representa uma resposta rápida e direta de eventos pluviométricos e resulta essencialmente, da percolação da água através do solo que é drenada pelos coletores antes de contribuir para a recarga de aquíferos. O tempo de reação a uma precipitação pode durar algumas horas ou até mesmo dias, dependendo do estado hídrico do solo e das condições geológicas locais e também das características da precipitação.

O caudal de infiltração depende da posição do nível freático em relação ao nível do coletor, pois resulta da drenagem das águas freáticas e representam uma relação indireta com os eventos pluviométricos. Estas infiltrações podem ocorrer no coletor fundamentalmente por fissuras existentes, pelas juntas ou ainda através das caixas de visita. Este parâmetro não é muito influenciada por eventos pluviométricos, no entanto tem tendência a manter-se relativamente persistente ao longo do tempo, apresentando uma variação essencialmente sazonal.

De forma a poder separar-se os componentes de escoamento superficial e de infiltração, parte-se do suposto que a componente de infiltração atinge o seu máximo depois de períodos chuvosos. Por outro lado, admite-se que a infiltração é tanto menor, podendo mesmo admitir-se nula, quanto maior for a componente devida diretamente a precipitação porque nestes casos pode ocorrer também exfiltração. Com o registo de dados dos caudais e da precipitação, é possível identificar os dias em que ocorre precipitação assim como os dias em que a sua influência se faz sentir. No diagrama estes dias são marcados, em percentagem da direita para a esquerda, e o ponto de interceção da respetiva abcissa com a curva de caudais totais corresponde ao início da linha de separação. O final da linha de separação localiza-se no final da linha horizontal da componente doméstica onde esta intersecta a abcissa dos 100%. As áreas definidas acima e abaixo desta linha de separação correspondem, respetivamente, aos volumes do escoamento superficial e infiltração.

Depois de aplicar esta metodologia é possível obter com facilidade as respetivas áreas relativamente ao caudal de origem doméstica, escoamento superficial e infiltração, sabendo que percentagens de cada componente existe na rede.

4.2.2 Testes de Fumo

Os Testes de Fumo são um método de aplicação simples, eficaz e de baixo custo, usado para identificar fontes de infiltração, exfiltração e ligações indevidas (especialmente de sumidouros, algerozes, pátios e outras áreas de drenagem) numa rede de saneamento.

Este método tem como propósito detetar o maior número de defeitos existentes num sistema coletor que estão a permitir a entrada de grandes quantidades de água. O princípio por detrás dos testes de fumo é muito simples: se o fumo conseguir escapar da rede por uma ligação superficial ou pela superfície do solo, a água consegue entrar no sistema pelo mesmo caminho.

Este método tradicional já existe há muitos anos e normalmente é bastante fiável para a identificação dos defeitos na rede. Mas nem sempre é possível detetar todos os tipos de defeitos na rede, pois se não existe um caminho para o fumo surgir para a superfície o defeito não vai ser detetado. Para isso são necessários outros métodos para identificar estes tipos de defeitos (ERSAR 2010; ASCE, 2009).

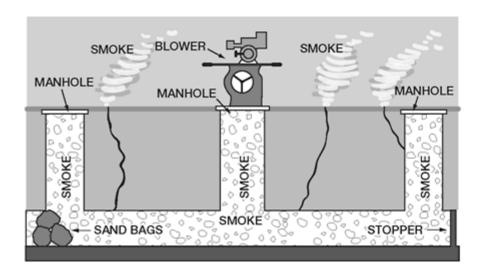


Figura 4.9 Diagrama de Testes de Fumo (Fonte: ASCE, 2009)

Os Testes de Fumo utilizam um fumo frio pressurizado não toxico, sem odor, sem óleo ou partículas, de forma a não apresentar perigo para a saúde pública. Este fumo é gerado e forçado a entrar no sistema através de bombas de fumo, que vão produzir fumo durante 3 a 5 minutos, e pode ser feito nas duas direções da caixa de visita. As secções do coletor devem de ser isoladas com recurso a tampões insufláveis, balões ou sacos de areia.

Antes de se iniciarem os testes numa determinada área os habitantes têm de ser notificados do que devem espectar durante este procedimento. Isto é um procedimento importante pois minimiza a ocorrência de chamadas de veículos de emergência de combate a incêndios caso surjam fumos junto de edifícios.

4.2.3 Inspeção Visual

A Inspeção Visual, a um coletor doméstico ou a uma determinada caixa de visita, permite identificar quais são as ligações existentes, averiguar a ocorrência de infiltração e exfiltração na rede, verificar o estado estrutural da rede em estudo e verificar a existência de infiltração. Esta inspeção pode ser feita com recurso a camaras (CCTV – Close-Circuit TV), ou com recurso à entrada de pessoal nas caixas de visita, sendo este mais económico.

Apesar da Inspeção Visual não ser um método quantitativo, este permite a recolha de dados sobre as causas e severidade de tipos de ocorrências, pois estes resultados são muito úteis para se puder fazer um diagnóstico da situação existente para servir de apoio a uma reabilitação da rede.

Muitas vezes, a inspeção visual durante as fases reabilitação de uma rede é a única forma exequível de detetar situações de ligações indevidas na rede. Para isso também é feita uma inspeção a caixas de ligação e eventualmente a redes prediais para verificar que as ligações de caracter pluvial não estão a ser ligadas a coletores domiciliários, pois estes contribuem significativamente para a existência de afluências indevidas nas redes de saneamento (ERSAR 2010; ASCE, 2009).

Os edifícios de caracter industrial também devem sofrer inspeções às suas ligações se existirem suspeitas de descargas inadequadas ou indevidas na rede pública.

Figura 4.10 Fissura ligeira (Fonte: ASCE, 2009)

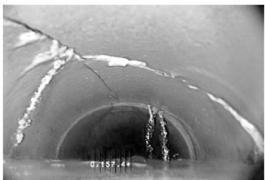


Figura 4.11 Fissura com infiltração ligeira (Fonte: ASCE,2009)

Figura 4.12 Fissura com infiltração elevada (Fonte: ASCE, 2009)

4.2.3.1 Inspeção Visual de Vídeo

A Inspeção Visual com recurso a vídeo (Close-Circuit Television - CCTV), envolve a utilização de uma camara resistente montada numa estrutura que é puxada ou propulsionada nas condutas de esgoto. As camaras que são puxadas, são montadas numa estrutura que possui esquis e conectada por um cabo que é utilizado para puxar a camara pelo esgoto (Figura 4.13), enquanto que as autopropulsionadas são montadas num equipamento telecomandado (Figura 4.14). Para tubagens com diâmetros mais pequenos, a camara é montada numa haste rígida, que é empurrada pela tubagem (Figura 4.16 Figura 4.15) (ERSAR 2010; ASCE, 2009).

Em termos de segurança, a utilização de camaras permite a entrada em espaços confinados onde um ser humano não conseguiria entrar, ficando também o trabalhador sujeito a menos riscos associados.

O maior objetivo da CCTV é identificar e quantificar os defeitos na tubagem, estes defeitos incluem fissuras, raízes, protuberância na estrutura causados pelo excesso de peso da tubagem, presença de gordura, deformações da tubagem, juntas dilatadas em localizações específicas na tubagem. Uma das desvantagens da inspeção visual com camara é que a análise dos defeitos pode ser subjetiva.

Cada operador pode interpretar um defeito de diferente maneira e variar o grau de gravidade. Pode existir discrepâncias na interpretação comparativa dos defeitos de inspeções em curso com a inspeção inicial, por ter um operador diferente a desempenhar cada inspeção. (ERSAR 2010; ASCE, 2009).

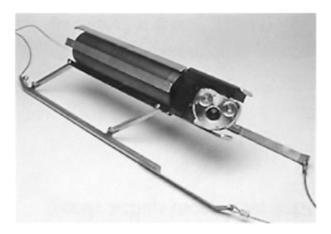


Figura 4.13 Camara montada em estrutura com esquis (Fonte: ASCE, 2009)

Figura 4.14 Camara autopropulsionada (Fonte: ASCE, 2009)

Figura 4.15 Camara montada numa haste rígida (Fonte: ASCE, 2009)

Todas as inspeções devem ser documentadas em fichas de registo, juntamente com as imagens de vídeo obtidas. Este registo deve ser feito para que, se existir uma discrepância nos dados, se possa realizar uma segunda análise e interpretação independente da condição física da tubagem, e também para avaliar a qualidade do controlo realizado e capacidades técnicas e de interpretação do operador.

É importante ter padrões definidos na inspeção para assegurar uma melhor precisão na interpretação dos dados, para que estes sejam o mais objetivos possíveis. O mais importante é ter um padrão consistente nas inspeções. Isto pode incluir os seguintes aspetos (ERSAR 2010; ASCE, 2009):

 Fazer uma pré-limpeza para remover detritos para se conseguir ver o máximo possível da tubagem;

- Controlar o caudal para que este não ultrapasse 20% do seu diâmetro, para contribuir a uma maior segurança para o equipamento e para o operário;
- Ter uma ventilação apropriada para prevenir a existência de vapores que possam afetar a qualidade da imagem, que pode causar a mal interpretação do operador;
- A velocidade da camara não deve de exceder os 15 cm/s, dando ao operador tempo suficiente para detetar defeitos e analisar a severidade do mesmo. A camara também pode ser parada para uma análise mais crítica do problema;
- Definir a distância que a camara percorreu na tubagem é importante para saber a localização dos defeitos, seja necessário fazer uma escavação;
- As inspeções devem de estar de acordo com as normas EN 13508-1 e EN 13508-2.

4.2.3.2 Inspeção Visual das Caixas de Visita

A entrada física de pessoas no esgoto ou em caixas de visita é necessário em algumas situações, nomeadamente, onde existam esgotos com grandes diâmetros, câmaras com uma configuração estranha e condições não adequadas a utilização de equipamento elétrico. Para a entrada de um trabalhador no esgoto, devem de ser assegurado todas as condições de segurança, analisando os riscos associados por indivíduos competentes para que nenhum trabalhador esteja em perigo.

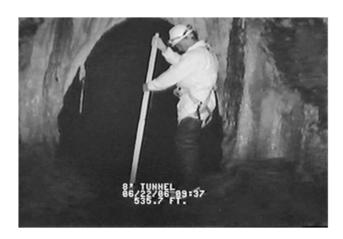


Figura 4.16 Tubagem de grande diâmetro e válvula de câmara (Fonte: ASCE, 2009)

Alguns exemplos de equipamentos utilizados nas entradas físicas incluem dispositivos de recuperação e arneses, lanternas, detetores de gás, comunicação rádio, unidades de autossalvamento, capacetes e outros equipamentos de proteção individual (EPI) (Figura 4.17).

Figura 4.17 Exemplos de equipamentos e procedimentos usados durante a entrada de pessoas (Fonte: ASCE, 2009)

5 CARACTERIZAÇÃO DO CASO EM ESTUDO

5.1 CARACTERIZAÇÃO DA BACIA HIDROGRÁFICA DA BARRINHA DE ESMORIZ / LAGOA DE PARAMOS

O sistema de drenagem de águas residuais "em alta" da Barrinha de Esmoriz é composto por dois subsistemas, o subsistema de Espinho e o subsistema da Remolha, sendo que em cada um destes existe uma ETAR onde se procede ao tratamento das águas residuais.

O subsistema de Espinho serve a totalidade do município de Espinho, abrangendo ainda parte dos municípios de Ovar e Santa Maria da Feira. A área do município de Ovar servida por este subsistema corresponde à zona Norte do concelho, nomeadamente as freguesias de Cortegaça e Esmoriz. Quanto ao município de Santa Maria da Feira, são servidas as freguesias de Santa Maria de Lamas, Rio Meão, Paços de Brandão, São Paio de Oleiros, Nogueira da Regedoura e Mozelos, assim como parte das freguesias de Argoncilhe, Lourosa e São João de Ver.

Refira-se ainda que o subsistema de Espinho é composto por um conjunto de emissários do sistema "em alta", que transportam o caudal até à ETAR de Espinho, localizada na freguesia de Paramos, município de Espinho. Destes emissários, destaca-se o emissário de Rio Maior, que coleta os caudais provenientes dos Municípios de Santa Maria da Feira e Ovar.

Quanto ao subsistema da Remolha, este serve parte das freguesias de Espargo, Feira, São João de Ver e Travanca, do município de Santa Maria da Feira. Atualmente o tratamento das águas residuais domésticas é efetuado na ETAR da Remolha, localizada na Freguesia de Espargo, tendo esta sido dimensionada para 6 500 habitantes equivalentes e executada em 2001. Devido ao atraso na execução das infraestruturas de transporte a montante, a ETAR só entrou em funcionamento no ano de 2009.

Figura 5.1 Barrinha de Esmoriz (Fonte: www.oln.pt)

5.2 CARACTERIZAÇÃO DA REDE DE DRENAGEM EM ALTA

5.2.1 ETAR de Espinho

O subsistema da Barrinha de Esmoriz / Lagoa de Paramos envolve a ligação à ETAR de Espinho dos subsistemas de Espinho (Espinho), Ovar (Esmoriz e Cortegaça) e de Santa Maria da Feira (bacia que drena para a Barrinha de Esmoriz / Lagoa de Paramos), sendo que os efluentes tratados na ETAR de Espinho são posteriormente encaminhados para o Exutor Submarino de Espinho através do qual são rejeitados no mar.

Para o efeito, a ETAR de Espinho foi remodelada e ampliada para um caudal de 30.890 m3/dia no horizonte do projeto. O Sistema da Barrinha de Esmoriz / Lagoa de Paramos implicou ainda a execução de 28 km de Condutas e 5 Estações Elevatórias.

Ao nível da fase líquida, esta ETAR realiza tratamento secundário aos efluentes domésticos e industriais, composto pelas seguintes etapas: tratamento preliminar, decantação primária, tratamento biológico e decantação secundária. Do tratamento da fase sólida, a produção de biogás, aproveitado para o aquecimento das lamas e produção de energia elétrica, resulta a produção de lamas digeridas e desidratadas.

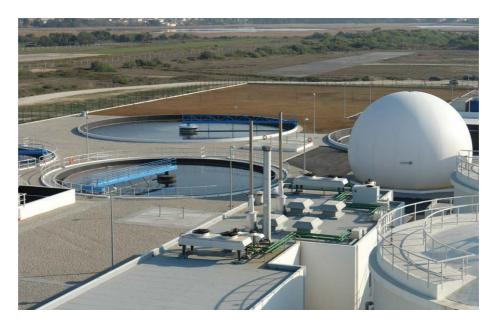


Figura 5.2 ETAR de Espinho (Fonte: SIMRIA, 2014)

Tabela 5.1 Componente de Tratamento de águas Residuais (ETAR Espinho e ETAR da Remolha)

	População abrangida (hab. Eq.)	Caudal Médio Diário (m³/dia)
ETAR Espinho	194 232	30 890
ETAR Remolha	6 500	1 040

Tabela 5.2 Componente de Recolha de Águas Residuais (Subsistema da Barrinha de Esmoriz)

	Extensão dos Intercetores (km)	Estações Elevatórias (nº)	Pontos de Entrada (nº)
Subsistema de Espinho	29.4	5	39
Subsistema da Remolha	1.8	1	1

Tabela 5.3 Componente de Rejeição (Exutor Submarino de Espinho)

	Extensão dos Intercetores (km)	Estações Elevatórias (nº)
Exutor Submarino	2	

5.2.2 Estação Elevatória de Rio Maior 1

A estação elevatória de Silvalde 1 (EESV1), propriedade da SIMRIA, está localizada num terreno próximo do designado Engenho Novo, na freguesia de Esmoriz, concelho de Ovar, junto à estrada nacional EN1-14, no troço de ligação entre Paços de Brandão e São Paio de Oleiros

A estação elevatória está dimensionada para elevar caudais de 265 L/s no horizonte de projeto de 30 anos, através de grupos de eletrobomba do tipo submersível. Para além dos grupos elevatórios, a estação dispõe de vários equipamentos complementares e de segurança, nomeadamente posto de transformação, grupo gerador de emergência, gradagem e desarenamento das águas residuais afluentes, ventilação e tratamento de odores, proteção contra o choque hidráulico nas condutas elevatórias e diversa instrumentação.

Figura 5.3 Estação Elevatória Rio Maior 1

5.2.3 Estação Elevatória de Silvalde 1

A estação elevatória de Silvalde 1 (EESV1), propriedade da SIMRIA, está localizada num terreno próximo do lugar de Bessada na freguesia de Nogueira da Regedoura, concelho de Santa Maria da Feira junto á estrada municipal EM516-2.

A estação elevatória está dimensionada para elevar caudais de 24 L/s no horizonte de projeto de 30 anos, através de grupos de eletrobomba do tipo submersível. Para além dos grupos elevatórios, a

estação disporão de vários equipamentos complementares e de segurança, nomeadamente posto de transformação, grupo gerador de emergência, gradagem e desarenamento das águas residuais afluentes, ventilação e tratamento de odores, proteção contra o choque hidráulico nas condutas elevatórias diversa instrumentação.

Figura 5.4 Estação Elevatória de Silvalde 1

5.2.4 Rede Em Alta

A rede em alta tem uma extensão total de aproximadamente 4,7 km. Esta tem travessias ao longo da sua extensão sobre linhas de águas, sobre a Autoestrada A1, sobre a linha de caminho-de-ferro do Vouga e sobre Gasodutos.

A rede é dotada por condutas gravíticas de PEAD DN 250 e PEAD DN 315. As condutas de diâmetro de 250 mm vão do perfil 1 ao perfil 24. Desde do perfil 24 passam a ter 315 mm de diâmetro até a EE. A designação dos perfis encontra-se em anexo. A rede tem um total de 53 câmaras de visita estanques, totalmente construídas em betão armado.

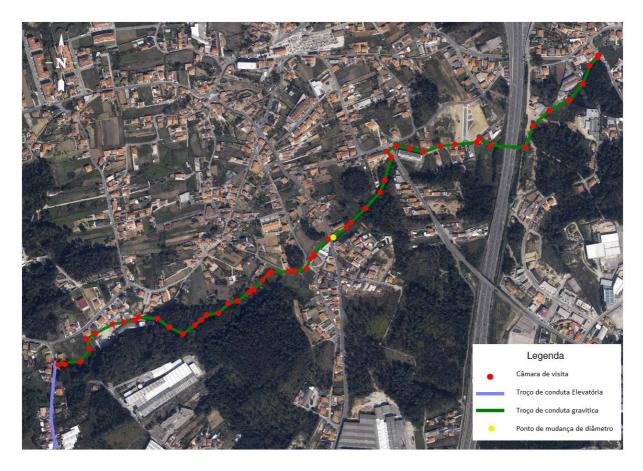


Figura 5.5 Rede em Baixa (Fonte: SIMRIA 2015)

5.3 CARACTERIZAÇÃO DA BACIA DE DRENAGEM EM BAIXA

5.3.1 Freguesia de Nogueira da Regedoura

A freguesia de Nogueira da Regedoura está situada no extremo noroeste do Concelho de Santa Maria da Feira, sendo uma das freguesias que o constituem.

Confina com as freguesias de S. Paio de Oleiros, Mozelos e Argoncilhe, do mesmo Concelho, com Grijó, do Concelho de Gaia e com Guetim e Anta, do Concelho de Espinho. Tem uma extensão de 4,87 Km2 e, segundo o Censo 2011, residem na Vila 5790 pessoas, tendo um densidade populacional de 1 188,9 hab/km².

Figura 5.6 Freguesia de Nogueira da Regedoura (Fonte: Google Maps)

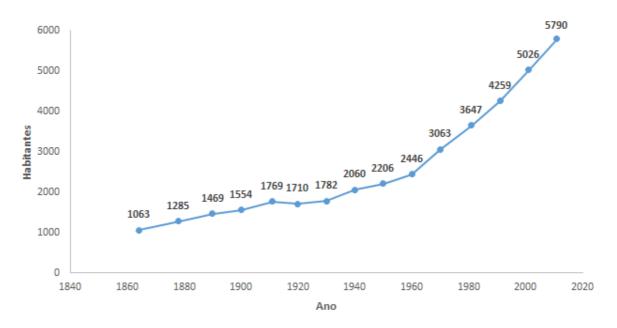


Figura 5.7 Evolução do número de habitantes de Nogueira da Regedoura (Fonte: INE)

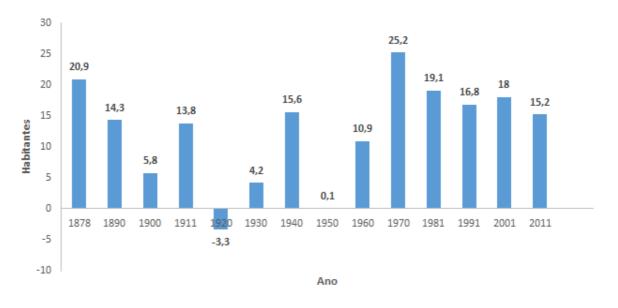


Figura 5.8 Variação percentual do nº de habitantes de Nogueira da Regedoura (Fonte: INE)

6 APLICAÇÃO DO MÉTODO DO TRIÂNGULO E ANÁLISE DOS RESULTADOS

6.1 APLICAÇÃO DO MÉTODO DO TRIÂNGULO

De forma a conseguir aplicar as metodologias estudadas, foi proposto analisar, juntamente com a SIMRIA e IF, a rede afluente à EESv1 pertencente à SIMRIA, no que toca a existência de AI, no qual se vai realizar um estudo de forma a quantificar este problema. Para a realização desta análise, optou-se por aplicar o Método do Triângulo para a quantificação de AI na rede, embora exista pouca bibliografia sobre este método. Daí surgiu uma oportunidade de desenvolver e aplicar este método, pois a IF já possuía alguma experiência da utilização deste método em casos anteriores, o que serviu de apoio para desenvolver e aplicar o método. Tem como vantagem ser um método de baixo custo e perante os dados disponíveis, é o método mais adequado para quantificar as AI tendo a vantagem de se poder dividir por tipo de afluência (direta/indireta).

Para se proceder à aplicação do método, foi necessário recolher os dados através da telegestão da SIMRIA a partir da plataforma "PLUGME", retirando assim os caudais que são medidos na EESv1 para os anos de 2013 e 2014. Também foi necessário saber a precipitação existente na bacia onde se localiza a rede, e para isso recorreu-se ao udómetro da IF mais próximo que se localiza em Mozelos, retirando assim os dados de precipitação de 2013 e 2014. Com a obtenção destes dados, foi necessário realizar a sua gestão, sendo para isso criada uma folha de cálculo para a aplicação do Método do Triângulo.

Numa primeira fase foi necessário organizar os dados com o mesmo caracter temporal, pois os dados obtidos dos caudais estão m³/h e os dados da precipitação está em mm por cada 15 min., convertendo todos os dados para valores diários. Organizaram-se estes dados por ordem cronológica, separando os anos de 2013 com os de 2014.

Tabela 6.1 Tabela cronológica de caudais e precipitação medidos (excerto)

Dia da semana	Data	Totalização Caudal (m3/dia)	Precipitação (mm/dia)
Terça-feira	1-jan-2013	626	0,2
Quarta-feira	2-jan-2013	629	0,2
Quinta-feira	3-jan-2013	581	0
Sexta-feira	4-jan-2013	579	0
Sábado	5-jan-2013	597	0
Domingo	6-jan-2013	535	0
Segunda-feira	7-jan-2013	534	0
Terça-feira	8-jan-2013	505	0

Acrescentou-se também uma parcela referente ao nome do dia da semana, para se poder analisar a média do caudal de cada dia da semana, como se pode ver nas seguintes tabelas.

Tabela 6.2 Caudal médio anual por dia da semana de 2013

Caudal Médio Anual por Dia da Semana

Segunda-feira	654,64
Terça-feira	672,27
Quarta-feira	629,60
Quinta-feira	662,37
Sexta-feira	700,47
Sábado	681,84
Domingo	618,96

Tabela 6.3 Caudal médio anual por dia da semana de 2014

Caudal Médio Anual por Dia da Semana

949,13
960,13
966,62
962,56
971,93
958,62
888,91

Com os dados devidamente organizados é possível obter um diagrama dos volumes diários registados na EE, juntamente com o volume de precipitação registado, organizados por ordem cronológica no

período de estudo considerado, como se pode verificar na Figura 6.1 para o ano de 2013 e Figura 6.2 para 2014. Neste diagrama está representado a azul o caudal bombado pela EESv1, e a vermelho a precipitação medida pelo udómetro, isto tudo em cada dia do ano. A verde está representado o caudal médio de cada dia da semana no ano em estudo, independentemente se tem precipitação ou não.



Figura 6.1 Diagrama cronológico de caudais da EESv1 e da precipitação durante o ano de 2013

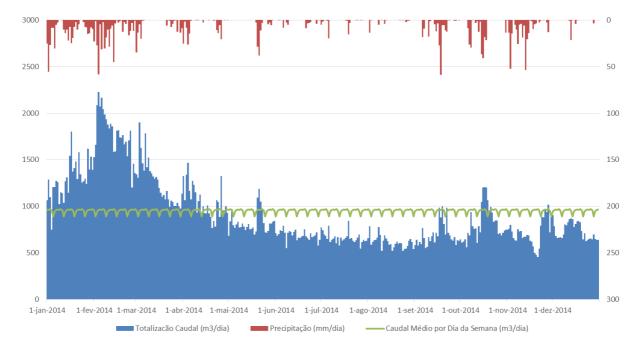


Figura 6.2 Diagrama cronológico de caudais da EESv1 e da precipitação durante o ano de 2014

A partir deste ponto já é possível fazer uma breve análise, relacionando o caudal com a precipitação, examinando se existe uma relação direta entre o aumento do caudal com a existência e/ou aumento da precipitação, e verificar se o caudal se encontra acima ou abaixo do caudal médio.

De seguida é necessário desenvolver o diagrama para se proceder à aplicação e obtenção dos resultados com o método do triângulo, como já foi referido no ponto 4.2.1 deste documento.

Primeiro foi necessário colocar os caudais obtidos na EESv1, desta vez, por ordem crescente de grandeza e transformar as unidades de m³/dia para percentagem do valor máximo verificado no período considerado, obtendo assim a curva de caudais classificados.

Para conseguir aplicar o método é necessário obter os seguintes parâmetros:

- Número de dias do período considerado;
- Número de dias não influenciados pela precipitação;
- Número de dias não influenciados pela precipitação em relação ao número de dias do período;
- Caudal Máximo Diário;
- Caudal Mínimo Diário;
- Caudal Médio Diário;
- Caudal médio diário em tempo "seco";
- Número de dias em tempo "seco";
- Caudal médio diário em "tempo seco" em relação ao máximo registado.

Número de dias do período considerado – Número de dias para o qual existem dados de caudais medidos na estação elevatória e dados de precipitação.

Número de dias influenciados pela precipitação – Número de dias durante os quais se considera que os volumes registados contêm uma componente de Al direta ou indiretamente relacionada com um evento pluviométrico. Os caudais diretamente relacionados são aqueles que se verificam nos dias de precipitação. Os indiretamente relacionados são aqueles que se verificam nos n dias subsequentes após precipitação. A partir do dia n+1, considera-se que os caudais verificados são apenas de águas residuais domésticas, sem influência da precipitação. Para este estudo e com base na experiência da IF, considerou-se este período como sendo de 7 dias. Assim, torna-se necessário classificar a influência da precipitação em cada dia. Considerou-se que houve precipitação quando o valor registado no udómetro foi superior a 4mm/dia. Abaixo ou igual a esse valor, considerou-se não ter havido

precipitação. Este valor foi definido com base na experiência da IF, que verificou que os caudais afluentes à rede, para este local, não sofrem variações significativas em eventos pluviométrico com registo inferior.

Número de dias não influenciados pela precipitação em relação ao número de dias do período – Valor em percentagem da razão entre o "Número de dias não influenciados pela precipitação" e o "Número de dias do período considerado".

Caudal Máximo Diário – Determinação do valor máximo de totalização de caudal diário em m³/dia.

Caudal Mínimo Diário – Determinação do valor mínimo da totalização do caudal em m³/dia.

Caudal Médio Diário (m3/dia) – Cálculo do valor médio da totalização do caudal em m³/dia.

Caudal médio diário de origem doméstica – Para calcular o caudal médio diário de origem doméstica é necessário definir um período de tempo "seco". Nesse período só são analisados os conjuntos de no mínimo 7 dias seguidos sem influência da precipitação, na tentativa de se eliminar qualquer componente de infiltração, como o do nível freático. Definidas as amostras dos caudais de tempo "seco", é realizada a média de cada amostra e selecionada a menor destas obtendo assim o caudal médio diário de origem doméstica em m³/dia.

Número de dias em "tempo seco" – Contabilização do número de dias que foram selecionados para o cálculo do Caudal médio diário de origem doméstica.

Caudal médio diário de origem doméstica em relação ao máximo registado – Valor em percentagem da razão entre o "Caudal médio diário de origem doméstica" e o "Caudal máximo diário".

Com estes componentes calculados, é possível desenhar a linha vertical (vermelho), que delimita os dias influenciados pela precipitação (a direita dessa linha), a linha horizontal (verde), que diz respeito ao Caudal médio diário de origem doméstica e a linha a roxo, que separa os caudais com componente de Al diretas das indiretas.

Estes gráficos foram posteriormente inseridos num programa de desenho automático, permitindo medir as áreas e as percentagens relacionadas com os caudais de origem doméstica, as Al indiretas e as Al diretas.

6.2 Análise dos Resultados

Com a representação cronológica dos registos pluviométricos e caudais diários afluentes à EESv1 nos anos de 2013 e 2014, representados na Figura 6.1 e na Figura 6.2, verifica-se que para o ano de 2014 o intervalo de estudo contabiliza o ano inteiro com 365 dias, enquanto que no ano de 2013 o intervalo de estudo restringe-se a 315 dias. Isto deve-se ao facto de ter existido um erro de leitura no caudalímetro. Também é evidente ter havido uma maior precipitação em 2014.

O volume médio diário afluente à estação elevatória nos anos de 2013 e 2014 foi, respetivamente de 660 m³/dia e 921 m³/dia. Analisando os diagramas cronológicos de caudais e precipitação, verifica-se que existe um aumento de caudal quando existe uma maior precipitação, e que os dias em que o caudal tem tendência a ser mais elevado são os precedidos por um período de precipitação mais longo. Para o cálculo do caudal médio diário de origem doméstica foi definido que o período de tempo "seco" para 2013 foi de Abril a Setembro e para 2014 de Maio a Setembro

Com o auxílio de uma tabela de cálculo automática, preparada no âmbito deste trabalho, foi possível obter os seguintes resultados:

Tabela 6.4 Tabela de Resultados

	2013	2014
Número de dias do período considerado	315	365
Número de dias não influenciados pela precipitação	106	94
Número de dias não influenciados pela		
precipitação em relação ao número de dias do período	33,65%	25,75%
Caudal Máximo Diário (m³/dia)	2128	2225
Caudal Mínimo Diário (m³/dia)	354	454
Caudal Médio Diário (m³/dia)	660,02	920,56
Número de dias em tempo "seco"	98	35
Caudal médio diário de origem doméstica (m³/dia)	475,50	592,35
Caudal médio diário de origem doméstica em relação ao máximo registado	22,34%	26,62%

Com os resultados obtidos é possível desenhar os diagramas completos para a quantificação de Al diretas e indiretas.

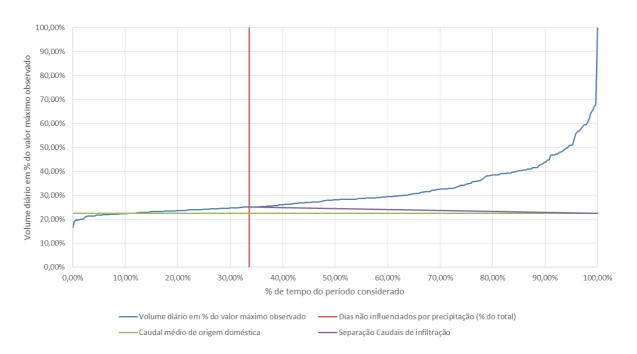


Figura 6.3 Diagrama de aplicação do método do triângulo 2013

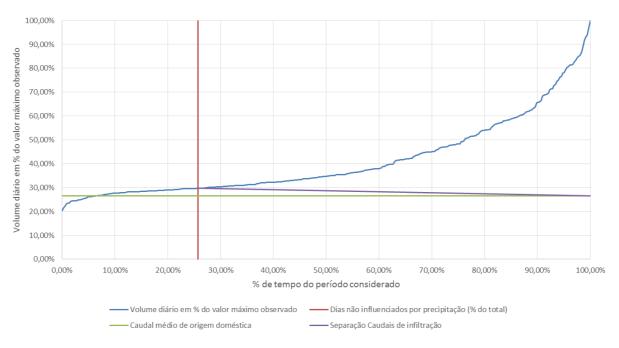


Figura 6.4 Diagrama de aplicação do método do triângulo 2014

A partir destes gráficos e com o auxílio de um programa de desenho automático é possível calcular as áreas correspondentes à origem doméstica, infiltração e escoamento superficial. Obtêm-se assim os seguintes resultados na Tabela 6.5.

Tabela 6.5 Tabelas de resultados das áreas

				Volu	me				
		0			Excedente				
		Origem doméstica		Infilt	ração	Escoamento	o superficial	Total	
Ano	Total (m3)	Total (m3)	% do volume total	Total (m3)	Acréscimo percentual sobre o efluente doméstico	Total (m3)	Acréscimo percentual sobre o efluente doméstico	% do volume total	
2013	207906	148682,96	71,51%	8527,29	5,74%	50695,76	34,10%	28,49%	
2014	336005	214459,49	63,83%	12633,05	5,89%	108912,46	50,78%	36,17%	

Referente ao ano de 2013, verifica-se que a área correspondente ao escoamento superficial é muito superior à área associada à componente de infiltração, podendo-se assim dizer que o escoamento superficial tem um impacto elevado para a existência de AI na rede. Em termos quantitativos o volume correspondente a caudais excedentes por infiltração representa 8.527,29 m³, cerca de 4,10 %, e o volume correspondente a caudais excedentes por escoamento superficial representa 50.695,76 m³, cerca de 24,38 % do volume total bombeado pela EE, que resulta num total de 59.223 m³, cerca de 28,49 % de caudais excedentes na rede.

Referente ao ano de 2014 volta-se a verificar que a área correspondente ao escoamento superficial é muito superior à área associada à componente de infiltração, podendo-se assim dizer que o escoamento superficial tem um impacto elevado para a existência de Al na rede. Em termos quantitativos o volume correspondente a caudais excedentes por infiltração representa 12.633,05 m³, cerca de 3,76 %, e o volume correspondente a caudais excedentes por escoamento superficial representa 108.912,46 m³, cerca de 32,41 % do volume total bombeado pela EE, que resulta num total de 121.545 m³, cerca de 36,17 % de caudais excedentes na rede.

Desta tabela pode concluir-se que os volumes afluentes à EE resultantes de infiltração nos dois anos tem valores praticamente da mesma ordem de grandeza, respetivamente de 5,74% e 5,89% de acréscimo sobre o efluente doméstico. No entanto a contribuição da componente de escoamento superficial é em 2014, relativamente maior que em 2013. Neste caso, o acréscimo percentual sobre efluente doméstico para 2013 é de 34,10% e para 2014 é de 50,18%.

Em síntese, pode-se concluir que esta rede separativa é mais fortemente influenciada por caudais de afluência direta do que afluência indireta.

6.3 ANÁLISE DE SENSIBILIDADE DO MÉTODO DO TRIÂNGULO

Com o intuito de ter uma melhor compreensão do método do triângulo, foi realizada uma análise de sensibilidade para os dois anos. Para isso foram alterados alguns parâmetros na aplicação do método, de forma a perceber como iam influenciar o seu resultado final. Foram realizados dois novos casos para ambos os anos, em que em cada caso se alterou um parâmetro.

6.3.1 Caso 1

No primeiro caso alterou-se o parâmetro em que se considerava que os caudais indiretamente influenciados pela chuva são aqueles que se verificam nos *n* dias subsequentes após precipitação. Este parâmetro foi alterado de 7 dias para 2 dias obtendo-se os seguintes resultados:

Tabela 6.6 Tabela de resultados – Caso 1

	Caso C	Original	Cas	o 1
	2013	2014	2013	2014
Número de dias do período considerado	315	365	315	365
Número de dias não influenciados pela precipitação	106	94	173	180
Número de dias não influenciados pela precipitação em relação ao número de dias do período	33,65%	25,75%	54,92%	49,32%
Caudal Máximo Diário (m³/dia)	2128	2225	2128	2225
Caudal Mínimo Diário (m³/dia)	354	454	354	454
Caudal Médio Diário (m³/dia)	660,02	920,56	660,02	920,56
Número de dias em tempo "seco"	98	35	129	71
Caudal médio diário de origem doméstica (m³/dia)	475,50	592,35	471,37	588,00
Caudal médio diário de origem doméstica em relação ao máximo registado	22,34%	26,62%	22,15%	26,43%

Com esta alteração torna-se claro que o número de dias não influenciados pela precipitação aumentou bastante, pois ao reduzir o número de dias subsequentes após a precipitação, o número de dias de caudais indiretamente influenciados pela precipitação vai ser menor, o número de dias de caudais sem influência da precipitação aumenta e o números de dias de caudais diretamente influenciados pela precipitação não sofrem qualquer alteração. O caudal médio diário de origem doméstica não sofre uma alteração muito significativa, pois as amostras sofreram poucas alterações nos dias que são considerados de "tempo seco".

Com estes novos resultados é possível obter os seguintes diagramas para poder quantificar novamente as AI diretas e indiretas.

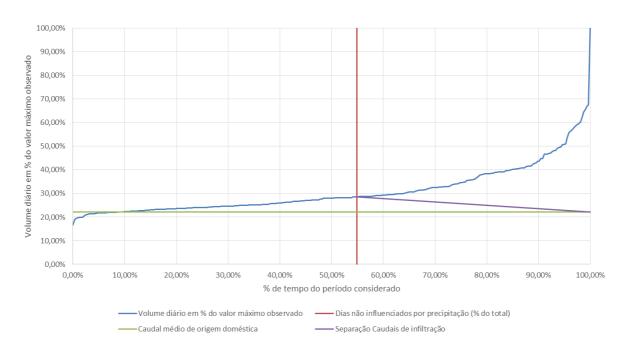


Figura 6.5 Diagrama de aplicação do método do triângulo 2013 – Caso 1

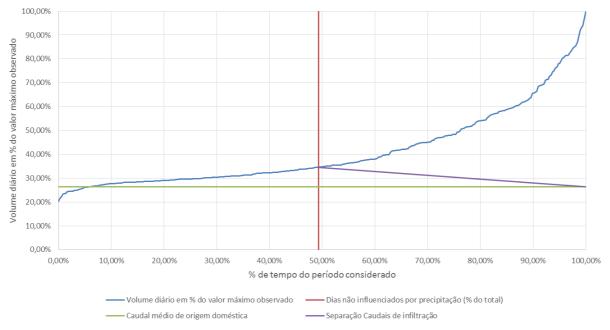


Figura 6.6 Diagrama de aplicação do método do triângulo 2014 – Caso 1

A partir destes gráficos e novamente com o auxílio de um programa de desenho automático foi possível calcular as áreas correspondentes à origem doméstica, infiltração e escoamento superficial e comparar com o caso original. Obteve-se assim os resultados da Tabela 6.7.

Tabela 6.7 Tabela de resultados das áreas – Caso 1

	Volume							
		Origem doméstica		Excedente				
_		Origenii domestica		Infilt	ração	Escoamento	superficial	Total
Ano	Total (m3)	Total (m3)	% do volume total	Total (m3)	Acréscimo percentual sobre o efluente doméstico	Total (m3)	Acréscimo percentual sobre o efluente doméstico	% do volume total
2013	207906	148682,96	71,51%	8527,29	5,74%	50695,76	34,10%	28,49%
2014	336005	214459,49	63,83%	12633,05	5,89%	108912,46	50,78%	36,17%
2013 (Caso 1)	207906	148069,40	71,22%	19006,03	12,84%	40830,58	27,58%	28,78%
2014 (Caso 1)	336005	212915,58	63,37%	30839,61	14,48%	92249,80	43,33%	36,63%

Analisando os dois casos, verifica-se que a área correspondente ao escoamento superficial é na mesma superior à área associada à componente de infiltração, podendo-se continuar a afirmar que o escoamento superficial tem um impacto elevado para a existência de Al na rede. Em termos quantitativos o volume correspondente a caudais excedentes por infiltração para 2013 representa 19.006,03 m³,cerca de 9,14 %, e para 2014 representa 30.839,61 m³, cerca de 9,18%, do volume total bombeado pela EE. O volume correspondente a caudais excedentes por escoamento superficial para 2013 representa 40.830,58 m³, cerca de 19,64 %, e para 2014 representa 92.249,80 m³ do volume total bombeado pela EE. Isto resulta num total de 59.836,60 m³, cerca de 28,78 % para 2013 e 123.089,42 m³, cerca de 36,63 % para 2014 de caudais excedentes na rede.

Para ambos os casos obtêm-se praticamente os mesmos resultados para os volumes de origem doméstica e excedentes. A maior diferença está na quantificação da componente de infiltração e de escoamento superficial, em que houve um aumento na componente de infiltração e uma redução na componente de escoamento superficial. Isto deve-se ao facto de o número de dias influenciados pela precipitação ter diminuído, o que fez com que a linha vertical dos dias influenciados pela precipitação no diagrama se movesse mais para a direita, aumentando assim a área da componente de infiltração

6.3.2 Caso 2

No segundo caso alterou-se o parâmetro em que se considera que houve precipitação. Este valor foi alterado de 4mm/dia para 2mm/dia, obtendo assim os seguintes resultados:

Tabela 6.8 Tabela de resultados – Caso 2

	Caso Original		Caso 2	
	2013	2014	2013	2014
Número de dias do período considerado	315	365	315	365
Número de dias não influenciados pela precipitação	106	94	98	71
Número de dias não influenciados pela precipitação em relação ao número de dias do período	33,65%	25,75%	31,11%	19,45%
Caudal Máximo Diário (m³/dia)	2128	2225	2128	2225
Caudal Mínimo Diário (m³/dia)	354	454	354	454
Caudal Médio Diário (m³/dia)	660,02	920,56	6600,2	920,56
Número de dias em tempo "seco"	98	35	86	15
Caudal médio diário de origem doméstica (m³/dia)	475,50	592,35	471,97	471,97
Caudal médio diário de origem doméstica em relação ao máximo registado	22,34%	26,62%	22,18%	21,21%

Com estes resultados é possível obter os seguintes diagramas para poder quantificar novamente as Al diretas e indiretas.

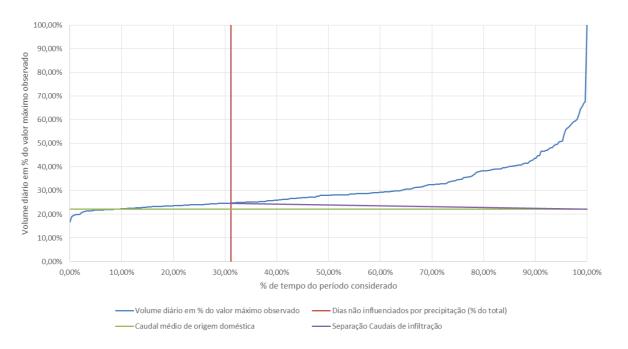


Figura 6.7 Diagrama de aplicação do método do triângulo 2013 – Caso 2

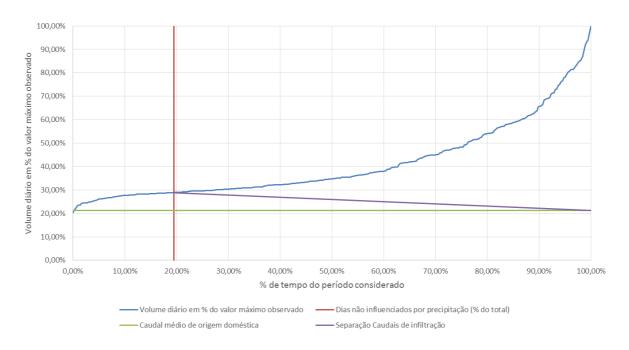


Figura 6.8 Diagrama de aplicação do método do triângulo 2014 – Caso 2

A partir destes gráficos e novamente com o auxílio de um programa de desenho automático é possível calcular as áreas correspondentes à origem doméstica, infiltração e escoamento superficial e comparar com o caso original. Obtêm-se assim os seguintes resultados na Tabela 6.9.

Tabela 6.9 Tabela de resultados das áreas - Caso 2

	Volume								
Ano	Total (m3)	Origem doméstica		Excedente					
				Infiltração		Escoamento superficial		Total	
		Total (m3)	% do volume total	Total (m3)	Acréscimo percentual sobre o efluente doméstico	Total (m3)	Acréscimo percentual sobre o efluente doméstico	% do volume total	
2013	207906	148682,96	71,51%	8527,29	5,74%	50695,76	34,10%	28,49%	
2014	336005	214459,49	63,83%	12633,05	5,89%	108912,46	50,78%	36,17%	
2013 (Caso 2)	207906	148437,10	71,40%	8109,90	5,46%	51359,00	34,60%	28,60%	
2014 (Caso 2)	336005	172390,78	51,31%	34211,48	19,85%	129402,74	75,06%	48,69%	

Da análise destas tabelas e diagramas é possível perceber que para o ano de 2013 não houve uma alteração muito significativa nos resultados comparando com o caso original, verificando que os resultados dos volumes de origem doméstica e excedentes são também idênticos. O mesmo não pode ser afirmado no caso de 2014 pois existe uma diferença considerável.

Como nesse ano existiu uma precipitação elevada, ao baixar o parâmetro vai existir uma redução significativa no número dias não influenciados pela precipitação. Como esse número de dias foi reduzido, o número de amostras para a definição do período seco para o cálculo do caudal médio diário de origem doméstica também vai ser menor. Neste caso o número de amostras foi tão reduzido, que só existia um período que satisfazia todas as condições que vai de 4 a 18 de Maio, em que o caudal médio diário de origem doméstica é de 777,73 m³/dia. Com este caudal tão elevado deixa de ser possível aplicar o método do triângulo pois no diagrama a linha do caudal médio diário de origem doméstica (verde) vai estar acima do ponto de interceção da linha do caudal diário (azul) com a dos dias influenciados não influenciados pela precipitação (vermelho). Quando nos deparamos com este problema é aconselhado utilizar o caudal médio diário de origem doméstica do ano anterior, daí os valores desse caudal nos dois anos serem iguais.

No entanto ao utilizar o caudal do ano anterior, foi contabilizado que os volumes de origem doméstica e excedentes são praticamente 50% cada um, o que leva a concluir que não é viável a utilização do valor de 2mm/dia para definir a influência da precipitação neste local.

Com esta análise de sensibilidade, concluiu-se que o parâmetro analisado neste caso não tem grande influência. O parâmetro que tem uma maior influência na alteração de resultados é a determinação do caudal de origem doméstica.

6.4 TESTES DE FUMO REALIZADOS

Com os resultados obtidos chega-se à conclusão que esta rede é fortemente influenciada por AI, mais concretamente por afluências diretas. O próximo passo passará por identificar os pontos onde estão a ocorrer essas AI de forma a poder elimina-los, e para isso a IF optou por recorrer à realização de testes de fumo. Por motivos de prioridade, não foi possível a IF realizar os testes de fumo para a rede em estudo. No entanto estavam a ser realizados estes testes na rede de saneamento da ZMC25 - Arrifana Centro, o que permitiu assistir à realização destes no campo. Os testes de fumo foram realizados pela empresa Aqualongo, sendo o seu procedimento igual ao descrito no ponto 4.2.2 desta dissertação, utilizando um balão insuflável para isolar a secção do coletor.

Do que se assistiu, verificou-se que realmente a realização dos testes de fumo é bastante rápida e eficaz, pois a montagem e desmontagem do equipamento é muito simples, e os resultados das ligações indevidas à rede são bastante visíveis e fáceis de identificar. Estas são posteriormente identificas e apresentadas à IF num relatório. De seguida são apresentadas algumas fotos dos testes de fumo realizados, existindo em anexos mais e com melhor resolução.

Figura 6.9 Balão insuflável

Figura 6.10 Máquina de Fumo e Bomba de pressão de Ar

Figura 6.11 Fumo saliente numa sarjeta

Figura 6.12 Fumo saliente numa sarjeta

7 CONCLUSÃO

7.1 SÍNTESE E CONCLUSÕES

As afluências indevidas ainda são um tema pouco desenvolvido a um nível global, no entanto a sua eliminação deveria de ser um fator prioritário para as entidades gestoras de águas residuais. Embora a sua eliminação acarrete custos para as empresas, estes são proveitosos e colmatados, pois permitem uma redução significativa do custo associado ao tratamento e um aumento da eficácia e eficiência no sistema de águas residuais. Os efeitos conhecidos assim como os custos associados à existência destes caudais são razões suficientes para dar continuidade à investigação desta matéria.

A realização deste estágio foi muito importante pois permitiu adquirir uma maior experiência tanto a nível empresarial pela forma como se trabalhou, lidando com vários intervenientes em várias reuniões, e também pela experiencia e novos conhecimentos que se adquiriu por desenvolver o estudo de um caso pratico. De salientar o bom ambiente de equipa que se verificou, entre os vários colaboradores que permitiu uma realização do trabalho pratico mais fácil.

Este estudo possibilitou a análise e desenvolvimento do método do triângulo, construindo para esse efeito uma tabela de cálculo automático. Esta tabela poderá ser utilizada mais tarde pela empresa para quantificar e analisar as Al noutras redes e também ajudar à continuação do desenvolvimento do tema, não esquecendo que a qualidade dos dados obtidos vão estar diretamente ligados à monitorização implementada e à fiabilidade dos equipamentos de medição utilizados.

Existiu uma dificuldade em realizar o método do triângulo por não existir uma bibliografia completa, que explicasse todos os parâmetros que deveriam ser adotados, daí a realização deste trabalho ter uma descrição mais pormenorizada e fácil de compreender, para posteriormente no futuro poder ser utilizada por outros intervenientes / entidades para a realização de novos estudos.

Na análise de sensibilidade do método do triângulo, verificou-se que os parâmetros analisados não tiveram muita influência na determinação do caudal médio de origem doméstica, o que poderá levar à realização de uma análise mais aprofundada a este método. Outro facto importante é que os dados

utilizados são dados de bombagem, o que limitou a medição do caudal pois estamos sempre limitados ao valor máximo de bombagem da EE.

Neste caso prático seria necessário uma duração do trabalho de 1 ano, pois assim poderia não só terse realizado a quantificação de AI na bacia da EESv1 mas também se poderia ter aplicado não só os testes de fumo na rede em estudo, mas também inspeções visuais com recurso CCTV para identificar as fontes de infiltração. Posteriormente ter-se-iam tomado medidas de eliminação destas fontes de infiltração e analisado o seu impacto na rede ao longo do tempo.

Para finalizar, embora esta temática detenha um caracter complexo e difícil de gerir, este trabalho contribuiu positivamente para a continuação de resolução das AI em redes de saneamento e um excelente culminar da minha formação superior.

7.2 Propostas de trabalho futuro

Para propostas de trabalhos futuros, o estudo das afluências indevidas em sistemas de saneamento de águas residuais passa pelo desenvolvimento de meios capazes de eliminar ou controlar a afluência dos caudais excedentes a redes separativas domésticas e medição fiável dos caudais. Também seria importante desenvolver métodos de localização, de maneira a criar um método mais eficaz e económico que os testes de fumo.

Sobre o método do triângulo, devia-se consolidar melhor o modelo, estudar melhor o cálculo médio de origem doméstica, pois foi o que relevou uma maior dificuldade a obter. Também aplica-lo a outras bacias, inclusivamente de outros concelhos, tendo em atenção a verificação da necessidade de alteração de parâmetros conforme a região, e analisar os resultados obtidos com outras redes.

REFERÊNCIAS BIBLIOGRÁFICAS

- AdP (2015), Acedido em Março de 2015 disponível em http://www.adp.pt.
- ALMEIDA, S; MONTEIRO, P. (2005); Incidência de caudais de águas pluviais em redes de drenagem de águas residuais, Porto.
- AMORIM, Hélder Afluências indevidas aos sistemas de drenagem de águas residuais.
 Dissertação de Mestrado em Engenharia do Ambiente, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, 2007.
- ASCE (2009). Existing Sewer Evaluation and Rehabilitation Manuals and Reports on Engineering Practice No. 62.
- BELHADJ, Naoufel Variations par temps de pluie des debits dans les reseaux d'eaux usees de type separatif: identification des composantes et modelisation des infiltrations. Dissertação de Douturamento, Ecole Nationale des Ponts et Chaussees, 1994.
- BONITO, António Infiltrações na rede de drenagem de águas residuais. Dissertação de Mestrado em Engenharia Civil, Faculdade de Engenharia do Porto, 2014.
- BRANDÃO, Joana Otimização da produção de biogás com recurso a redes neuronais artificias.
 Dissertação de Mestrado em Engenharia Civil, Instituto Superior de Engenharia do Porto, 2014.
- CARDOSO, A; ALMEIDA, M; COELHO, S; Avaliação do impacto da infiltração no desempenho de sistemas de drenagem urbana. Lisboa
- COELHO, Inês Variabilidade de afluências às redes de drenagem de águas residuais.
 Dissertação de Mestrado em Engenharia Civil, Faculdade de Engenharia do Porto, 2013.
- DE BÉNÉDITTIS, J.; BERTRAND-KRAJEWSKI, J. Infiltration in sewer systems: comparison of measurement methods. Sewer Processes and Networks IV. Vol. 52. n. º 3 (2004).

- DECRETO REGULAMENTAR Nº 23/95 Regulamento Geral dos Sistemas Públicos e Prediais de Distribuição de Água. Lisboa: Diário da República, 1995.
- DECRETO-LEI № 92/2015 –
- ERSAR (2004). Série Guia Técnico №2 Indicadores de desempenho para serviços de águas residuais. Lisboa ISBN 972-99354-3-2.
- ERSAR (2006). Série Guia Técnico №9 Medição de caudal em sistemas de abastecimento de água e de saneamento de águas residuais urbanas. Lisboa.
- ERSAR (2010). Série Guia Técnico №17 Gestão patrimonial de infra-estruturas de águas residuais e pluviais. Lisboa ISBN 978-989-8360-05-2.
- GONÇALVES, Tânia A Barrinha de Esmoriz como recurso educativo. Dissertação de Mestrado de Biologia para o Ensino, Faculdade de Ciências da Universidade do Porto, 2006.
- INDAQUA (2015) Relatório de Contas 2014. Acedido em Maio de 2015, disponível em http://www.indaqua.pt.
- Instituto Nacional de Estatística (2015). Acedido em de Julho de 2015 disponível em http://www.ine.pt.
- KRACHT, Oliver Tracer-Based hydrograph separation methods for sewer systems.
 Dissertation for the degree of Doctor of Technical Sciences, Swiss Federal Institute of Technology Zurich, 2007.
- LOPES, Emerciano Gestão de pressões em redes de distribuição de água. Dissertação em Mestrado de Engenharia e Gestão da Água, Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa, 2013
- RODRIGUES, Vera Avaliação de Infiltração em Drenagem Urbana Recorrendo a Métodos Convencionais e não Convencionais. Dissertação de Mestrado em Engenharia Civil, Instituto Superior Técnico de Lisboa, 2013.

- RUTSCH, Mandy Assessment of sewer leakage by means of exfiltration measurements and modelling tests. Dissertação de Douturamento, Fakultät Forst, Geo- und Hydrowissenschaften der Technischen Universität Dresden, 2006
- SCHILPEROORT, Rémy Natural water isotopes for the quantification of infiltration and inflow in sewer systems. Dissertação em Mestrado em Engenharia Civil, Delft University of Technology, Faculty of Civil Engineering and Geosciences, 2004.
- SIMRIA (2015), Acedido em Março de 2015, disponível em http://www.simria.pt.

ANEXOS

Gestão de Afluências Indevidas em Redes de Águas Residuais Urbanas

ANEXO I

Tabelas de Dados Utilizados no Método do Triângulo Ano 2013 e 2014

2013

2013		Totalização		Dias		Caudal Médio	Totalização	Númere	
Dia da semana	Data	Caudal	Precipitação	seguidos	Influência da	por Dia da	Caudal	de dias	Totalização
Dia da scilialia	Dutu	(m3/dia)	(mm/dia)	sem chuva	Precipitação	Semana	(m3/dia →	(%)	Caudal (%)
Terça-feira	1-jan-2013	626	0,2	1	Indireta	672,27	354	0,00%	16,64%
Quarta-feira	2-jan-2013	629	0,2	2	Indireta	629,60	404	0,32%	18,98%
Quinta-feira	3-jan-2013	581	0	3	Indireta	662,37	417	0,64%	19,60%
Sexta-feira	4-jan-2013	579	0	4	Indireta	700,47	419	0,96%	19,69%
Sábado	5-jan-2013	597	0	5	Indireta	681,84	423	1,27%	19,88%
Domingo	6-jan-2013	535	0	6	Indireta	618,96	424	1,59%	19,92%
Segunda-feira	7-jan-2013	534	0	7	Indireta	654,64	424	1,91%	19,92%
Terça-feira	8-jan-2013	505	0	8	Sem Precipitação	672,27	438	2,23%	20,58%
Quarta-feira	9-jan-2013	638	9,8	0	Direta	629,60	449	2,55%	21,10%
Quinta-feira	10-jan-2013	541	0	1	Indireta	662,37	453	2,87%	21,29%
Sexta-feira	11-jan-2013	532	2,2	2	Indireta	700,47	454	3,18%	21,33%
Sábado	12-jan-2013	847	15,8	0	Direta	681,84	454	3,50%	21,33%
Domingo	13-jan-2013	736	8,6	0	Direta	618,96	455	3,82%	21,38%
Segunda-feira	14-jan-2013	552	0	1	Indireta	654,64	455	4,14%	21,38%
Terça-feira	15-jan-2013	519	0,4	2	Indireta	672,27	461	4,46%	21,66%
Quarta-feira	16-jan-2013	844	35,8	0	Direta	629,60	462	4,78%	21,71%
Quinta-feira	17-jan-2013	720	10,8	0	Direta	662,37	462	5,10%	21,71%
Sexta-feira	18-jan-2013	864	52,8	0	Direta	700,47	463	5,41%	21,76%
Sábado	19-jan-2013	858	25,2	0	Direta	681,84	464	5,73%	21,80%
Domingo	20-jan-2013	870	16,2	0	Direta	618,96	464	6,05%	21,80%
Segunda-feira	21-jan-2013	902	6,2	0	Direta	654,64	465	6,37%	21,85%
Terça-feira	22-jan-2013	882	16,4	0	Direta	672,27	466	6,69%	21,90%
Quarta-feira	23-jan-2013	833	19,8	0	Direta	629,60	468	7,01%	21,99%
Quinta-feira	24-jan-2013	954	4,6	0	Direta	662,37	469	7,32%	22,04%
Sexta-feira	25-jan-2013	1025	14	0	Direta	700,47	469	7,64%	22,04%
Sábado	26-jan-2013	831	3,4	1	Indireta	681,84	469	7,96%	22,04%
Domingo	27-jan-2013	821	30,6	0	Direta	618,96	469	8,28%	22,04%
Segunda-feira	28-jan-2013	861	0	1	Indireta	654,64	471	8,60%	22,13%
Terça-feira	29-jan-2013	831	0	2	Indireta	672,27	472	8,92%	22,18%
Quarta-feira	30-jan-2013	817	0	3	Indireta	629,60	472	9,24%	22,18%
Quinta-feira	31-jan-2013	770	0	4	Indireta	662,37	473	9,55%	22,23%
Sexta-feira	1-fev-2013	817	11,4	0	Direta	700,47	474	9,87%	22,27%
Sábado	2-fev-2013	810	0	1	Indireta	681,84	474	10,19%	22,27%
Domingo	3-fev-2013	741	0	2	Indireta	618,96	476	10,51%	22,37%
Segunda-feira	4-fev-2013	727	0	3	Indireta	654,64	477	10,83%	22,42%
Terça-feira	5-fev-2013	707	0,2	4	Indireta	672,27	479	11,15%	22,51%
Quarta-feira	6-fev-2013	725	1,4	5	Indireta	629,60	479	11,46%	22,51%
Quinta-feira	7-fev-2013	684	0	6	Indireta	662,37	479	11,78%	22,51%
Sexta-feira	8-fev-2013	695	0,2	7	Indireta	700,47	481	12,10%	22,60%
Sábado	9-fev-2013	670	0		Sem Precipitação	681,84	481	12,42%	22,60%
Domingo	10-fev-2013	696	20		Direta	618,96	485	12,74%	22,79%
Segunda-feira	11-fev-2013	856	10,6		Direta	654,64	485	13,06%	22,79%
Terça-feira	12-fev-2013	694	2,4		Indireta	672,27	485	13,38%	22,79%
Quarta-feira	13-fev-2013	701	0,6		Indireta	629,60	485	13,69%	22,79%
Quinta-feira	14-fev-2013	693	0		Indireta	662,37	486	14,01%	22,84%
Sexta-feira	15-fev-2013	688	0		Indireta	700,47	486	14,33%	22,84%
Sábado	16-fev-2013	670	0		Indireta	681,84	489	14,65%	22,98%
Domingo	17-fev-2013	812	10,4		Direta	618,96	492	14,97%	23,12%
Segunda-feira	18-fev-2013	692	2,2		Indireta	654,64	492	15,29%	23,12%
Terça-feira	19-fev-2013	665	3,4		Indireta	672,27	493	15,61%	23,17%
Quarta-feira	20-fev-2013	613	0		Indireta	629,60	494	15,92%	23,21%
Quinta-feira	21-fev-2013	834	10,8		Direta	662,37	494	16,24%	23,21%
Sexta-feira	22-fev-2013	994	15,4		Direta	700,47	495	16,56%	23,26%
Sábado	23-fev-2013	762	1,4		Indireta	681,84	495	16,88%	23,26%
Domingo	24-fev-2013	642	0		Indireta	618,96	495 495	17,20%	23,26%
Segunda-feira	25-fev-2013	621	0		Indireta	654,64	496	17,52%	23,31%
Terça-feira	26-fev-2013	629	0	4	Indireta	672,27	497	17,83%	23,36%

		Totalização		Dias		Caudal Médio	Totalização	Número	
Dia da semana	Data	Caudal	Precipitação	seguidos	Influência da	por Dia da	Caudal	de dias	Totalização
		(m3/dia)	(mm/dia)	sem chuva	Precipitação	Semana	(m3/dia 📶	(%)	Caudal (%)
Quarta-feira	27-fev-2013	619	0	5	Indireta	629,60	498	18,15%	23,40%
Quinta-feira	28-fev-2013	600	0	6	Indireta	662,37	498	18,47%	23,40%
Sexta-feira	1-mar-2013	601	0	7	Indireta	700,47	498	18,79%	23,40%
Sábado	2-mar-2013	610	0	8	Sem Precipitação	681,84	499	19,11%	23,45%
Domingo	3-mar-2013	558	0	9	Sem Precipitação	618,96	499	19,43%	23,45%
Segunda-feira	4-mar-2013	525	0,2		Sem Precipitação	654,64	500	19,75%	23,50%
Terça-feira	5-mar-2013	59 5	1,6	11	Sem Precipitação	672,27	502	20,06%	23,59%
Quarta-feira	6-mar-2013	613	4,4	0	Direta	629,60	502	20,38%	23,5 9 %
Quinta-feira	7-mar-2013	758	11,2	0	Direta	662,37	502	20,70%	23,5 9 %
Sexta-feira	8-mar-2013	671	7,2	0	Direta	700,47	503	21,02%	23,64%
Sábado	9-mar-2013	614	3,6	1	Indireta	681,84	503	21,34%	23,64%
Domingo	10-mar-2013	546	9	0	Direta	618,96	505	21,66%	23,73%
Segunda-feira	11-mar-2013	569	7,8	0	Direta	654,64	507	21,97%	23,83%
Terça-feira	12-mar-2013	635	7,8	0	Direta	672,27	508	22,29%	23,87%
Quarta-feira	13-mar-2013	553	0	1	Indireta	629,60	508	22,61%	23,87%
Quinta-feira	14-mar-2013	589	0	2	Indireta	662,37	508	22,93%	23,87%
Sexta-feira	15-mar-2013	617	0	3	Indireta	700,47	510	23,25%	23,97%
Sábado	16-mar-2013	884	9,6	0	Direta	681,84	511	23,57%	24,01%
Domingo	17-mar-2013	1058	12,8	0	Direta	618,96	511	23,89%	24,01%
Segunda-feira	18-mar-2013	633	0,4	1	Indireta	654,64	511	24,20%	24,01%
Terça-feira	19-mar-2013	651	0	2	Indireta	672,27	511	24,52%	24,01%
Quarta-feira	20-mar-2013	596	0,6	3	Indireta	629,60	512	24,84%	24,06%
Quinta-feira	21-mar-2013	692	0,8	4	Indireta	662,37	512	25,16%	24,06%
Sexta-feira	22-mar-2013	715	12,6	0	Direta	700,47	513	25,48%	24,11%
Sábado	23-mar-2013	830	8,6	0	Direta	681,84	513	25,80%	24,11%
Domingo	24-mar-2013	1087	22	0	Direta	618,96	516	26,11%	24,25%
Segunda-feira	25-mar-2013	1326	35,8	0	Direta	654,64	516	26,43%	24,25%
Terça-feira	26-mar-2013	1441	24	0	Direta	672,27	516	26,75%	24,25%
Quarta-feira	27-mar-2013	1054	5,6	0	Direta	629,60	51 9	27,07%	24,39%
Quinta-feira	28-mar-2013	1266	28,6	0	Direta	662,37	519	27,39%	24,39%
Sexta-feira	29-mar-2013	2128	49,8	0	Direta	700,47	51 9	27,71%	24,39%
Sábado	30-mar-2013	1283	0,2	1	Indireta	681,84	520	28,03%	24,44%
Domingo	31-mar-2013	1263	13,4	0	Direta	618,96	521	28,34%	24,48%
Segunda-feira	1-abr-2013	1204	4,8	0	Direta	654,64	522	28,66%	24,53%
Terça-feira	2-abr-2013	1229	5	0	Direta	672,27	522	28,98%	24,53%
Quarta-feira	3-abr-2013	1136	8,4	0	Direta	629,60	523	29,30%	24,58%
Quinta-feira	4-abr-2013	1248	16,2	0	Direta	662,37	523	29,62%	24,58%
Sexta-feira	5-abr-2013	1045	0	1	Indireta	700,47	524	29,94%	24,62%
Sábado	6-abr-2013	1002	0	2	Indireta	681,84	525	30,25%	24,67%
Domingo	7-abr-2013	1018	4,4	0	Direta	618,96	525	30,57%	24,67%
Segunda-feira	8-abr-2013	910	0,4	1	Indireta	654,64	525	30,89%	24,67%
Terça-feira	9-abr-2013	884	1,8	2	Indireta	672,27	526	31,21%	24,72%
Quarta-feira	10-abr-2013	870	2,2	3	Indireta	629,60	527	31,53%	24,77%
Quinta-feira	11-abr-2013	1208,5	35,2	0	Direta	662,37	52 9	31,85%	24,86%
Sexta-feira	12-abr-2013	995	0,2	1	Indireta	700,47	530	32,17%	24,91%
Sábado	13-abr-2013	1002	0,2	2	Indireta	681,84	532	32,48%	25,00%
Domingo	14-abr-2013	870	0	3	Indireta	618,96	532	32,80%	25,00%
Segunda-feira	15-abr-2013	853	1,6	4	Indireta	654,64	532	33,12%	25,00%
Terça-feira	16-abr-2013	818	0	5	Indireta	672,27	533	33,44%	25,05%
Quarta-feira	17-abr-2013	819	0,2	6		629,60	533	33,76%	25,05%
Quinta-feira	18-abr-2013	791	0	7	Indireta	662,37	534	34,08%	25,09%
Sexta-feira	19-abr-2013	779	0	8	Sem Precipitação	700,47	534	34,39%	25,09%
Sábado	20-abr-2013	766	0		Sem Precipitação	681,84	534	34,71%	25,09%
Domingo	21-abr-2013	652	0		Sem Precipitação	618,96	534	35,03%	25,09%
Segunda-feira	22-abr-2013	644	0		Sem Precipitação	654,64	535	35,35%	25,14%
Terça-feira	23-abr-2013	654	0		Sem Precipitação	672,27	536	35,67%	25,19%
Quarta-feira	24-abr-2013	622	0		Sem Precipitação	629,60	536	35,99%	25,19%
Quinta-feira	25-abr-2013	632	0		Sem Precipitação	662,37	537	36,31%	25,23%
Sexta-feira	26-abr-2013	621	0		Sem Precipitação	700,47	539	36,62%	25,33%
SCAM-ICHO	SO ODI ZOTO	UZI	υ	13	sem reapração	700,47	3.55	JU,UZ/0	0/بدرب

		Totalizacão	Precipitação	Dias	Influência da	Caudal Médio	Totalização	Número	Totalização
Dia da semana	Data	Caudal	(mm/dia)	seguidos	Precipitação	por Dia da	Caudal	de dias	Caudal (%)
		(m3/dia)		sem chuva	Trecipitação	Semana	(m3/dia <mark>√</mark>	(%)	Cadaai (70)
Sábado	27-abr-2013	611	0		Sem Precipitação	681,84	540	36,94%	25,38%
Domingo	28-abr-2013	560	0		Sem Precipitação	618,96	541	37,26%	25,42%
Segunda-feira	29-abr-2013	570	0	18	Sem Precipitação	654,64	541	37,58%	25,42%
Terça-feira	30-abr-2013	574	3,2	19	Sem Precipitação	672,27	542	37,90%	25,47%
Quarta-feira	1-mai-2013	594	0	20	Sem Precipitação	629,60	546	38,22%	25,66%
Quinta-feira	2-mai-2013	578	0	21	Sem Precipitação	662,37	546	38,54%	25,66%
Sexta-feira	3-mai-2013	600	0	22	Sem Precipitação	700,47	547	38,85%	25,70%
Sábado	4-mai-2013	629	0	23	Sem Precipitação	681,84	549	39,17%	25,80%
Domingo	5-mai-2013	516	0	24	Sem Precipitação	618,96	552	39,49%	25,94%
Segunda-feira	6-mai-2013	594	4,8	0	Direta	654,64	552	39,81%	25,94%
Terça-feira	7-mai-2013	650	4,2	0	Direta	672,27	553	40,13%	25,99%
Quarta-feira	8-mai-2013	607	2,6	1	Indireta	629,60	556	40,45%	26,13%
Quinta-feira	9-mai-2013	700	5,6	0	Direta	662,37	557	40,76%	26,17%
Sexta-feira	10-mai-2013	624	0	1	Indireta	700,47	558	41,08%	26,22%
Sábado	11-mai-2013	626	0	2	Indireta	681,84	559	41,40%	26,27%
Domingo	12-mai-2013	577	0	3	Indireta	618,96	560	41,72%	26,32%
Segunda-feira	13-mai-2013	560	0	4	Indireta	654,64	560	42,04%	26,32%
Terça-feira	14-mai-2013	595	0,2	5	Indireta	672,27	564	42,36%	26,50%
Quarta-feira	15-mai-2013	805	8,4	0	Direta	629,60	567	42,68%	26,64%
Quinta-feira	16-mai-2013	612	4,6	0	Direta	662,37	568	42,99%	26,69%
Sexta-feira	17-mai-2013	699	5,4	0	Direta	700,47	568	43,31%	26,69%
Sábado	18-mai-2013	612	0,8	1	Indireta	681,84	569	43,63%	26,74%
Domingo	19-mai-2013	549	1,6	2	Indireta	618,96	570	43,95%	26,79%
Segunda-feira	20-mai-2013	541	0	3	Indireta	654,64	572	44,27%	26,88%
Terça-feira	21-mai-2013	572	0	4	Indireta	672,27	572	44,59%	26,88%
Quarta-feira	22-mai-2013	599	0	5	Indireta	629,60	574	44,90%	26,97%
Quinta-feira	23-mai-2013	577	0	6	Indireta	662,37	574	45,22%	26,97%
Sexta-feira	24-mai-2013	557	0	7	Indireta	700,47	577	45,54%	27,11%
Sábado	25-mai-2013	600	0	8	Sem Precipitação	681,84	577	45,86%	27,11%
Domingo	26-mai-2013	495	0	9	Sem Precipitação	618,96	578	46,18%	27,16%
Segunda-feira	27-mai-2013	511	0		Sem Precipitação	654,64	579	46,50%	27,21%
Terça-feira	28-mai-2013	609	5	0	Direta	672,27	57 9	46,82%	27,21%
Quarta-feira	29-mai-2013	667	9,2	0	Direta	629,60	580	47,13%	27,26%
Quinta-feira	30-mai-2013	542	0,2	1	Indireta	662,37	581	47,45%	27,30%
Sexta-feira	31-mai-2013	546	O	2		700,47	589	47,77%	27,68%
Sábado	1-jun-2013	559	0	3		681,84	589	48,09%	27,68%
Domingo	2-jun-2013	512	0	4		618,96	594	48,41%	27,91%
Segunda-feira	-	519	0	5		654,64	594	48,73%	27,91%
Terça-feira	4-jun-2013	519	0	6		672,27	595	49,04%	27,96%
Quarta-feira	5-jun-2013	495	0	7		629,60	595	49,36%	27,96%
Quinta-feira	6-jun-2013	498	0		Sem Precipitação	662,37	596	49,68%	28,01%
Sexta-feira	7-jun-2013	496	1,8		Sem Precipitação	700,47	597	50,00%	28,05%
Sábado	8-jun-2013	579	6,2	0	· -	681,84	597	50,32%	28,05%
Domingo	9-jun-2013	485	3,6	1		618,96	599	50,64%	28,15%
Segunda-feira	10-jun-2013	485	0,2	2		654,64	600	50,96%	28,20%
Terça-feira	11-jun-2013	493	1,6	3		672,27	600	51,27%	28,20%
Quarta-feira	12-jun-2013	508	4,2	0		629,60	600	51,59%	28,20%
Quinta-feira	13-jun-2013	521	0			662,37	600	51,91%	28,20%
Sexta-feira	14-jun-2013	536	0	2		700,47	600	52,23%	28,20%
Sábado	_								
	15-jun-2013	539	11.4	3		681,84	601	52,55% 52,97%	28,24%
Domingo	16-jun-2013	600 1079	11,4	0		618,96	601	52,87% 52,199/	28,24%
Segunda-feira	17-jun-2013	1079	28,6			654,64	601	53,18%	28,24%
Terça-feira	18-jun-2013	885	22	0		672,27	602	53,50%	28,29%
Quarta-feira	19-jun-2013	568	0	1		629,60	602	53,82%	28,29%
Quinta-feira	20-jun-2013	526	0	2		662,37	607	54,14%	28,52%
Sexta-feira	21-jun-2013	568	0,2	3		700,47	608	54,46%	28,57%
Sábado	22-jun-2013	637	0			681,84	609	54,78%	28,62%
Domingo	23-jun-2013	497	0,2	5		618,96	610	55,10%	28,67%
Segunda-feira	24-jun-2013	530	0	6	Indireta	654,64	611	55,41%	28,71%

		Totalização	Duratuta - 2 -	Dias	lufluên de	Caudal Médio	Totalização	Número	T-4-1!~
Dia da semana	Data	Caudal	Precipitação (mm/dia)	seguidos	Influência da	por Dia da	Caudal	de dias	Totalização Caudal (%)
		(m3/dia)	(mm/aia)	sem chuva	Precipitação	Semana	(m3/dia <mark>√</mark> 1	(%)	Caudai (%)
Terça-feira	25-jun-2013	567	0	7	Indireta	672,27	611	55,73%	28,71%
Quarta-feira	26-jun-2013	536	0	8	Sem Precipitação	629,60	612	56,05%	28,76%
Quinta-feira	27-jun-2013	537	0	9	Sem Precipitação	662,37	612	56,37%	28,76%
Sexta-feira	28-jun-2013	574	0	10	Sem Precipitação	700,47	612	56,6 9 %	28,76%
Sábado	29-jun-2013	534	0	11	Sem Precipitação	681,84	613	57,01%	28,81%
Domingo	30-jun-2013	479	0	12	Sem Precipitação	618,96	613	57,32%	28,81%
Segunda-feira	1-jul-2013	498	0	13	Sem Precipitação	654,64	614	57,64%	28,85%
Terça-feira	2-jul-2013	481	0	14	Sem Precipitação	672,27	617	57,96%	28,99%
Quarta-feira	3-jul-2013	525	0	15	Sem Precipitação	629,60	618	58,28%	29,04%
Quinta-feira	4-jul-2013	552	0	16	Sem Precipitação	662,37	619	58,60%	29,09%
Sexta-feira	5-jul-2013	580	0	17	Sem Precipitação	700,47	621	58,92%	29,18%
Sábado	6-jul-2013	601	0	18	Sem Precipitação	681,84	621	59,24%	29,18%
Domingo	7-jul-2013	522	0	19	Sem Precipitação	618,96	622	59,55%	29,23%
Segunda-feira	8-jul-2013	547	0	20	Sem Precipitação	654,64	624	59,87%	29,32%
Terça-feira	9-jul-2013	529	0	21	Sem Precipitação	672,27	626	60,19%	29,42%
Quarta-feira	10-jul-2013	508	0	22	Sem Precipitação	629,60	626	60,51%	29,42%
Quinta-feira	11-jul-2013	532	0	23	Sem Precipitação	662,37	627	60,83%	29,46%
Sexta-feira	12-jul-2013	513	0	24	Sem Precipitação	700,47	629	61,15%	29,56%
Sábado	13-jul-2013	556	0	25	Sem Precipitação	681,84	629	61,46%	29,56%
Domingo	14-jul-2013	474	0	26	Sem Precipitação	618,96	629	61,78%	29,56%
Segunda-feira	15-jul-2013	522	0	27	Sem Precipitação	654,64	632	62,10%	29,70%
Terça-feira	16-jul-2013	534	0	28	Sem Precipitação	672,27	633	62,42%	29,75%
Quarta-feira	17-jul-2013	523	0	29	Sem Precipitação	629,60	635	62,74%	29,84%
Quinta-feira	18-jul-2013	564	0	30	Sem Precipitação	662,37	637	63,06%	29,93%
Sexta-feira	19-jul-2013	527	0,2	31	Sem Precipitação	700,47	637	63,38%	29,93%
Sábado	20-jul-2013	533	0	32	Sem Precipitação	681,84	638	63,69%	29,98%
Domingo	21-jul-2013	465	0		Sem Precipitação	618,96	642	64,01%	30,17%
Segunda-feira	22-jul-2013	503	0		Sem Precipitação	654,64	644	64,33%	30,26%
Terça-feira	23-jul-2013	455	0		Sem Precipitação	672,27	650	64,65%	30,55%
Quarta-feira	24-jul-2013	516	0		Sem Precipitação	629,60	651	64,97%	30,59%
Quinta-feira	25-jul-2013	516			Sem Precipitação	662,37	652	65,29%	30,64%
Sexta-feira	26-jul-2013	520			Sem Precipitação	700,47	653	65,61%	30,69%
Sábado	27-jul-2013	533	0,2		Sem Precipitação	681,84	654	65,92%	30,73%
Domingo	28-jul-2013	700	-	0	Direta	618,96	660	66,24%	31,02%
Segunda-feira	29-jul-2013	492	-	1	Indireta	654,64	665	66,56%	31,25%
Terça-feira	30-jul-2013	512	0	2	Indireta	672,27	667	66,88%	31,34%
Quarta-feira	31-jul-2013	479	0	3	Indireta	629,60	670	67,20%	31,48%
Quinta-feira	1-ago-2013	510		4	Indireta	662,37	670	67,52%	31,48%
Sexta-feira	2-ago-2013	492	_	5		700,47	671	67,83%	31,53%
Sábado	3-ago-2013	523	-	6		681,84	673	68,15%	31,63%
Domingo	4-ago-2013	463		7		618,96	682	68,47%	32,05%
Segunda-feira	5-ago-2013	472			Sem Precipitação	654,64	684	68,79%	32,14%
Terça-feira	6-ago-2013	468			Sem Precipitação	672,27	688	69,11%	32,33%
Quarta-feira	7-ago-2013	469			Sem Precipitação	629,60	692	69,43%	32,52%
Quinta-feira	8-ago-2013	511	0,2		Sem Precipitação	662,37	692	69,75%	32,52%
Sexta-feira	9-ago-2013	524			Sem Precipitação	700,47	693	70,06%	32,57%
Sábado	10-ago-2013	503			Sem Precipitação	681,84	694	70,38%	32,61%
	10-ago-2013 11-ago-2013	455			Sem Precipitação	618,96	695	70,38% 70,70%	
Domingo Sogunda foira	11-ago-2013 12-ago-2013	455 466			Sem Precipitação	654,64	696	70,70% 71,02%	32,66% 32,71%
Segunda-feira									
Terça-feira	13-ago-2013	481	0		Sem Precipitação	672,27	696	71,34%	32,71% 32,95%
Quarta-feira	14-ago-2013	476			Sem Precipitação	629,60	700	71,66%	32,85%
Quinta-feira	15-ago-2013	454			Sem Precipitação	662,37	700	71,97%	32,89%
Sexta-feira	16-ago-2013	419			Sem Precipitação	700,47	700	72,29%	32,89%
Sábado	17-ago-2013	404			Sem Precipitação	681,84	701	72,61%	32,94%
Domingo	18-ago-2013	354			Sem Precipitação	618,96	707	72,93%	33,22%
Segunda-feira	19-ago-2013	438			Sem Precipitação	654,64	715	73,25%	33,60%
Terça-feira	20-ago-2013	461	0		Sem Precipitação	672,27	720	73,57%	33,83%
Quarta-feira	21-ago-2013	453			Sem Precipitação	629,60	725	73,89%	34,07%
Quinta-feira	22-ago-2013	532	0	25	Sem Precipitação	662,37	726	74,20%	34,12%

Dia da serrene	Data	Totalização	Precipitação	Dias seguidos	Influência da	Caudal Médio por Dia da	Totalização Caudal	Número de dias	Totalização
Dia da semana	Data	Caudal (m3/dia)	(mm/dia)	seguidos sem chuva	Precipitação	Semana	Caudai (m3/dia →	de dias	Caudal (%)
Sexta-feira	23-ago-2013	489	0		Sem Precipitação	700,47	727	74,52%	34,16%
Sábado	24-ago-2013	471	0,2		Sem Precipitação	681,84	736	74,84%	34,59%
Domingo	25-ago-2013	423	0		Sem Precipitação	618,96	737	75,16%	34,63%
Segunda-feira	26-ago-2013	477	0		Sem Precipitação	654,64	741	75,48%	34,82%
Terça-feira	27-ago-2013	485	0		Sem Precipitação	672,27	742	75,80%	34,87%
Quarta-feira	28-ago-2013	486	0		Sem Precipitação	629,60	758	76,11%	35,62%
Quinta-feira	29-ago-2013	507	0		Sem Precipitação	662,37	758	76,43%	35,62%
Sexta-feira	30-ago-2013	534	0		Sem Precipitação	700,47	762	76,75%	-
Sábado	31-ago-2013	500	0		Sem Precipitação	681,84	762	77,07%	35,81%
Domingo	1-set-2013	449	0		Sem Precipitação	618,96	766	77,39%	36,00%
Segunda-feira	2-set-2013	494	0		Sem Precipitação	654,64	770	77,71%	36,18%
Terça-feira	3-set-2013	502	0		Sem Precipitação	672,27	779	78,03%	36,61%
Quarta-feira	4-set-2013	474	0,2		Sem Precipitação	629,60	791	78,34%	37,17%
Quinta-feira	5-set-2013	682	11,8	0		662,37	805	78,66%	37,83%
Sexta-feira	6-set-2013	508	O	1	Indireta	700,47	810	78,98%	38,06%
Sábado	7-set-2013	495	0	2	Indireta	681,84	812	79,30%	38,16%
Domingo	8-set-2013	417	0	3		618,96	816	79,62%	38,35%
Segunda-feira	9-set-2013	472	0	4		654,64	817	79,94%	38,39%
Terça-feira	10-set-2013	469	0	5		672,27	817	80,25%	38,39%
Quarta-feira	11-set-2013	462	0	6		629,60	818	80,57%	38,44%
Quinta-feira	12-set-2013	479	0	7		662,37	819	80,89%	38,49%
Sexta-feira	13-set-2013	499	0		Sem Precipitação	700,47	821	81,21%	38,58%
Sábado	14-set-2013	502	0		Sem Precipitação	681,84	830	81,53%	39,00%
Domingo	15-set-2013	424	0		Sem Precipitação	618,96	830	81,85%	39,00%
Segunda-feira	16-set-2013	469	0		Sem Precipitação	654,64	831	82,17%	39,05%
Terça-feira	17-set-2013	454	0		Sem Precipitação	672,27	831	82,48%	39,05%
Quarta-feira	18-set-2013	499	0		Sem Precipitação	629,60	833	82,80%	39,14%
Quinta-feira	19-set-2013	473	0		Sem Precipitação	662,37	834	83,12%	39,19%
Sexta-feira	20-set-2013	511	0		Sem Precipitação	700,47	835	83,44%	39,24%
Sábado	21-set-2013	494	0		Sem Precipitação	681,84	844	83,76%	39,66%
Domingo	22-set-2013	424	0		Sem Precipitação	618,96	845	84,08%	39,71%
Segunda-feira	23-set-2013	462	0		Sem Precipitação	654,64	847	84,39%	39,80%
Terça-feira	24-set-2013	464	0		Sem Precipitação	672,27	853	84,71%	40,08%
Quarta-feira	25-set-2013	513	3,8		Sem Precipitação	629,60	856	85,03%	40,23%
Quinta-feira	26-set-2013	469	0		Sem Precipitação	662,37	858	85,35%	40,32%
Sexta-feira	27-set-2013	1370	55,2	0		700,47	860	85,67%	40,41%
Sábado	28-set-2013	1186	33,6	0		681,84	861	85,99%	40.46%
Domingo	29-set-2013	600	10	0		618.96	864	86.31%	40.60%
Segunda-feira	30-set-2013	860	15,4	0		654,64	870	86,62%	40,88%
Terça-feira	1-out-2013	1429	47,6	0		672,27	870	86,94%	40,88%
Quarta-feira	2-out-2013	762	13	0		629,60	870	87,26%	40,88%
Quinta-feira	3-out-2013	618	2,2	1		662,37	882	87,58%	41,45%
Sexta-feira	4-out-2013	673	5,2	0		700,47	884	87,90%	41,54%
Sábado	5-out-2013	540	0,4	1		681,84	884	88,22%	41,54%
Domingo	6-out-2013	464	0,2	2		618,96	885	88,54%	41,59%
Segunda-feira	7-out-2013	511	0	3		654,64	902	88,85%	42,39%
Terça-feira	8-out-2013	502	0	4		672,27	910	89,17%	42,76%
Quarta-feira	9-out-2013	498	0	5		629,60	915	89,49%	43,00%
Quanta-reira Quinta-feira	10-out-2013	485	0	6		662,37	930	89,81%	43,70%
Sexta-feira	11-out-2013	486	0			700,47	930	90,13%	43,70%
Sábado	12-out-2013	400 525	0	7	Sem Precipitação	681,84	953	90,45%	43,70%
		525 60 1							
Domingo Sogunda foira	13-out-2013		8,8 17.9	0		618,96	954	90,76%	44,83%
Segunda-feira	14-out-2013	830	17,8	0		654,64	994	91,08%	46,71%
Terça-feira	15-out-2013	1082	4,4	0		672,27	995	91,40%	
Quarta-feira	16-out-2013	589	3,8	1		629,60	995	91,72%	
Quinta-feira	17-out-2013	572	1,6	2		662,37	1002	92,04%	47,09%
Sexta-feira	18-out-2013	953	16,2	0		700,47	1002	92,36%	47,09%
Sábado	19-out-2013	930	10,2	0		681,84	1018	92,68%	47,84%
Domingo	20-out-2013	602	3	1	Indireta	618,96	1025	92,99%	48,17%

Dia da semana	Data	Totalizacão Caudal (m3/dia)	Precipitação (mm/dia)	Dias seguidos sem chuva	Influência da Precipitação	Caudal Médio por Dia da Semana	Totalização Caudal (m3/dia 🕶	Número de dias (%)	Totalização Caudal (%)
Segunda-feira	21-out-2013	816	10	0	Direta	654,64	1027	93,31%	48,26%
Terça-feira	22-out-2013	1027	19,4	0	Direta	672,27	1045	93,63%	49,11%
Quarta-feira	23-out-2013	742	5,2	0	Direta	629,60	1054	93,95%	49,53%
Quinta-feira	24-out-2013	1394	31	0	Direta	662,37	1058	94,27%	49,72%
Sexta-feira	25-out-2013	915	5,8	0	Direta	700,47	1079	94,59%	50,70%
Sábado	26-out-2013	737	0,2	1	Indireta	681,84	1082	94,90%	50,85%
Domingo	27-out-2013	602	0	2	Indireta	618,96	1087	95,22%	51,08%
Segunda-feira	28-out-2013	995	23	0	Direta	654,64	1136	95,54%	53,38%
Terça-feira	29-out-2013	653	0	1	Indireta	672,27	1186	95,86%	55,73%
Quarta-feira	30-out-2013	660	0	2	Indireta	629,60	1204	96,18%	56,58%
Quinta-feira	31-out-2013	608	0	3	Indireta	662,37	1208,5	96,50%	56,79%
Sexta-feira	1-nov-2013	597	1,8	4	Indireta	700,47	1229	96,82%	57,75%
Sábado	2-nov-2013	930	11,4	0	Direta	681,84	1248	97,13%	58,65%
Domingo	3-nov-2013	627	0,2	1	Indireta	618,96	1263	97,45%	59,35%
Segunda-feira	4-nov-2013	726	7	0	Direta	654,64	1266	97,77%	59,49%
Terça-feira	5-nov-2013	835	10,2	0	Direta	672,27	1283	98,09%	60,29%
Quarta-feira	6-nov-2013	637	1,8	1	Indireta	629,60	1326	98,41%	62,31%
Quinta-feira	7-nov-2013	696	3,6	2	Indireta	662,37	1370	98,73%	64,38%
Sexta-feira	8-nov-2013	845	8	0	Direta	700,47	1394	99,04%	65,51%
Sábado	9-nov-2013	758	5,2	0	Direta	681,84	1429	99,36%	67,15%
Domingo	10-nov-2013	612	0,2	1	Indireta	618,96	1441	99,68%	67,72%
Segunda-feira	11-nov-2013	611	0	2	Indireta	654,64	2128	100,00%	100,00%

2014

Dia da Semana	Data	Totalizacão Caudal (m3/dia)	Precipitação (mm/dia)	Dias seguidos sem chuva	Influência da Precipitação	Caudal Médio por Dia da Semana	Totalização Caudal (m3/dia)	Número de dias (%)	Totalização Caudal (%)
Quarta-feira	1-jan-2014	1063	25,2	0	Direta	966,62	454	0,00%	20,40%
Quinta-feira	2-jan-2014	1288	55,4	0	Direta	962,56	47 9	0,27%	21,53%
Sexta-feira	3-jan-2014	1096	26,8	0	Direta	971,93	497	0,55%	22,34%
Sábado	4-jan-2014	751	8,2	0	Direta	958,62	521	0,82%	23,42%
Domingo	5-jan-2014	1209	8,4	0	Direta	888,91	522	1,10%	23,46%
Segunda-feira	6-jan-2014	1209	30,8	0	Direta	949,13	524	1,37%	23,55%
Terça-feira	7-jan-2014	1274	5,2	0	Direta	960,13	541	1,65%	24,31%
Quarta-feira	8-jan-2014	1260	2,6	1	Indireta	966,62	543	1,92%	24,40%
Quinta-feira	9-jan-2014	1022	0	2	Indireta	962,56	544	2,20%	24,45%
Sexta-feira	10-jan-2014	1149	0	3	Indireta	971,93	544	2,47%	24,45%
Sábado	11-jan-2014	1142	0,2	4	Indireta	958,62	544	2,75%	24,45%
Domingo	12-jan-2014	1039	10,2	0	Direta	888,91	551	3,02%	24,76%
Segunda-feira	13-jan-2014	1266	14	0	Direta	949,13	551	3,30%	24,76%
Terça-feira	14-jan-2014	1312	10,4	0	Direta	960,13	55 9	3,57%	25,12%
Quarta-feira	15-jan-2014	1146	22	0	Direta	966,62	560	3,85%	25,17%
Quinta-feira	16-jan-2014	1544	7,6	0	Direta	962,56	564	4,12%	25,35%
Sexta-feira	17-jan-2014	1800	25	0	Direta	971,93	569	4,40%	25,57%
Sábado	18-jan-2014	1372	19,2	0	Direta	958,62	576	4,67%	25,89%
Domingo	19-jan-2014	1409	7,6	0	Direta	888,91	581	4,95%	26,11%
Segunda-feira	20-jan-2014	1479	2,4	1	Indireta	949,13	581	5,22%	26,11%
Terça-feira	21-jan-2014	1294	10,2	0	Direta	960,13	581	5,49%	26,11%
Quarta-feira	22-jan-2014	15 7 8	4,6	0	Direta	966,62	585	5,77%	26,29%
Quinta-feira	23-jan-2014	1342	0	1	Indireta	962,56	586	6,04%	26,34%
Sexta-feira	24-jan-2014	1254	0	2	Indireta	971,93	589	6,32%	26,47%
Sábado	25-jan-2014	1267	2	3	Indireta	958,62	590	6,59%	26,52%
Domingo	26-jan-2014	1296	7,4	0	Direta	888,91	594	6,87%	26,70%
Segunda-feira	27-jan-2014	1241	8	0	Direta	949,13	595	7,14%	26,74%
Terça-feira	28-jan-2014	1616	15	0	Direta	960,13	597	7,42%	26,83%
Quarta-feira	29-jan-2014	1395	14	0	Direta	966,62	600	7,69%	26,97%
Quinta-feira	30-jan-2014	1534	7,9	0	Direta	962,56	602	7,97%	27,06%

		Totalização	D	Dias	luffic à color de	Caudal Médio	Totalização	Número	T-1-11
Dia da Semana	Data	Caudal	Precipitação (mm/dia)	seguidos	Influência da Precipitação	por Dia da	Caudal	de dias	Totalização Caudal (%)
		(m3/dia)		sem chuva	Trecipitação	Semana	(m3/dia)	(%)	
Sexta-feira	31-jan-2014	1390	10		Direta	971,93	604	8,24%	
Sábado	1-fev-2014	1527	23	0	Direta	958,62	608	8,52%	27,33%
Domingo	2-fev-2014	1659	1,4	1	Indireta	888,91	609	8,79%	27,37%
Segunda-feira	3-fev-2014	2087	27,4	0	Direta	949,13	610	9,07%	27,42%
Terça-feira	4-fev-2014	2225	58,6	0	Direta	960,13	611	9,34%	27,46%
Quarta-feira	5-fev-2014	2072	4,6	0	Direta	966,62	615	9,62%	27,64%
Quinta-feira	6-fev-2014	2167	31,6	0	Direta	962,56	615	9,89%	27,64%
Sexta-feira	7-fev-2014	2041	2,4	1	Indireta	971,93	616	10,16%	27,69%
Sábado	8-fev-2014	1987	30,6	0	Direta	958,62	617	10,44%	27,73%
Domingo	9-fev-2014	1934	18,8	0	Direta	888,91	618	10,71%	27,78%
Segunda-feira	10-fev-2014	1878	10,4	0	Direta	949,13	619	10,99%	27,82%
Terça-feira	11-fev-2014	1837	28,8	0	Direta	960,13	620	11,26%	27,87%
Quarta-feira	12-fev-2014	1889	9,4	0	Direta	966,62	620	11,54%	27,87%
Quinta-feira	13-fev-2014	1857	6,2	0	Direta	962,56	620	11,81%	27,87%
Sexta-feira	14-fev-2014	1586	45,2	0	Direta	971,93	626	12,09%	28,13%
Sábado	15-fev-2014	1590	3,6	1	Indireta	958,62	627	12,36%	28,18%
Domingo	16-fev-2014	1813	0,4	2	Indireta	888,91	628	12,64%	28,22%
Segunda-feira	17-fev-2014	1817	2,6	3	Indireta	949,13	628	12,91%	28,22%
Terça-feira	18-fev-2014	1740	1,2	4	Indireta	960,13	629	13,19%	28,27%
Quarta-feira	19-fev-2014	1735	0,4	5	Indireta	966,62	629	13,46%	-
Quinta-feira	20-fev-2014	1764	12,4		Direta	962,56	629	13,74%	28,27%
Sexta-feira	21-fev-2014	1666	2,2	1	Indireta	971,93	629	14,01%	28,27%
Sábado	22-fev-2014	1692	4,2	0	Direta	958,62	630	14,29%	28,31%
Domingo	23-fev-2014	1537	0,4	1	Indireta	888,91	630	14,56%	28,31%
Segunda-feira	24-fev-2014	1706	16,4	0	Direta	949,13	631	14,84%	28,36%
Terça-feira	25-fev-2014	1813	11,8	0	Direta	960,13	632	15,11%	28,40%
Quarta-feira	26-fev-2014	1200	3	1	Indireta	966,62	633	15,38%	28,45%
Quinta-feira	27-fev-2014	1457	11,6	0	Direta	962,56	634	15,66%	28,49%
Sexta-feira	28-fev-2014	1360	1	1	Indireta	971,93	634	15,93%	28,49%
Sábado	1-mar-2014	1343	34,8		Direta	958,62	635	16,21%	28,54%
Domingo	2-mar-2014	1305	13,4		Direta	888,91	637	16,48%	28,63%
Segunda-feira	3-mar-2014	1900	4,8	0	Direta	949,13	637	16,76%	28,63%
Terça-feira	4-mar-2014	1629	20,4	0	Direta	960,13	638	17,03%	28,67%
Quarta-feira	5-mar-2014	1463	0,8	1	Indireta	966,62	638	17,31%	28,67%
Quinta-feira	6-mar-2014	1380	0,2	2	Indireta	962,56	639	17,58%	28,72%
Sexta-feira	7-mar-2014	1785	0		Indireta	971,93	639	17,86%	28,72%
Sábado	8-mar-2014	1418	0	4	Indireta	958,62	640	18,13%	28,76%
Domingo	9-mar-2014	1522	0		Indireta	888,91	640	18,41%	28,76%
Segunda-feira	10-mar-2014	1376	0	6	Indireta	949,13	640	18,68%	28,76%
Terça-feira	11-mar-2014	1351	0		Indireta	960,13	640	18,96%	
Quarta-feira	12-mar-2014	1320	0		Sem Precipitação		642	19,23%	28,85%
Quinta-feira	13-mar-2014	1296	0		Sem Precipitação		644	19,51%	28,94%
Sexta-feira	14-mar-2014	1315	0		Sem Precipitação		645	19,78%	28,99%
Sábado	15-mar-2014	1289	0		Sem Precipitação		646	20,05%	29,03%
Domingo	16-mar-2014	1198	0		Sem Precipitação		646	20,33%	29,03%
Segunda-feira	17-mar-2014	1145	0		Sem Precipitação		647	20,60%	29,08%
Terça-feira	18-mar-2014	1103	0		Sem Precipitação		647	20,88%	29,08%
Quarta-feira	19-mar-2014	1124	0		Sem Precipitação		650	21,15%	29,21%
Quinta-feira	20-mar-2014	1075	0		Sem Precipitação		651	21,43%	29,26%
Sexta-feira	21-mar-2014	1166	6	0	Direta	971,93	651	21,70%	29,26%
Sábado	22-mar-2014	1076	0,2	1	Indireta	958,62	651	21,98%	29,26%
Domingo	23-mar-2014	994	0,8	2	Indireta	888,91	652	22,25%	29,30%
Segunda-feira	24-mar-2014	1060	7,6	0	Direta	949,13	654	22,53%	29,39%
Terça-feira	25-mar-2014	1045	4,2	0	Direta	960,13	656	22,80%	29,48%
Quarta-feira	26-mar-2014	1005	0,6	1	Indireta	966,62	656	23,08%	
Quinta-feira	27-mar-2014	1004	0,2	2	Indireta	962,56	657	23,35%	29,53%
Sexta-feira	28-mar-2014	1037	12,8	0	Direta	971,93	658	23,63%	29,57%
Sábado	29-mar-2014	999	0	1	Indireta	958,62	658	23,90%	29,57%
Domingo	30-mar-2014	977	13,8	0	Direta	888,91	659	24,18%	29,62%

		Totalizacão	Precipitação	Dias	Influência da	Caudal Médio	Totalização	Número	Totalização
Dia da Semana	Data	Caudal	(mm/dia)	seguidos	Precipitação	por Dia da	Caudal	de dias	Caudal (%)
		(m3/dia)		sem chuva	<u> </u>	Semana	(m3/dia)	(%)	
Segunda-feira	31-mar-2014	1135	9	0	Direta	949,13	660	24,45%	-
Terça-feira	1-abr-2014	1324	25,6	0	Direta	960,13	660	24,73%	29,66%
Quarta-feira	2-abr-2014	1066	1,6	1	Indireta	966,62	660	25,00%	29,66%
Quinta-feira	3-abr-2014	1337	8,2	0	Direta	962,56	660	25,27%	29,66%
Sexta-feira	4-abr-2014	1467	26,4	0	Direta	971,93	661	25,55%	29,71%
Sábado	5-abr-2014	1165	14,6	0	Direta	958,62	661	25,82%	29,71%
Domingo	6-abr-2014	1074	0,8	1	Indireta	888,91	663	26,10%	29,80%
Segunda-feira	7-abr-2014	1271	0	2	Indireta	949,13	663	26,37%	29,80%
Terça-feira	8-abr-2014	1231	0	3	Indireta	960,13	664	26,65%	29,84%
Quarta-feira	9-abr-2014	1149	0,2	4	Indireta	966,62	664	26,92%	29,84%
Quinta-feira	10-abr-2014	935	0,2	5	Indireta	962,56	666	27,20%	29,93%
Sexta-feira	11-abr-2014	1055	0,2	6	Indireta	971,93	668	27,47%	30,02%
Sábado	12-abr-2014	1129	0	7	Indireta	958,62	670	27,75%	30,11%
Domingo	13-abr-2014	935	0		Sem Precipitação	888,91	670	28,02%	30,11%
Segunda-feira	14-abr-2014	1000	2,8		Sem Precipitação	949,13	671	28,30%	30,16%
Terça-feira	15-abr-2014	928	0		Sem Precipitação	960,13	671	28,57%	30,16%
Quarta-feira	16-abr-2014	926	0		Sem Precipitação	966,62	672	28,85%	30,20%
Quinta-feira	17-abr-2014	1007	0		Sem Precipitação	962,56	673	29,12%	30,25%
Sexta-feira	18-abr-2014	925	0,4		Sem Precipitação	971,93	675	29,40%	30,34%
Sábado	19-abr-2014	886	0		Sem Precipitação	958,62	676	29,67%	30,38%
Domingo	20-abr-2014	767	0		Sem Precipitação	888,91	676	29,95%	30,38%
Segunda-feira	21-abr-2014	842	0,6		Sem Precipitação	949,13	677	30,22%	30,43%
Terça-feira	22-abr-2014	780	0,2		Sem Precipitação	960,13	678	30,49%	30,47%
Quarta-feira	23-abr-2014	1066	10,6	0	Direta	966,62	680	30,77%	30,56%
Quinta-feira	24-abr-2014	1045	14,2	0	Direta	962,56	680	31,04%	30,56%
Sexta-feira	25-abr-2014	887	5,4	0	Direta	971,93	681	31,32%	30,61%
Sábado	26-abr-2014	1327	20,8	0	Direta	958,62	682	31,59%	30,65%
Domingo	27-abr-2014	955	0	1	Indireta	888,91	683	31,87%	30,70%
Segunda-feira	28-abr-2014	923	0,2	2	Indireta	949,13	683	32,14%	30,70%
Terça-feira	29-abr-2014	997	0	3	Indireta	960,13	684	32,42%	30,74%
Quarta-feira	30-abr-2014	929	0,2	4	Indireta	966,62	687	32,69%	30,88%
Quinta-feira	1-mai-2014	682	0	5	Indireta	962,56	687	32,97%	30,88%
Sexta-feira	2-mai-2014	841	0	6	Indireta	971,93	688	33,24%	30,92%
Sábado	3-mai-2014	971	0	7	Indireta	958,62	688	33,52%	30,92%
Domingo	4-mai-2014	796	0	8	Sem Precipitação	888,91	688	33,79%	30,92%
Segunda-feira	5-mai-2014	769	0	9	Sem Precipitação	949,13	688	34,07%	30,92%
Terça-feira	6-mai-2014	805	0	10	Sem Precipitação	960,13	689	34,34%	30,97%
Quarta-feira	7-mai-2014	833	0	11	Sem Precipitação	966,62	690	34,62%	31,01%
Quinta-feira	8-mai-2014	772	0	12	Sem Precipitação	962,56	692	34,89%	31,10%
Sexta-feira	9-mai-2014	779	0	13	Sem Precipitação	971,93	695	35,16%	31,24%
Sábado	10-mai-2014	815	0	14	Sem Precipitação	958,62	696	35,44%	31,28%
Domingo	11-mai-2014	782	0	15	Sem Precipitação	888,91	696	35,71%	31,28%
Segunda-feira	12-mai-2014	743	0	16	Sem Precipitação	949,13	697	35,99%	31,33%
Terça-feira	13-mai-2014	779	0	17	Sem Precipitação	960,13	697	36,26%	31,33%
Quarta-feira	14-mai-2014	811	0	18	Sem Precipitação	966,62	697	36,54%	31,33%
Quinta-feira	15-mai-2014	755	0	19	Sem Precipitação	962,56	703	36,81%	31,60%
Sexta-feira	16-mai-2014	759	0	20	Sem Precipitação	971,93	704	37,09%	31,64%
Sábado	17-mai-2014	771	0	21	Sem Precipitação	958,62	710	37,36%	31,91%
Domingo	18-mai-2014	697	0	22	Sem Precipitação	888,91	711	37,64%	31,96%
Segunda-feira	19-mai-2014	731	2,8	23	Sem Precipitação	949,13	711	37,91%	31,96%
Terça-feira	20-mai-2014	1094	28,6	0	Direta	960,13	711	38,19%	
Quarta-feira	21-mai-2014	1190		0	Direta	966,62	714	38,46%	
Quinta-feira	22-mai-2014	1049	11	0	Direta	962,56	715	38,74%	32,13%
Sexta-feira	23-mai-2014	969	3	1	Indireta	971,93	716	39,01%	32,18%
Sábado	24-mai-2014	819	0	2	Indireta	958,62	716	39,29%	
Domingo	25-mai-2014	722	0	3	Indireta	888,91	718	39,56%	
Segunda-feira	26-mai-2014	714	0	4	Indireta	949,13	718	39,84%	32,27%
Terça-feira	27-mai-2014	734	4,8	0	Direta	960,13	718	40,11%	32,27%
Quarta-feira	28-mai-2014	816		1	Indireta	966,62	719	40,38%	

		Totalização	Precipitação	Dias	Influência da	Caudal Médio	Totalização	Número	Totalização
Dia da Semana	Data	Caudal	(mm/dia)	seguidos	Precipitação	por Dia da	Caudal	de dias	Caudal (%)
		(m3/dia)	, , ,	sem chuva		Semana	(m3/dia)	(%)	
Quinta-feira	29-mai-2014	814	5,6	0		962,56	720	40,66%	32,36%
Sexta-feira	30-mai-2014	832	0,2	1		971,93	722	40,93%	32,45%
Sábado	31-mai-2014	843	0	2	Indireta	958,62	722	41,21%	32,45%
Domingo	1-jun-2014	711	0	3	Indireta	888,91	722	41,48%	32,45%
Segunda-feira	2-jun-2014	683	0	4	Indireta	949,13	725	41,76%	32,58%
Terça-feira	3-jun-2014	703	0,4	5	Indireta	960,13	727	42,03%	32,67%
Quarta-feira	4-jun-2014	744	0,4	6	Indireta	966,62	728	42,31%	32,72%
Quinta-feira	5-jun-2014	736	0	7	Indireta	962,56	731	42,58%	32,85%
Sexta-feira	6-jun-2014	790	8,4	0	Direta	971,93	731	42,86%	32,85%
Sábado	7-jun-2014	715	0	1	Indireta	958,62	733	43,13%	32,94%
Domingo	8-jun-2014	551	2,6	2	Indireta	888,91	734	43,41%	32,99%
Segunda-feira	9-jun-2014	718	5,2	0	Direta	949,13	735	43,68%	33,03%
Terça-feira	10-jun-2014	735	0	1	Indireta	960,13	736	43,96%	33,08%
Quarta-feira	11-jun-2014	727	0	2	Indireta	966,62	736	44,23%	33,08%
Quinta-feira	12-jun-2014	689	0	3	Indireta	962,56	738	44,51%	33,17%
Sexta-feira	13-jun-2014	725	0	4	Indireta	971,93	742	44,78%	33,35%
Sábado	14-jun-2014	750	0	5	Indireta	958,62	743	45,05%	33,39%
Domingo	15-jun-2014	637	0	6	Indireta	888,91	744	45,33%	33,44%
Segunda-feira	16-jun-2014	666	0	7	Indireta	949,13	749	45,60%	33,66%
Terça-feira	17-jun-2014	657	0		Sem Precipitação	960,13	750	45,88%	33,71%
Quarta-feira	18-jun-2014	675	0		Sem Precipitação	966,62	750	46,15%	33,71%
Quinta-feira	19-jun-2014	684	0		Sem Precipitação	962,56	751	46,43%	33,75%
Sexta-feira	20-jun-2014	752	0		Sem Precipitação	971,93	752	46,70%	33,80%
Sábado	21-jun-2014	678	9	0	Direta	958,62	755	46,98%	33,93%
Domingo	22-jun-2014	661	3,8	1	Indireta	888,91	755	47,25%	33,93%
Segunda-feira	23-jun-2014	639	3	2	Indireta	949,13	758	47,53%	34,07%
Terça-feira	24-jun-2014	711	2	3	Indireta	960,13	759	47,80%	34,11%
Quarta-feira	25-jun-2014	670	0	4	Indireta	966,62	760	48,08%	34,16%
Quinta-feira	26-jun-2014	680	0	5	Indireta	962,56	764	48,35%	34,34%
Sexta-feira	27-jun-2014	687	0	6	Indireta	971,93	767	48,63%	34,47%
Sábado	28-jun-2014	720	4	0	Indireta	958,62	769	48,90%	34,56%
Domingo	29-jun-2014	581	0	1	Indireta	888,91	769	49,18%	34,56%
Segunda-feira	30-jun-2014	639	0,2	2	Indireta	949,13	771	49,45%	34,65%
Terça-feira	1-jul-2014	771	5	0	Direta	960,13	771	49,73%	34,65%
Quarta-feira	2-jul-2014	742	1,8	1	Indireta	966,62	772	50,00%	34,70%
Quinta-feira	3-jul-2014	697	0,2	2	Indireta	962,56	775	50,27%	34,83%
Sexta-feira	4-jul-2014	683	0	3	Indireta	971,93	777	50,55%	34,92%
Sábado	5-jul-2014	652	0,6	4		958,62	779	50,82%	35,01%
Domingo	6-jul-2014	790	19,6	0		888,91	779	51,10%	35,01%
Segunda-feira	7-jul-2014	619	0	1		949,13	780	51,37%	35,06%
Terça-feira	8-jul-2014	642	0	2		960,13	782	51,65%	35,15%
Quarta-feira	9-jul-2014	656	0	3		966,62	787	51,92%	35,37%
Quinta-feira	10-jul-2014	677	0	4		962,56	788	52,20%	35,42%
Sexta-feira	11-jul-2014	602	0	5		971,93	789	52,47%	35,46%
Sábado	12-jul-2014	670	0	6		958,62	789	52,75%	35,46%
Domingo	13-jul-2014	581	0	7		888,91	790	53,02%	35,51%
Segunda-feira	14-jul-2014	664	0		Sem Precipitação	949,13	790	53,30%	35,51%
Terça-feira	15-jul-2014	633	0	9	Sem Precipitação	960,13	790	53,57%	35,51%
Quarta-feira	16-jul-2014	644	0		Sem Precipitação	966,62	796	53,85%	35,78%
Quinta-feira	17-jul-2014	660	0,4	11	Sem Precipitação	962,56	796	54,12%	35,78%
Sexta-feira	18-jul-2014	676	0,8	12	Sem Precipitação	971,93	803	54,40%	36,09%
Sábado	19-jul-2014	842	15,4	0	Direta	958,62	804	54,67%	36,13%
Domingo	20-jul-2014	651	3	1	Indireta	888,91	805	54,95%	36,18%
Segunda-feira	21-jul-2014	661	0	2	Indireta	949,13	809	55,22%	36,36%
Terça-feira	22-jul-2014	630	0	3	Indireta	960,13	811	55,49%	36,45%
Quarta-feira	23-jul-2014	618	0	4	Indireta	966,62	811	55,77%	36,45%
Quinta-feira	24-jul-2014	634	0,4	5	Indireta	962,56	814	56,04%	36,58%
Sexta-feira	25-jul-2014	664	0,2	6	Indireta	971,93	815	56,32%	36,63%
Sábado	26-jul-2014	696	0	7	Indireta	958,62	816	56,59%	36,67%

Dia de Se		Totalização	Precipitação	Dias	Influência da	Caudal Médio	_		Totalização
Dia da Semana	Data	Caudal (m3/dia)	(mm/dia)	seguidos sem chuva	Precipitação	por Dia da Semana	Caudal (m3/dia)	de dias (%)	Caudal (%)
Domingo	27-jul-2014	544	0,2		Sem Precipitação	888,91	819	56,87%	36,81%
Segunda-feira	28-jul-2014	615	0,2		Sem Precipitação	949,13	827	57,14%	37,17%
Terça-feira	29-jul-2014	640	0,2		Sem Precipitação	960,13	830	57,42%	37,30%
Quarta-feira	30-jul-2014	627	0		Sem Precipitação	966,62	832	57,69%	37,39%
Quinta-feira	31-jul-2014	629	0		Sem Precipitação	962,56	833	57,97%	37,44%
Sexta-feira	1-ago-2014	660	0		Sem Precipitação	971,93	836	58,24%	37,57%
Sábado	2-ago-2014	789	13,8	0	Direta	958,62	839	58,52%	37,71%
Domingo	3-ago-2014	590	0,4	1	Indireta	888,91	841	58,79%	37,80%
Segunda-feira	4-ago-2014	615	0,1	2	Indireta	949,13	842	59,07%	37,84%
Terça-feira	5-ago-2014	635	0	3	Indireta	960,13	842	59,34%	37,84%
Quarta-feira	6-ago-2014	640	0	4	Indireta	966,62	843	59,62%	37,89%
Quinta-feira	7-ago-2014	663	0	5	Indireta	962,56	845	59,89%	37,98%
Sexta-feira	8-ago-2014	775	5	0	Direta	971,93	849	60,16%	38,16%
Sábado	9-ago-2014	692	0	1	Indireta	958,62	850	60,44%	38,20%
Domingo	10-ago-2014	521	0,4	2	Indireta	888,91	864	60,71%	38,83%
Segunda-feira	11-ago-2014	629	0,4	3	Indireta	949,13	864	60,99%	38,83%
Terça-feira	12-ago-2014	688	4,2	0	Direta	960,13	872	61,26%	39,19%
-		656		1					
Quarta-feira	13-ago-2014		0,2		Indireta	966,62	880	61,54%	39,55%
Quinta-feira	14-ago-2014	628	0	2	Indireta	962,56	883	61,81%	39,69%
Sexta-feira	15-ago-2014	589	0	3	Indireta	971,93	886	62,09%	39,82%
Sábado	16-ago-2014	595	0	4	Indireta	958,62	886	62,36%	39,82%
Domingo	17-ago-2014	522	0	5	Indireta	888,91	887	62,64%	39,87%
Segunda-feira	18-ago-2014	560	0	6	Indireta	949,13	906	62,91%	40,72%
Terça-feira	19-ago-2014	600	0	7	Indireta	960,13	918	63,19%	41,26%
Quarta-feira	20-ago-2014	620	0		Sem Precipitação	966,62	923	63,46%	41,48%
Quinta-feira	21-ago-2014	597	0		Sem Precipitação	962,56	925	63,74%	41,57%
Sexta-feira	22-ago-2014	608	0,2		Sem Precipitação	971,93	926	64,01%	41,62%
Sábado	23-ago-2014	604	0		Sem Precipitação	958,62	928	64,29%	41,71%
Domingo	24-ago-2014	524	0,2		Sem Precipitação	888,91	929	64,56%	41,75%
Segunda-feira	25-ago-2014	543	0	13	Sem Precipitação	949,13	933	64,84%	41,93%
Terça-feira	26-ago-2014	544	2,2	14	Sem Precipitação	960,13	935	65,11%	42,02%
Quarta-feira	27-ago-2014	576	0,6	15	Sem Precipitação	966,62	935	65,38%	42,02%
Quinta-feira	28-ago-2014	631	0,8	16	Sem Precipitação	962,56	936	65,66%	42,07%
Sexta-feira	29-ago-2014	650	0	17	Sem Precipitação	971,93	939	65,93%	42,20%
Sábado	30-ago-2014	616	0	18	Sem Precipitação	958,62	940	66,21%	42,25%
Domingo	31-ago-2014	541	0	19	Sem Precipitação	888,91	955	66,48%	42,92%
Segunda-feira	1-set-2014	586	0	20	Sem Precipitação	949,13	959	66,76%	43,10%
Terça-feira	2-set-2014	638	0	21	Sem Precipitação	960,13	969	67,03%	43,55%
Quarta-feira	3-set-2014	581	0	22	Sem Precipitação	966,62	971	67,31%	43,64%
Quinta-feira	4-set-2014	617	0	23	Sem Precipitação	962,56	977	67,58%	43,91%
Sexta-feira	5-set-2014	594	0	24	Sem Precipitação	971,93	985	67,86%	44,27%
Sábado	6-set-2014	769	18,2	0	Direta	958,62	985	68,13%	44,27%
Domingo	7-set-2014	658	9,4	0	Direta	888,91	993	68,41%	44,63%
Segunda-feira	8-set-2014	551	0	1	Indireta	949,13	994	68,68%	44,67%
Terça-feira	9-set-2014	564	0	2	Indireta	960,13	997	68,96%	44,81%
Quarta-feira	10-set-2014	671	18	0	Direta	966,62	999	69,23%	44,90%
Quinta-feira	11-set-2014	628	1,4	1		962,56	1000	69,51%	44,94%
Sexta-feira	12-set-2014	680	0	2		971,93	1000	69,78%	44,94%
Sábado	13-set-2014	722	0	3	Indireta	958,62	1004	70,05%	45,12%
Domingo	14-set-2014	610	4,4	0		888,91	1005	70,33%	45,17%
Segunda-feira	15-set-2014	718	12	0		949,13	1007	70,60%	45,26%
Terça-feira	16-set-2014	676	3,6	1	Indireta	960,13	1018	70,88%	45,75%
Quarta-feira	17-set-2014	985	27,4	0	Direta	966,62	1022	71,15%	45,93%
Quinta-feira	18-set-2014	880	59	0		962,56	1037	71,43%	46,61%
Sexta-feira	19-set-2014	1000	5,4	0	Direta	971,93	1039	71,70%	46,70%
Sábado	20-set-2014	811	5,4	0	Direta	958,62	1045	71,78%	46,97%
Domingo	21-set-2014	697	11,4	0	Direta	888,91	1045	72,25%	46,97%
Segunda-feira	22-set-2014 22-set-2014	985	12,8	0	Direta	949,13	1043	72,53%	47,06%
ocgunua-iciid	23-set-2014 23-set-2014	718	0,4	1		960,13	1047	72,33%	47,06%

		Totalização	Precipitação	Dias	Influência da	Caudal Médio	Totalização	Número	Totalização
Dia da Semana	Data	Caudal (m3/dia)	(mm/dia)	seguidos sem chuva	Precipitação	por Dia da Semana	Caudal (m3/dia)	de dias (%)	Caudal (%)
Quarta-feira	24-set-2014	(IIIS/GIA) 688	0,2	2	Indireta	966,62	1055	73,08%	47,42%
Quinta-feira	25-set-2014	647	0,2	3	Indireta	962,56	1060	73,35%	47,64%
Sexta-feira	26-set-2014	629	0	4	Indireta	971,93	1063	73,63%	47,78%
Sábado	27-set-2014	671	0,8	5	Indireta	958,62	1065	73,90%	47,87%
Domingo	28-set-2014	585	0,8	6	Indireta	888,91	1066	74,18%	47,91%
Segunda-feira	29-set-2014	634	0,0	7	Indireta	949,13	1066	74,45%	47,91%
Terça-feira	30-set-2014	632	0,2		Sem Precipitação	960,13	1074	74,73%	48,27%
Quarta-feira	1-out-2014	647	0		Sem Precipitação	966,62	1075	75,00%	48,31%
Quinta-feira	2-out-2014	611	0		Sem Precipitação	962,56	1076	75,27%	48,36%
Sexta-feira	3-out-2014	620	0		Sem Precipitação	971,93	1094	75,55%	49,17%
Sábado	4-out-2014	646	0		Sem Precipitação	958,62	1096	75,82%	49,26%
Domingo	5-out-2014	559	0		Sem Precipitação	888,91	1103	76,10%	49,57%
Segunda-feira	6-out-2014	716	8,8	0	Direta	949,13	1124	76,37%	50,52%
Terça-feira	7-out-2014	688	26,4	0	Direta	960,13	1129	76,65%	50,74%
Quarta-feira	8-out-2014	939	29,8	0	Direta	966,62	1135	76,92%	51,01%
Quinta-feira	9-out-2014	788	0,4	1	Indireta	962,56	1142	77,20%	51,33%
Sexta-feira	10-out-2014	760	0	2	Indireta	971,93	1145	77,47%	51,46%
Sábado	11-out-2014	764	3,4	3	Indireta	958,62	1146	77,75%	51,51%
Domingo	12-out-2014	609	1,2	4	Indireta	888,91	1149	78,02%	51,64%
Segunda-feira	13-out-2014	789	12,4	0	Direta	949,13	1149	78,30%	51,64%
Terça-feira	14-out-2014	722	1,8	1	Indireta	960,13	1165	78,57%	52,36%
Quarta-feira	15-out-2014	1047	36,8	0	Direta	966,62	1166	78,85%	52,40%
Quinta-feira	16-out-2014	1202	40,8	0	Direta	962,56	1190	79,12%	53,48%
Sexta-feira	17-out-2014	1205	18,2	0	Direta	971,93	1198	79,40%	53,84%
Sábado	18-out-2014	1203	21,4	0	Direta	958,62	1200	79,67%	53,93%
Domingo	19-out-2014	1065	0	1	Indireta	888,91	1202	79,95%	54,02%
Segunda-feira	20-out-2014	940	0	2	Indireta	949,13	1203	80,22%	54,07%
Terça-feira	21-out-2014	993	0	3	Indireta	960,13	1205	80,49%	54,16%
Quarta-feira	22-out-2014	933	0	4	Indireta	966,62	1209	80,77%	54,34%
Quinta-feira	23-out-2014	836	0	5	Indireta	962,56	1209	81,04%	54,34%
Sexta-feira	24-out-2014	850	0	6	Indireta	971,93	1231	81,32%	55,33%
Sábado	25-out-2014	849	0	7	Indireta	958,62	1241	81,59%	55,78%
Domingo	26-out-2014	704	0	8	Sem Precipitação	888,91	1254	81,87%	56,36%
Segunda-feira	27-out-2014	710	0	9	Sem Precipitação	949,13	1260	82,14%	56,63%
Terça-feira	28-out-2014	687	0	10	Sem Precipitação	960,13	1266	82,42%	56,90%
Quarta-feira	29-out-2014	716	0	11	Sem Precipitação	966,62	1267	82,69%	56,94%
Quinta-feira	30-out-2014	738	0	12	Sem Precipitação	962,56	1271	82,97%	57,12%
Sexta-feira	31-out-2014	749	13,4	0	Direta	971,93	1274	83,24%	57,26%
Sábado	1-nov-2014	750	0,2	1	Indireta	958,62	1288	83,52%	57,89%
Domingo	2-nov-2014	758	13,4	0	Direta	888,91	1289	83,79%	57,93%
Segunda-feira	3-nov-2014	803	52,2	0	Direta	949,13	1294	84,07%	58,16%
Terça-feira	4-nov-2014	728	14,4	0	Direta	960,13	1296	84,34%	58,25%
Quarta-feira	5-nov-2014	660	0	1	Indireta	966,62	1296	84,62%	58,25%
Quinta-feira	6-nov-2014	637	5,2	0	Direta	962,56	1305	84,89%	58,65%
Sexta-feira	7-nov-2014	630	10,2	0	Direta	971,93	1312	85,16%	58,97%
Sábado	8-nov-2014	755	25,8	0	Direta	958,62	1315	85,44%	59,10%
Domingo	9-nov-2014	731	5	0	Direta	888,91	1320	85,71%	59,33%
Segunda-feira	10-nov-2014	736	4,2	0	Direta	949,13	1324	85,99%	59,51%
Terça-feira	11-nov-2014	660	18,8	0	Direta	960,13	1327	86,26%	59,64%
Quarta-feira	12-nov-2014	673	5,8	0	Direta	966,62	1337	86,54%	60,09%
Quinta-feira	13-nov-2014	672	53,6	0	Direta	962,56	1342	86,81%	60,31%
Sexta-feira	14-nov-2014	690	20,8	0	Direta	971,93	1343	87,09%	60,36%
Sábado	15-nov-2014	688	14	0	Direta	958,62	1351	87,36%	60,72%
Domingo	16-nov-2014	629	0,2	1	Indireta	888,91	1360	87,64%	61,12%
Segunda-feira	17-nov-2014	620	1,2	2	Indireta	949,13	1372	87,91%	61,66%
Terça-feira	18-nov-2014	569	9,8	0	Direta	960,13	1376	88,19%	61,84%
Quarta-feira	19-nov-2014	497	4,8	0	Direta	966,62	1380	88,46%	62,02%
Quinta-feira	20-nov-2014	479	3,8	1	Indireta	962,56	1390	88,74%	62,47%
Sexta-feira	21-nov-2014	454	0	2	Indireta	971,93	1395	89,01%	62,70%

Dia da Semana	Data	Totalizacão Caudal	Precipitação (mm/dia)	Dias seguidos	Influência da Precipitação	Caudal Médio por Dia da	Totalização Caudal	de dias	Totalização Caudal (%)
		(m3/dia)		sem chuva		Semana	(m3/dia)	(%)	
Sábado	22-nov-2014	544	2,8	3	Indireta	958,62	1409	89,29%	63,33%
Domingo	23-nov-2014	790	0,6	4	Indireta	888,91	1418	89,56%	63,73%
Segunda-feira	24-nov-2014	886	0	5	Indireta	949,13	1457	89,84%	65,48%
Terça-feira	25-nov-2014	883	0,2	6	Indireta	960,13	1463	90,11%	65,75%
Quarta-feira	26-nov-2014	959	0	7	Indireta	966,62	1467	90,38%	65,93%
Quinta-feira	27-nov-2014	936	2,8	8	Sem Precipitação	962,56	1479	90,66%	66,47%
Sexta-feira	28-nov-2014	1018	13	0	Direta	971,93	1522	90,93%	68,40%
Sábado	29-nov-2014	719	0	1	Indireta	958,62	1527	91,21%	68,63%
Domingo	30-nov-2014	918	0	2	Indireta	888,91	1534	91,48%	68,94%
Segunda-feira	1-dez-2014	906	0	3	Indireta	949,13	1537	91,76%	69,08%
Terça-feira	2-dez-2014	787	0	4	Indireta	960,13	1544	92,03%	69,39%
Quarta-feira	3-dez-2014	681	0	5	Indireta	966,62	1578	92,31%	70,92%
Quinta-feira	4-dez-2014	658	0	6	Indireta	962,56	1586	92,58%	71,28%
Sexta-feira	5-dez-2014	663	0	7	Indireta	971,93	1590	92,86%	71,46%
Sábado	6-dez-2014	668	0	8	Sem Precipitação	958,62	1616	93,13%	72,63%
Domingo	7-dez-2014	659	0		Sem Precipitação	888,91	1629	93,41%	73,21%
Segunda-feira	8-dez-2014	696	0	10	Sem Precipitação	949,13	1659	93,68%	74,56%
Terça-feira	9-dez-2014	804	0	11	Sem Precipitação	960,13	1666	93,96%	74,88%
Quarta-feira	10-dez-2014	796	0	12	Sem Precipitação	966,62	1692	94,23%	76,04%
Quinta-feira	11-dez-2014	830	0	13	Sem Precipitação	962,56	1706	94,51%	76,67%
Sexta-feira	12-dez-2014	864	1		Sem Precipitação	971,93	1735	94,78%	77,98%
Sábado	13-dez-2014	872	21,8	0	Direta	958,62	1740	95,05%	78,20%
Domingo	14-dez-2014	864	0,2	1	Indireta	888,91	1764	95,33%	79,28%
Segunda-feira	15-dez-2014	777	0	2	Indireta	949,13	1785	95,60%	80,22%
Terça-feira	16-dez-2014	809	4,2	0	Direta	960,13	1800	95,88%	80,90%
Quarta-feira	17-dez-2014	839	0,2	1	Indireta	966,62	1813	96,15%	81,48%
Quinta-feira	18-dez-2014	845	0	2	Indireta	962,56	1813	96,43%	81,48%
Sexta-feira	19-dez-2014	827	0	3	Indireta	971,93	1817	96,70%	81,66%
Sábado	20-dez-2014	733	0	4	Indireta	958,62	1837	96,98%	82,56%
Domingo	21-dez-2014	645	0	5	Indireta	888,91	1857	97,25%	83,46%
Segunda-feira	22-dez-2014	711	0	6	Indireta	949,13	1878	97,53%	84,40%
Terça-feira	23-dez-2014	626	0	7	Indireta	960,13	1889	97,80%	84,90%
Quarta-feira	24-dez-2014	638	0		Sem Precipitação	966,62	1900	98,08%	85,39%
Quinta-feira	25-dez-2014	651	0		Sem Precipitação	962,56	1934	98,35%	86,92%
Sexta-feira	26-dez-2014	654	0		Sem Precipitação	971,93	1987	98,63%	89,30%
Sábado	27-dez-2014	646	0		Sem Precipitação	958,62	2041	98,90%	91,73%
Domingo	28-dez-2014	695	3,8		Sem Precipitação	888,91	2072	99,18%	93,12%
Segunda-feira	29-dez-2014	651	0		Sem Precipitação	949,13	2087	99,45%	93,80%
Terça-feira	30-dez-2014	640	0		Sem Precipitação	960,13	2167	99,73%	97,39%
Quarta-feira	31-dez-2014	640	0		Sem Precipitação	966,62	2225	100,00%	100,00%

ANEXO II

Tabela de perfis da rede em estudo

	Coorde	enadas		Cotas	Distancias			
Perfil	M P		Terreno	Conduta	Trabalho	Entre Perfis		
1	-37576,807	148672,745	108,09	105,39	-2,70	5,41	0,000	
2	-37577,375	148667,366	108,68	105,33	-3,35	31,02	5,409	
3	-37599,292	148645,410	106,34	104,56	-1,78	51,02	36,432	
4	-37616,868	148597,516	104,19	102,41	-1,78	57,10	87,448	
5	-37653,691	148553,875	103,12	100,95	-2,17	58,89	144,549	
6	-37705,979	148526,781	102,83	100,31	-2,52	59,66	203,440	
7	-37749,264	148485,726	100,66	98,81	-1,85	60,71	263,098	
8	-37768,168	148428,036	102,06	97,04	-5,02	94,74	323,806	
9	-37862,759	148433,268	97,92	95,07	-2,85	34,39	418,542	
10	-37891,968	148451,426	98,34	94,86	-3,48	12,42	452,935	
11	-37899,823	148441,808	97,50	94,71	-2,79	57,40	465,353	
12	-37956,924	148435,953	96,13	94,24	-1,89	39,24	522,752	
13	-37995,859	148431,098	95,86	93,87	-1,99	46,95	561,990	
14	-38040,520	148416,632	96,81	93,53	-3,28	38,25	608,937	
15	-38077,961	148424,465	97,04	93,17	-3,87	36,74	647,187	
16	-38113,778	148432,629	95,84	92,86	-2,98	29,38	683,922	
17	-38138,938	148417,465	95,18	92,33	-2,85	19,83	713,298	
18	-38126,261	148402,220	93,84	91,05	-2,79	63,42	733,126	
19	-38143,809	148341,279	90,64	86,97	-3,67	34,37	796,544	
20	-38156,049	148309,167	88,84	86,59	-2,25	58,86	830,909	
21	-38195,485	148265,473	87,48	85,85	-1,63	53,21	889,768	
22	-38233,259	148228,000	86,70	84,75	-1,05	17,29	942,976	
23	-38245,215	148215,509	86,78	84,75	-2,22	44,70	960,267	
24	-38281,284	148189,101	86,75	84,04	-2,71	15,20	1004,970	
25	-38295,551	148183,849	86,07	83,66	-2,41	54,94	1020,173	
26	-38332,668	148143,348	84,63	83,15	-1,48	15,08	1075,109	
26,1	-38342,325	148131,767	84,53	83,01	-1,48	27,23	1075,109	
27	-38352,210	148106,390	83,69	82,81	-0,88	32,04	1117,422	
28	-38332,210	148098,793	84,30	82,62	-1,68	17,20	1149,466	
29	-38400,535	148098,793	84,86	82,08	-2,78	45,50	1166,668	
29′	-38446,007	148096,837	83,34	78,97	-4,37	9,57	1212,164	
30	-38453,295	148090,629	80,94	78,44	-2,50	21,38	1212,104	
31	-38468,790	148075,902	80,76	78,30	-2,46	35,21	1243,114	
32	-38492,308	148049,697	80,10	77,42	-2,40	13,61	1278,325	
33	-38504,148	148042,984	79,99	77,42	-2,71	39,90	1291,936	
34	-38536,628	148019,811	79,89	76,87	-3,02	24,98	1331,834	
35	-38560,629	148012,889	78,80	76,02	-2,78	36,28	1356,814	
36	-38586,202	147987,152	77,44	74,71	-2,78	32,69	1393,096	
37	-38618,536	147982,358	77,44	74,71	-3,00	19,55	1425,784	
38	-38632,869	147969,062	77,49	74,49	-3,26	21,14	1445,334	
39	-38649,242	147955,690	76,68	74,33	-2,52	39,02	1466,474	
40	-38680,589	147932,447	74,79	73,02	-1,77	40,71	1505,498	
41	-38717,469	147949,687	73,47	73,02	-1,77	39,16	1546,208	
42	-38749,242	147972,580	73,47	71,38	-1,74	49,74	1585,369	
43	-38798,827	147976,533	73,12	71,38	-1,74	14,94	1635,112	
43	-38811,488	147968,596	72,60	69,83	-1,47	27,95	1650,055	
45	-38838,903	147963,129	70,16	68,98	-1,44	29,97	1678,010	
46	-38868,458	147958,160	70,16	68,81	-1,18	51,51	1707,980	
47	-38913,630	147933,410	70,60	67,49	-1,79	27,87	1759,488	
48	-38913,630	147918,426	69,11	67,49	-1,93	27,87	1787,353	
48´	-38937,124	147918,426	70,71	67,18	-1,93	42,08	1814,384	
48	-38954,092	147857,412		-		-	1856,466	
	-		70,09 66.07	65,64	-4,45 1,62	40,61		
EE	-38994,702	147857,435	66,97	65,35	-1,62		1897,076	

ANEXO III

EESv1, EERM1 e ETAR de Espinho

EESv1

A EESv1 é dotada dos seguintes equipamentos eletromecânicos:

- Comportas murais, de secção circular, de acionamento manual;
- Comportas murais, de secção circular, de acionamento pneumático;
- Unidade de ar comprimido, para alimentação de ar às comportas murais;
- Compactador, para gradagem e remoção de detritos;
- Parafuso sem-fim horizontal;
- Parafuso sem-fim vertical, com tremonha de descarga;
- Grade de limpeza manual, para proteção dos grupos elevatórios, com respetivo cesto de recolha de detritos;
- Grupos eletrobomba do tipo submersível;
- Tubagens, válvulas e acessórios da compressão dos grupos elevatórios, até à ligação à conduta elevatória;
- Equipamento de ventilação constituído por extrator e insuflador de ar, e respetiva tubagem;
- Sistema de desodorização de odores através de filtro de carvão ativado;
- Monocarril com diferencial elétrico de corrente, com carro de translação manual, para movimentação de cargas;
- Conjunto de equipamento (reservatório hidropneumático e acessórios), para proteção anti aríete;
- Equipamento de abastecimento de água;
- Contentores de detritos;
- Bomba de trasfega de combustível.

Ilustração 1 – Torre de desodorização e Reservatório de Ar Comprimido

Ilustração 2 – Comportas pneumáticas de entrada

Ilustração 3 – Quadros Elétricos

Ilustração 4 – Sinótico da EESv1

Ilustração 5 – Compressor de ar

Ilustração 6 – Grupo gerador de emergência

EERM1

A EERM1 é dotada dos seguintes equipamentos eletromecânicos:

- Comportas murais de secção circular, de seccionamento da estação elevatória, de acionamento manual;
- Comportas murais de isolamento dos canais da obra de entrada, de acionamento pneumático;
- Comportas adufa manuais;
- Descarregador do tipo Sutro;
- Unidade de ar comprimido, para alimentação de ar às comportas murais;
- Tamisador/compactador, para remoção de detritos;
- Desarenador do tipo "Pista" com o respetivo sistema de elevação de areias;
- Classificador de areias;
- Grade de limpeza manual, para proteção dos grupos elevatórios, com respetivo cesto de recolha de detritos;
- Grupos eletrobomba do tipo submersível;
- Electroagitador de fundo do poço de bombagem, para suspensão da matéria sólida durante os períodos de bombagem;
- Tubagens, válvulas e acessórios da compressão dos grupos elevatórios, até à ligação à conduta elevatória;
- Equipamento de ventilação constituído por extrator e insuflador de ar, e respetiva tubagem;
- Sistema de desodorização de odores através de filtro de carvão ativado.
- Monocarril com diferencial elétrico e manuais de corrente, com carro de translação manual, para movimentação de cargas;
- Plataforma elevatória;
- Conjunto de equipamento (reservatório hidropneumático e acessórios), para proteção antiaríete:
- Equipamento de abastecimento de água;
- Instrumentos (medição de caudal e de nível, deteção de sulfureto de hidrogénio; medição de potencial redox e de pH e sistema de deteção de intrusão);
- Contentores de detritos.

Ilustração 7 – Reservatório de ar comprimido

Ilustração 8 – Quadros elétricos

Ilustração 9 – Sinótico da EERM1

Ilustração 10 – Grupo Gerador de Emergência

Ilustração 11 – Torre de Desodorização

Ilustração 12 – Compressor de ar

Ilustração 13 - Tamisador

Ilustração 14 – Condutas de compressão e respetivos acessórios

ETAR de Espinho

Ilustração 15 – Parafusos de Arquimedes (vista exterior)

Ilustração 16 – Parafusos de Arquimedes (vista dos motores)

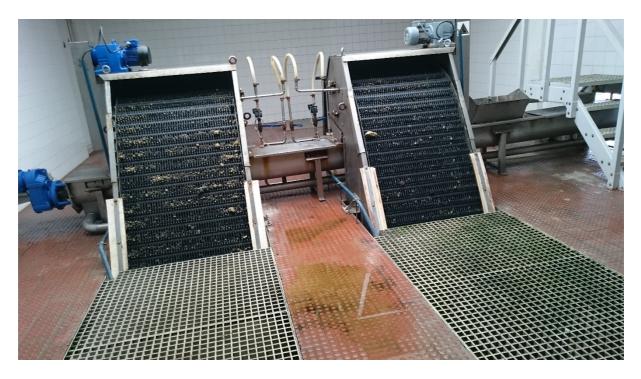


Ilustração 17 – Grelhas de limpeza automática

Ilustração 18 – Desarenadores/desengorduradores

Ilustração 19 – Decantadores Secundários

Ilustração 20 – Decantadores Secundários

ANEXO IV

Testes de fumo realizados

Ilustração 21 Máquina de Fumo e Bomba de pressão de Ar

Ilustração 22 Produto utilizado na máquina de fumo

Ilustração 23 Tubo da máquina de fumo inserido na rede

Ilustração 24 Fumo saliente num passeio

Ilustração 25 Fumo saliente numa sarjeta

Ilustração 26 Fumo saliente numa sarjeta

ANEXO V

Dados sobre INDAQUA Feira

SERVIÇO DE SANEAMENTO

Utentes de saneamento

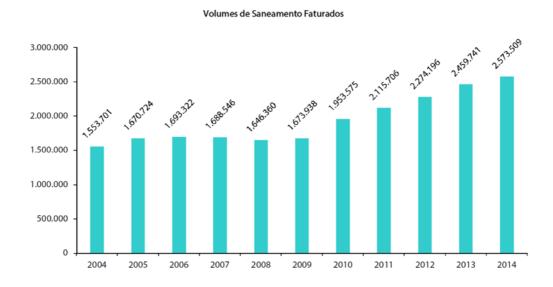
No quadro seguinte apresenta-se a evolução do número de utentes de saneamento por tipo de utente nos dois últimos anos:

			Varia	ção
UTENTES DE SANEAMENTO POR TIPOLOGIA	2014	2013	Qtd.	%
Domésticos	30.150	25.849	4.301	16,64%
Comércio e Indústria	3.096	2.898	198	6,83%
Estado / Autarquias	156	151	5	3,31%
Instituições de Utilidade Pública	81	64	17	26,56%
Obras	320	298	22	7,38%
Outros	13	12	1	8,33%
Total	33.816	29,272	4.544	15,52%
Total	33.010	LU.LIL	7.577	10,0270

No exercício de 2014, devido à campanha de obrigatoriedade legal de ligação das redes prediais às redes públicas e devido à entrada em serviço de novas redes nas bacias do Douro e nas bacias da Laje e do Caster, continuou a verificar-se uma acentuada adesão ao serviço de saneamento. O número de contratos ativos de saneamento aumentou de 29.272 em 31 de dezembro de 2013 para 33.816 em 31 de dezembro de 2014, o que corresponde a um aumento de cerca de 16,6 %.

No final do ano existem ainda 4.599 contratos de saneamento pendentes da entrada em serviço das respetivas redes ou da conclusão das necessárias obras de adaptação das instalações prediais.

No gráfico seguinte podemos observar a evolução dos utentes de saneamento desde o início da concessão:


Volumes de Saneamento Faturados

No quadro seguinte podemos observar a evolução dos volumes de saneamento faturados nos dois últimos anos por tipo de consumidor e por escalão de consumo:

		2014			2013		
VOLUMES DE SANEAMENTO FATURADOS	m3	%	% / Tipologia	m3	%	% / Tipologia	Variação
Domésticos	1.875.672	72.88%	100.00%	1.796.517	73.04%	100.00%	4.41%
1º Escalão - Entre 0 e 5 m3	1.036.135	40.26%	,	966.408	39,29%	,	7.22%
2º Escalão - Entre 6 e 15 m3	572.277	22,24%	30,51%	552.354	22,46%	30,75%	3,61%
3º Escalão - Entre 16 e 25 m3	246.346	9,57%	13,13%	251.236	10,21%	13,98%	-1,95%
4º Escalão - Superior a 25 m3	20.914	0,81%	1,12%	26.519	1,08%	1,48%	-21,14%
Comércio e Indústria	413.790	16,08%		392.892	15,97%		5,32%
Estado / Administração Central	45.075	1,75%		45.119	1,83%		-0,10%
Autarquias / Administração Local	32.299	1,26%		29.446	1,20%		9,69%
Instituições de Utilidade Pública	188.978	7,34%		177.517	7,22%		6,46%
Obras	17.695	0,69%		18.250	0,74%		-3,04%
Total	2.573.509	100,00%	-	2.459.741	100,00%		4,63%

Foram faturados $2.573.509 \text{ m}_3$ de saneamento, o que corresponde a um aumento de 4,6 % relativamente ao ano de 2013, aumento este inferior ao aumento do número de clientes devido à redução das capitações médias.

No gráfico seguinte podemos observar a evolução dos volumes de saneamento faturados desde o ano de 2004:

