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Abstract 
Optimization methods have been used in many areas of knowledge, such as 

Engineering, Statistics, Chemistry, among others, to solve optimization problems. In 

many cases it is not possible to use derivative methods, due to the characteristics of the 

problem to be solved and/or its constraints, for example if the involved functions are 

non-smooth and/or their derivatives are not know. To solve this type of problems a Java 

based API has been implemented, which includes only derivative-free optimization 

methods, and that can be used to solve both constrained and unconstrained problems. 

For solving constrained problems, the classic Penalty and Barrier functions were 

included in the API. In this paper a new approach to Penalty and Barrier functions, 

based on Fuzzy Logic, is proposed. Two penalty functions, that impose a progressive 

penalization to solutions that violate the constraints, are discussed. The implemented 

functions impose a low penalization when the violation of the constraints is low and a 

heavy penalty when the violation is high. Numerical results, obtained using twenty-

eight test problems, comparing the proposed Fuzzy Logic based functions to six of the 

classic Penalty and Barrier functions are presented. 

Considering the achieved results, it can be concluded that the proposed penalty 

functions besides being very robust also have a very good performance. 
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1. Introduction 

Optimization, also known as Mathematical Programming, is used in many 

decision making processes. In these processes the main objective is to 

determine the best use of available resources in order to obtain the best results 

for a given reality. So, optimization has been used in many scientific areas such 

as Engineering, Statistics and Chemistry, among others. 

Problems are defined by models consisting of one or more functions (which 

need to be minimized or maximized), called objective function, and at least one 

variable, the decision variable(s). An unconstrained optimization problem can 

therefore be defined as in (1). 
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In some optimization problems the objective function variables may be subject to some 
conditions, defined by the problem constraint functions. These constrained problems 
can be defined as in (2): 
 

 

Unconstrained and constrained optimization problems can be found in many 

real life problems, and in many cases: the objective function values and/or its 

constraints are the result of complex and time consuming simulations; its values 

are obtained experimentally or by natural phenomena observation; the analytic 

functions might be too complex or even not be available; the samples have 

noise. There are also some cases where the objective function is non-smooth or 

non-differentiable, or even non-continuous. In such cases derivative based 

methods cannot be used to solve these problems, as presented in Conn, 

Scheinberg, and Vicente (2009). 

Some of the possible solutions, whenever this type of problem must be solved, 

include the use of heuristic methods such as particle swarm (Wu et al., 2014), 

hybrid methods, e.g. particle swarm method followed by a global minimization 

method (Vaz and Vicente, 2007 and Vaz and Vicente, 2009), tabu search and 

simulated annealing algorithms as presented in Hedar et al., 2002 and Hedar 

and Fukushima, 2006, or genetic algorithms (Boudjelaba, Ros, & Chikouche, 

2014). 

These methods can be used if the cost of the objective function evaluation is 

negligible, otherwise they must be avoided. Instead, other derivative free 

algorithms, namely deterministics algorithms, can be used. Such algorithms 

include direct search methods that do not use derivatives or approximations to 

them (Lewis et al., 2000, Kolda et al., 2003 and Hooke and Jeeves, 1961). 
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In Correia et al., 2010 and Mestre et al., 2010 it was presented a Java API 

(Application Programming Interface), with remote access, which includes only 

Direct Search Optimization Methods for solving both unconstrained and 

constrained optimization problems. The objective of this API is to be included in 

other software packages, to solve problems where derivative based methods 

cannot be used. It was used in location estimation problems by the authors 

in Mestre et al., 2012 and Mestre et al., 2013 to tune the LEA (Location 

Estimation Algorithm) and adapt them to the mobile terminals. While inMestre et 

al. (2012) a Fuzzy Logic based LEA was implemented and the API was used to 

tune the parameters/transitions of membership functions and adjust the weights 

of OWA (Ordered Weighted Averaging), in Mestre et al. (2013) the API was 

used to tune the internal parameters of the Weighted k-Nearest Neighbour 

algorithm and a scaling factor for the RSSI (Received Signal Strength) values. 

In both cases, because of the nature of the data, derivative based methods 

could not be used. 

In this context, the most used techniques to solve constrained problems consist 

on transforming constrained problems into unconstrained problems that are 

easier to solve, which solution is related with the solution of the original 

problem. One of such techniques consists in using Penalty and Barrier 

methods, which are used in this work. 

Penalty and Barrier functions have been widely used and studied in the last 

years, for example by Byrd et al., 2008, Chen and Goldfarb, 2006, Fletcher, 

1997, Gould et al., 2003, Leyffer et al., 2006, Klatte and Kummer, 

2002, Mongeau and Sartenaer, 1995 and Zaslavski, 2005, due to its ability to 

deal with Degenerated Problems. 

Exact Penalty Methods have been successfully used to solve Mathematical 

Programs with Complementary Constraints, by Benson et al., 2006, Leyffer et 

al., 2006, Rodrigues and Monteiro, 2006 and Rodrigues et al., 2009. They were 

also used in Constrained NonLinear Programming to assure the admissibility of 

sub-problems and the iteration reliability by Byrd et al., 2008 and Chen and 

Goldfarb, 2006. 

Combination of Penalty Methods and Fuzzy concepts have been used by 

several authors such as Bustince et al., 2013, Chen et al., 2013, Gouicem et al., 

2012, Bogdana and Milan, 2009 and Jamison and Lodwick, 2001. In Bustince et 

al. (2013) the concept of penalty function is used to determine which 

aggregation function should be applied, i.e., the objective is to choose which 

aggregation function will output the best results. Chen et al. (2013) use Penalty 

concepts to construct a new objective function and avoid monotonicity and 

coincident clustering results. In Gouicem et al. (2012), Fuzzy is used for image 
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reconstruction and Penalty is used in edge detection to penalise pixels for which 

it was not detected an edge. Penalty is used to transform Linear constrained 

problems into unconstrained problems by Bogdana and Milan, 

2009 and Jamison and Lodwick, 2001. 

These authors add the Penalty concept to Fuzzy, i.e., Penalty is used as an 

auxiliary tool used together with Fuzzy algorithms. The objective of the present 

work is different: use Fuzzy as a tool to generate Penalty functions that can be 

used together with Direct Search Optimization Methods. An improved version of 

a method presented by the authors in Matias et al. (2012), and a new Penalty 

function based on Fuzzy Logic, which adapts the penalty to apply based on its 

previous value, are presented. By using Fuzzy Logic to generate a Penalty 

Function it is possible to do a progressive penalization of the objective function 

when the problem constraints are violated. 

With these two penalty functions it is expected to obtain a better performance of 

direct search methods, i.e., a lower number of objective function evaluations. 

2. Penalty and Barrier functions 

Let us consider the above presented constrained problem (2), Penalty and 

Barrier methods were developed to solve such problems by solving a sequence 

of unconstrained problems, i.e., a transformation of the original problem into a 

sequence of unconstrained problems is made. 

Penalty and Barrier Methods comprise two processes (Fig. 1): 

 

External Process (EP) – where a succession of Unconstrained 

Optimization Problems is created from a constrained problem; 

 

Internal Process (IP) – where each of the previously generated problems, 

the Unconstrained Optimization Problems are solved. 
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When Penalty and Barrier functions are used a new objective function, Φ k , 

based on information from the original problem is created. Therefore a 

succession of Unconstrained Optimization Problems are obtained. These new 

problems depend on a positive parameter, r k  (Penalty/Barrier parameter) which 

solutions x ∗(r k)  converge to the solution of the original problems x ∗  (External 

Process). 

Direct Search methods are then used to solve the resulting Unconstrained 

Optimization Problems (Internal Process). At each iteration k the problem to be 

solved by the Internal Process is: 
 

 
 

where r is a penalty parameter and p is a Penalty/Barrier function that 
penalises/refuses points that lie outside the feasible region. 

Barrier methods can be used only when we have an initial feasible point. These 

methods were widely presented in Doyle (2003). 

According to Freund (2004) a barrier function can be defined as a 

function b:R n→R , that satisfies the following conditions: 
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On the other hand when we have infeasible initial points and when an infeasible 

solution can be tolerated, Penalty methods can be used. Its objective is to 

penalise the constraints violation, allowing infeasible points to exist in the 

iterative process (although penalized), instead of creating a barrier on the 

constraint boundary. 

According to Freund (2004) a Penalty Function can be defined as a 

function p:R n→R that satisfies: 
 

 

In this paper two Fuzzy Logic based penalty functions using different 

approaches are presented. These functions impose a progressive penalty to the 

constraints violation by mixing the concepts of a barrier (when the constraints 

are highly violated) and a penalty (when the constraints violation is low). 

For performance analysis purposes the following classic Penalty and Barrier 

functions were implemented: 

 

 

In the last years alternatives to these classic Penalty and Barrier methods have 

been developed. Polyakova and Karelin (2014) and Wang and Yuan 

(2014) presented methods based on Exact Penalty, assuming that the objective 

and constraint functions are Lipschitz quasidifferentiable/differentiable 

functions. Chen, Lu, and Kei Pong (2014)presented Exact Penalty methods for 

Non-Lipschitz Optimization, which considers that the objective function is 

continuous, and uses approximations to the derivatives. Xu and Hesthaven 

(2014) used multi-domain spectral Penalty methods for partial differential 

equations, based on approximate fractional derivatives. In Jayswal and 

Choudhury (2014) it was used an Exact Penalty Function method, for 

multiobjective optimization, which requires approximations to the derivatives. 

Therefore the above mentioned methods cannot be used to solve the type of 

problems that are the objective of our research. 
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Results obtained with classic Penalty and Barrier functions (EB, PB, CP, SP 

and ℓ 1) were compared with those obtained using the Fuzzy Penalty Functions 

(FLP1 and FLP2) presented in subsections 2.1.1 and 2.1.2. 

2.1. Fuzzy penalty functions 

As presented by the authors in Matias et al. (2012) the main objective of using 

Fuzzy Logic to build these Penalty Functions is to progressively penalise the 

constraints violation. This allows to heavily penalise functions that have a high 

constraint violation and impose a low penalty to functions that barely violate the 

constraints. The transition between low penalty (Penalty Function like behavior) 

and a high penalty (Barrier Function like behavior) must be progressive. 

2.1.1. Fuzzy Logic penalty function 1 (FLP1) 

In this work simple trapezoidal membership functions and a simple inference 

engine are used, to demonstrate the feasibility of the proposed approach and 

define its initial framework. Therefore more complex membership functions and 

other set of rules can be defined to cope with the specificities of the problem to 

be solved. 

In both Fuzzy Logic based functions (FLP1 and FLP2) the first step is to 

determine the degree of constraint violation. After calculating the value for the 

constraint violation, the next step is the fuzzification procedure. This is achieved 

using the set of membership functions presented in Fig. 2, that classify the 

constraints violation as ‘Low’, ‘Medium’, ‘High ’ or ‘Very High’. 
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As depicted in Fig. 3, the above steps are repeated for each constraint of the problem 

(c 1…c n) for the input point x  . If no violation occurs, a null penalty will applied, 

otherwise the penalty (p j ) is calculated. In the first Fuzzy Logic Penalty Function 

(FLP1) the final value of the penalty (p(x) ) to be applied to the function, i.e., the value 

that is returned to the optimization method, is obtained by the summation of all 

the p j  values. 
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2.1.2. Fuzzy Logic penalty function 2 (FLP2) 

In this second approach the penalty value calculated by the inference engine is 

not returned to the optimization method. Instead there is a new step that scales 

up or down the penalty based of the last and the current values of the penalty. 

The objective is to loose the penalty if the new constraints violation for 

iteration n   is lower than the violation at iteration n-1 , and to penalise even 

further the objective function if the constraints violation at the current iteration is 

higher than the previous iteration. Therefore, it is an adaptive penalty function. 

In Fig. 4 is presented the principle of operation of this penalty function. The first 

step is to calculate the penalty for the current iteration (n  ), using the same 

procedure as in FLPL1, and then compare it with the value obtained during the 

previous iteration (p(x) n - 1 ). The result of this comparison (p(x) n/p(x) n - 1) is fed 

to an inference engine similar to the one used on the first phase (the only 

difference between them is the value for the weights (w 1…w 4) and the values 

for a,b,c,d  and e). 

 
 
This second inference engine calculates the scaling factor (k) to be applied to the 
current penalty. Therefore the final penalty value to be used is: 
 

 
 

3. Derivative-free methods 

As above mentioned, constrained optimization problems can be solved by using 

Penalty/Barrier Methods which transform these problems into a sequence of 

problems of the form of problem define in (1), i.e., problems are solved (in the 

Internal Process) using methods that are usually used for solving Unconstrained 

Optimization Problems, when the derivatives are not known. 
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In the Java API, used to do the tests presented in this paper, the following 

derivative-free optimization algorithms were implemented: 

• 

Opportunistic Coordinated search method; 

• 

Hooke and Jeeves method; 

• 

A version of Audet et al. method; 

• 

Nelder–Mead method; 

• 

A Convergent Simplex method. 

These are well known optimization methods, that can be found in the literature. 

Opportunistic Coordinated search, Hooke and Jeeves and Audet et al. methods 

are Pattern Search or Directional Direct-Search Methods, (Conn et al., 2009), 

that determine possible points using fixed search directions during the iterative 

process: starting at an iteration x k , the next iteration will be found in a pattern or 

grid of points, in the fixed directions, at a distance s k , called step size. 

Nelder–Mead and the Convergent Simplex methods are Simplex Methods, 

(Conn et al., 2009), characterized by constructing an initial simplex and change 

the directions of search in each iteration, using reflection, expansion and 

contraction movements and shrunk steps. 

4. Results and discussion 

In this section are presented a set of tests that were made to assess the 

feasibility of the two proposed methods and compare their performance to the 

classic methods. For this comparison it was selected the PA problem (Audet & 

Dennis, 2004), two problems from the CUTE collection (Bongartz, Conn, Gould, 

& Toint, 1995), problems C801 and C802, and a set of problems from the 

Schittkowski collection (Schittkowski, 1987). From the Schittkowski collection, 

the following twenty-five problems were selected: S215; S218; S222; S223; 

S224; S225; S226; S227; S228; S229; S230; S231; S232; S233; S249; S250; 

S257; S264; S270; S315; S323; S325; S326; S337 and S343. 

These last problems are also present in the princetonlib collection as presented 

in Rios and Sahinidis (2013). Details about these problems are presented 
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in Table 1, where n is the dimension of the problem, i.c. the number of 

inequality constraints and e.c.represents the number of equality constraints (the 

number of simple bounds is included in the number of inequality constraints). 
 

 
 
Each one of these problems is solved using the five internal process methods 
(presented in Section 3) and for each internal method the problem is solved using all 
the Penalty and Barrier functions presented in Section 2. 
 

http://www.sciencedirect.com/science/article/pii/S0957417415003127#t0005
http://www.sciencedirect.com/science/article/pii/S0957417415003127#s0030
http://www.sciencedirect.com/science/article/pii/S0957417415003127#s0010


 
 
The above presented parameters were recorded for the used test problems, and these 
data were used to assess the performance of the proposed Penalty/Barrier functions 
and compare their performance to that of the classic Barrier/Penalty functions. 
 



 
 
In Table 2 are presented the results obtained when solving all the test problems using 
the above mentioned parameters. These results are presented by Internal Method (IM) 
and Test number and there are two types of results presented: percentage of 
successful runs (Suc.), i.e., percentage of problems that were solved and have a 
feasible solution; percentage of best objective function evaluations, i.e., percentage of 
problems where the lower number of objective functions evaluations (B.#.E.) was 
obtained. 
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IM1, IM2, IM3, IM4 and IM5 are “Opportunistic Coordinated search method”, “Hooke 
and Jeeves method”, “A version of Audet et al. method”, “Nelder–Mead method” and “A 
Convergent Simplex method” respectively. 
 

 
 
In Table 3 are presented the results obtained when solving all test problems using the 
proposed Fuzzy Logic based and classic penalty/barrier functions. These results are 
presented by Internal Method (IM) and PF function, and as above are presented the 
percentage of successful runs (Suc.) and the percentage of best objective function 
evaluations. 
 

 
 

Data shows that when comparing the performance of the “traditional” Penalty 

and Barrier functions with the first Fuzzy Logic based penalty function (PF=7), 

the last one had always the best results for the percentage of successful runs 

and the lower number of objective function evaluations. Therefore, for this set of 

test problems, it can be considered a good penalty function. 

Comparing with the performance of PLF1, it can be observed that the addition 

of another processing stage to the Fuzzy Algorithm (FLP2) had a positive 

impact on the performance of IM4 when analysing the number of successful 

results, a neutral impact on IM3 and IM5, and a negative impact on IM1 and 

IM2. Analysing the number of objective function evaluations, better results were 

obtained for IM4. 

If a comparison is made between FLP2 and the “classic” methods, it can be 

concluded that the first had better overall performance. 
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These data are corroborated by the values presented on Table 4, which are 

presented the overall values for the percentage of successful runs (Suc.) and 

percentage of best number of objective function evaluations (B.#Ev.). 
 

 
 

Data confirms that the overall performance of the Fuzzy Logic based penalty 

functions was better than the other Penalty and Barrier functions. The proposed 

methods had a very good performance, both in terms of the number of 

successful runs, and the number problems that were solved using less objective 

function evaluations. 

5. Conclusion 

Using Fuzzy Logic to build penalty functions allowed to model the uncertainty 

associated with the degree of constraint violation. A framework to support such 

a need was developed, which includes a base approach for both membership 

functions (although other functions are admissible, e.g., gaussian function) and 

parameters/transitions of the membership functions. 

Regarding to the two implemented penalty functions, the first calculates the 

penalty based only on information about the current constraints violation, and 

the second also takes into consideration if the penalty for the current iteration is 

higher or lower than the previous iteration, i.e., it assesses if the current solution 

is getting out of the infeasible region or getting even deeper into it. Therefore it 

is an adaptive Penalty function. 

Because these Penalty functions can be used with Direct Search Methods, they 

are suitable for applications where the cost of evaluating the objective function 

cannot be negligible. Also in applications where black box problems must be 

solved, the developed methods can be used. 
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As a conclusion, the proposed functions are suitable as penalty functions to be 

used with direct search methods. Because of its use with direct search 

methods, these penalty functions might not be so efficient as the derivative 

methods, however the combination of direct search methods and penalty 

functions can be used to solve some types of problems that derivative methods 

cannot. There might be also an issue related to the scale of the problem, 

constraints or its variables, which can make the method to have different 

sensitivity for the same variation of the input variables (at different points). 

Although this limitation can be overcome by changing the membership 

functions, as future work a dynamic selection/tuning of membership functions 

will be implemented. 

In addition to the application of Fuzzy extensions in these penalty functions, 

future research directions also include the use of Fuzzy Logic based penalty 

functions (together with direct search methods) to tune position tracking 

algorithms (for indoor location using wireless networks), and adjust the internal 

parameters of Fuzzy Logic inference engines (e.g. adjust the coefficients of an 

aggregation function for a specific problem or application, such as image 

compression for transmission over a low bandwidth wireless link). 
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