
REV. CHIM. (Bucharest) ♦  66 ♦  No. 12 ♦  2015 http://www.revistadechimie.ro 1929

On the Analysis of Data Emerging in Non-linear
and Complex Systems

Comparison of two X-ray Prony spectra

RAUL R. NIGMATULLIN1*, A.S. KHRAMOV2, A.G. KIYAMOV2, B. F. FATKHULLIN2 , J.T. MACHADO3, DUMITRU BALEANU4,5

1 Kazan National Research Technical University (KNRTU-KAI), 10 Karl Marx Str., 420011, Kazan, Tatarstan, Russia
2 Institute of Physics, Kazan Federal University, Kremlevskaya Str.,18, 420008. Kazan, Tatarstan, Russian Federation
3 ISEP-Institute of Engineering, Polytechnic of Porto Department of Electrical Engineering, Rua Dr. Antonio Bernardino de
Almeida, 431. 4200-072 Porto, Portugal
4 Cankaya University, Department of Mathematics and Computer Sciences,Balgat 06530,Ankara, Turkey
5 Institute of Space Sciences, Magurele, 077125, Romania

 New arguments proving that successive (repeated) measurements have a memory and actually remember
each other are presented. The recognition of this peculiarity can change essentially the existing paradigm
associated with conventional observation in behavior of different complex systems and lead towards the
application of an intermediate model (IM). This IM can provide a very accurate fit of the measured data in
terms of the Prony’s decomposition. This decomposition, in turn, contains a small set of the fitting parameters
relatively to the number of initial data points and allows comparing the measured data in cases where the
“best fit” model based on some specific physical principles is absent. As an example, we consider two X-ray
diffractometers (defined in paper as A- (“cheap”) and B- (“expensive”) that are used after their proper
calibration for the measuring of the same substance (corundum α-Al2O3). The amplitude-frequency response
(AFR) obtained in the frame of the Prony’s decomposition can be used for comparison of the spectra recorded
from (A) and (B) – X-ray diffractometers (XRDs) for calibration and other practical purposes. We prove also
that the Fourier decomposition can be adapted to “ideal” experiment without memory while the Prony’s
decomposition corresponds to real measurement and can be fitted in the frame of the IM in this case. New
statistical parameters describing the properties of experimental equipment (irrespective to their internal
“filling”) are found. The suggested approach is rather general and can be used for calibration and comparison
of different complex dynamical systems in practical purposes.

Keywords: complex systems, X-ray diffractometer, corundum, Fourier and Prony’s decompositions, data
treatment analysis, ideal experiment, intermediate model.

It is becoming evident that the fundamental and simple
(from the mathematical point of view) rules that have been
established earlier for simple systems are difficult to find
and then (if they were found) to justify for different complex
systems. In order to understand better the behavior of a
complex system that does not have the “best fit” model
(containing a relatively small number of fitting parameters),
based on simple physical principles, it is necessary to find
some general principles that might exist in a wide class of
phenomena. General principles are hidden and covered by
uncontrollable factors known in measurements as an
influence of random fluctuations or “noise”. In order to
decrease the effects of these high-frequency fluctuations
many experimentalists repeat their measurements many
times having in mind the conventional statistical paradigm:
the repetition of N measurements of the uncorrelated
random sequence should decrease the amplitude of noise
by a factor of 1/N1/2. But the hypothesis that noise is really
uncorrelated is, in many cases, an unjustified supposition.
So, the key question to be formulated: are there some
justified (or verified) arguments that might test this
supposition and take into account the influence of the
measured equipment? In many cases the successive
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measurements have strong correlations and so the
conventional paradigm (1/N1/2) does not work and should
be replaced by more general and verified scheme.

In papers [1-3] based on different experiments it was
proved that many successive measurements are strongly-
correlated and actually remember each other. The solutions
of the corresponding functional equations that
mathematically reflect the fact of a memory presence lead
us to reconsidering the conventional supposition and to
formulate a new concept of measurements that is based
on an intermediate model (IM). This IM has a set of
parameters that is small in comparison with number of
initial data points and provides a good fit of the measured
curve when the “best fit”/specific model based on some
physical principles is absent. We define the governing
principle by an evolution of the repeated measurement
process as the Quasi-Periodic (QP) process and describe
its general properties. The further continuation these ideas
were received in papers [4-6] where it has been proved
that for all reproducible measurements can be expressed
in terms of the IM. This statement was proved on some
available and reproducible data. Besides, in the frame of
new approach it becomes possible to eliminate the
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influence of the apparatus function (AF) and reduce all
measurements to an ideal experiment. After elimination
of the random factors accompanying each process of
measurements one can prove that the IM for ideal
experiment is reduced to the fitting of the measured
function by the fragment of the Fourier series.

This paper serves as a logical continuation of the previous
papers [1-6] and can be used in observation of the
dynamics of different complex systems. We want to
demonstrate another important application of the
suggested conception. Practically, one can use two XRDs
taken from two different producers (one was labelled as
A-XRD (“cheap”) and another one B-XRD (“expensive”))
and compare their spectral characteristics in the frame of
the unified intermediate model IM). The new QP-concept
allows fitting the measured data in the frame of parameters
that describe the AFR (amplitude-frequency response)
reflecting the decomposition to the generalized Prony’s
spectrum (GPS). Therefore, the problem that is considered
in this paper can be formulated as follows:

- to show and justify some criteria that helps detecting
the presence of QP process in the repeated experimental
measurements;

-to show a proper solution of the corresponding
functional equation, while this solution yields the
description of the identified QP process;

- to suggest some computing algorithm for fitting of the
actual data to the analytical function that follows from the
solution of the corresponding functional equation.

The content of this paper is organized as follows. In the
section 2 we give some important details of describe the
measured X-ray spectra. This information can be useful
for comparison of other possible equipment. In section 3
we remind briefly the basic principles outlined previously
in papers [1-6] and add some new and significant
elements that can be important for creating a suitable
algorithm. Section 4 summarizes the results and outlines
the perspectives of this approach for the quantitative
description of time-dependent reproducible data that are
registered in different systems and devices. Here we should
note that under the complex system we imply a system
where a conventional model is absent [7]. Under simplicity
of the acceptable model we imply the proper hypothesis
(“best fit” model) containing a minimal number of fitting
parameters that describes the behaviour of the system
quantitatively. The different approaches that exist
nowadays for the description of different complex systems
are collected in the recent review [8].

Experimental part
The measurements are performed in two

diffractometers with main characteristics that are listed
below.

A – XRD. The characteristics of the XRT: power – 10 Wt.,
working voltage – 25 kV, the working current 0.4 mA. The
anode is made from iron, the primary radiation – Fe Kα, the
wavelength consists 1.93728Ao. The used detector is
positionally-sensitive gas detector (PSGD) with 4096
channels. The working range of angle measurements 2θ
≈ 17-76o  and each certain diffraction angle is fixed in each
channel. The asymmetric scheme of recording is explained
schematically by figure 1(a). A set of diffractograms was
obtained in the range of angles 2Θ= 19.32-73.9o with the
fixed step 0.02o. From the total diffractogram spectrum
the range of angles 2θ = 25.96 – 37.16o was extracted. A
typical spectral curve recorded for the first corundum reflex
is given in figure 1(b).

B – XRD. X-ray tube (XRT): Power – 1600 Wt., working
voltage – 40 kV, working current – 40 mA. The material of
anode made from copper, primary radiation – Cu Kα, with
the fixed wavelength – 1.5418Ao. It has semiconducting
detector with 192 channels. The registration of the
secondary radiation was performed in one-channel regime
and one channel contains 9 strips. Before XRT and detector
the slits were established with clearance 0.6 mm. Besides,
for decreasing of the divergence of the initial X-ray beam
two Soller slits (vertical with 2.5 degrees for the primary
radiation and horizontal slit having the same angle for
reflected radiation) were used. The total number of points
is remained the same (equaled 560) as for diffractograms
obtained for the A-XRD described above. Exposition time
of each diffractogram occupied 900 s with interval between
measurements 30 s. The symmetric (Θ-Θ) scheme for
diffractograms recording is depicted schematically on
figure 2(a). The set of diffractograms was obtained in the
range of angles 2Θ = 24.8-26.2o with the fixed step 0.0025o,
exposition time for one point equaled 1 s. Each
diffractogram contains 560 data points and temporal
interval between successive measurements occupies 39
s. Typical diffractogram is depicted on figure  2(b). The
statistical characteristics are given in table 1 with the same
notations. The total time for obtaining of 20 measurements
occupied 199.5 min. The statistical characteristics for all
20 diffractograms are listed in table 1, where Ntot defines
the total number of digit pulses collected for one spectral
curve, Nmax defines the maximal number of digit pulses
collected for one data point, the <CPS> defines the mean
velocity of digit pulses per second.

Fig.1(b). Typical diffractogram recorded from the corundum first
reflex and obtained with the help of the A - XRD

Fig.1(a). The typical measurement scheme realized for A (“cheap”)
- XRD. ψ is a constant angle of incidence. The angle of reflection

accepts different values –Θi. The acronym PSD signifies the
positionally sensitive detector.
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In these experiments we measured the same
substance. As the measured object we chose corundum
(α-Al2O3). The selection of this object was dictated by the
following reasons: it has narrow diffraction peaks and it is
used frequently for calibration and adjustment purposes.
The corundum structure is well-known: it represents a
crystal structure with symmetry described by the space
group R3c with constants of the lattice a=4.7540Ao  and
c=12.9900 Ao (hexagonal arrangement). We did not put a
problem of determination of a structure of this substance.
So, we measured only the first reflex from the planes with
index (102) and interplanar spacing d=3.477 Ao.

Description of the treatment procedure
The QP-processes and the basic functional equations

In the beginning of this section we want to remind the
basic principles (taken from papers [1-6]) that can lead to

existence of the QP-processes in real measurements. It is
well-known that a pure periodic process with a given period
T satisfies to the following functional equation

(1)

From the experimental point of view, relationship (1)
corresponds to an “ideal” experiment where all successive
experiments remained the same and coincided with the
first one. The general solution of this functional equation is
known and it can be expressed in the form of the Fourier
series decomposition (usually the measured function is
defined on the discrete set of the given points [tj]
j=1,2,…,N).

        (2)

Fig.2(a). The symmetrical scheme for recording of diffractograms
realized on the B (“expensive”) - XRD. The incident angle Θ is

fixed and X-ray source together with detector change their
positions simultaneously in order to pass through the whole

sample

Fig.2(b). Typical diffractogram recorded from the corundum first
reflex and obtained with the help of the B - XRD.

Table 1
THE COMPARATIVE

CHARACTERISTICS OF TWO
DIFFRACTOGRAMS OBTAINED

FOR CORUNDUM (α-Al2O3). THE
PARAMETERS ARE EXPLAINED IN

SECTION 2
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So, from the concept of ideal experiment the Fourier
decomposition accepts new interpretation and
corresponds to the absence of a memory (in other words,
the absence of correlations between successive
measurements). Instead of equation (1) we consider more
general functional equation

    (3)

where the parameters a and b represent real constants.
This functional equation means that: temporal evolution
of some process taking place on the interval t > T is based
on events (measurements in our case) that took place
presumably in the nearer past (t < T). This functional
equation was considered for the first time in [9] but in the
present paper we want to generalize it. The solution of this
equation can be written in the following form [9]

   (4)

If a > 1 then we have the increasing exponential factor
(λ > 0). The period T is supposed to accept only positive
values. For this situation the influence of the past events on
the present event is becoming essential. For a < 1 we have
the effect of the exponential decay (λ < 0) and, in this
case, the influence of the past events (that were take place
for t < T) upon the present event (t > T) is not essential. For
a = 1 (b ≠ 0) we have alongside with periodic oscillations
the appearance of a linear temporal trend and, finally, for a
= 1 and b = 0 the solution (4) is reduced to the conventional
Fourier solution (2). If we associate the function F(t) with
some measurement then the functional equation (3) can
be interpreted as follows. The second measurement
(realized after period T and associated with the duration of
one experiment) being plotted with respect to the previous
measurement forms a curve close to a segment of straight
line. It means that the second measurement is strongly-
correlated with the previous one. It is easy to prove (by
mathematical induction) that other successive
measurements performed in later periods, also satisfy to
the functional equation (3) but in this case the parameters
a and b depend on a number of successive measurement

(5)

The constants as and bs (s = 1,2,…,M) where M defines
here and below the last measurement can be found with
the help of the recurrence relationships

(6)

or numerically, with the help of the linear least square
method (LLSM).

Equation (3) admits the following generalization [2-3]
.

(7)

This functional equation describes mathematically a
wide class of the QP processes and can be interpreted as
follows. The measurement process that takes place during
the interval [(L-1)T, LT] partly depends on the processes
that have been happened in the previous temporal intervals
[sT, (s+1)T] with s=0,1,…, L-2. The set of the constants

{as} (s = 0,1,…,L-1) can be quantitatively interpreted as
the influence of a memory between successive
measurements. In comparison with the functional
equation (7), expression (3) can be interpreted as a system
having the shortest memory. The solution of the generalized
functional equation (7) can be presented in two forms

         (8a)

   (8b)

Here the functions Prr(t) define a set of periodic functions
from expression (2) and kr (r=1,2,…,L) coincide with the
roots of the characteristic polynomial

(9)

In general, these roots can be positive, negative, g-fold
degenerated (with degeneracy value g) and complex-
conjugated. We should note also that for the case (8b) one
of the roots kr coincides with the unit value (k1=1) that
leads to the pure periodic solution. As before, the finite set
of the unknown periodic functions   (r= 1,2,…,L) is
determined by their decomposition coefficients

 (10)

We want to emphasize here the following fact. The
conventional Prony decomposition [10-12] does not have
any specific meaning and was considered as an alternative
decomposition alongside with other transformations
(Fourier, wavelet, Laplace and etc.) used in the signal
processing area. Nevertheless, in paper [1] we found an
additional meaning of this decomposition and now it can
imply that exponential multipliers figuring before periodic
functions can have not only real, but also decaying values.
Solution (8) has general characteristics and other roots
from algebraic equation (9) can modify essentially the
conventional solution. All possible solutions of the general
functional equation (7), for different types of roots, are
considered in papers [1-3, 7-9].

Decompositions (8)-(10) have a clear meaning and
correspond to the linear presentation of a possible memory
that can exist between repeated measurements. These
coefficients reflect also the influence of uncontrollable
factors from the measuring equipment used and this
important factor is not taken into account in the
conventional data processing. The memor y effect
(considered for the discrete set of data) is expressed
quantitatively by the enumerable set of real constants {as}
figuring in equation (7). In this sense the process without
memory (the so-called Markovian process) corresponds
to the following set of constants: a0=0, a1=0, … , aL-1=1
and its solution coincides with a pure periodic function (2).
This solution corresponds to an ideal experiment, as it has
been mentioned above. In this sense the IM coincides with
presentation of the measured data by means of the Fourier
spectrum. From another side, the conventional expression
for the mean function when in expression (7)

 and  can be inter-
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preted  as the process having a uniform memory. This
process coincides with the conventional supposition, but
in practical terms cannot be performed, because it is very
difficult to follow the condition as=1/N, b=0,
corresponding to the case of the uniform memory. As it
will be shown below, the relationship (3) is realized for the
given data with high accuracy (with relative error < 10%,
see expression (12) below) and, so, the measured data
can be approximated with the help of the fitting function
(4), which can be presented in the following and convenient
(for numerical calculations) form

We should stress here the following fact. Usually, the
variable x in many experiments cannot coincide with the
current time t. For example, instead of temporal variable t
in spectral measurements the scattering angle (θ), the
inverse wavenumber (λ-1) and number of data points (xj=j;
j=1,2,…,N) can be used also. For these types of
experiments the true value of the period T(x) is unknown
and calculation of this important parameter represents a
separate problem. Below we want to show how to solve
this problem in our case and then calculate the optimal
value of nonlinear parameter Topt associated with number
of the measured points. If one can decompose the
measured data by means of the fitting function (11), then
it can be used as the intermediate model. It contains 2K+4
fitting parameters [λ, B, E0, Ack, Ask (k=1,2,…K) and T(x)]
that form the desired AFR, corresponding to the Prony’s
decomposition (11). This decomposition is not arbitrary. It
follows from natural condition (5) that can be tested and
justified for any partial experiment. In fact, the total set of
parameters should satisfy to the condition: 2K+4 << N
and only in this sense the IM can be considered as an
actual/effective replacement of random functions figuring
in repeated measurements. We should pay attention to
the damping constant λ(a) =ln(a) figuring in (4) because
it is not an independent parameter. It reflects the influence
of the device (defined as a set of uncontrollable external
factors) and depends totally on the value a that, in turn, is
calculated numerically. In order to find the optimal value of
the Topt we notice that this value should be located in the
interval [0.5 Tmax, 2Tmax], where the value of Tmax(x), in turn,
should be defined as Tmax(x) = ∆x×L(x) (∆x is a step of
discretization and L(x) = xmax – xmin is a length of the interval
associated with the current variable x). This important
observation helps to find the optimal values of Topt and K
from the procedure of minimization of the relative error
that exits between the measured function y(x) and the
fitting function (11). We use the conventional definition of
this expression for relative error that minimizes the
quadratic deviations

        (12)

The calculations show that instead of minimizing of the
surface RelErr(T,K) with respect to the two unknown
variables T and K, we can minimize the cross-section at
the fixed value of K. This initially chosen value of K should

satisfy to the condition that is given by the second row of
expression (12). If the supposition is correct, then all
measured data can be fitted in the frame of the
intermediate hypothesis (11) and compared in terms of
their AFRs. Schematically this new presentation of data
can be expressed as

(13)

Namely, these fitting parameters form the desired
decomposition in the Prony’s spectrum and define the
desired AFR.

The proposed algorithm
As it was mentioned in section 2 we obtained 20

successive measurements (s = 1, 2, … , M=20) for each
calibrated device labelled above as (B-) and A-XRD. If we
combine their spectra together with respect to the same
number of the measured points (i.e., 560) then we obtain
the picture depicted on figure  3(a).

Step 1 - Normalization procedure.
In order to compare spectral curves measured for two

different types of XRD in terms of the fitting parameters
(13) we can normalize all measures:

(14)

Here max(ys(x)) defines the maximal value of each
successive measurement. These normalized spectra are
shown on figure  3(b). In order to see the initial differences
between the spectra belonging to different spectrometers
one can calculate the following values

(15)

They are depicted onfigure 3(c). As one notice from this
figure the values corresponding to the A- XRD are more
deviated in comparison with the values corresponding to
the B-type.

Fig.3(a). Here we demonstrate two combined spectral curves
corresponding to the first measurement (s=1) for two types of
devices labelled as B- and A - XRDs. In order to compare them

with each other we should normalize their intensities in
accordance with expression (14)

(11)
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Step 2 - The derivation of the functional equation for
average values.

If we consider two successive measurements, then as
it follows from equation (3) we can write

(16)

This means that if the supposition (3) is correct, then a
and b in (16) should keep their constant values for all
measurements. However, in real measurements these
values change due to the influence of different
uncontrollable factors that are appeared in each
measurement. In fact, these variations should reflect the
quality of the whole measurement procedure. In this line
of thought, relationship (16) is replaced for more realistic
equation

(17)

where the constants as and bs and the nonlinear parameter
Ts can be found numerically from equation (12). So, after
making these preliminary calculations we should check
the relationship (17) and find the variations of the constants
as and bs. The approximate correspondence to the segment
of a straight line is shown in  figures 4(a,b), where the
strong correlation between the first measurement y(s=1)
to the second one y(s=2) for two types of XRD is shown.
Again, one can notice that standard deviations for the first
B-XRD is smaller (fig.4(a)) than the same segments
depicted for the A-XRD in figure 4(b). The calculated values
of as (coinciding with a set of slopes) and bs (defining the
set of intercepts) are given by figures 4(c,d),
correspondingly.  Figure 4(e) demonstrates the distribution
of the values of λs for  two  types of XRDs. The optimal
values of Ts should be calculated from expression (12). For
example, figure 5 shows the dependence of the relative
errors with respect to the values of the period taken from
the admissible interval [0.5 Tmax, 2Tmax] for the first spectral
curve y1(s=1) corresponding to the two types of XRDs.
Now we can put forward an interesting question: what
kind of statistically significant parameters can characterize
the “quality” of each XRD? Definitely, the internal structure
of the given diffractometer is considered in both cases as
a “black box”. From our point of view, the answer is
contained in relationship (17). We know that “ideal”
(perfect) experiment should give for all measurements

Fig.3(b). Here we show the normalized spectral curves (the first
measurement y(s=1) for both XRDs) that are used for comparison
of their statistical characteristics. Number of the measured points

(equaled 323) shows the position of extreme point.

Fig.3(c). The distribution of the normalized mean and maximal
values for the 20 measurements. This preliminary statistical

information can be used for initial comparison of two
diffractometers. As one can notice from this figure the deviations

for the A-type XRD visually look larger.

Fig.4(a). Two successive measurements y(s=1) and y(s=2) being
plotted with respect to each other form a curve close to a segment
of the straight line. The value of standard deviation in the center of

the figure shows the deviation of the second measurement with
respect to the first one.

Fig.4(b). The same dependence for two spectral curves y(s=1) and
y(s=2) is observed for the A-XRD but standard deviations in
comparison with B-diffractometer shown on figure 4(a) are

becoming larger

a=1 and b=0. If we take the mean values from the
calculated constants of as and bs

(18)
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then we obtain the objective quantitative measure that
allows us to compare the “perfection” of each
diffractometer used and its deviation from an “ideal” device
(a = 1, b = 0). As it follows from figures 2(c,d) the mean
values of the slopes and intercepts calculated for two XRDs
(B, A) are the following: <a>= 0.9467(B), 0.9377(A);
<b>=0.00051(B), 0.00104 (A). From analysis of these
values the obvious conclusion follows: the B-XRD is closer
to an “ideal” device in comparison with the “A”-type. The
new approach justifies the functional equation (3) and its

Fig.4(e). The distribution of the exponential damping factors λ for
two types of diffractometers. Again the

B-XRD justifies its definition as “expensive” one because its
deviations are concentrated closer in the vicinity of its mean value.

Fig.5. This figure explains the procedure of the finding the value of
Topt  from expression (12). The existence of the corresponding

minimal value of the relative error located in the interval [0.5 Tmax,
2Tmax] should coincide with this value. As an example two spectral

curves y(s=1) for two XRDs were chosen.

Fig.4(c). The distributions of the slopes for two types of
diffractometers are shown. As one can notice from this figure the

deviations from mean value corresponding to B-XRD (black
rhombs) are smaller in comparison with A - diffractometer

(marked by stars).

Fig.4(d). The distributions of the intercepts for two types of
diffractometers are shown. As before, the deviations of intercepts
(black rhombs) from its mean value corresponding to B-XRD are
smaller in comparison with A - diffractometer (marked by stars).
So, one can conclude that B-XRD is closer to an “ideal” device.

more general form (17) allows us to realize the Prony’s
decomposition of each measurement separately or, to
provide the final fit in accordance with equation

(19)

3. Step  - Calculation of the desired AFR for successive
and mean spectral curves.

Finally one can fit the measured set of curves (16) or
mean function (19) to the function (11) in order to calculate
the desired set of fitting parameters that form the AFR. In
order not to overload the content of the paper by a high
number of figures we show only the fit of mean spectral
curves (19) and their AFR for comparing the two types of
XRDs. Figures 6(a,b) show the final (perfect) fit of the
mean spectral curves for two types of diffractometers by
fitting function (11), figures 7(a,b) represent their AFRs,
where it was used the same number of decomposition
coefficients (modes) (K=15) providing the values of the
relative error 4.01% and 10.05% for B-, A-diffractometers,
accordingly. Other parameters that are important for
comparison of these two devices are collected in tables 2
and 3. So, for completeness of this analysis we can find 34
fitting parameters that are sufficient for the fitting of the
mean spectral curves characterizing the two types of the
spectrometers in the frame of the IM concept. Here we
want to stress the following: in spite of the measurement

Fig.6(a). The “prefect” fit of the mean spectral curve to the fitting
function (11) corresponding to the B-XRD is shown. All additional

fitting parameters including the value of the fitting error are shown
in table 3
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Fig.6(b). The “prefect” fit of the mean spectral
curve to the fitting function (11) corresponding

to the A-XRD is shown. All additional fitting
parameters including the value of the fitting

error are shown in table 3

Fig.7(a). The AFR that corresponds to the fit of the mean curve for
the B-XRD. The balls show the behavior of the parameter

  All numeric values of these plots are collected
in table 2

Fig.7(b). The AFR corresponding to the fit of the mean curve for
the A-XRD. The balls, as before, show the behaviour of the

function  . It is interesting to note the AFR for
the A-XRD has smooth behavior while for the coefficients Ack and
Ask depicted in figure 7(a) this monotone dependence is absent.

All numeric values describing this dependence are collected
 in table 2

Table 2
WE DECIDED TO GIVE ALL
FITTING PARAMETERS THAT
FORM THE DESIRED AFRs

BECAUSE OF THEIR
IMPORTANCE. THE

CORRESPONDING PLOTS ARE
PRESENTED BY FIGURES 7(a,b)
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of the same substance their AFRs are statistically different.
We explain this difference by the influence of X-ray beam
having different intensities and wavelengths for each
diffractometer used. Besides this general explanation we
associate this difference with different constructive
peculiarities of the XR detector. In construction of the B-
XRD the stable and sensitive semiconducting detector is
applied while in another device A-XRD the PSGD having
lower sensitivity and stability in detection of the reflected
X-ray beam was used.

Results and discussions
In this section we want to list the basic results that were

received in this paper.
The Fourier-transform receives an extended

interpretation and can be used as an IM for description of
“ideal” experiment without memory.

The Prony’s decomposition should be used as an IM for
quantitative description of a set of successive
measurements with memory.

Intermediate model contains a set of quantitative
parameters that can characterize experimental equipment
from statistical point of view irrespective to its internal
“filling”. The measured device in this sense can be
considered as a “black” box.

Successive measurements can create a sampling that
can characterize a “proximity” to an “ideal” experiment.

Normalization procedure expressed by relationships
(14) and (15) becomes useful in cases when the measured
data obtained from different devices are strongly deviated
from each other. It helps to decrease the essential
differences between two types of data and makes close
the statistical characteristics of two devices compared.

Conclusions
Discussing these results we can add the following:
- we suppose that the Prony’s decomposition allows

fitting many types of different and initially random data
with trend in terms of the justified IM. This assertion needs
in further confirmations;

- in modern science the wide usage of the Fourier-
transform is based presumably on the clear “physics” of
this transformation. Now the competitive Prony ’s
decomposition and its AFR also are needed in clear
interpretation because they can describe the “physics” of
many real experiments;

- IM in many cases (when the simple and “best fit” model
is absent) can solve the problem of reduction of data, when
initial data N points are reduced to (2K+2)L+1 << N (L
defines a set of roots from (9)) a relatively short number of
parameters describing the AFR of the found Prony’s
spectrum. In opens new possibilities in comparison of
many complex spectra (obtained from different spectral
equipments, at least) in terms of their AFRs that are
calculated from the same IM;

- in the frame on new approach it becomes possible to
introduce the unified calibrations curves that can be
expressed in the form of straight lines (conventional

Table 3
ADDITIONAL FITTING

PARAMETERS
CHARACTERIZING THE FIT

OF MEAN CURVES DEPICTED
ON FIGURES 6 (a,b)

The definition Range(Amd) in column 6 signifies the value: Range(Amd) = max(Amd) – min(Amd),

presentation) or in the form of nonlinear curves that can
be common for different equipments. The conception of
the IM together with its quantitative label (AFR) can play a
decisive role in constructive of new types of calibration
curves.

List of acronyms
AFR – Amplitude-Frequency Response.
AF – apparatus function
B(A) – XRD –Expensive (B), Cheap (A) X-ray diffractometer.
GPS – the generalized Prony’s spectrum
IM – intermediate model.
LLSM – linear least square method.
PSGD – positionally-sensitive gas detector.
QP – process – Quasi-Periodic process.
XRT – X-ray tube.
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