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SUMMARY

Single-row mixed-integer programming (MIP) problems have been studied

thoroughly under many different perspectives over the years. While not many prac-

tical applications can be modeled as a single-row MIP, their importance lies in the

fact that they are simple, natural and very useful relaxations of generic MIPs.

This thesis will focus on such MIPs and present theoretical and computational

advances in their study.

Chapter 1 presents an introduction to single-row MIPs, a historical overview of

results and a motivation of why we will be studying them. It will also contain a brief

review of the topics studied in this thesis as well as our contribution to them.

In Chapter 2, we introduce a generalization of a very important structured single-

row MIP: Gomory’s master cyclic group polyhedron (MCGP). We will show a struc-

tural result for the generalization, characterizing all facet-defining inequalities for it.

This structural result allows us to develop relationships with MCGP, extend it to the

mixed-integer case and show how it can be used to generate new valid inequalities for

MIPs.

Chapter 3 presents research on an algorithmic view on how to maximally lift

continuous and integer variables. Connections to tilting and fractional programming

will also be presented. Even though lifting is not particular to single-row MIPs, we

envision that the general use of the techniques presented should be on easily solvable

MIP relaxations such as single-row MIPs. In fact, Chapter 4 uses the lifting algorithm

presented.

Chapter 4 presents an extension to the work of Goycoolea [62] which attempts

xi



to evaluate the effectiveness of Mixed Integer Rounding (MIR) and Gomory mixed-

integer (GMI) inequalities. By extending his work, natural benchmarks arise, against

which any class of cuts derived from single-row MIPs can be compared.

Finally, Chapter 5 is dedicated to dealing with an important computational prob-

lem when developing any computer code for solving MIPs, namely the problem of

numerical accuracy. This proble arises due to the intrinsic arithmetic errors in com-

puter floating-point arithmetic. We propose a simple approach to deal with this issue

in the context of generating MIR/GMI inequalities.
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CHAPTER I

INTRODUCTION

A mixed-integer programming problem (MIP) is an optimization problem (P ) of the

form:

min cTx

s.t. Ax ≤ d (1)

l ≤ x ≤ u (2)

xi ∈ Z, ∀i ∈ I (3)

where c, l and u are n-dimensional vectors, x is an n-dimensional vector of variables,

A is an m× n matrix, b is an m-dimensional vector and I ⊆ {1, . . . , n}. We assume

that the components of l can be −∞ and the components of u can be +∞ and that

all data is rational.

Given a MIP problem (P ) as above, we call P its feasible region, conv(P ) the

convex hull of its feasible points and PLP the feasible region of the continuous relax-

ation of (P ), i.e., the set of points satisfying (1) and (2). In addition, define cone(P )

as the recession cone of conv(P ) (which coincides with the recession cone of PLP ).

MIPs are a very powerful tool in Operations Research, whose importance comes

from its widespread applicability and successful application in many contexts like air-

line operations, logistics, medical treatment, telecommunications, energy and others.

Therefore, the study of MIPs has immediate interest in many areas and this fact has

led to the great development of the field in the last 50 years. This thesis presents

progress in the field by studying an important subclass of problems: single-row MIPs.

In this chapter we review briefly the basic concepts and ideas that will be used

throughout the thesis. Section 1.1 reviews cutting planes, which are the main focus

1



of this thesis. Section 1.2 reviews some results on single-row MIPs and highlights

the importance of such types of problems. The remaining sections of this chapter

describe the contributions of this thesis in each particular aspect of single-row MIPs,

as well as presenting a brief introduction to each of them.

1.1 Cutting planes

One of the most successful approaches to solving MIPs is the use of cutting planes.

The idea is to relax the integrality constraints, obtaining the continuous relaxation

of the problem, whose optimal solution x∗LP is easy to obtain, but may not satisfy

the integrality requirements. The continuous relaxation is then modified by adding

to the formulation valid inequalities separating x∗LP from P , in other words, we add

inequalities of the form πTx ≤ πo that are satisfied by all points of P but not sat-

isfied by x∗LP . It is common to use the terms cuts or cutting planes to refer to such

inequalities, so we will use these terms throughout.

The hope is that the addition of such cuts to PLP will give a good approximation

of conv(P ). Indeed, if we were able to obtain a full description of conv(P ) by linear

inequalities, then the solution of (P ) would be reduced to solving a linear program

over conv(P ). For that reason, among the infinite number of valid inequalities for P

it is preferable to add to PLP the ones that define facets of conv(P ), since these are

the only ones that are in some sense essential to the description of conv(P ). For more

details, see [85].

The cutting plane algorithm was first proposed by Dantzig, Fulkerson and John-

son [34] to solve the Traveling Salesman Problem and was later studied by Gomory [54]

to solve integer programs. Nowadays it is much more common (and more effective)

to use cutting planes within a branch-and-bound framework to solve large MIPs.

Such an approach was first implemented by Hong [70] and was later given the name

branch-and-cut by Padberg and Rinaldi [89].
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1.2 Single-row mixed-integer programs

We say that a MIP is a single-row MIP whenever the system (1) is defined by a single

constraint. In other words, it is a problem of the form:

min cTx

s.t. aTx ≤ b

l ≤ x ≤ u

xi ∈ Z, ∀i ∈ I

where a is an n-dimensional vector and b is a scalar.

Single-row mixed-integer programming problems have been studied thoroughly

under many different perspectives over the years. While not many practical applica-

tions can be modeled as a single-row MIP, their importance lies in the fact that they

are simple, natural and very useful relaxations of more general MIPs. In fact, if we

consider the original MIP:

(P ) min cTx

s.t. Ax ≤ d (1)

l ≤ x ≤ u (2)

xi ∈ Z, ∀i ∈ I (3)

and aggregate constraints (1) by using multipliers λ ∈ Qm
+ , we get the following

single-row MIP:

(K) min cTx

s.t. λAx ≤ λd

l ≤ x ≤ u

xi ∈ Z, ∀i ∈ I.

Note that any point that is feasible for (P ) is also feasible for (K), therefore P ⊆ K

and any inequality that is valid for K is also valid for P . Throughout we will often
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use the term mixed-integer knapsack (MIK) problem to refer to a single-row mixed-

integer program. Moreover, we will use mixed-integer knapsack set to refer to the

feasible region of a mixed-integer knapsack problem. We will refer to any inequality

valid for a given mixed-integer knapsack set as a mixed-integer knapsack cut.

The main idea is that since (K) is easier to study than (P ), we would be able

to obtain strong inequalities (hopefully facet-defining) easily and these would lead

to strong inequalities for (P ) [32]. In fact, Bixby et al. [20, 21] report that cutting

planes play a crucial role in speeding up the practical solution to MIP problems,

in particular, the Gomory mixed-integer cut (GMI), the mixed-integer rounding cut

(MIR) and the lifted knapsack cover cuts, all of which are MIK cuts.

The literature in MIK cuts is vast and it would be outside the scope of this thesis

to mention all of the existing papers. However, for the purpose of introducing MIK

cuts, we highlight below some important papers on this subject that have appeared

in the literature.

In a seminal paper, which is widely considered to be the paper marking the birth

of the field of Integer Programming, Gomory [54] proposes an algorithm for solving

pure integer programs based on a class of cutting planes which are MIK cuts. Later, in

[55], he proposed a relaxation of general integer programs called the corner polyhedron,

which is obtained by relaxing nonnegativity constraints for variables that are basic at

a given basic feasible solution of the problem. Such a relaxation leads to the study of

the so-called master cyclic group polyhedron, which provides a framework that allows

the derivation of several classes of cuts, all of which are MIK cuts. In fact, any cut

that is derived from the master cyclic group polyhedron is a MIK cut, since such

a polyhedron is defined by a single constraint. Examples of classes of cuts that are

obtained from facets of the master cyclic group polyhedron are the GMI/MIR cut [57],

two-step MIR [35], 2-slope, and 3-slope cuts [9]. Several other studies related to the

master cyclic group polyhedron exist, for instance see [36, 37, 51, 50, 58, 60, 59].
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Another very important paper in the context of MIK cuts is the one by Balas et

al. [16]. Before such a paper, Gomory cuts were regarded as impractical, with many

authors stating either their unsuccessful experience with them or their beliefs as to

why they would not work well in practice (for more details on this see [30]). Balas

et al. showed that Gomory cuts could be used in practice with great success within

a branch-and-cut framework and after that paper Gomory cuts started to be in the

spotlight again, leading to several variations and improvements of it [3, 31, 76, 78]

and ultimately becoming the most successful class of cuts in commercial solvers like

CPLEX.

Other important papers about MIK cuts are the ones dealing with lifted knapsack

cover cuts [15, 18, 32, 64, 66, 65, 69, 90, 100, 104]. The knapsack cover cuts are based

on the simple observation that a set of binary variables (called a cover) cannot all be

1 since otherwise the knapsack constraint will be violated (assuming all coefficients

are nonnegative). Lifting is then performed to strengthen the coefficients of the other

variables which are not present in the cover.

More recently, there have also been papers dealing with general MIK cuts that

are obtained by a separation routine based on an optimization oracle [13, 23, 48, 62,

74, 103] as well as computational studies regarding several different classes of MIK

cuts [17, 22, 37, 38, 49, 51].

Other important recent classes of cuts that have appeared are the mingling cuts [12]

and the equivalent Atamtürk’s lifted knapsack cuts [10], weight inequalities [99], the

{0, 1
2
}-cuts [24] and the mod-k cuts [25] among others.

The purpose of this thesis is to advance the existing knowledge in the context of

cutting planes for single-row MIPs, both with theoretical results and computational

experiments. In what follows, we will give a brief summary of the motivation and the

results that are going to be presented throughout this thesis.
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1.3 The master cyclic group polyhedron

As mentioned in the previous section, an important polyhedron for generating MIK

cuts is the master cyclic group polyhedron (MCGP), which is defined as:

P (n, r) = conv

{

(x, y) ∈ Zn−1
+ × Z+ :

n−1
∑

i=1

ixi − nyn = r

}

, (4)

where r, n ∈ Z, and n > r > 0. Note that the Master Cyclic Group Polyhedron is

usually presented as

P ′(n, r) = conv

{

x ∈ Zn−1
+ :

n−1
∑

i=1

ixi ≡ r mod n

}

which is the projection of P (n, r) in the space of x variables. We use (4) as it makes

the comparison to MEP simpler.

Note that we may assume, without loss of generality, that any valid inequality

πx+ ρnyn ≥ πo for P (n, r) satisfies ρn = 0, since we can always add to it multiples of

the original equality constraint so that such a condition is satisfied. Now, given any

facet-defining inequality πx ≥ πo of P (n, r), define f : [0, 1]→ R as:

f(a) :=



































0, if a = 0 or a = 1

πi, if a = i
n

for some i ∈ {1, . . . , n− 1}

(1− r)f( i
n
) + rf( i+1

n
), if a = i+r

n
for some i ∈ {0, . . . , n− 1}

and 0 < r < 1.

It is easy to show that, for a single-row MIP of the form

Q =

{

w ∈ Z
q
+ :

q
∑

j=1

pjwj = s

}

,

inequality
q
∑

j=1

f(p̂j)wj ≥ f(ŝ) is valid for Q. Therefore, facet-defining inequalities for

P (n, r) can be used to yield (hopefully strong) valid inequalities for any MIP.

However, this fact would not be useful unless facet-defining inequalities of P (n, r)

were easier to obtain than facet-defining inequalities of Q. Fortunately, this is indeed

the case as shown in the following theorem by Gomory [55]:
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Theorem 1.3.1 (Gomory [55]). The inequality π̄x ≥ 1 defines a nontrivial facet of

P (n, r), for n > r > 0, if and only if π̄ ∈ Rn−1 is an extreme point of

Θ =



































πi + πj ≥ π
(i+j)modn

∀i, j ∈ {1, . . . , n− 1},

πi + πj = πr ∀i, j such that r = (i+ j) modn,

πj ≥ 0 ∀j ∈ {1, . . . , n− 1},

πr = 1.

This basic underlying theorem behind group cuts allowed future research in the

area, as mentioned in Section 1.2. In particular, it implies that the separation problem

for P (n, r) can be solved by using a small LP. It also gives conditions which one can

use to check if or when a given class of inequalities is facet-defining for P (n, r).

1.3.1 Contributions of this thesis

In Chapter 2, we extend the MCGP by considering the master equality polyhedron

(MEP), which we define as:

K(n, r) = conv

{

(x, y) ∈ Zn
+ × Zn

+ :
n
∑

i=1

ixi −
n
∑

i=1

iyi = r

}

.

It is easy to see that MEP contains MCGP as a proper face and, as such, is a

generalization of it.

Similar to Gomory [55] we derive a characterization of all facet-defining inequalities

of the MEP, which allows easier separation and identification of possible facet-defining

inequalities.

Since MCGP is a face of MEP, any facet-defining inequality of MCGP can be

lifted to obtain a facet-defining inequality of MEP. We study such liftings and show

that the number of possible lifted facets is only linear in the number of variables. This

is in contrast to general lifting, in which there is a potentially exponential number

of lifted facet-defining inequalities. Still in the context of lifting, one could question
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whether all facets of MEP can be obtained by lifting facets of MCGP. We show, by

means of a constructive general counterexample, that there are facets that cannot

be obtained in such a way, thus showing that there exists MEP facets that lead to

inequalities that could not be obtained before by using facets of the MCGP.

Finally, we show that all the results for MEP can be extended to the case where

there are continuous variables present and show how facet-defining inequalities for

MEP can be used to generate valid inequalities for general MIPs.

1.4 Lifting

Lifting is a technique used to obtain valid inequalities for a polyhedron by extending

known valid inequalities for lower dimensional restrictions of it. It was first proposed

by Gomory [55] within the context of the group problem. Later, Pollatschek [91]

observed, in the context of independence systems, that some facets could be ob-

tained by lifting facets of a lower-dimensional polyhedron and Padberg [88] proposed

a method for obtaining the lifting coefficients for set packing polyhedra. Several pa-

pers afterwards studied lifting in different special cases [15, 69, 86, 100]. Zemel [104]

extended the procedure to general binary problems and suggested a procedure that

exhaustively characterized all facets that can be obtained by lifting for such problems.

Wolsey [101] also extended lifting to the case of general bounded integer programs

defined by a single constraint.

In what follows, we will describe in a little more detail the main ideas behind

traditional lifting and our contribution to this concept.

Consider the mixed-integer set P :

Ax ≤ d

l ≤ x ≤ u

xi ∈ Z, ∀i ∈ I ⊆ N = {1, . . . , n}
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Let F be a subset of N and P (F ) the following restriction of P :

ARxR ≤ d′ = d−AF yF

l ≤ x ≤ u

xi ∈ Z, ∀i ∈ I

obtained by fixing all variables xi to yi for all i ∈ F (we assume P ∩{xi = yi}i∈F 6= ∅).

In the above system, R = N \F , AR and AF are the submatrices of A corresponding

to the columns in R and F and xR and xF are the components of x corresponding to

columns in R and F respectively.

Now suppose that we have an inequality πRxR ≤ πo valid for P (F ). Typically,

lifting consists in obtaining coefficients πF such that πRxR +πF (xF −yF ) ≤ πo is valid

for P .

One possible way to obtain the coefficients πF is to do sequential lifting, which con-

sists in ordering the variable indices in F as (f1, . . . , fk) and then lifting one variable at

a time in that order. The procedure obtains an inequality πRxR+
l
∑

i=1

πfi
(xfi
−yfi

) ≤ πo

valid for P (F \ {f1, . . . , fl}) from an inequality πRxR +
l−1
∑

i=1

πfi
(xfi
− yfi

) ≤ πo valid

for P (F \ {f1, . . . , fl−1}) for all l = 1, . . . , k. We say that the lifting is maximal if the

coefficient πfl
is the highest possible, i.e., if π̂ > πfl

then πRxR +
l−1
∑

i=1

πfi
(xfi
− yfi

) +

π̂(xfl
− yfl

) ≤ πo is not valid for P (F \ {f1, . . . , fl}).

It is well-known that the sequence in which variables are lifted affects (in general)

the final valid inequality, in the sense that the earlier a variable is lifted, the higher

will be its coefficient. Also, it is well-known that sequential lifting does not yield

all possible lifted facets of a polyhedron. As an alternative to sequential lifting,

Zemel [104] proposed the so-called simultaneous lifting where all variables are lifted

simultaneously. Gu et al. [67] later generalized both frameworks by partitioning F

into several subsets of variables and simultaneously lifting one set at a time.

Sequential lifting is usually considered very expensive in terms of computing time
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and therefore, one of the most used approaches is sequence-independent lifting (see for

instance [10, 11, 66, 67, 102]), which consists in deriving a special class of superadditive

functions that can easily generate the lifted cut coefficients. As its name suggests,

in sequence-independent lifting, the lifting coefficients do not depend on the order in

which the variables are lifted. In that sense, sequence-independent lifting can be seen

as a simultaneous lifting approach. One great advantage to this approach is that it

is much cheaper in terms of computing time. However, there are two drawbacks:

1. The lifted coefficients may not be as high as they could be if one was performing

maximal sequential lifting.

2. It requires the computation of a superadditive valid lifting function, which is

usually hard to compute and requires a thorough analysis of a particular prob-

lem in advance.

1.4.1 Contributions of this thesis

In Chapter 3 we derive a lifting procedure that uses an optimization oracle for a MIP

problem to sequentially compute maximal lifting coefficients. Such an approach is

better than sequence-independent lifting in the sense that it computes the maximal

lifting coefficients and it does not require any a priori study of the polyhedron for

which lifting is performed and, therefore, can be quickly implemented to perform lift-

ing on any type of polyhedra. However, it has the drawback of being computationally

more expensive than sequence-independent lifting.

The procedure is an extension of the algorithm by Easton and Gutierrez [46], which

in turn are closely related to Dinkelback’s algorithm for fractional programming (see

for instance [96]) and the Newton-Rhapson method for finding roots of a function.

Such an approach has connections to tilting and fractional programming and we also

present these in this chapter. We note that, in the special cases of tilting and fractional

programming, our algorithm is essentially the same as that of Applegate et al. [6]
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and Espinoza [47] for tilting and Dinkelback’s algorithm for fractional programming.

However, one of the contributions of this chapter is to present a framework under

which all these problems can be unified and solved and where results from one area

can be applied to the others.

One other interesting feature of the algorithm in the context of lifting is that it

deals with lifting from general faces of a polyhedron, not only ones obtained by fixing

variables at certain values. It is important to note, however, that Louveaux and

Wolsey [77] recently presented lifting in a very general way, also considering lifting

from general faces and noted that lifting from faces defined by constraints can be

seen as lifting the slack variables of such constraints. However, their paper presents

a general framework, and a review of several results on lifting, but does not present

a general way to lift.

Another contribution of the proposed algorithm is that, as far as we are aware,

this is the first algorithmic approach proposed to lift general integer and continuous

variables without any further assumptions. Indeed Richard et al. [92, 93] studied

the lifting of continuous variables coupled with binary integer variables in a single

constraint, while other papers deal with lifting of continuous variables in more specific

problems [39, 40, 41, 66]. Meanwhile, several other papers treat lifting of integer

variables, but usually under the assumption that the variables are either binary or at

least bounded.

We note that, in spite of the fact that the algorithm is not specific for single-row

MIPs, we envision that the general use of the techniques presented should be on

easily solvable MIP relaxations such as single-row MIPs. In fact, Chapter 4 will use

the lifting algorithm presented.

Finally, this new way of looking at lifting gives rise to a new way of thinking about

simultaneous lifting of several variables (we call this multi-lifting), which we briefly

introduce as a future research direction.
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1.5 Benchmarking mixed-integer knapsack cuts

As mentioned in Section 1.2, the most successful classes of cuts for the practical

solution of MIPs are the Mixed Integer Rounding (MIR) and Gomory mixed-integer

(GMI) cuts. Due to this success, several improvements have been tried over the years

over these types of cuts, such as [3, 31, 76, 78]. However, in spite of these efforts,

it has been very hard to make a significant and consistent improvement over the

performance of MIR/GMI cuts on the solution of general MIPs.

This lack of significant improvement has led to several papers over the last few

years that try to assess the strength of GMI/MIR cuts. For example, there have been

several papers presenting how much gap is closed by adding all possible cuts in a

given class:

• Boyd [23] and Yan and Boyd [103] study MIK cuts generated from formulation

rows.

• Fischetti and Lodi [49] study rank-1 Chvátal-Gomory cuts.

• Bonami et al. [22] study rank-1 projected Chvátal-Gomory cuts.

• Balas and Saxena [17] and Dash et al. [38] study rank-1 MIR cuts.

• Fischetti and Lodi [48] study rank-1 MIK cuts for binary problems.

• Fischetti and Saturni [51] study group cuts.

Another different type of study has been proposed by Dash and Günlük [37],

in which they show that GMI cuts are strong in the context of group cuts. They

proceed to do the following experiment: Solve the LP relaxation, add GMI cuts over

the optimal tableau rows and reoptimize to obtain the optimal solution x∗ to the

new LP relaxation. They show that often it is the case that x∗ is contained in the

corner polyhedron defined by the optimal tableau rows of the original LP relaxation.
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In other words, they show that the combined effect of GMI cuts “push” the LP

relaxation solution inside the convex hull of each group problem defined by the rows

of the original optimal LP tableau and thus any group cuts that can be derived from

those rows would not yield any performance improvement over the GMI cuts.

Goycoolea [62] later extended this idea to show that the same does not hold true

if we consider mixed-integer knapsack cuts, that is, after adding GMI cuts from the

original optimal LP tableau, there are still MIK cuts that can be obtained from the

same tableau rows that are still violated. However, in this context, a question still

remains to be answered. Even in the instances that have violated MIK cuts that can

be added after GMI cuts, how much of the remaining gap can be closed by using all

possible MIK cuts?

1.5.1 Contributions of this thesis

Chapter 4 presents a contribution to try to answer the question posed above. The

idea is that we will add all possible MIK cuts that can be derived from the original

optimal LP tableau rows (or from other MIK sets). In that sense, this is also related

to the above mentioned works that compute how much gap is closed by adding all

possible cuts in a given class. By adding all such cuts, we will be able to evaluate

how close to that gap the MIR/GMI cuts take us. Also, since we are obtaining MIK

cuts, these experiments serve the purpose of a benchmark against which any other

subclass of MIK cuts can be compared against to empirically determine its efficacy.

In principle, such benchmarks can be computed by using a separation linear pro-

gram with an optimization oracle subroutine, much like the work of Applegate et

al. [5], Espinoza [47] and Goycoolea [62]. However, such a direct approach is pro-

hibitive in terms of computational time and therefore several ideas have to be applied

in order to make running times more reasonable. These ideas will be presented in

this chapter as well as the benchmark comparison results.
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1.6 Numerically accurate cuts

Finally, Chapter 5 will be dedicated to dealing with an important computational

problem that exists for any MIP solver based on floating point arithmetic, namely

the problem of numerical accuracy. The issue is that several decisions throughout

the solution of MIPs are based on the fact that numerical calculations are performed

accurately, for example, fathoming a node by bound, fixing variables by reduced cost,

generating valid cuts, etc.

By design, floating-point calculations are subject to an error and, since most MIP

solvers are based on floating-point arithmetic, they are also subject to these errors

and are therefore not guaranteed to return the correct optimal solution. In a related

paper, Margot [79] recently shows that floating-point based cut generators from the

COIN-OR library [28] often generate cutting planes that are invalid even for small

binary instances. In floating-point based MIP solvers, such problems are dealt with

in an heuristic fashion, using tolerances to determine, for example, when a number

is integer or when a node should be fathomed among other decisions; restricting the

rank of the MIR/GMI cuts that are used; discarding cuts that have “bad numerical

properties”; “cleaning” the resulting cutting planes among others.

What is important to notice is that all of these measures are heuristics, and were

derived through a process of engineering the solvers to make them commit errors

less frequently. However, there are no guarantees that these heuristic rules will allow

the solver to obtain the correct optimal solution. Moreover, the rule to restrict the

rank and/or number of rounds of MIR/GMI cuts that are added may result in a

significant loss in dual bound quality, which is well-known to be an important factor

in the overall solution time of branch-and-bound based MIP algorithms.

There have been other attempts to cope with the numerical errors in floating point

arithmetic like using rational arithmetic [7] or interval arithmetic [73, 87]. However,

these approaches are hard to implement and in case of rational arithmetic, can lead to
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arithmetic computations that are orders of magnitude slower than standard floating-

point arithmetic.

1.6.1 Contributions of this thesis

In Chapter 5 we present a simple approach to deal with this issue in the context of

generating MIR/GMI cuts. Our proposed approach can be implemented with little

effort in any floating-point based MIP solver and allows the generation of MIR/GMI

cuts that are always guaranteed to be valid, in spite of the numerical inaccuracies of

floating point calculations. We analyze the benefits and tradeoffs of using such an

approach with computational experiments over MIPLIB and TSPLIB instances.
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CHAPTER II

THE MASTER EQUALITY POLYHEDRON

2.1 Introduction

In this chapter, we study a structured polyhedron called the Master Equality poly-

hedron (MEP), which generalizes the Master Cyclic Group polyhedron (MCGP) pro-

posed by Gomory [55] in the sense that the MCGP is a proper face of the MEP.

As is the case for the MCGP, the study of the MEP leads to a framework that can

be used for generating MIK cuts. In what follows, we review the MCGP and the

Capacitated Vehicle Routing problem. The reason for looking at the latter is that

the MEP appears as a natural substructure in it (and in several other combinatorial

optimization problems) and therefore, the results that we obtain can be applied to

generate strong cuts for these problems.

2.1.1 The Master Cyclic Group polyhedron

The Master Cyclic Group polyhedron is defined as

P (n, r) = conv

{

(x, y) ∈ Zn−1
+ × Z+ :

n−1
∑

i=1

ixi − nyn = r

}

, (5)

where r, n ∈ Z, and n > r > 0. Note that the MCGP is usually presented as

P ′(n, r) = conv

{

x ∈ Zn−1
+ :

n−1
∑

i=1

ixi ≡ r mod n

}

which is the projection of P (n, r) in the space of x variables. We use (5) as it makes

the comparison to the MEP simpler.

The MCGP is an important structured polyhedron that can be used to generate

valid inequalities for any single-row MIP and consequently for any MIP. For example,

the Gomory mixed-integer cut (also known as the mixed-integer rounding (MIR)
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inequality) can be derived from a facet of P (n, r) [57]. To see how facets of the

MCGP can be used in general to generate valid inequalities for MIP, consider the

following feasible region defined by a generic single equality constraint

Q =

{

w ∈ Z
q
+ :

q
∑

j=1

pjwj = s

}

where {pi}
q
i=1 and r are rational numbers.

We can rewrite Q as:

Q =

{

w ∈ Z
q
+ :

q
∑

j=1

⌊pj⌋wj − ⌊s⌋+

q
∑

j=1

p̂jwj = ŝ

}

.

Since pj ∈ Q for all j = 1, . . . , q and s ∈ Q, let n be an integer such that np̂j ∈ Z for

all j = 1, . . . , q and nŝ ∈ Z. Now define yn = −(
q
∑

j=1

⌊pj⌋wj − ⌊s⌋). Note that since

q
∑

j=1

⌊pj⌋wj ≤ ⌊s⌋, we have that yn ≥ 0 and integer. So any point in Q can be mapped

to a point in:
{

w ∈ Z
q
+, yn ∈ Z+ :

q
∑

j=1

np̂jwj − nyn = nŝ

}

and consequently it can also be mapped to a point in

{

(x, z) ∈ Zn−1
+ × Z+ :

n−1
∑

i=1

ixi − nyn = nŝ

}

by defining xi =
∑

j:np̂j=i

wj. Now note that any valid inequality for P (n, nŝ) has an

equivalent representation with the coefficient of yn being zero, since we can add any

multiple of
∑n−1

i=1 ixi−nyn = nŝ to it. Therefore, any facet-defining inequality πx ≥ πo

of P (n, nŝ) yields a valid inequality for P :

q
∑

j=1

πnp̂j
wj ≥ πo.

This is the reason why facet-defining inequalities of P (n, r) are important. Indeed,

as mentioned in Section 1.2, several papers have studied the structure and computa-

tional aspects of MCGP and derived facets for it [9, 36, 35, 37, 51, 50, 57, 58, 60, 59].
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However, this mapping from Q to P (n, r) would not be useful unless facet-defining

inequalities of P (n, r) were easier to obtain than facet-defining inequalities of Q.

Fortunately, this is indeed the case as shown in the following theorem by Gomory [55]:

Theorem 2.1.1 (Gomory [55]). The inequality π̄x ≥ 1 defines a nontrivial facet of

P (n, r), for n > r > 0, if and only if π̄ ∈ Rn−1 is an extreme point of

Θ =



































πi + πj ≥ π
(i+j)modn

∀i, j ∈ {1, . . . , n− 1},

πi + πj = πr ∀i, j such that r = (i+ j) modn,

πj ≥ 0 ∀j ∈ {1, . . . , n− 1},

πr = 1.

This is one of the basic underlying theorems behind group cuts and which allowed

future research in the area. By extending the MCGP, we show that a similar result

can be obtained for the MEP and, like was the case for the MCGP, we hope that it

will lead to several different new classes of inequalities for MIPs.

2.1.2 The Capacitated Vehicle Routing problem

In this section, we introduce the Capacitated Vehicle Routing Problem (CVRP). The

reason for doing so is to later present a connection of MEP to it and motivate how

facet-defining inequalities for MEP can be useful for it.

Let G = (V,E) be an undirected graph with vertices V = {0, 1, . . . , n} and edges

E = {1, . . . , m}. Vertex 0 is called the depot, and each remaining vertex i ∈ {1, . . . , n}

represents a client with an associated positive demand di. Call V+ the set of clients,

i.e. V+ = {1, . . . , n}. Each edge e ∈ E has a nonnegative length ce. Given G and

two positive integers K and C, the CVRP consists of finding routes for K vehicles

satisfying the following constraints: (i) each route starts and ends at the depot, (ii)

each client is visited by a single vehicle, and (iii) the total demand of all clients

in any route is at most C. The goal is to minimize the sum of the lengths of all
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routes. This classical NP-hard problem is a natural generalization of the Travelling

Salesman Problem (TSP), and has widespread application itself. The CVRP was first

proposed in 1959 by Dantzig and Ramser [33] and has received close attention from

the optimization community since then.

There are several formulations for solving the CVRP, but we will focus only on

one in particular, since this is the one for which the connection with the MEP exists.

Later, we will comment on why we believe that using such a formulation can be very

good in practice.

Let xd
ij be a binary variable that takes value 1 if and only if a vehicle goes from

i to j with d units undelivered (i.e. it can still serve clients whose total demand is

less than or equal to d). Also, let D = (V,A) be the directed graph corresponding

to G = (V,E), where each edge {i, j} ∈ E is replaced by two arcs (i, j) and (j, i)

in A, with both arcs having the same length ce. Moreover, for any S ⊆ V let

δ+(S) := {(i, j) ∈ A : i ∈ S, j /∈ S} and δ−(S) := {(i, j) ∈ A : i /∈ S, j ∈ S}. Also,

let d(S) :=
∑

i∈S

di. Then, a valid formulation for the CVRP is as follows:
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min
∑

a∈A

ca

C
∑

d=0

xd
a

s.t.
∑

a∈δ−({i})

C
∑

d=0

xd
a = 1 ∀ i ∈ V+ (6)

∑

a∈δ+({i})

C
∑

d=0

xd
a = 1 ∀ i ∈ V+ (7)

∑

a∈δ−({0})

C
∑

d=0

xd
a = K (8)

∑

a∈δ+({0})

C
∑

d=0

xd
a = K (9)

C
∑

d=0

∑

a∈δ−({i})

dxd
a −

C
∑

d=0

∑

a∈δ+({i})

dxd
a = di ∀ i ∈ V+ (10)

xd
a ∈ {0, 1} ∀ a ∈ A, d ∈ 0, . . . , C (11)

Constraint (6) ensures that exactly one vehicle enters in each client, while con-

straint (7) ensures that exactly one vehicle leaves each client. Constraints (8) and

(9) guarantee that exactly K vehicles leave and return to the depot. Finally, con-

straint (10) are flow conservation type of constraints, which guarantee that the ve-

hicle that visits client i delivers exactly di units, since if it enters vertex i with d

units undelivered, it must leave with d − di. A formulation based on the same idea

already appears in Gouveia [61] for a closely related problem, the Capacitated Min-

imum Spanning Tree problem. Indeed in that paper, Gouveia mentions that such a

formulation can be used for other problems like CVRP and Steiner Tree.

Now, pick any set S ⊆ V+ and sum constraints (10) for all i ∈ S. We obtain the

following constraint that is valid for all feasible CVRP solutions:

C
∑

d=0

∑

a∈δ−(S)

dxd
a −

C
∑

d=0

∑

a∈δ+(S)

dxd
a = d(S)
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Let:

ECC(S) := conv



























x :

∑C
d=0

∑

a∈δ−(S)

dxd
a −

∑C
d=0

∑

a∈δ+(S) dx
d
a = d(S)

x ≥ 0

x integer vector



























and call the facets defined by the nonnegativity constraints as trivial. We now prove

that it suffices to aggregate all variables in δ−(S) with a given index d into one

single variable and likewise, aggregate all variables in δ+(S) with a given index d into

another single variable.

Proposition 2.1.2. Let

P =
{

x ∈ Zn
+ : Ax = b, x ≥ 0

}

.

Any facet-defining inequality πx ≥ πo of P which is not a nonnegativity constraint

satisfies:

πi = πj , ∀i, j : Ai = Aj .

Proof. Suppose πx ≥ πo is a facet-defining inequality of P that is not a nonnegativity

constraint. Further, assume that πx ≥ πo satisfies πi > πj for some i, j such that

Ai = Aj . Since this facet-defining inequality is not a nonnegativity constraint, there

exists a point x̂ ∈ P that has x̂i > 0 and such that πx̂ = πo. But then, define x̄ as:

x̄k :=























x̂k if k /∈ {i, j}

x̂i + x̂j if k = j

0 if k = i

and note that x̄ ∈ P and πx̄ < πx̂ = πo, which is a contradiction.

Therefore we may define wd =
∑

a∈δ−(S)

xd
a and zd =

∑

a∈δ+(S)

xd
a, obtaining the follow-

ing set:

F (S) = conv

{

(w, z) ∈ ZC+1
+ × ZC+1

+ :
C
∑

d=0

dwd −
C
∑

d=0

dzd = d(S)

}
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and note that all facet-defining inequalities for ECC(S) can be obtained from facet-

defining inequalities of F (S) by Proposition 2.1.2. Also, since ECC(S) is a relaxation

of the CVRP, any cut that is valid for F (S) will give us a cut that is also valid for

the CVRP. In the next section the connection between set F (S) and the MEP will

become obvious and thus it should also become clear how the MEP can be used to

generate cuts for the CVRP.

Notice that the only part of the model that is related to the MEP are con-

straints (10) and therefore, any other problem that can be reformulated using those

constraints can benefit from cuts of the MEP. Gouveia [61] and Uchoa [97] mention

such connections and indeed cuts for F (S) are used in Uchoa et al. [98] with great

success for the capacitated minimum spanning tree problem. In that paper, valid

inequalities for F (S) (which are called Homogeneous Extended Capacity cuts) were

used to reduce the integrality gap by more than 50% on average, making it possible

to solve several open instances for the first time. Therefore the benefit of using strong

inequalities for the MEP can be quite substantial to these types of problems.

One possible argument against the formulation presented is that it has a large

number of variables, especially for instances with large C. We note, however that, if

such a formulation is used implicitly as part of a branch-and-cut-and-price algorithm,

there is no added complexity in terms of the solution of the LP relaxation. For more

details on this, see [98].

2.1.3 The Master Equality Polyhedron

We now define the Master Equality Polyhedron (MEP):

K(n, r) = conv

{

(x, y) ∈ Zn
+ × Zn

+ :

n
∑

i=1

ixi −
n
∑

i=1

iyi = r

}

(12)

where n, r ∈ Z and n > 0. Without loss of generality we assume that r ≥ 0. To the

best of our knowledge, K(n, r) was first defined by Uchoa [97] in a slightly different

form, although its polyhedral structure was not studied in that paper.
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Recall that an important polyhedron that leads to many classes of cuts for MIPs

is the MCGP, which is defined as:

P (n, r) = conv

{

(x, y) ∈ Zn−1
+ × Z+ :

n−1
∑

i=1

ixi − nyn = r

}

.

Another important polyhedron that is related to the MCGP and that can be used

to obtain facets of the MCGP (see [9]) is called the Master Knapsack polyhedron

(MKP), which is defined as

K(r) = conv

{

x ∈ Zr
+ :

r
∑

i=1

ixi = r

}

, (13)

where r ∈ Z and r > 0. It is easy to see that both the MCGP and the MKP are lower

dimensional faces of the MEP, and as such, the MEP is a generalization of both, with

a potentially richer family of facets.

Two key results for the MCGP and the MKP are the ones of Gomory [55] and

Araóz [8], where an explicit characterization of the polar of their respective nontrivial

facets is given. We give a similar description of the nontrivial facets of the MEP for

n ≥ r ≥ 0. Like in the case of the MCGP and the MKP, such structural result enables

us to derive several other results for the MEP. For instance, using this result, we obtain

a polynomial time algorithm to separate over the MEP for all r ≥ 0 (including r > n).

In addition, we also analyze some structural properties of the MEP and describe how

to obtain valid inequalities for general MIPs using facet-defining inequalities for the

MEP.

Notice that, for n > r > 0, it is easy to obtain valid (facet-defining) inequalities

for the MEP using valid (facet-defining) inequalities for the MCGP. To see how, note

that
n
∑

i=1

ixi −
n
∑

i=1

iyi = r ⇐⇒
n−1
∑

i=1

i(xi + yn−i)− n(
n
∑

i=1

yi − xn) = r. (14)

Furthermore,
∑n

i=1 yi−xn ≥ 0 for all (x, y) ∈ K(n, r). Therefore, any valid inequality

∑n−1
i=1 πixi +ρnyn ≥ β for P (n, r) leads to a valid inequality

∑n−1
i=1 πixi +

∑n−1
i=1 (πn−i +
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ρn)yi +ρnyn−ρnxn ≥ β for K(n, r). In fact, as the MCGP is a lower dimensional face

of the MEP, any valid inequality for the MCGP can lead to multiple valid inequalities

(including the inequality presented above) for the MEP via lifting. Also, any facet-

defining inequality of the MEP can be obtained by lifting some valid inequality of the

MCGP. However, the important question is: Can every facet-defining inequality of the

MEP be obtained by lifting facet-defining inequalities of the MCGP? Answering this

question will tell us if, in some sense, the MEP can give us any new valid inequalities

for general MIPs that the MCGP did not. Our characterization of the facets of the

MEP allows us to study lifted inequalities from the MCGP and show that not all

facets of the MEP can be obtained by lifting facets of the MCGP.

In the next section, we present our characterization of the polar of the nontrivial

facets of K(n, r), for any n > 0 and any r satisfying 0 < r ≤ n. In Section 2.3 we

discuss how to lift facets of P (n, r) to obtain facets of K(n, r) and in Section 2.4,

we show that not all facets of K(n, r) can be obtained by lifting. In Section 2.5, we

study K(n, r) when r = 0. In Section 2.6, we describe how to separate an arbitrary

point from K(n, r) for any r, including the case r > n. Section 2.7 is dedicated to

extending the results of K(n, r) to the mixed-integer case. In Section 2.8, we follow

the approach of Gomory and Johnson [57] to derive valid inequalities for mixed-integer

programs from facets of K(n, r) via interpolation. We conclude in Section 2.9 with

some remarks on directions for further research on K(n, r).

2.2 Polyhedral analysis of K(n, r) when n ≥ r > 0

Throughout this section, we assume n ≥ r > 0. The case r = 0 is studied in

Section 2.5. We start with some notation and some basic polyhedral properties of

K(n, r).

Let ei ∈ R2n be the unit vector with a one in the component corresponding to xi

and let fi ∈ R2n be the unit vector with a one in the component corresponding to yi,
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for i = 1, . . . , n.

Lemma 2.2.1. dim(K(n, r)) = 2n− 1.

Proof. Clearly dim(K(n, r)) ≤ 2n − 1 as all points in K(n, r) satisfy
∑n

i=1 ixi −
∑n

i=1 iyi = r. Let U be the set of 2n points p1 = re1, pi = re1 + ei + if1 for

i = 2, . . . , n, and qi = (r + i)e1 + fi for i = 1, . . . , n. The vectors of U are affinely

independent, as {u− p1 : u ∈ U, u 6= p1} is a set of linearly independent vectors. As

U ⊆ K(n, r), dim(K(n, r)) ≥ 2n− 1.

Lemma 2.2.2. The nonnegativity constraints of K(n, r) are facet-defining if n ≥ 2.

Proof. Let U be defined as in the proof of Lemma 2.2.1. For any i 6= 1, the vectors

in U \ {pi} and U \ {qi} are affinely independent, and satisfy xi = 0 and yi = 0,

respectively. Therefore xi ≥ 0 and yi ≥ 0 define facets of K(n, r) for i ≥ 2. To see

that y1 ≥ 0 is facet-defining, replace pi (2 ≤ i ≤ n) in U by p′i = re1 + nei + ifn to

get a set of affinely independent vectors U ′ ⊆ K(n, r). All points in U ′ other than q1

satisfy y1 = 0. Finally, let V be the set of points t0 = en +(n−r)f1, ti = t0 + ien +nfi

for i = 1, . . . , n, and si = t0 + ei + if1 for i = 2, . . . , n− 1. V is contained in K(n, r),

and its elements are affinely independent vectors as {v− t0 : v ∈ V, v 6= t0} is a set of

linearly independent vectors. The points in V also satisfy x1 = 0.

Clearly, K(n, r) is an unbounded polyhedron. We next characterize all the extreme

rays (one-dimensional faces of the recession cone) ofK(n, r). We represent an extreme

ray {u+ λv : u, v ∈ R2n
+ , λ ≥ 0} of K(n, r) simply by the vector v. Let rij = jei + ifj

for any i, j ∈ {1, . . . , n}.

Lemma 2.2.3. The set of extreme rays of K(n, r) is given by R = {rij : 1 ≤ i, j ≤ n}.

Proof. Let (c, d) be an extreme ray of K(n, r), that is,
∑n

i=1 ici −
∑n

j=1 jdj = 0.

Since (c, d) is a one-dimensional face of the recession cone, at least 2n − 2 of the
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nonnegativity constraints hold as equality. As (c, d) can not have a single nonzero

component, it must have exactly two nonzero components. Thus, (c, d) is of the form

αei + βfj and since
∑n

i=1 ici −
∑n

j=1 jdj = 0, we have that iα − jβ = 0 ⇒ α = j
i
β.

Since (c, d) is a ray, we may scale it so that β = i, and we have shown that R contains

all extreme rays of K(n, r).

To complete the proof, it suffices to notice that a conic combination of 2 or more

rays in R gives a ray with at least 3 nonzero entries and therefore all rays in R are

extreme.

As K(n, r) is not a full-dimensional polyhedron, any valid inequality πx + ρy ≥

πo for K(n, r) has an equivalent representation with ρn = 0. If a valid inequality

does not satisfy this condition, one can add an appropriate multiple of the equation

∑n
i=1 ixi −

∑n
i=1 iyi = r to it. We state this formally in Observation 2.2.4, and

subsequently assume all valid inequalities have ρn = 0. This is one of many possible

choices of normalization and it was chosen to make the relation to facets of P (n, r)

easier, since Gomory’s characterization also satisfies that property.

Observation 2.2.4. If πx + ρy ≥ πo defines a valid inequality for K(n, r), we may

assume ρn = 0.

We classify the facets of K(n, r) as trivial and nontrivial facets.

Definition 2.2.5. The following facet-defining inequalities of K(n, r) are called triv-

ial:

xi ≥ 0, ∀i = 1, . . . , n, (15)

yi ≥ 0, ∀i = 1, . . . , n− 1. (16)

All other facet-defining inequalities of K(n, r) are called nontrivial.

According to this definition, the inequality yn ≥ 0 defines a nontrivial facet. There

is nothing special about the yn ≥ 0 inequality except that it is the only nonnegativity
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constraint that does not comply directly with the ρn = 0 assumption. With this

distinction between yn ≥ 0 and the other trivial facets, our results are easier to state

and prove.

2.2.1 Characterization of the nontrivial facets

Let N = {1, . . . , n}. We next state our main result:

Theorem 2.2.6. Consider an inequality πx + ρy ≥ πo with ρn = 0. It defines a

nontrivial facet of K(n, r) if and only if the following conditions hold: (i) πo > 0,

and (ii) (π, ρ, πo)/πo is an extreme point of T ⊆ R2n+1 where T is defined by the

following linear equations and inequalities:

πi + ρj ≥ πi−j, ∀i, j ∈ N, i > j, (SA1)

πi + πj ≥ πi+j, ∀i, j ∈ N, i+ j ≤ n, (SA2)

ρk + πi + πj ≥ πi+j−k, ∀i, j, k ∈ N, 1 ≤ i+ j − k ≤ n, (SA3)

πi + πr−i = πo, ∀i ∈ N, i < r, (EP1)

πr = πo, (EP2)

πi + ρi−r = πo, ∀i ∈ N i > r, (EP3)

ρn = 0, (NC1)

πo = 1. (NC2)

The proof of this theorem requires several preliminary results which will be pre-

sented in this section. Note that ρn = 0 is not a restrictive assumption in the above

theorem since any valid inequality has an equivalent representation with ρn = 0.
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We call constraints (SA1)-(SA3) relaxed subadditivity conditions as they are im-

plied by the first four of the following pairwise subadditivity conditions:

πi + ρi ≥ 0, ∀i ∈ N, (SA0)

πi + ρj ≥ πi−j , ∀i, j ∈ N, i > j, (SA1)

πi + ρj ≥ ρj−i, ∀i, j ∈ N, i < j, (SA1’)

πi + πj ≥ πi+j , ∀i, j ∈ N, i+ j ≤ n, (SA2)

ρi + ρj ≥ ρi+j , ∀i, j ∈ N, i+ j < n, (SA2’)

ρi + ρj ≥ ρi+j , ∀i, j ∈ N, i+ j = n. (SA2”)

We distinguish the cases in (SA2’) and (SA2”) since (SA2”) is not satisfied by the

nonnegativity constraint on yn and we will need this distinction to establish certain

structural properties later on.

Lemma 2.2.7. Let (π, ρ) ∈ R2n satisfy the pairwise subadditivity conditions (SA0),

(SA1), (SA1’), and (SA2), then (π, ρ) satisfies (SA3) as well.

Proof. Let i, j, k ∈ N be such that 1 ≤ i + j − k ≤ n and without loss of generality

assume that i ≤ j. If i+ j ≤ n, then using (SA2) and (SA1) we have ρk + πi + πj ≥

ρk + πi+j ≥ πi+j−k.

If, on the other hand, i+ j > n, we consider three cases:

Case 1: k < j. Using (SA1) and (SA2), we have: ρk+πi+πj ≥ πj−k+πi ≥ πi+j−k.

Case 2: k > i. Using (SA1’) and (SA1), we have: ρk+πi+πj ≥ ρk−i+πj ≥ πi+j−k.

Case 3: k = i = j. Using (SA0), we have: ρk + πk ≥ 0⇐⇒ ρk + πk + πk ≥ πk.

As we show later, any nontrivial facet-defining inequality πx+ρy ≥ πo for K(n, r)

satisfies (SA1)-(SA3) as well as (SA0), (SA1’) and (SA2’). Based on Gomory’s charac-

terization of the MCGP using pairwise subadditivity conditions, it would seem more

natural to have a characterization of the nontrivial facets using the pairwise subad-

ditivity conditions above instead of the relaxed subadditivity conditions. We show
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in Section 2.2.4 that Theorem 2.2.6 does not hold if (SA3) is replaced with (SA0),

(SA1’) and (SA2’).

The equations (EP1)-(EP3) essentially state that the following n−
⌊

r−1
2

⌋

affinely

independent points, which we call the elementary points of K(n, r),

{ei + er−i : 1 ≤ i < r} ∪ er ∪ {ei + fi−r, : r < i ≤ n}

lie on every nontrivial facet ofK(n, r). In other words, K(n, r) has a face of dimension

at least n−
⌊

r−1
2

⌋

− 1 where all nontrivial facets intersect.

The last two constraints (NC1) and (NC2) are normalization constraints that are

necessary to have a unique representation of nontrivial facets.

Note that the definition of T in Theorem 2.2.6 is similar to that of a polar.

However, T is not the polar of K(n, r), as it does not contain extreme points of

the polar that correspond to the trivial inequalities. In addition, some of the extreme

rays of the polar are not present in T . It is possible to interpret T as an important

subset of the polar that contains all extreme points of the polar besides the ones that

lead to the trivial inequalities. In the rest of this section we develop the required

analysis to prove Theorem 2.2.6.

2.2.2 Basic properties of T

We start with a basic observation which states that any valid inequality for K(n, r)

has to be valid for its extreme rays and elementary points.

Observation 2.2.8. Let πx + ρy ≥ πo be a valid inequality for K(n, r), then the

following holds:

jπi + iρj ≥ 0, ∀i, j ∈ N (R1)

πi + πr−i ≥ πo, ∀i ∈ N, i < r, (P1)

πr ≥ πo, (P2)

πi + ρi−r ≥ πo, ∀i ∈ N, i > r. (P3)
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We next show that nontrivial facet-defining inequalities satisfy the relaxed sub-

additivity conditions and they are tight at the elementary points of K(n, r).

Lemma 2.2.9. Let πx+ ρy ≥ πo be a nontrivial facet-defining inequality of K(n, r),

then it satisfies (SA1)-(SA3) as well as (SA0), (SA1’), (SA2’) and (EP1)-(EP3).

Proof. Due to Observation 2.2.8, iπi + iρi ≥ 0 for all i ∈ N and therefore (SA0)

holds. Next, let (x∗, y∗) ∈ K(n, r) be such that πx∗ + ρy∗ = πo and x∗i−j > 0. Such

a point exists because the facet-defining inequality we consider is nontrivial. Then

(x∗, y∗) + (ei + fj − ei−j) is also contained in K(n, r). Therefore, (SA1) holds. Proofs

for (SA2), (SA3), (SA1’) and (SA2’) are analogous.

Finally, let (x′, y′) and (x′′, y′′) be integral points in K(n, r) lying on the facet

defined by πx + ρy ≥ πo such that x′i > 0 and x′′r−i > 0. Then (x̄, ȳ) = (x′, y′) +

(x′′, y′′)− ei − er−i ∈ K(n, r). Therefore

πx̄+ ρȳ = πx′ + ρy′ + πx′′ + ρy′′ − πi − πr−i = 2πo − πi − πr−i ≥ πo.

The last inequality above implies that πi + πr−i ≤ πo and therefore (P1) ⇒ (EP1).

The proofs of (EP2) and (EP3) are analogous.

Observation 2.2.10. If πx+ ρy ≥ πo is a facet-defining inequality of K(n, r) which

is not a nonnegativity constraint, then it also satisfies (SA2”).

We next show that the normalization condition (NC2) does not eliminate any

nontrivial facets.

Lemma 2.2.11. Let πx+ρy ≥ πo be a nontrivial facet-defining inequality of K(n, r),

that satisfies ρn = 0. Then πo > 0.

Proof. By (R1), we have, for all i ∈ N , nπi + iρn ≥ 0 and therefore πi ≥ 0 since

ρn = 0. Also by (EP2), we have πo = πr which implies that πo ≥ 0.
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Assume πo = 0. As π ≥ 0, using (EP1) we have πi = 0 for i = 1, . . . , r. But then,

(SA2) implies that

0 + πi−1 ≥ πi ≥ 0, for i = 2, . . . , n.

Starting with i = r + 1, we can inductively show that πi = 0 for all i ∈ N . This

also implies that ρk = 0 for 1 ≤ k ≤ n − r by (EP3). In addition ρk ≥ 0 for

n− r + 1 ≤ k ≤ n by (SA3).

Therefore, if πo = 0, then π = 0, ρ ≥ 0 and therefore πx+ ρy ≥ 0 can be written

as a conic combination of the nonnegativity facets, which is a contradiction. Thus

πo > 0.

Combining Lemmas 2.2.9 and 2.2.11 we have therefore established the following.

Corollary 2.2.12. Let πx + ρy ≥ πo be a nontrivial facet-defining inequality of

K(n, r) that satisfies ρn = 0. Then 1
πo

(π, ρ, πo) ∈ T.

In the following result, we show that a subset of the conditions presented in

Theorem 2.2.6 suffices to ensure the validity of an inequality for K(n, r).

Lemma 2.2.13. Let (π, ρ, πo) satisfy (SA1), (SA2), (SA3) and (EP2). Then πx +

ρy ≥ πo defines a valid inequality for K(n, r).

Proof. We will prove this by contradiction. Assume that πx + ρy ≥ πo satisfies

(EP2), (SA1), (SA2) and (SA3) but πx + ρy ≥ πo does not define a valid inequality

for K(n, r), r > 0. Let (x∗, y∗) be an integer point in K(n, r) that has minimum L1

norm among all points violated by πx+ ρy ≥ πo.

Clearly, (x∗, y∗) 6= 0 and therefore ||(x∗, y∗)||1 > 0. If ||(x∗, y∗)||1 = 1, then

x∗ = er and y∗ = 0, and as πr = πo, (x∗, y∗) does not violate the inequality, we have

a contradiction. Therefore ||(x∗, y∗)||1 ≥ 2. We next consider three cases.

Case 1: Assume that y∗ = 0. Then
∑n

i=1 ix
∗
i = r. By successively applying

(SA2), we obtain

πo >

n
∑

i=1

πix
∗
i ≥

n
∑

i=1

πix∗
i
≥ πPn

i=1
ix∗

i
= πr
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which contradicts (EP2).

Case 2: Assume that there exists i > j such that x∗i > 0 and y∗j > 0. Let (x′, y′) =

(x∗, y∗)+ (ei−j − ei− fj). Clearly, (x′, y′) ∈ K(n, r), and ||(x′, y′)||1 = ||(x∗, y∗)||1− 1.

Moreover, as πx+ ρy ≥ πo satisfies (SA1), πx′ + ρy′ = πx∗ + ρy∗ + πi−j − πi − ρj ≤

πx∗ + ρy∗ < πo, which contradicts the choice of (x∗, y∗).

Case 3: Assume that for any i, k ∈ N , x∗i > 0 and y∗k > 0 imply that i ≤ k. Let

i ∈ N be such that x∗i > 0, then either there exists another index j 6= i such that x∗j >

0, or x∗i ≥ 2 (in which case, let j = i). If i+j ≤ n, let (x′, y′) = (x∗, y∗)+(ei+j−ei−ej).

If i + j > n, as y∗ 6= 0, there exists k such that y∗k > 0 and k ≥ i, and therefore

1 ≤ i+ j − k ≤ n. Then let (x′, y′) = (x∗, y∗) + (ei+j−k − ei− ej − fk). In either case,

(x′, y′) ∈ K(n, r) and ||(x′, y′)||1 < ||(x
∗, y∗)||1. Moreover, as (π, ρ, πo) satisfy (SA2)

and (SA3), in either case πx′ + ρy′ ≤ πx∗ + ρy∗ < πo, which contradicts the choice of

(x∗, y∗).

Corollary 2.2.14. Let (π, ρ, πo) ∈ T , then πx + ρy ≥ πo is a valid inequality for

K(n, r).

Note that by Lemma 2.2.7 an inequality satisfying pairwise subadditivity condi-

tions and (EP2) is valid for K(n, r). We next determine the extreme rays of T .

Lemma 2.2.15. The extreme rays of T are (fk, 0) ∈ R2n+1 for n− r < k < n .

Proof. First note that (fk, 0) is indeed an extreme ray of T for n− r < k < n.

Let (π, ρ, πo) be an extreme ray of T that is not equivalent to (fk, 0) for some

n − r < k < n. Clearly πo = 0. In this case, πx + ρy ≥ 0 is a valid inequality

for K(n, r). Using the arguments presented in the proof of Lemma 2.2.11, it is

straightforward to establish that πi = 0 for all i ∈ N , ρk = 0 for 1 ≤ k ≤ n − r,

and ρk ≥ 0 for n − r + 1 ≤ k ≤ n. But then, (π, ρ, πo) can be written as a conic

combination of the rays (fk, 0) for n− r < k < n, a contradiction.
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2.2.3 Facet characterization

Let

F =
{

(πk, ρk, πk
o )
}M

k=1

be the set of coefficients of nontrivial facets of K(n, r) with ρn = 0 and πo = 1. Note

that by Lemma 2.2.11 these two assumptions do not eliminate any nontrivial facets.

Also, as yn ≥ 0 is a nontrivial facet, F 6= ∅. By Lemma 2.2.9, F ⊆ T .

We now proceed to prove Theorem 2.2.6 in two steps.

Lemma 2.2.16. If (π, ρ, πo) ∈ F , then (π, ρ, πo) is an extreme point of T .

Proof. Assume that (π, ρ, πo) ∈ F but is not an extreme point of T . It can be written

as a convex combination of two distinct points in T . The normalization conditions

ρn = 0 and πo = 1 imply that any two distinct points in T represent two distinct

valid inequalities for K(n, r) in the sense that neither inequality can be obtained from

the other by scaling or by adding multiples of the equation
∑n

i=1 ixi −
∑n

i=1 iyi =

r. Therefore πx + ρy ≥ πo can be written as a combination of two distinct valid

inequalities for K(n, r), and therefore does not define a facet of K(n, r).

Lemma 2.2.17. If (π, ρ, πo) is an extreme point of T , then (π, ρ, πo) ∈ F .

Proof. Let (π̂, ρ̂, 1) be an extreme point of T . By Lemma 2.2.13, (π̂, ρ̂, 1) defines

a valid inequality for K(n, r) and therefore it is implied by a conic combination of

facet-defining inequalities plus a multiple of the equation
∑n

i=1 ixi−
∑n

i=1 iyi = r. In

other words, there exists multipliers λ ∈ RM
+ and α ∈ R such that
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π̂i ≥
M
∑

k=1

λkπ
k
i + iα, ∀ i ∈ N (17)

ρ̂i ≥
M
∑

k=1

λkρ
k
i − iα, ∀ i ∈ N \ {n} (18)

ρ̂n =
M
∑

k=1

λkρ
k
n − nα, (19)

1 ≤
M
∑

k=1

λk + rα (20)

hold. The inequalities in (17) follow from the fact that π̂i =
∑M

k=1 λkπ
k
i + iα + µiei,

where µi ≥ 0, for i = 1, . . . , n. The term µiei corresponds to adding µi times the

trivial facet-defining inequality xi ≥ 0. The inequalities in (18) can be derived in a

similar manner, from the fact that yi ≥ 0 for i = 1, . . . , n−1 are trivial facet-defining

inequalities. The equality in (19) is due to the fact that yn ≥ 0 is considered to be

nontrivial. As ρ̂n = 0 and ρk
n = 0 for all nontrivial facet-defining inequalities, (19)

implies that α = 0. Furthermore, ρ̂r = 1 and ρk
r = 1, for all k, and combining (18)

and (20) we can conclude that
∑M

k=1 λk = 1.

For any i < r, inequality (17) for i and r − i combined with the equation (EP1)

implies that

1 = π̂i + π̂r−i ≥
M
∑

i=1

λk(π
k
i + πk

r−i) = 1

which can hold only if π̂i =
∑M

i=1 λkπ
k
i for all i < r.

Similarly, for i > r, we use the equation (EP3) to observe that

1 = π̂i + ρ̂i−r ≥
M
∑

i=1

λk(π
k
i + ρk

i−r) = 1

and therefore π̂i =
∑M

i=1 λkπ
k
i and ρ̂i−r =

∑M
i=1 λkρ

k
i−r for all i > r,.

Finally as ρ̂i ≥
∑M

i=1 λkρ
k
i for i > n − r, we can write (π̂, ρ̂, 1) as a convex

combination of points of F plus a conic combination of extreme rays of T . This can

only be possible if (π̂, ρ̂, 1) ∈ F . Thus, (π̂, ρ̂, 1) is a nontrivial facet.
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As a final remark, it is interesting to note that conditions (R1) do not appear in

the description of T even though they are necessary for any valid inequality. This

is because conditions (R1) are implied by (SA1), (SA2) and (SA3). The proof is

analogous to the proof of Lemma 2.2.13, so we just state it as an observation.

Observation 2.2.18. Let (π, ρ, πo) ∈ T . Then jπi + iρj ≥ 0, ∀i, j ∈ N .

We next show that coefficients of facet defining inequalities are bounded by small

numbers.

Lemma 2.2.19. Let (π, ρ, πo) be an extreme point of T , then

0 ≤ πk ≤ ⌈k/r⌉ and − ⌈k/r⌉ ≤ ρk ≤ ⌈n/r⌉

for all k ∈ N .

Proof. Using Observation 2.2.18 with j = n and the fact that ρn = 0, we have π ≥ 0.

For k < r, combining inequality (EP1) πk + πr−k ≤ 1 with π ≥ 0 gives πk ≤

⌈k/r⌉ = 1. For k > r, let k = ⌊k/r⌋ r + q, where 0 ≤ q < r. If q = 0, by (SA2)

we have πk ≤ ⌊k/r⌋πr = ⌈k/r⌉ since k
r

is integer. Similarly, if q > 0 we have

πk ≤ ⌊k/r⌋ πr + πq = ⌊k/r⌋+ πq, where πq ≤ 1. Therefore, 0 ≤ πk ≤ ⌈k/r⌉.

The inequality (SA3) with i = 1 and j = k implies that ρk ≥ −πk and therefore

ρk ≥ −⌈k/r⌉ for all k ∈ N . If k ≤ n − r, (EP3) implies that ρk = πr − πk+r ≤ 1 ≤

⌈n/k⌉. If k > n− r, then as (π, ρ, πo) is an extreme point of T , at least one of (SA1)

and (SA3) must hold with equality, in which case ρk ≤ πi, for some i ∈ N . Thus

ρk ≤ ⌈n/r⌉

2.2.4 Pairwise subadditivity conditions

Next we give an example that demonstrates that using pairwise subadditivity condi-

tions instead of the relaxed subadditivity conditions in the description of the coeffi-

cient polyhedron T leads to extreme points that do not give facet-defining inequalities
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for K(n, r). To generate this example, we used PORTA [27] developed by Thomas

Christof and Andreas Löbel at ZIB.

Example 2.2.20. Consider K(3, 2) and denote an extreme point of T as p = (π1, π2,

π3, ρ1, ρ2, ρ3). We do not include πo in the description of p since πo = 1 for all

points in T . It can be checked that T has the following two extreme points: p1 =

(1/2, 1, 0, 1, 1/2, 0) and p2 = (1/2, 1, 3/2,−1/2,−1, 0). Point p2 corresponds to the

nonnegativity constraint for yn.

Let T ′ be a restriction of T obtained by replacing (SA3) with the missing pairwise

subadditivity conditions (SA0) and (SA1’). It can be checked that in addition to p1

and p2, the set T ′ has the following extreme point: p3 = (1/2, 1, 3/2,−1/2, 1/2, 0).

Note that p2 ≤ p3 and p2 6= p3. Therefore pT
3 (x, y) ≥ 1 is strictly implied by

pT
2 (x, y) ≥ 1. Therefore T ′ indeed has extreme points that do not correspond to facets

of K(3, 2).

One could think that by using (SA2’) and/or (SA2”) it would be possible to

obtain a characterization of either nontrivial facets or all facets except nonnegativity

constraints. However this is not the case, since using (SA2’) and/or (SA2”) in addition

to (SA0) and (SA1’), we get counterexamples similar to the above one.

2.3 Lifting facets of P (n, r) when n > r > 0

Lifting is a general principle for constructing valid (facet-defining) inequalities for

higher dimensional sets using valid (facet-defining) inequalities for lower dimensional

sets. Starting with the early work of Gomory [55], the lifting approach was generalized

by Padberg [88], Wolsey [101], Balas and Zemel [18] and Gu et. al [67], among others.

As P (n, r) is an n− 1 dimensional face of K(n, r) obtained by setting n variables

to their lower bounds, any facet-defining inequality for P (n, r)

n−1
∑

i=1

π̄ixi ≥ 1 (21)
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can be lifted to obtain one or more facet-defining inequalities of the form

n−1
∑

i=1

π̄ixi + π′
nxn +

n−1
∑

i=1

ρ′iyi ≥ 1 (22)

for K(n, r). We call inequality (22) a lifted inequality. Throughout this section we

assume that n > r > 0, as this assumption holds true for P (n, r).

For any valid inequality πx + ρy ≥ β for K(n, r), if πi = 0 for some i ∈ N , then

Lemma 2.2.3 implies that ρ ≥ 0. This, in turn, implies that π ≥ 0. Therefore, a

(trivial) facet of P (n, r) defined by a nonnegativity inequality can only yield a conic

combination of nonnegativity inequalities for K(n, r) when lifted. Consequently, we

only consider nontrivial facets of P (n, r) for lifting.

2.3.1 The restricted coefficient polyhedron T π̄

We start by reviewing the result of Gomory [55], previously presented in Section 2.1.1,

that gives a complete characterization of the nontrivial facets (i.e., excluding the

nonnegativity inequalities) of P (n, r). In this description facet-defining inequalities

are normalized so that yn has a coefficient of zero and the righthand side is 1.

Theorem 2.1.1 (Gomory [55]). The inequality π̄x ≥ 1 defines a nontrivial facet of

P (n, r), for n > r > 0, if and only if π̄ ∈ Rn−1 is an extreme point of

Q =



































πi + πj ≥ π
(i+j)modn

∀i, j ∈ {1, . . . , n− 1},

πi + πj = πr ∀i, j such that r = (i+ j) modn,

πj ≥ 0 ∀j ∈ {1, . . . , n− 1},

πr = 1.

Clearly nontrivial facets of P (n, r) would give nontrivial facets of K(n, r) when

lifted. Using Gomory’s characterization above, the lifting of nontrivial facets of

P (n, r) can be seen as a way of extending an extreme point π̄ of Q to obtain an

extreme point (π̄, π′
n, ρ

′, 0) of T .
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Let p = (π̄, π′
n, ρ

′, 0) be an extreme point of T . Then, p also has to be an extreme

point of the lower dimensional polyhedron

T π̄ = T ∩
{

πi = π̄i, ∀i ∈ {1, . . . , n− 1}
}

.

Let L = {n− r + 1, . . . , n− 1}.

Lemma 2.3.1. If (21) defines a nontrivial facet of P (n, r), then T π̄ 6= ∅ and has the

form

T π̄ =



























































































τ ≥ πn ≥ 0

ρk ≥ lk ∀ k ∈ L

ρk + πn ≥ tk ∀ k ∈ L

ρk − πn ≥ fk ∀ k ∈ L

πn + ρn−r = 1

ρn = 0

ρk = π̄n−k ∀k ∈ {1, . . . , n− r − 1}

πi = π̄i ∀i ∈ {1, . . . , n− 1}

where numbers lk, tk, fk and τ can be computed easily using π̄.

Proof. First note that π̄ ∈ Q and therefore π̄ satisfies inequality (SA2) as well as

equations (EP1) and (EP2). In addition, as π̄i + π̄j = 1 for all i, j such that r =

(i + j) modn, equality (EP3) can be rewritten as ρi = πn−i for all 1 ≤ i ≤ n − r.

Further, as π̄ is subadditive (in the modular sense), inequalities (SA1) and (SA3)

are satisfied for all k ∈ {1, . . . , n− r − 1}. Therefore, setting

πn = 0 and ρk =















π̄n−k if k ∈ {1, . . . , n− r − 1},

1 otherwise,

produces a feasible point for T π̄, establishing that the set is not empty.

We next show that T π̄ has the proposed form, and also compute the values of

lk, tk, fk and τ .
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Inequality (SA1): If i = n, (SA1) becomes πn + ρk ≥ π̄n−k. If i 6= n, it becomes

ρk ≥ π̄i−k − π̄i, and therefore ρk ≥ l1k = maxn>i>k{π̄i−k − π̄i}.

Inequality (SA2): The only relevant case is i + j = n when (SA2) becomes πn ≤

π̄i+π̄n−i. When combined, these inequalities simply become πn ≤ τ 1 = minn>i>0{π̄i+

π̄n−i}.

Inequality (SA3): Without loss of generality assume i ≥ j. We consider 3 cases.

Case 1, k = n: In this case the inequality reduces to πi+πj ≥ πi+j−n which is satisfied

by π̄ when i, j < n. For i = n, this inequality simply becomes πn ≥ 0.

Case 2, k < n and i + j − k = n: In this case the inequality becomes ρk − πn ≥

−πi − πj . If i, j < n these inequalities can be combined to obtain ρk − πn ≥ f 1
k =

max1≤i,j<n, k=i+j−n

{

− π̄i − π̄j

}

. If i = n, then j = k and the inequality becomes

ρk ≥ −π̄k.

Case 3, k < n and i+j−k < n: If i, j < n the inequality becomes ρk ≥ πi+j−k−πi−πj .

These inequalities can be combined to obtain ρk ≥ l2k = max1≤i,j<n: k<i+j<n+k

{

π̄i+j−k−

π̄i − π̄j

}

. If i = n then j < n, so the inequality becomes πn + ρk ≥ πn+j−k − πj ,

implying πn + ρk ≥ t1k = maxk>j

{

π̄n+j−k − π̄j

}

.

Therefore, combining these observations, it is easy to see that T π̄ has form given

in Lemma 2.3.1 where lk, tk, fk and τ are computed as follows:

lk = max
{

l1k, l
2
k,−π̄k

}

,

tk = max
{

t1k, π̄n−k

}

= π̄n−k,

fk = f 1
k ,

τ = min
{

τ 1, 1− ln−r, (1− fn−r)/2
}

.

The second equality in the description of tk stating that tk = π̄n−k comes from the

fact that π̄ is sub-additive and therefore π̄n−k + π̄j ≥ π̄n+j−k for all j < k. The

1− ln−r and (1− fn−r)/2 terms in the last equation come from using the bounds on

ρn−r together with the equations and inequalities of T π̄ to obtain implied bounds for
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πn.

We next make a simple observation that will help us show that T π̄ has a polynomial

number of extreme points.

Lemma 2.3.2. If p = (π̄, π′
n, ρ

′, 0) is an extreme point of T π̄, then

ρ′k = max
{

lk, tk − π
′
n, fk + π′

n

}

for all k ∈ L.

Proof. Assume that the claim does not hold for some k ∈ L and let θ = max
{

lk, tk−

π′
n, fk + π′

n

}

. As p ∈ T π̄, ρ′k ≥ θ and therefore ǫ = ρ′k − θ > 0. In this case, two

distinct points in T π̄ can be generated by increasing and decreasing the associated

coordinate of p by ǫ, establishing that p is not an extreme point, a contradiction.

We next characterize the set of possible values π′
n can take at an extreme point of

T π̄.

Lemma 2.3.3. Let p = (π̄, π′
n, ρ

′, 0) be an extreme point of T π̄, if π′
n 6∈ {0, τ}, then

π′
n ∈ Λ :=

(

⋃

k∈L1

{

tk − lk, lk − fk

}

)

⋃

(

⋃

k∈L2

{

(tk − fk)/2
}

)

where L1 = {k ∈ L : tk + fk < 2lk} and L2 = L \ L1.

Proof. Note that the description of T π̄ consists of 3(r − 1) inequalities that involve

ρk variables and upper and lower bound inequalities for π′
n. Being an extreme point,

p has to satisfy r of these inequalities as equality. Therefore, if π′
n 6∈ {0, τ} then there

exists an index k ∈ L for which at least two of the following inequalities

ρk ≥ lk (a)

ρk + πn ≥ tk (b)

ρk − πn ≥ fk (c)
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hold as equality. Clearly, this uniquely determines the value of π′
n and therefore

π′
n ∈ Λ+ =

⋃

k∈L

{

tk − lk, lk − fk, (tk − fk)/2
}

.

Furthermore, for any fixed k ∈ L, adding inequalities (b) and (c) gives 2ρk ≥

tk + fk. Therefore if tk + fk > 2lk, then inequality (a) is implied by inequalities (b)

and (c) and it cannot hold as equality. Similarly, if tk +fk < 2lk, then inequalities (b)

and (c) cannot hold simultaneously. Finally, if tk + fk = 2lk, then it is easy to see

that tk − lk = lk − fk = (tk − fk)/2. Therefore letting

L1 = {k ∈ S : tk + fk < 2lk}, L2 = L \ L1

proves the claim.

Combining the previous lemmas, we have the following result:

Theorem 2.3.4. Given a nontrivial facet-defining inequality (21) for P (n, r), there

are at most 2r lifted inequalities that define facets of K(n, r).

Proof. The set L has r − 1 members and therefore together with 0 and τ , there are

at most 2r possible values for π′
n in a facet-defining lifted inequality (22). As the

value of π′
n uniquely determines the remaining coefficients in the lifted inequality, by

Lemma 2.3.2, the claim follows.

In general, determining all possible lifted inequalities is a hard task. However,

the above results show that obtaining all possible facet-defining inequalities lifted

from a facet of P (n, r) is straightforward and can be performed in polynomial time.

In Figure 1, we display two facets of K(16, 13) obtained by lifting the same facet

of P (16, 13). The facet coefficient of each variable is a function of its coefficient in

K(n, r), that is, variable xi will have a facet coefficient f(i) and variable yi will have a

facet coefficient f(−i). We marked all of these coefficients as discs in the figure. Also,
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note that the displayed functions are obtained by interpolating the facet coefficients;

we explain their significance in Section 2.8.

Note that the second facet has the same coefficient values for xi, i = 1, . . . , n− 1

as the first, and a larger coefficient for xn, and therefore it has coefficient values for

the y variables which are less than (sometimes strictly less than) the corresponding

coefficients for the first facet. To make comparison easier, we plot the first facet in

dashed lines behind the second facet. Later, in Figure 2, we display facets ofK(16, 13)

which cannot be obtained by lifting.

f(a)

a

f(a)

a

Figure 1: Example of two facets of K(16, 13) obtained by lifting

2.3.2 Sequential lifting

Sequential lifting is a procedure that introduces the missing variables one at a time

to obtain the lifted inequality. Depending on the order in which missing variables

are lifted, one obtains different inequalities. We note that not all lifted facets can be

obtained by sequential lifting, see [85].

In Lemma 2.3.1 we have established that (regardless of the lifting sequence) ρ′k =

πn−k for k ∈ K ′ = {1, . . . , n−r−1}. Furthermore, in Lemma 2.3.2 we established that

the coefficient of variable xn determines the coefficients of the remaining variables.

Therefore, given a lifting sequence, if K ′′ denotes the set of indices of yk variables that

are lifted after either one of xn or yn−r, then the lifted inequality does not depend on

the order in which variables yk for k ∈ K ′ or k ∈ K ′′ are lifted. We next present a
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result adapted from Wolsey [101].

Lemma 2.3.5 (Wolsey [101]). Given a facet-defining inequality (21) for P (n, r) and

a lifting sequence for the variables xn and yi for i = 1, . . . , n−1, the sequential lifting

procedure produces a facet-defining inequality for K(n, r).

Furthermore, when a variable is lifted, it is assigned the smallest value among

all coefficients for that variable in lifted inequalities having the same coefficients for

previously lifted variables.

Therefore, given a nontrivial facet-defining inequality π̄x ≥ 1 for P (n, r), the

lifting coefficient of the variable currently being lifted can simply be computed by

solving a linear program that minimizes the coefficient of that variable subject to the

constraint that T π̄ has a point consistent with the coefficients of the variables that

have already been lifted.

We conclude this section by showing that the simple mapping discussed in the

Introduction (see inequality (14)) leads to a particular lifted inequality.

Lemma 2.3.6. If variable xn is lifted before all yk for k ∈ {n − r, . . . , n − 1}, then

independent of the rest of the lifting sequence the lifted inequality is

n−1
∑

i=1

π̄ixi +

n−1
∑

i=1

π̄n−iyi ≥ 1.

Proof. By Lemma 2.3.5, we know that variable xn will be assigned the smallest pos-

sible coefficient in the lifted inequality. As πn ≥ 0 in the description of T π̄ and as

T π̄ does contain a point with πn = 0 (as described in the proof of Lemma 2.3.1), we

conclude that πn = 0 in the lifted inequality.

Therefore, by Lemma 2.3.2, ρ′k = min
{

lk, π̄n−k, fk

}

and we need to show that

π̄n−k ≥ lk, tk for all k ∈ {1, . . . , n − 1}. First, observe that 0 ≥ tk and therefore

π̄n−k ≥ tk for all k ∈ {1, . . . , n − 1}. Finally, recall that π̄ is subadditive (in the

modular sense), and therefore π̄n−k + π̄i ≥ π̄i−k for all n > i > k and π̄n−k + π̄i + π̄j ≥

π̄i+j−k for all n > i, j and n+ k > i+ j > k.
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The first facet in Figure 1 has the form given in the previous lemma; it is obtained

from a facet of P (n, r) by first lifting xn.

2.4 Mixed integer rounding inequalities for K(n, r) for r > 0

In this section we study MIR inequalities in the context of K(n, r). Our analysis also

provides an example that shows that lifting facets of P (n, r) cannot give all facets of

K(n, r). Throughout, we will use the notation x̂ := x − ⌊x⌋ and (x)+ = max{x, 0}.

Recall that, for a general single row system of the form: {w ∈ Z
p
+ :
∑p

i=1 aiwi = b}

where b̂ > 0, the MIR inequality is:

p
∑

i=1

(

⌊ai⌋+ min
(

âi/b̂, 1
))

wi ≥ ⌈b⌉ .

We define the 1
t
-MIR (for t ∈ Z+) to be the MIR inequality obtained from the

following equivalent representation of K(n, r):

{

(x, y) ∈ Zn
+ × Zn

+ :

n
∑

i=1

(i/t)xi −
n
∑

i=1

(i/t)yi = r/t

}

.

Lemma 2.4.1. Given t ∈ Z such that 2 ≤ t ≤ n, the 1
t
-MIR inequality

n
∑

i=1

(⌊

i

t

⌋

+ min

(

i mod t

r mod t
, 1

))

xi+

n
∑

i=1

(

−

⌈

i

t

⌉

+ min

(

(t− i) mod t

r mod t
, 1

))

yi ≥
⌈r

t

⌉

is facet-defining for K(n, r) provided that r/t 6∈ Z.

Proof. Let πx + ρy ≥ πo denote the 1
t
-MIR inequality and let F denote the set of

points that are on the face defined by this inequality. Also let qi denote imod t. Using

this definition i = qi + ⌊i/t⌋ t.

For i ∈ N \ {1, t}, consider the point

wi = ei + (⌊r/t⌋ − ⌊i/t⌋)+et + (⌊i/t⌋ − ⌊r/t⌋)+ft + (qr − qi)+e1 + (qi − qr)+f1
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and observe that wi ∈ K(n, r). Moreover,

(π, ρ)Twi = (⌊i/t⌋+ min{qi/qr, 1}) + (⌊r/t⌋ − ⌊i/t⌋) +
(qr − qi)+

qr
= ⌊r/t⌋+ 1 = πo

and therefore wi ∈ F . Similarly, let −i = −⌈i/t⌉+mi, with 0 ≤ mi < t and consider

the point

zi = fi + (⌊r/t⌋+ ⌈i/t⌉)et + (qr −mi)+e1 + (mi − qr)+f1

for i ∈ N \ {1, t}. Clearly xi ∈ K(n, r). Furthermore,

(π, ρ)T zi = (−⌈i/t⌉+ min{m/qr, 1}) + (⌊r/t⌋+ ⌈i/t⌉) +
(qr −m)+

qr
= ⌊r/t⌋+ 1 = πo

and therefore zi ∈ F .

Additionally the following three points are also in K(n, r)∩F : u1 = ⌊r/t⌋ et+q
re1,

u2 = (⌊r/t⌋ + 1)et + (t − qr)f1, u
3 = (⌊r/t⌋ + 1)et + ft + qre1. Therefore, {ui}3i=1 ∪

{wi}i∈N\{1,t} ∪ {z
i}i∈N\{1,t} is a set of 2n− 1 affinely independent points in F .

We next show that 1
t
-MIR inequalities are not facet-defining unless they satisfy the

conditions of Theorem 2.4.1. First, observe that the inequality is not defined if t di-

vides r. Next, we show that the 1/n-MIR inequality dominates all 1
t
-MIR inequalities

with t > n.

Lemma 2.4.2. If t > n, then the 1
t
-MIR inequality is not facet-defining for K(n, r).

Proof. When t > n, the 1
t
-MIR inequality becomes

∑

i∈N

min{i/r, 1}xi −
∑

i:i>t−r

(

1−
t− i

r

)

yi ≥ 1

and is dominated by the 1/n-MIR inequality:

∑

i∈N

min{i/r, 1}xi −
∑

i:i>n−r

(

1−
n− i

r

)

yi ≥ 1.

We conclude this section by showing that 1
t
-MIR inequalities give facets that

cannot be obtained by lifting facets of P (n, r).
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Theorem 2.4.3. For n ≥ 9 and n − 2 ≥ r > 0, there are facet-defining inequalities

for K(n, r) that cannot be obtained by lifting facet-defining inequalities for P (n, r).

Proof. When 0 < r ≤ n − 4, consider the facet induced by the 1
n−2

-MIR inequality

πx+ ρy ≥ πo where

ρn = −2 + min

(

n− 4

r
, 1

)

= −1.

We subtract 1
n

times
∑n

i=1 ixi−
∑n

i=1 iyi = r from the inequality to obtain π′x+ρ′y ≥

π′
o where ρ′n = 0 and therefore the inequality satisfies the normalization condition

(NC1). Notice that

π′
r+1 + π′

n−1 =

(

1−
r + 1

n

)

+

(

1 +
1

r
−
n− 1

n

)

= 1−
r

n
+

1

r

whereas π′
r = 1− r/n < π′

r+1 + π′
n−1. This proves the claim for 0 < r ≤ n − 4 as all

facet-defining inequalities for P (n, r) must satisfy π′
r+1 + π′

n−1 = π′
r.

For r ∈ {n− 3, n− 2}, the 1
r−1

-MIR inequality provides such an example.

For r = n− 1, all points in T automatically satisfy all equations in Q. Therefore,

any given facet-defining inequality of K(n, r) can be obtained by lifting a point in Q.

However, this point is not necessarily an extreme point of Q.

2.5 Polyhedral analysis of K(n, 0)

Observe that LK(n, 0), the linear relaxation of K(n, 0), is a pointed cone (as it is

contained in the nonnegative orthant) and has a single extreme point (x, y) = (0, 0).

Therefore LK(n, 0) equals its integer hull, i.e., LK(n, 0) = K(n, 0). In Lemma 2.2.3,

we characterized the extreme rays of K(n, r) and thereby showed that the recession

cone of K(n, r) is generated by the vectors {rij}. But the recession cone of K(n, r)

for some r > 0 is just K(n, 0). Therefore, LK(n, 0) is generated by the vectors {rij},

and the next result follows.
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Theorem 2.5.1. The inequality πx + ρy ≥ πo is facet-defining for K(n, 0) if and

only if (π, ρ, πo) is a minimal face of

To =











jπi + iρj ≥ 0 , ∀i, j ∈ N,

πo = 0.

In his work on MCGP, Gomory also studied P (n, 0), the convex hull of non-zero

integral solutions that satisfy
∑n−1

i=1 ixi − nyn = 0, and showed that an analog of

Theorem 2.1.1 also holds for r = 0. For the sake of completeness, we now consider a

similar modification of K(n, 0) and study the set:

K̄(n, 0) = conv

{

(x, y) ∈ Zn
+ × Zn

+ :
n
∑

i=1

ixi −
n
∑

i=1

iyi = 0, (x, y) 6= 0

}

.

For this case it will be more convenient to consider all nonnegativity inequalities

(including yn ≥ 0) as trivial. We will next prove that all nontrivial facet-defining

inequalities for K̄(n, 0) are given by the extreme points of T̄o defined below.

Definition 2.5.2. We define T̄o ⊆ R2n+1 as the set of points that satisfy the following

linear equalities and inequalities:

πi + ρj ≥ πi−j, ∀i, j ∈ N, i > j, (SA1)

πi + ρj ≥ ρj−i, ∀i, j ∈ N, i < j, (SA1’)

πi + ρi = πo, ∀i ∈ N, (EP1-R0)

πo = 1, (N1-R0)

ρn = 0. (N2-R0)

It is easy to see that the conditions (SA1), (SA1’), and (EP1-R0) are together

equivalent to the conditions (SA2), (SA2’), (SA2”) and (EP1-R0). For example,

replacing πi by πo − ρi and πi−j by πo − ρi−j in (SA1), we get (SA2’). Therefore,

a point in T̄o satisfies all the pairwise subadditivity conditions given in the previous

section.
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Lemma 2.5.3. If (π, ρ, πo) ∈ T̄o then πx+ ρy ≥ πo is a valid inequality for K̄(n, 0).

Proof. Suppose πx+ ρy ≥ πo is not valid for K̄(n, 0). Then, let (x∗, y∗) ∈ K̄(n, 0) be

the integer point in K̄(n, 0) with smallest L1 norm such that πx∗ + ρy∗ < πo. Note

that any point in K̄(n, 0) has L1 norm 2 or more.

If ||(x∗, y∗)||1 = 2, then (x∗, y∗) = ei + fi for some i ∈ N , but by (EP1-R0),

πx∗ + ρy∗ = πo, which is a contradiction. So we may assume that ||(x∗, y∗)||1 > 2.

As (x∗, y∗) ∈ K̄(n, 0), there exists i, j ∈ N such that x∗i > 0 and y∗j > 0. Let

(x′, y′) = (x∗, y∗)− ei − fj +























fj−i if i < j,

0 if i = j,

ei−j if i > j.

Clearly, (x′, y′) is an integer point in K̄(n, 0) and ||(x′, y′)||1 ≤ ||(x
∗, y∗)||1 − 1. Fur-

thermore, as (π, ρ, πo) satisfies (SA1), (SA1’) and (EP1-R0), we also have πx′ +ρy′ ≤

πx∗ + ρx∗ < πo, which contradicts the choice of (x∗, y∗).

Theorem 2.5.4. Consider an inequality πx + ρy ≥ πo with ρn = 0. It defines a

nontrivial facet of K̄(n, 0) if and only if it the following conditions hold: (i) πo > 0,

and, (ii) (π, ρ, πo)/πo is an extreme point of T̄o.

Proof. (⇒):

Let πx + ρy ≥ πo define a nontrivial facet of K̄(n, 0). We first show that (π, ρ, πo)

satisfies (SA1), (SA1’) and (EP1-R0), and can be assumed to satisfy (N1-R0) and

(N2-R0).

(SA1) - (SA1’): Let i, j be indices such that i, j ∈ N and i > j. Let z = (x∗, y∗)

be an integral point lying on the above facet such that x∗i−j > 0. As z+(ei +fj−ei−j)

belongs to K̄(n, 0), (SA1) is true. The proof of (SA1’) is similar.

(EP1-R0): Let γ = (π, ρ). Let z1 = (x1, y1) and z2 = (x2, y2) be integral points

lying on the facet such that x1
i > 0 and y2

i > 0. Then z = z1 + z2 − ei− fi ∈ K̄(n, 0),
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and therefore γz = γz1 + γz2 − πi − ρi = 2πo − πi − ρi ≥ πo ⇒ πi + ρi ≤ πo. But as

ei + fi ∈ K̄(n, 0), πi + ρi ≥ πo and the result follows.

(N1-R0): Assume πo < 0, and let (x∗, y∗) be an integral point in K̄(n, 0) sat-

isfying πx∗ + ρy∗ = πo. As α(x∗, y∗) ∈ K̄(n, 0) for any positive integer α, whereas

παx∗ +ραy∗ = απo < πo, we obtain a contradiction to the fact that points in K̄(n, 0)

satisfy πx+ ρy ≥ πo.

If πo = 0, then (EP1-R0) implies that ρi = −πi for all i ∈ N . This fact, along

with (SA1) and (SA1’) implies that πi = iπ1 and ρi = −iπ1 for all i ∈ N . But

then πx+ ρy ≥ πo is the same as π1(
∑n

i=1 ixi −
∑n

i=1 iyi) ≥ 0, and therefore cannot

define a proper face of K̄(n, 0). Therefore, for any nontrivial facet, πo > 0 and can

be assumed to be 1 by scaling.

We can assume, by subtracting appropriate multiples of
∑n

i=1 ixi −
∑n

i=1 iyi = 0

from πx+ ρy ≥ πo, that (N2-R0) holds.

Therefore (π, ρ, πo) can be assumed to be contained in T̄o. If it is not an ex-

treme point of T̄o, it can be written as a convex combination of two distinct points

of T̄o, different from itself, each of which defines a valid inequality for K̄(n, 0) (by

Lemma 2.5.3). As the normalization conditions (N1-R0) and (N2-R0) mean that each

nontrivial facet-defining inequality corresponds to a unique point in T̄o, this implies

that (π, ρ, πo) is an extreme point of T̄o.

(⇐):

Let F =
{

(πk, ρk, πk
o )
}M

k=1
be the set of all nontrivial facets of K̄(n, 0) such that

ρk
n = 0 and πk

o = 1. Let (π, ρ, 1) be an extreme point of T̄o. By Lemma 2.5.3, (π, ρ, 1)

defines a valid inequality for K̄(n, 0), and therefore there exist numbers λk and α
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such that

αi+
∑M

k=1 λkπ
k
i ≤ πi, ∀i ∈ N

−αi+
∑M

k=1 λkρ
k
i ≤ ρi, ∀i ∈ N

∑M
k=1 λk ≥ 1,

λ ≥ 0, α free.

(EP1-R0) implies that for all i ∈ N , 1 = πi + ρi ≥
∑M

k=1 λk(π
k
i + ρk

i ) and since all

nontrivial facets also satisfy (EP1-R0), we can conclude that
∑M

k=1 λk = 1. Therefore,

1 = πi + ρi ≥
∑M

k=1 λk(π
k
i + ρk

i ) = 1 and hence πi =
∑M

k=1 λkπ
k
i and ρi =

∑M
k=1 λkρ

k
i .

In other words, (π, ρ, 1) can be expressed as a convex combination of the elements

of F , each of which is contained in T̄o. This is possible only if (π, ρ, 1) is itself an

element of F , i.e., it defines a nontrivial facet of K̄(n, 0).

As P (n, 0) is a lower dimensional face of K̄(n, 0), it is possible to lift facet-defining

inequalities of P (n, 0) to obtain facet-defining inequalities for K̄(n, 0). From the

description of T̄o, any nontrivial facet-defining inequality πx + ρy ≥ πo of K̄(n, 0)

satisfies ρi = 1−πi. Thus, if
n−1
∑

i=1

π̄ixi ≥ 1 defines a nontrivial facet of P (n, 0), there is

a unique way to lift this inequality to obtain a facet-defining inequality for K(n, 0),

namely:

xn +
n−1
∑

i=1

π̄ixi +
n−1
∑

i=1

(1− π̄i)yi ≥ 1.

Next, we show that when n = 3 not all facet-defining inequalities for K̄(n, 0)

can be obtained via lifting. Remember that, after normalization, coefficients of all

facet-defining inequalities for P (n, 0) are between 0 and 1.

Example 2.5.5. Consider K̄(3, 0) and note that all (x, y) ∈ K̄(3, 0) satisfy
∑3

i=1 xi ≥

1. Adding
∑3

i=1 ixi −
∑3

i=1 iyi = 0 to this inequality yields

2x1 + 3x2 + 4x3 − y1 − 2y2 − 3y3 ≥ 1. (23)

Dividing (23) by 2 and writing the MIR inequality gives x1 +2x2 +2x3− y2− y3 ≥ 1,
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which becomes

2

3
x1 +

4

3
x2 + x3 +

1

3
y1 −

1

3
y2 ≥ 1 (24)

after normalization. Denoting feasible points p ∈ K(3, 0) as p = (x1, x2, x3, y1, y2, y3),

note that the following 5 affinely independent points satisfy (24) as equality: p1 =

(1, 0, 0, 1, 0, 0), p2 = (0, 1, 0, 0, 1, 0), p3 = (0, 0, 1, 0, 0, 1), p4 = (2, 0, 0, 0, 1, 0) and

p5 = (0, 0, 1, 1, 1, 0) and therefore (24) defines a facet of K̄(3, 0).

Notice that (24) cannot be obtained via lifting as the coefficient of x2 is greater

than 1.

Lemma 2.5.6. For any n ≥ 3, K̄(n, 0) has at least one facet that cannot be obtained

by lifting a facet of P (n, 0) .

Proof. For n = 3 the example above proves the claim so we consider n ≥ 4. Let

πi =











i+2
n

if i < n

1 if i = n
ρi =











n−i−2
n

if i < n

0 if i = n
(25)

and notice that πn−1 > 1. We next show that p = (π, ρ, 1) ∈ T̄o. Clearly p satisfies

equations (EP1-R0), (N1-R0) and (N2-R0). Using (i + 2)/n ≥ πi ≥ i/n and (n −

i)/n ≥ ρi ≥ (n− i− 2)/n for all i ∈ N , note that

πi + ρj − πi−j ≥ i/n+ (n− j − 2)/n− (i− j + 2)/n ≥ 1− 4/n ≥ 0

and therefore p satisfies inequality (SA1). Finally, if we have that i, j ∈ N and j > i,

then j − i < n which implies that ρj−i = (n− j + i− 2)/n and hence:

πi + ρj − ρj−i ≥ i/n+ (n− j − 2)/n− (n− j + i− 2)/n ≥ 0

Therefore p satisfies inequality (SA1’) as well and it is indeed contained in To. As

To is a bounded polyhedron, it must therefore have an extreme point (π̄, ρ̄, 1) that

has π̄n−1 > 1. Clearly, the inequality corresponding to this extreme point cannot be

obtained by lifting a facet of P (n, 0).
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2.6 Separating over K(n, r)

Let LK(n, r) be the linear relaxation of K(n, r). We define the separation problem

over K(n, r) as follows: given (x∗, y∗) ∈ LK(n, r), either verify that (x∗, y∗) ∈ K(n, r)

or find a violated valid inequality for K(n, r). Note that the condition that (x∗, y∗) ∈

LK(n, r) is easy to satisfy.

From Theorems 2.2.6, 2.5.1 and 2.5.4, it follows that any point (x∗, y∗) ∈ LK(n, r),

with 0 < r ≤ n, can be separated fromK(n, r) by minimizing πx∗+ρy∗ over T . There-

fore, in this case the separation problem can be solved in polynomial-time using an

LP with O(n) variables and O(n3) constraints. Similarly, by Theorem 2.5.4, one can

separate a point from K̄(n, 0) using an LP with O(n) variables and O(n2) constraints.

We next show that the separation problem over K(n, r) can also be solved for any

r > 0 using an LP with O(n2) constraints.

Theorem 2.6.1. Given (x∗, y∗) ∈ LK(n, r), where r > 0, the separation problem over

K(n, r) can be solved in time polynomial in max{n, r} using an LP with O(max{n, r})

variables and O(max{n, r}2) constraints.

Proof. First we consider the case r ≤ n. Let T ′ be a restriction of T obtained by

replacing the relaxed subadditivity conditions (SA1)-(SA3) with the pairwise subad-

ditivity conditions (SA0), (SA1), (SA1’), (SA2), and (SA2’). Due to Lemma 2.2.7,

T ′ ⊆ T and therefore if (π, ρ) ∈ T ′, then πx+ρy ≥ 1 is a valid inequality for K(n, r).

In addition, by Lemma 2.2.9, if πx+ρy ≥ 1 defines a nontrivial facet of K(n, r), then

(π, ρ) ∈ T ′.

Let (π′, ρ′) be an optimal solution of

z∗ = min{πx∗ + ρy∗ : (π, ρ) ∈ T ′ }.

If z∗ < 1 then π′x + ρ′y ≥ 1 is a violated valid inequality. If, on the other hand,

z∗ ≥ 1, then (x∗, y∗) satisfies all facet-defining inequalities and therefore belongs to

K(n, r).
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Next, assume that r > n. Define (x′, y′) ∈ Rr × Rr such that x′i = x∗i ; y
′
i =

y∗i , for i = 1, . . . , n and x′i = y′i = 0, for i = n + 1, . . . , r. As (x∗, y∗) ∈ K(n, r) ⇐⇒

(x′, y′) ∈ K(r, r), separation can be done using K(r, r). If a violated inequality is

found, then it can simply be turned into a valid inequality for K(n, r) by dropping

the extra coefficients.

2.7 Mixed-integer extension

Consider the mixed-integer extension of K(n, r):

K ′(n, r) = conv

{

(v+, v−, x, y) ∈ R2
+ × Z2n

+ : v+ − v− +

n
∑

i=1

ixi −
n
∑

i=1

iyi = r

}

where n, r ∈ Z and n ≥ r > 0. As in the case of the mixed-integer extension of MCGP

studied by Gomory and Johnson [57], the facets of K ′(n, r) can easily be derived from

the facets of K(n, r) when r is an integer. To prove such a result, we introduce a few

definitions, and also state some easy results without proof.

The dimension of K ′(n, r) is 2n+1, that is, one less than the number of variables.

The inequalities xi ≥ 0 and yi ≥ 0, for i = 1, . . . , n, and v+ ≥ 0 and v− ≥ 0 define

facets of K ′(n, r). We refer to the facets above – other than yn ≥ 0 – as trivial

facets, and refer to the remaining facets of K ′(n, r) as nontrivial. Finally, note that

the recession cone of K ′(n, r) contains the vectors jei + ifj , for all i, j satisfying

1 ≤ i, j ≤ n. For K ′(n, r), let e+ and e− be the unit vectors in R2n+2 with ones in,

respectively, the v+ component, and the v− component, and zeros elsewhere. For a

vector χ in the K ′(n, r) space, define its restriction to the K(n, r) space by removing

the v+ and v− components, and denote it by χre.

Proposition 2.7.1. All nontrivial facet-defining inequalities for K ′(n, r) have the

form

π1v+ + ρ1v− +
n
∑

i=1

πixi +
n
∑

i=1

ρiyi ≥ πo. (26)

Furthermore, inequality (26) is facet-defining if and only if πx + ρy ≥ πo defines a

nontrivial facet of K(n, r).
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Proof. Let πx+ ρy ≥ πo define a nontrivial facet of K(n, r). We first show that the

inequality (26) is valid for K ′(n, r). Assume (26) is violated by some integral point

χ ∈ K ′(n, r) (the x and y components of χ are integral). Then the left-hand-side of

(26) evaluated at χ equals a number z less than πo. Let v′+ = eT
+χ and v′− = eT

−χ.

The property (R1) in Observation 2.2.8 implies that π1 + ρ1 ≥ 0. Therefore, if

min{v′+, v
′
−} = ǫ > 0, then (26) is also violated by the point χ−ǫ(e+ +e−) ∈ K ′(n, r).

We can thus assume that χ satisfies min{v′+, v
′
−} = 0. But min{v′+, v

′
−} = 0 combined

with the integrality of χ implies that v′+ and v′− are both integers. Therefore χ′ =

χre + v′+e1 + v′−f1 is an integral point contained in K(n, r), and (π, ρ)Tχ′ = z < πo,

which contradicts the fact that πx+ ρy ≥ πo is satisfied by all points in K(n, r).

To see that (26) defines a facet of K ′(n, r), let χ1, . . . χ2n−1 be affinely independent

integral points in K(n, r) which satisfy (π, ρ)Tχi = πo. As the facet defined by

πx + ρy ≥ πo does not equal the facet defined by either x1 ≥ 0 or y1 ≥ 0, there

are indices j, k such that eT
1 χ

j = s > 0 and fT
1 χ

k = t > 0. Define 2n + 1 affinely

independent points in R2n+2 as follows:

ψi = (0, 0, χi) for i = 1, . . . , 2n− 1;

ψ+ = ψj + se+ − se1; ψ
− = ψk + te− − tf1.

These points satisfy (26) at equality, and therefore (26) defines a facet of K ′(n, r).

We now show that every nontrivial facet of K ′(n, r) has the form in (26). Assume

ηT (v+, v−, x, y) ≥ ηo defines a nontrivial facet F of K ′(n, r). Let η = (α+, α−, π, ρ),

where α+, α− ∈ R, and π, ρ ∈ Rn. There exists a point χ ∈ K ′(n, r) lying on the

above facet such that χT e1 > 0. As χ−e1 +e+ ∈ K
′(n, r), we conclude that α+ ≥ π1.

We can similarly conclude that α− ≥ ρ1 and therefore α+ + α− ≥ π1 + ρ1 ≥ 0.

The last inequality is implied by the fact that e1 + f1 is contained in the recession

cone of K ′(n, r). If α+ + α− = 0, then clearly α+ = π1 and α− = ρ1. Assume

α+ + α− > 0. As F is not the same as the facet v+ ≥ 0, there exists an integral
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point χ = (v′+, v
′
−, x

′, y′) ∈ K ′(n, r) lying on F such that v′+ > 0. If v′− > 0, let

min{v′+, v
′
−} = ǫ > 0. Then χ1 = χ− ǫ(e+ + e−) ∈ K ′(n, r), but ηTχ1 = ηo − ǫ(α+ +

α−) < ηo. This contradicts the fact that (η, ηo) defines a valid inequality for K ′(n, r).

We can therefore assume that v′− = 0 and v′+ = t, for some positive integer t. Define

χ2 as χ− te+ + te1. As χ2 ∈ K ′(n, r), it follows that ηTχ2 ≥ ηo ⇒ α+ ≤ π1. We can

conclude that α+ = π1; a similar argument shows that α− = ρ1.

Finally, we show that if (26) defines a facet of K ′(n, r), then the inequality πx+

ρy ≥ πo defines a facet of K(n, r). Firstly, this defines a valid inequality for K(n, r) as

any point inK(n, r) can be mapped to a point inK ′(n, r) by appending zeros in the v+

and v− components. If it does not define a facet, then (π, ρ) ≥
∑

i λi(π
i, ρi) and πo ≤

∑

i λiπ
i
o for some nontrivial facet-defining inequalities πix+ ρiy ≥ πi

o of K(n, r), and

some numbers λi ≥ 0. But that would imply that (π1, ρ1, π, ρ) ≥
∑

i λi(π
i
1, ρ

i
1, π

i, ρi).

By the first part of the proof, the inequalities πi
1v+ + ρi

1v− + πix + ρiy ≥ πi
o define

facets of K ′(n, r), and this contradicts the assumption that (26) defines a facet of

K ′(n, r).

2.8 Using K(n, r) to generate valid inequalities for MIP

Gomory and Johnson used facets of P (n, r) to derive valid inequalities for knapsack

sets. In particular, they derived subadditive functions from facet coefficients via inter-

polation. We show here how to derive valid inequalities for knapsack sets from facets

of K(n, r) via interpolation. Clearly, such inequalities can also be used as valid in-

equalities for general MIPs by using a knapsack set that is a relaxation of the original

MIP. Our main result is presented at the end of the section in Theorem 2.8.5 and the

rest of the section is dedicated to developing auxiliary steps for it. For a real number

v, we define v̂ as v − ⌊v⌋.

Definition 2.8.1. Given a facet-defining inequality πx + ρy ≥ πo for K(n, r), let
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f z : Z ∩ [−n, n]→ R be defined as

f z(s) =























πs if s > 0,

0 if s = 0,

ρ−s if s < 0.

We say that f : [−n, n]→ R is a facet-interpolated function derived from (π, ρ, πo) if

f(v) = (1− v̂)f z(⌊v⌋) + v̂f z(⌈v⌉).

The function f , as defined above, equals f z(v) when v is an integer, and therefore

satisfies:

f(v) = (1− v̂)f(⌊v⌋) + v̂f(⌈v⌉). (27)

In the next result, we show that continuous functions arising via interpolation from

facets ofK(n, r) satisfy continuous analogues of the pairwise subadditivity conditions.

Proposition 2.8.2. Let f be a facet-interpolated function derived from a facet of

K(n, r) that is not a nonnegativity constraint. Then

f(u) + f(v) ≥ f(u+ v) if u, v, u+ v ∈ [−n, n].

Proof. The proposition is true when u and v are integers; the condition f(u)+f(v) ≥

f(u+v) translates to one of (SA0), (SA1), (SA2), (SA1’), (SA2’) or (SA2”). Assume

u is not an integer. As u + v ∈ [−n, n], clearly ⌊u+ v⌋ and ⌈u+ v⌉ also belong to

[−n, n].

Case 1: û + v̂ ≤ 1. Then ⌊u+ v⌋ = ⌊u⌋ + ⌊v⌋ and ⌈u+ v⌉ = ⌈u⌉ + ⌊v⌋. We can

rewrite the expression for f(u) in (27) as

f(u) = (1− û− v̂)f(⌊u⌋) + ûf(⌈u⌉) + v̂f(⌊u⌋). (28)

Similarly,

f(v) = (1− û− v̂)f(⌊v⌋) + v̂f(⌈v⌉) + ûf(⌊v⌋). (29)
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Adding the right-most terms in the above expressions, and using the fact that the

proposition is true when u and v are integers, we obtain

f(u) + f(v) ≥ (1− û− v̂)f(⌊u+ v⌋) + ûf(⌈u+ v⌉) + v̂f(⌊u⌋+ ⌈v⌉). (30)

If v is an integer, then v̂ = 0 and the right-hand side of (30) equals f(u+ v). If v is

not an integer, then ⌈u+ v⌉ = ⌊u⌋+ ⌈v⌉, and again the right-hand side of (30) equals

f(u+ v).

Case 2: û+ v̂ > 1. Then ⌊u+ v⌋ = ⌊u⌋+ ⌈v⌉ = ⌈u⌉+ ⌊v⌋ and ⌈u+ v⌉ = ⌈u⌉+ ⌈v⌉.

We can expand ûf(⌈u⌉) in (27) as (û+ v̂−1)f(⌈u⌉)+(1− v̂)f(⌈u⌉). We can similarly

expand v̂f(⌈v⌉). When we add the expressions for f(u) and f(v) in (27) after writing

the expanded terms, we get

f(u) + f(v) ≥ (û+ v̂ − 1)f(⌈u+ v⌉) + (2− û− v̂)f(⌊u+ v⌋).

The right-hand side of the inequality above equals f(u+ v).

We say that functions satisfying the property in Proposition 2.8.2 are subadditive

over the interval [−n, n]. We will see how to generate valid inequalities for knapsack

sets from such functions in Proposition 2.8.4. Also, we can obtain valid inequalities

using slightly more restricted functions: we say that f is a restricted subadditive

function if f(u) + f(v) ≥ f(u+ v) for u ∈ [−n, n], and v, u + v ∈ [0, n]. In the next

result, we show that facet-interpolated functions satisfy the continuous analogue of

condition (SA3).

Proposition 2.8.3. Let f be a facet-interpolated function derived from a nontrivial

facet of K(n, r). Then

f(u) + f(v) + f(w) ≥ f(u+ v + w) if u ∈ [−n, n], and v, w, u+ v + w ∈ [0, n].

Proof. (sketch) The proposition is true when u, v and w are integers; the condition

f(u) + f(v) + f(w) ≥ f(u + v + w) translates to (SA3). As in the proof of (2.8.2),
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we assume either that û + v̂ + ŵ is contained in (0, 1] or (1, 2] or (2, 3). In the first

case, we expand (1− û)f(⌊u⌋) as (1− û− v̂− ŵ)f(⌊u⌋)+ (v̂+ ŵ)f(⌊u⌋), and proceed

similarly for the terms involving f(⌊v⌋) and f(⌊w⌋). In the third case, we expand

ûf(⌈u⌉) as (û + v̂ + ŵ − 2)f(⌈u⌉) + (2 − v̂ − ŵ)f(⌈u⌉), and proceed similarly for

the terms involving f(⌈v⌉) and f(⌈w⌉). The second case has a number of sub-cases.

For example, in expanding the terms in the definition of f(u) in (27), we need to

consider the value of v̂ + ŵ with respect to 1. If v̂ + ŵ ≤ 1, then we write ûf(⌈u⌉)

as (û + v̂ + ŵ − 1)f(⌈u⌉) + (1 − v̂ − ŵ)f(⌈u⌉). On the other hand, if û + v̂ > 1, we

expand

It is well-known that subadditive functions yield valid inequalities for knapsack

sets; the point we emphasize in the next result is that one does not need subadditivity

over the entire real line.

Proposition 2.8.4. Consider the set K = {w ∈ Zp :
∑p

i=1 aiwi = b}, where the

coefficients ai and b are rational numbers. Let t be a number such that tai, tb ∈ [−n, n]

and tb > 0. If a function f is (i) subadditive over the interval [−n, n] or (ii) satisfies

restricted subadditivity and the condition in Proposition 2.8.3, then

p
∑

i=1

f(tai)wi ≥ f(tb)

is a valid inequality for K.

Proof. We can scale the coefficients ai and b in the constraint defining K by a rational

number λ > 0 so that they become integers contained in the interval [−m,m], with

m = λmax{|ai|, |b|}. Define the function g : [−m,m] → R by g(w) = f((t/λ)w).

In case (i), g is subadditive over the domain [−m,m]. Therefore the vector g̃ =

(g(−m), g(−m+1), . . . , g(1), . . . , g(m)) satisfies (SA0), (SA1), (SA2) and (SA1’) with

respect to K(m, b), and (by Lemma 2.2.7 and Lemma 2.2.13)

p
∑

i=1

g(λai)wi ≥ g(λb)
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is a valid inequality for K. In case (ii), g̃ satisfies (SA1), (SA2) and (SA3) with

respect to K(m, b) and by Lemma 2.2.13 the inequality above is valid for K.

Note that Proposition 2.8.4 implies that facet-interpolated functions derived from

facets of K(n, r) can be used to generate valid inequalities for K (and consequently

for general MIPs). Figure 2 presents examples of such functions obtained from a facet

of K(n, r). Note that the first example displays a feature not observed in facets of

P (n, r), namely negative cut coefficients.

We can now give the mixed-integer extension of the previous result.

Theorem 2.8.5. Let f be a facet-interpolated function derived from a nontrivial facet

of K(n, r). Consider the set

Q =

{

(s, w) ∈ R
q
+ × Z

p
+ :

q
∑

i=1

cisi +

p
∑

i=1

aiwi = b

}

,

where the coefficients of the knapsack constraint defining Q are rational numbers. Let

t be such that tai, tb ∈ [−n, n] and tb > 0. Then the inequality

f(1)

q
∑

i=1

(tci)
+si + f(−1)

q
∑

i=1

(−tci)
+si +

p
∑

i=1

f(tai)wi ≥ f(tb),

where (α)+ = max(α, 0), is valid for Q.

f(a)

a

f(a)

a

Figure 2: Example of two facet-interpolated functions derived from facets of
K(16, 13)

59



2.9 Final remarks

We defined and studied the Master Equality Polyhedron, a generalization of the

Master Cyclic Group Polyhedron and presented an explicit characterization of the

polar of its nontrivial facet-defining inequalities. We showed that facets of MEP can

be used to obtain valid inequalities for a general MIP that cannot be obtained from

facets of MCGP. In addition, for mixed-integer knapsack sets with rational data and

nonnegative variables without upper bounds, our results yield a pseudo-polynomial

time algorithm to separate and therefore optimize over their convex hull. This can be

done by scaling their data and aggregating variables to fit into the MEP framework.

Our characterization of MEP can also be used to find violated Homogeneous Extended

Capacity Cuts efficiently. These cuts were proposed in [98] for solving Capacitated

Minimum Spanning Tree problems and Capacitated Vehicle Routing problems.

An interesting topic for further study is the derivation of “interesting” classes of

facets for MEP, i.e., facets which cannot be lifted from facets of MCGP and are not

defined by rank one mixed-integer rounding inequalities.
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CHAPTER III

LIFTING

3.1 Introduction

In Section 1.4 we introduced lifting as a technique to obtain valid inequalities for a

polyhedron based on lower dimensional restrictions of it. However, in that section,

we introduced the case where the lower dimensional restrictions were obtained by

fixing some of the variables to a certain value. In this chapter we consider lifting in a

slightly more general form, where the lower dimensional restrictions are obtained by

intersecting the original polyhedron with any arbitrary affine subspace.

Specifically, consider the nonempty mixed integer set

P = {x ∈ Rn : Ax ≤ d, xi ∈ Z ∀i ∈ I},

where A ∈ Qm×n, d ∈ Qn, and I ⊆ {1, . . . , n}. Consider a set of affine functions

gl(x) = (vlx − wl) for l = 1, . . . , L, where vl ∈ Qn and wl ∈ Q for all l. Also, for

notation purposes, given an affine function h(x) = ux − uo, let ho(x) := ux be the

linear homogeneous function corresponding to h.

Let

P (g1, . . . , gL) = {x ∈ Rn : Ax ≤ d; xi ∈ Z, ∀i ∈ I; gl(x) = 0, ∀l = 1, . . . , L}

be the nonempty restriction of P obtained by fixing gl(x) = 0 for all l ∈ {1, . . . , L}.

Also, assume that f(x) ≥ 0 is a valid inequality for P (g1, . . . , gL), where f(x) is an

affine function of x defined by f(x) := πx − πo. Define lifting as obtaining a set of

scalars {λl}
L
l=1 such that f(x) −

L
∑

l=1

λlgl(x) ≥ 0 is a valid inequality for P . Defining

the set

Λ(P ) :=

{

λ ∈ RL : f(x)−
L
∑

l=1

λlgl(x) ≥ 0, ∀x ∈ P

}

, (31)
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we can say that lifting consists in finding feasible points in Λ(P ). Obviously we will

only be interested in feasible points in Λ(P ) that are “good” in a certain sense that

will be defined depending on the context.

Note that, by setting gl(x) = xil − yil, the above problem includes the case where

the restrictions are obtained by setting variables xil to given values yil.

The main focus of this chapter is the case where L = 1, which we call s ingle-

lifting. Section 3.3 is dedicated to the case where L > 1, but is only meant to start

a discussion of the more general case, giving basic properties and relations to known

problems.

3.2 Single-lifting

In this section we consider the case where L = 1, in which case, we denote g1(x)

as g(x). This is an important case, since sequential lifting can be seen as multiple

applications of single-lifting over increasingly higher dimensional polyhedra.

In the case of single-lifting, the set Λ(P ) defined in (31) becomes

{λ : f(x)− λg(x) ≥ 0, ∀x ∈ P}

and since we want only nondominated valid inequalities, we want to get λ as large as

possible, that is, we want to find

max{λ : f(x)− λg(x) ≥ 0, ∀x ∈ P} (32)

where g(x) ≥ 0 for all x ∈ P . We call this the lifting problem. The following theorem,

which is adapted from a theorem of Wolsey [101], shows that the assumption that

g(x) ≥ 0 for all x ∈ P is not restrictive, since otherwise we can just partition P into

P ∩ {x : g(x) ≥ 0} and P ∩ {x : g(x) ≤ 0} and obtain the lifting coefficient from the

lifting coefficients for each side of the partition of P .

Theorem 3.2.1 (Wolsey [101]). f(x)− λ′g(x) ≥ 0 is a valid inequality for P if and
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only if λ ≤ λ′ ≤ λ̄ where

λ = min{λ : f(x)− λg(x) ≥ 0 is valid for P ∩ {x : g(x) ≤ 0}},

λ̄ = max{λ : f(x)− λg(x) ≥ 0 is valid for P ∩ {x : g(x) ≥ 0}}.

Moreover, if λ′ = λ > −∞ or λ′ = λ̄ < +∞ and f(x) ≥ 0 defines a k-dimensional

face of conv(P (g)), then f(x)− λ′g(x) ≥ 0 defines an at least k+ 1-dimensional face

of conv(P ).

Proof. To see that the problems are well-defined, note that f(x)− λg(x) ≥ 0 is valid

for P ∩ {x : g(x) ≤ 0} if and only if it is valid for Q := conv(P ∩ {x : g(x) ≤ 0}),

which is a polyhedron. Thus f(x)− λg(x) ≥ 0 is valid for P ∩ {x : g(x) ≤ 0} if and

only if

f(xk)− λg(xk) ≥ 0 (33)

for all extreme points xk of Q and

f o(rj)− λgo(rj) ≥ 0 (34)

for all extreme rays rj of Q.

Thus, the problems are equivalent to linear programs and, therefore, it is well-

defined to put a minimum or maximum there, instead of sup or inf.

(⇒)

If λ′ < λ, then there exists x ∈ P∩{x : g(x) ≤ 0} ⊆ P such that f(x)−λ′g(x) < 0,

since, otherwise, λ would not be minimal.

Likewise, if λ′ > λ̄, then there exists x ∈ P ∩ {x : g(x) ≥ 0} ⊆ P such that

f(x)− λg(x) < 0, since, otherwise, λ̄ would not be maximal.

(⇐)

Suppose there exists x ∈ P such that f(x) − λ′g(x) < 0. Clearly, g(x) 6= 0 since

we are assuming f(x) ≥ 0 is valid for P ∩ {x : g(x) = 0}.
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If g(x) < 0, then this implies that λ′ < λ. This is true, since if λ′ ≥ λ, then

0 > f(x)− λ′g(x) ≥ f(x)− λg(x) ≥ 0.

Likewise, if g(x) > 0, then this implies that λ′ > λ̄. This is true, since if λ′ ≤ λ,

then 0 > f(x)− λ′g(x) ≥ f(x)− λ̄g(x) ≥ 0.

This concludes the proof of the first part of the theorem.

Now, to prove the dimension of the resulting inequality, consider the case when

λ = λ > −∞. Note that since λ > −∞, there must be either one inequality from

(33) with g(xk) < 0 or one inequality from (34) with go(rj) < 0 that is satisfied at

equality at λ. If such an inequality is from (33), then let x′ = xk, otherwise, let

x′ = x′′ + βrj with x′′ a point in P ∩ {x : g(x) = 0} that satisfies f(x′′) = 0 and

β an appropriate number such that x′ ∈ P ∩ {x : g(x) ≤ 0}. Notice that x′′ exists

because f(x) defines a k-dimensional face of conv(P (g)). It is easy to see that, since

g(x′) < 0, then x′ is affinely independent from any point in P ∩ {x : g(x) = 0} and

that f(x′)−λg(x′) = 0. Thus, we have one more affinely independent point satisfying

such a constraint at equality, giving us a face of dimension at least k + 1. The proof

is analogous for λ = λ̄ < +∞.

Note that no assumption is made on g(x) other than that it is an affine function

of x and that g(x) ≥ 0 for all x ∈ P . Therefore, if we can solve the lifting problem

as defined in (32), we can solve the lifting problem for lifting a general constraint, as

well as lifting variables that are continuous or integer, bounded or unbounded. As

mentioned in Section 1.4, general lifting algorithms have been developed only in the

case of lifting bounded integer variables.

In Section 3.2.1, we study basic properties of the solution of problem (32) and in

Sections 3.2.2 and 3.2.3 present algorithms to solve it based on an optimization oracle.

Sections 3.2.4 and 3.2.5 show the relationship between problem (32) and tilting and

fractional programming. These connections are important because they allow the use
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of results from one problem to be applied to the others. Moreover, they allow us to

see all three problems in a same common perspective and, therefore, one only needs

to focus on problem (32).

We do not present computational results in this chapter. The reason is that

the context in which we apply the ideas of this chapter is the subject of Chapter 4

and, therefore, we refrain from presenting the computational experiments until that

chapter so that the description of the experiments becomes clearer.

3.2.1 Solving the single-lifting problem

This section is devoted to solving problem (32):

max{λ : f(x)− λg(x) ≥ 0, ∀x ∈ P},

where g(x) ≥ 0 for all x ∈ P and P 6= ∅. Notice that we do not assume that P (g) is

nonempty or that f(x) ≥ 0 is valid for P (g). We begin by characterizing feasibility

and unboundedness by means of the following two propositions.

Proposition 3.2.2. Problem (32) is feasible if and only if

g(x) = 0 implies f(x) ≥ 0, ∀x ∈ P (35)

and

go(r) = 0 implies f o(r) ≥ 0, ∀r ∈ cone(P ). (36)

Proof. It is easy to see that (35) and (36) are necessary conditions, so we focus on

sufficiency. We assume conditions (35) and (36) and show that there exists λ < 0

such that f(x)− λg(x) ≥ 0 for all x ∈ P .

If condition (35) holds, it follows that for each x ∈ P we have either f(x) ≥ 0 or

g(x) > 0, that is, f(x) < 0 implies g(x) > 0 for each x ∈ P . Likewise, from (36) it

follows that f o(r) < 0 implies go(r) > 0 for every ray r of cone(P ).
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Let {x1, . . . , xp} and {r1, . . . , rq} correspond to the set of all extreme points and

rays of P . It suffices to show that there exists a value λ < 0 such that f(xi)−λg(xi) ≥

0 for all i ∈ 1, . . . , p and f o(rj)− λgo(rj) ≥ 0 for all j ∈ 1, . . . , q.

Let λ be a negative value such that

λ <
f o(rj)

go(rj)
, for all j ∈ 1, . . . , q such that f o(rj) < 0,

and such that

λ <
f(xi)

g(xi)
, for all i ∈ 1, . . . , p such that f(xi) < 0.

Choosing λ in this way it is clear that all extreme points (and rays) such that

f(xi) < 0 (and f o(rj) < 0) satisfy the required condition.

Finally, given that λ < 0, we have that f(xi) ≥ 0 implies f(xi) − λg(xi) ≥ 0.

Likewise, f o(rj) ≥ 0 implies f o(rj)− λgo(rj) ≥ 0. Thus the conditions hold.

It is worth noting that if there exists x ∈ P such that g(x) = 0, then (35) implies

(36). Let us now focus on determining when (32) is unbounded.

Proposition 3.2.3. Problem (32) is unbounded if and only if

g(x) = 0 and f(x) ≥ 0 for all x ∈ P. (37)

Proof. It is easy to see that condition (37) is sufficient for unboundedness, so we

focus on necessity. Suppose that this condition does not hold. We have that either

(a) there exists x′ ∈ P such that f(x′) < 0 and g(x′) = 0, or (b) there exists

x′ ∈ P such that g(x′) > 0. From Proposition 3.2.2 we have that in the first case the

problem is infeasible. In the latter case we have that every feasible solution λ satisfies

λ ≤ −f(x′)/g(x′).

From the previous two propositions it is clear that by solving at most two mixed

integer programming problems one can determine if problem (32) is feasible or un-

bounded. Algorithm 1 shows how this can be achieved. Moreover, notice that, in
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the case of lifting, we have the assumptions that P (g) 6= ∅ and f(x) ≥ 0 is valid

for P (g) and therefore conditions (35) and (36) are always true. In addition, con-

dition (37) is true if and only if P is contained in the affine subspace defined by

g(x) = 0. Therefore, the lifting problem is always feasible and it is only unbounded

if P = P ∩ {x : g(x) = 0}.

Algorithm 1: Phase I algorithm

Input: A non-empty mixed integer polyhedron P , and affine functions f(x)
and g(x) as defined above.

Output: A variable status indicating if max{λ : f(x)− λg(x) ≥ 0} is a
feasible, infeasible or unbounded problem. In case the problem is
feasible it also outputs a solution xo ∈ P such that g(xo) > 0.

status ← unknown1

q ← min{f(x) : g(x) = 0, x ∈ P}2

if q < 0 then3

status ← infeasible4

/* Case where g(x) > 0 for all x ∈ P */5

else if q = +∞ then6

q ← min{f o(r) : go(r) = 0, r ∈ cone(P )}7

if q = −∞ then8

status ← infeasible9

if status = unknown then10

z ← max{g(x) : x ∈ P}11

if z = 0 then12

status ← unbounded13

else14

status ← feasible15

if z = +∞ then16

Let rg be the ray with go(rg) > 0 obtained from step 1117

Scale ray rg so that it becomes integer18

xf ← arg min{f(x) : g(x) = 0, x ∈ P}19

xo ← xf + rg
20

else21

xo ← argmax{g(x) : x ∈ P}22
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3.2.2 The Newton-Rhapson algorithm

Once it has been established that problem (32) is feasible and bounded, it is possible

to solve it using a variant of the Newton-Rhapson algorithm for finding roots of a

function. For the motivation of this, consider the function

z(λ) = min{f(x)− λg(x) : x ∈ P}.

It is easy to see that, for any valid λ, z(λ) ≥ 0. Moreover, if z(λ) > 0, then there exists

λ′ > λ that is also feasible for problem (32). Therefore, the optimal solution λ∗ of

problem (32) should satisfy the condition z(λ∗) = 0 (this statement is not necessarily

true if P is not compact, but since we are just motivating the method, we will not

worry about that case).

To solve this equation, we start with a guess λ1 ≥ λ∗ such that f(xo)−λ1g(x
o) = 0

for some xo ∈ P and thus z(λ1) ≤ 0. At iteration i ≥ 1 assume 0 > z(λi) > −∞.

Let xi be the corresponding minimizer for z, that is, z(λi) = f(xi) − λig(x
i). We

have that −g(xi) is a subgradient for z in λi. Thus, if g(xi) 6= 0, a valid Newton-

Raphson iteration would be λi+1 = λi + z(λi)
g(xi)

= f(xi)
g(xi)

. Note that at all iterations,

f(xi) − λi+1g(x
i) = 0 and therefore z(λi) ≤ 0 for all i and if we find that z(λi) = 0

at iteration i, then λi = λ∗.

Another intuitive way to look at the procedure is the following: Note that if

z(λi) < 0 then g(xi) > 0, since otherwise the problem would be infeasible. Since

f(xi) − λi+1g(x
i) = 0 and g(xi) > 0, we know that λ∗ ≤ λi+1. The idea is to make

a sequence of reasonable guesses that are decreasing monotonically and are always

an upper bound on λ∗. The guesses are reasonable since, at least for some point

x ∈ P , f(x)− λig(x) = 0, so it is possible that z(λi) = 0. For each guess, we use the

optimization oracle for P to check if λi is indeed equal to λ∗.

The procedure is described in detail in Algorithm 2, where we also consider the

case that z(λi) is not finite in Steps 3 - 8. A proof of correctness and convergence

68



is given in Theorem 3.2.4. It is important to notice that Algorithm 2 is, in essence,

the same as Dinkelbach’s [43] algorithm for solving fractional programming problems

and Applegate et al. [5] and Espinoza [47]’s algorithm for tilting, but it has not been

previously applied to lifting.

Algorithm 2: Main algorithm (Phase II)

Input: A mixed integer polyhedron P , and affine functions
f(x) = πx− πo, g(x) = vx− w such that g(x) ≥ 0, ∀x ∈ P and such
that max{λ : f(x)− λg(x) ≥ 0, ∀x ∈ P} is neither infeasible nor
unbounded. A feasible solution xo ∈ P such that g(xo) > 0.

Output: The solution λ∗ to max{λ : f(x)− λg(x) ≥ 0, ∀x ∈ P}.

λ1 ←
f(xo)
g(xo)1

i← 12

z1 ← min{f(x)− λ1g(x) : x ∈ PLP}3

while zi = −∞ do4

Let ri be an extreme ray of PLP proving the unboundedness of zi5

λi+1 ←
fo(ri)
go(ri)6

i← i+ 17

zi ← min{f(x)− λig(x) : x ∈ PLP}8

zi ← min{f(x)− λig(x) : x ∈ P}9

while zi < 0 do10

xi ← arg min{f(x)− λig(x) : x ∈ P}11

λi+1 ←
f(xi)
g(xi)12

i← i+ 113

zi ← min{f(x)− λig(x) : x ∈ P}14

λ∗ ← λi15

Theorem 3.2.4. Algorithm 2 satisfies the following properties:

1. Steps 6 and 12 are well-defined. That is, there are no divisions by zero.

2. The sequence {λi} is monotone decreasing.

3. Step 11 is well-defined. That is, there exists an optimal solution xi.

4. The algorithm terminates in a finite number of steps.

5. Upon completion, the value λ∗ corresponds to the optimal solution value.
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Proof. 1. If go(ri) = 0 in Step 6 then f o(ri) < 0. Likewise, if g(xi) = 0 in Step

12 then f(xi) < 0. Both of these conditions contradict the feasibility of the

problem, as shown in Proposition 3.2.2.

2. In Step 6 we have that go(ri) > 0 and f o(ri)−λig
o(ri) < 0. Thus, λi >

fo(ri)
go(ri)

=

λi+1. Likewise, in step 12 we have that g(xi) > 0 and f(xi)−λig(x
i) < 0. Thus,

λi >
f(xi)
g(xi)

= λi+1.

3. Let k represent the value of index i at Step 9. Since zk > −∞ we have f o(r)−

λkg
o(r) ≥ 0 for any ray r of P . Since go(r) ≥ 0 for every ray r of P , and since

the sequence λi is monotone decreasing, we also have that f o(r)− λig
o(r) ≥ 0

for all i > k. Moreover, if go(r) > 0 then f o(r)− λig
o(r) > 0 (we will use this

in the next proof). Thus the problem is finite at Step 11 and a solution exists.

4. Observe at Step 6 that ray ri satisfies f o(ri)−λig
o(ri) < 0 and f o(ri)−λjg

o(ri) ≥

0 for j > i and so, due to the finiteness of the number of extreme rays, the

algorithm reaches step 9 after a finite number of steps.

Again let k be the value of i once the algorithm reaches step 9. Assume now we

are at an iteration i > k. At Step 12, point xi satisfies f(xi)−λig(x
i) < 0. Now

let Ki be the set of extreme points x̄k of conv(P ) such that f(x̄k)− λig(x̄
k) =

z(λi). Clearly, xi can be written as a convex combination of the points in Ki

and a conic combination of a set of extreme rays Ri of P . But we know that

if any r ∈ Ri has go(r) > 0, then f o(r) − λig
o(r) > 0, which contradicts the

optimality of xi. Therefore go(r) = 0 which implies f o(r) = 0 for all r ∈ Ri.

But now note that f(xi)− λjg(x
i) ≥ 0 for all j > i. Since f o(r)− λjg

o(r) = 0

for all r ∈ Ri, this implies that at least one extreme point x̄i ∈ Ki also satisfies

f(x̄i)−λig(x̄
i) < 0 and f(x̄i)−λjg(x̄

i) ≥ 0 for j > i. Finite termination follows

from the finiteness of the number of extreme points of P .
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5. Assume that the algorithm terminates on the i-th interation. Since it is clear

that λ∗ is feasible it suffices to show that every λ̄ > λ∗ = λi is infeasible.

First, assume that λ∗ was obtained at Step 6 of the algorithm. This implies

λ∗ = fo(ri−1)
go(ri−1)

for some ray ri−1 of P . In this case f o(ri−1)−λ∗go(ri−1) = 0. Since

go(ri−1) > 0 it follows that f o(ri−1)− λ̄go(ri−1) < 0. Let x̄ = xo + αri−1. It is

easy to see that one can choose α > 0 so that x̄ ∈ P and f(x̄)−λ̄g(x̄) < 0. Next,

assume that λ∗ was obtained at Step 1 or Step 12 of the algorithm. This implies

λ∗ = f(xi−1)
g(xi−1)

for some solution xi−1 ∈ P , and in turn that f(xi−1)−λ∗g(xi−1) = 0.

Given g(xi−1) > 0 it follows that f(xi−1) − λ̄g(xi−1) < 0. In both cases λ̄ is

infeasible.

Corollary 3.2.5. If problem (32) is feasible and there exists a finite optimal solution

λ∗ then either

1. There exists an extreme point x∗ of P such that g(x∗) > 0 and λ∗ = f(x∗)
g(x∗)

,

2. There exists an extreme ray r∗ of P such that go(r∗) > 0 and λ∗ = fo(r∗)
go(r∗)

.

Proof. Follows from the proof of part 4 of Theorem 3.2.4.

Observe that in general, given an optimal solution λ∗ to problem (32), there need

not exist a value x∗ ∈ P such that f(x∗) − λ∗g(x∗) = 0. The following proposition

describes a simple sufficient condition by which to ensure that such a solution exists.

Proposition 3.2.6. Assume that problem (32) admits an optimal solution λ∗. If

there exists x ∈ P such that g(x) = 0 and f(x) = 0, then there exists x∗ ∈ P such

that g(x∗) > 0 and λ∗ = f(x∗)
g(x∗)

.

Proof. From Algorithm 2 it is easy to see that the optimal solution λ∗ is such that

λ∗ = f(x̂)
g(x̂)

for some point x̂ of P satisying g(x̂) > 0, or such that λ∗ = fo(r̂)
go(r̂)

for some

ray r̂ of P satisfying go(r̂) > 0. In the first case, simply define x∗ = x̂. In the latter,
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we may assume that r̂ is integral and let x∗ = x̄+ r̂. Observe that in either case, the

conditions hold.

A natural concern regarding Algorithm 2 is the number of mixed-integer program-

ming problems that could be called as sub-routines in Step 11. Proposition 3.2.7,

which is an adaptation of a result from Schaible [94] in the context of fractional pro-

gramming, gives some indication as to the number of iterations required to terminate.

Proposition 3.2.7. Consider an instance of problem (32). Suppose that iterates xi

and xi+1 have been obtained from Step 12 of Algorithm 2. If λi+1 is not optimal, then,

g(xi) > g(xi+1).

Proof. We first prove that g(xi) ≥ g(xi+1). For this, observe that the following

conditions hold:

f(xi)− λi+1g(xi) = 0, (38)

f(xi+1)− λi+1g(xi+1) ≤ 0, (39)

f(xi+1)− λig(xi+1) ≥ f(xi)− λig(xi). (40)

Inequality (39) holds since xi+1 is the optimal solution to z(λi+1) and f(xi)−λi+1g(xi) =

0. Inequality (40) holds since xi is the optimal solution to z(λi). Thus, (39) - (38)

imply that

f(xi+1)− f(xi) ≤ λi+1(g(xi+1)− g(xi)).

Observe that (40) is equivalent to

f(xi+1)− f(xi) ≥ λi(g(xi+1)− g(xi)).

From these last two inequalities we have that

(λi+1 − λi)(g(xi+1)− g(xi)) ≥ 0.

Since from Theorem 3.2.4 we know that λi > λi+1, the result follows.
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We now prove that g(xi) 6= g(xi+1). For this, define

Pi = {x ∈ P : g(x) = g(xi)}.

Observe that

xi = arg min{f(x)− λig(x) : x ∈ Pi} = arg min{f(x) : x ∈ Pi}.

From this, f(x) − λi+1g(x) ≥ 0 for all x ∈ Pi. In fact, if x ∈ Pi we have f(x) −

λi+1g(x) = f(x)− λi+1g(xi) ≥ f(xi)− λi+1g(xi) = 0.

However, since λi+1 is not optimal, we have f(xi+1)− λi+1g(xi+1) < 0. Thus, xi+1 is

not in Pi.

Note that, in the case that g(x) assumes a finite number of values, Proposi-

tion 3.2.7 gives an immediate bound on the number of MIP solves that Algorithm 2

performs. Also, note that in the case where we are lifting a bounded integer variable

that can assume values from 0, 1, . . . , K, for example, Wolsey [101] and Easton and

Gutierrez [46] had already shown that at most O(K) MIPs need to be solved in order

to lift. Even though the worst-case complexity has not changed, Proposition 3.2.7

shows that it is reasonable to expect that less than K MIPs will actually need to be

solved.

3.2.3 The one-tree algorithm

An alternative to Algorithm 2 was proposed by Easton and Gutierrez [46] for lifting

bounded integer variables. Rather than enumerating a full branch-and-bound tree

each time Step 11 of Algorithm 2 is executed, they instead propose an algorithm that

uses a single branch-and-bound tree to solve (32). We call this algorithm the one-tree

algorithm. We extend the one-tree algorithm for lifting generic constraints without

any bound restrictions and prove its correctness.
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Algorithm 3: The one-tree algorithm

Input: A mixed integer polyhedron P , and affine functions
f(x) = πx− πo, g(x) = vx− w such that g(x) ≥ 0, ∀x ∈ P and such
that max{λ : f(x)− λg(x) ≥ 0, ∀x ∈ P} is neither infeasible nor
unbounded. A feasible solution xo ∈ P such that g(xo) > 0.

Output: The solution λ∗ to max{λ : f(x)− λg(x) ≥ 0, ∀x ∈ P}.

λo ←
f(xo)
g(xo)1

i← 02

z∗ ← min{f(x)− λig(x) : x ∈ PLP}3

while z∗ = −∞ do4

Let r be an extreme ray of PLP proving the unboundedness of z∗5

λi+1 ←
fo(r)
go(r)6

i← i+ 17

z∗ ← min{f(x)− λig(x) : x ∈ PLP}8

Q ← {P}9

while Q 6= ∅ do10

Choose Q ∈ Q11

(x∗, z∗)← arg min{z : z ≥ f(x)− λig(x), x ∈ QLP}12

if the problem is infeasible then13

Q ← Q− {Q}14

else if z∗ ≥ 0 then15

Q ← Q− {Q}16

else if x∗ ∈ P then17

λi+1 ←
f(x∗)
g(x∗)18

i← i+ 119

else20

Partition Q into Q1 and Q2 such that x∗ /∈ Q1 ∪Q2.21

Q ← Q− {Q}+ {Q1, Q2}

λ∗ ← λ22
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Let us first make the following observation that will help us prove the correctness

of Algorithm 3.

Observation 3.2.8. Let h be an affine function from Rn → R and Q be a nonempty

polyhedron such that min{h(x) : x ∈ Q} is bounded. Then

(x∗, z∗) = arg min{z : z ≥ h(x), x ∈ Q} (41)

if and only if x∗ = arg min{h(x) : x ∈ Q} and z∗ = h(x∗).

Proof. ( ⇒ )

Since (x∗, z∗) is optimal to (41), then z∗ = h(x∗). If x′ ∈ Q is such that h(x′) <

h(x∗), let z′ = h(x′) and note that (x′, z′) is feasible for (41), which contradicts the

optimality of (x∗, z∗).

( ⇐ )

Note that (x∗, z∗) is feasible for (41). Now since x∗ = arg min{h(x) : x ∈ Q}, any

(x′, z′) feasible for (41) satisfies z′ ≥ h(x′) ≥ h(x∗) = z∗, so (x∗, z∗) = arg min{z : z ≥

h(x), x ∈ Q}.

We now prove the correctness of Algorithm 3.

Theorem 3.2.9. Upon completion, Algorithm 3 returns the correct value of λ∗.

Proof. First, note that Steps 3-8 are the same as Steps 3-8 in Algorithm 2 and there-

fore when Step 9 is reached, the problem min{f(x)− λg(x) : x ∈ P} is bounded for

all λ ≤ λi.

In addition, if Step 18 is never reached, then the while loop beginning in Step 10

just describes a regular branch-and-bound algorithm for solving min{f(x)− λig(x) :

x ∈ P} for some fixed λi. Since Step 18 is never reached, the optimal solution is

greater than or equal to zero, thus, f(x)− λig(x) ≥ 0 for all x ∈ P , so λ∗ is feasible

and either f(xo)− λ∗g(xo) = 0 or there exists a ray r ∈ cone(P ) such that go(r) > 0
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and f o(r)− λ∗go(r) = 0. Thus, optimality follows from the same arguments used in

the proof of Theorem 3.2.4.

Now assume Step 18 is reached. First, note that the step is well-defined, since

g(x∗) cannot be zero because, otherwise, we have a point x∗ with f(x∗) < 0 and

g(x∗) = 0, which makes the problem infeasible. Notice that since λi is updated in

Step 18, there exists x∗ ∈ P such that g(x∗) > 0 and f(x∗) − λ∗g(x∗) = 0, and,

therefore, λ∗ is an upper bound on any feasible λ.

All that remains to show is that λ∗ is feasible. Suppose, by contradiction, that

there exists x̄ ∈ P such that f(x̄) − λ∗g(x̄) < 0. First, note that the sequence of

values {λi} is monotone decreasing, as in Algorithm 2. Let {Q} be the leaf node of

the branch-and-bound tree such that x̄ ∈ Q. This means that Q has to be pruned

at line 16, and therefore, at that point, we know that f(x̄) − λig(x̄) ≥ 0, which is a

contradiction, since λ∗ ≤ λi and g(x̄) ≥ 0.

One interesting point to notice is that we do not prune by feasibility, since other-

wise we could obtain an incorrect solution λ∗ in the end. Another important point is

that this adaptation of the algorithm of Easton and Gutierrez [46] can be implemented

using a standard commercial MIP solver and some callback functions. In constrast,

Easton and Gutierrez’s algorithm needs a custom implementation of a MIP solver

which allows the user to modify the objective function throughout the branch-and-

bound tree. Algorithm 3 gets around this fact by using the auxiliary variable z. In

fact, notice that every time we update λi, we don’t need to change the previous LP,

we can just use the cut z ≥ f(x)−λig(x) as a globally valid cut to the problem. This

allows all the technology that is already implemented in commercial MIP solvers (like

cutting planes, branching rules, heuristics, etc.) to be reused to implement it.

Intuitively, what this algorithm does is explore a branch-and-bound tree at the

same time as it guesses values λi for λ∗. The tree is explored in such a way that if

our guess is incorrect, whenever we update our guess λi, all the work that has already
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been done is still guaranteed to be correct and therefore is not wasted.

In the next two sections, we present the connection that problem (32) has with

tilting and fractional programming. As we have seen in some of the theorems and

propositions up to this point, such connections between lifting, tilting and fractional

programming allow theoretical results from one area to be applied to the others as

well.

3.2.4 Connection to tilting

Given a mixed-integer set P , tilting is a procedure which takes a valid inequality for

P with a certificate of high dimension and transforms it into another valid inequality

with a certificate of even higher dimension. This procedure is used to obtain a facet-

defining inequality for conv(P ) from an inequality g(x) ≥ 0 that is valid and defines

a nonempty face of conv(P ). It has been used in Applegate et al. [5] in the context

of the Traveling Salesman Problem (TSP) and in Espinoza [47] for general MIPs.

More specifically, given a linear inequality g(x) ≥ 0 valid for P and a nonempty

set Po of affinely independent points contained in P such that g(x) = 0 for all x ∈ Po,

the tilting problem consists in finding an inequality h(x) ≥ 0 valid for P and a point

x′ such that:

• h(x) = 0 for all x ∈ Po,

• h(x′) = 0,

• Po ∪ {x
′} is a set of affinely independent points.

An obvious assumption that is necessary for the tilting problem is that |Po| <

dim (P ). Moreover, the tilting problem assumes that we are given as additional

inputs a linear inequality f(x) ≥ 0 (not necessarily valid for P ) and a point x̄ such

that g(x̄) > 0, f(x) = 0 for all x ∈ Po and f(x̄) = 0. We will refer to the tilting

problem as TILT (f, g, x̄, Po).
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We now discuss how solving problem (32), namely

max{λ : f(x)− λg(x) ≥ 0, ∀x ∈ P},

also solves the tilting problem.

First, note that if phase I (Algorithm 1) detects that problem (32) is infeasible,

by Proposition 3.2.2 this means that there exists a point x̂ ∈ P such that g(x̂) = 0

and f(x̂) < 0 or there exists a ray r̂ such that go(r̂) = 0 and f o(r̂) < 0. Now notice

that if the latter condition is true, since there exists xo ∈ Po such that g(xo) = 0, we

can pick α ∈ R+ large enough such that x̂ = xo + αr̂ ∈ P , g(x̂) = 0 and f(x̂) < 0.

But then f(x̂) < 0 implies x̂ must be affinely independent of all points in Po. Thus,

we can simply return h(x) = g(x) and x′ = x̂.

Second, note that the condition of the tilting problem that there exists x̄ such

that f(x̄) = 0 and g(x̄) > 0 implies that the problem is not unbounded.

Therefore, we may assume problem (32) is feasible and bounded. So, let λ∗ be the

optimal solution for problem (32). Proposition 3.2.6 implies that there exists x∗ ∈ P

such that g(x∗) > 0 and λ∗ = f(x∗)
g(x∗)

. Therefore, we may return h(x) = f(x)− λ∗g(x)

and x′ = x∗, since g(x∗) > 0 implies that x∗ is affinely independent of all points in

Po.

As mentioned in Section 1.4, the tilting algorithm used in Applegate et al. [5] and

Espinoza [47] is essentially the same as the Newton-Rhapson algorithm presented in

this thesis.

We next review how we can use the tilting procedure to obtain facet-defining

inequalities for conv(P ).

3.2.4.1 Using tilting to obtain facet-defining inequalities

Assume that we have a valid inequality for P that we know defines a non-empty face

of conv(P ) and that separates a point x∗ from P . We could, in principle, use such

an inequality as a cut to strengthen our LP relaxation of P . Ideally, however, we
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would like to add to the LP relaxation the strongest possible valid inequality for P

separating x∗. The tilting problem can be helpful in this context, since it can be used

to obtain a facet-defining inequality for conv(P ) from the original inequality defining

a non-empty face of conv(P ).

In order to see how, we need the following proposition, which characterizes facet-

defining inequalities of conv(P ) and is given without proof in [47].

Proposition 3.2.10 (Espinoza [47]). vx ≥ w is a facet-defining inequality for conv(P )

if and only if the following system of linear equations has a unique solution, the zero

vector:

πpi = 0 ∀pi ∈ P
⊥
o

πo − πxi = 0 ∀xi ∈ Po

πo − πx̄ = 0,

(42)

where Po is a maximal set of affinely independent points in P that satisfy vx = w,

P⊥
o is a basis for the space orthogonal to P , x̄ is a point in P such that vx̄ > w and

(π, πo) ∈ Rn × R is the set of variables of the above system.

Proof. Assume that P has dimension k.

First we prove that if vx ≥ w is a facet then 0 is the unique solution to the above

LP.

Let yo be an arbitrary point in P . Define E as a |P⊥
o | × n matrix whose rows are

the elements of P⊥
o , and η = Eyo.

From Nemhauser and Wolsey [85] (p. 91) we know that the following holds:

Let F := {x ∈ P : vx = w}. We have that F is a facet of conv(P ) if and only if

λx = λo, ∀x ∈ F implies that (λ, λo) = (uE + αv, uη + αw) for some u ∈ R|P⊥
o | and

α ∈ R.

Since Po is a maximal set of affinely independent points in F , we have that πx =

πo for all x ∈ F . Thus, from Nemhauser and Wolsey’s proposition, we can write

79



(π, πo) = (uE + αv, uη + αw).

Now, since πx̄ = πo we have uEx̄+αvx̄ = uη+αw and since x̄ ∈ P , we have that

Ex̄ = η and thus αvx̄ = αw. But, since vx̄ > w, this implies that α = 0.

Therefore (π, πo) = (uE, uη). Note that the equations πpi = 0 for all pi ∈ P⊥
o

is the same as πET = 0 ⇐⇒ (uE)ET = 0. Since P⊥
o is a basis, EET is a square

invertible matrix. Therefore, this system has a unique solution u = 0 and hence

(π, πo) = (0, 0).

Let us now prove that if vx ≥ w is not a facet, then there is a nonzero solution to

the LP.

To see that, note that |P⊥
o | = n − k, and since vx ≥ w is not a facet, |Po| <

k. Therefore, the system of linear equations has n + 1 unknowns and at most n

equations. Therefore it is an underdefined system and therefore has an infinite number

of solutions.

Proposition 3.2.10 can be used together with the tilting procedure in the following

way: We start with a valid inequality g(x) ≥ 0 defining a non-empty face of conv(P ).

We are also given a set Po of affinely independent points such that g(x) = 0 for

all x ∈ Po (this is not necessarily a maximal set), a set P⊥
o of points in the space

orthogonal to P (not necessarily a basis for it) and a point x̄ ∈ P such that g(x̄) > 0.

At each step, we try to either increase the dimension of P⊥
o or Po at the same time

maintaining a valid inequality that is satisfied by the points in Po at equality.

To do so, we try to find a nonzero solution of (42). This can be accomplished

for instance by formulating an LP that maximizes the L1 norm of (π, πo) subject to

the equations in (42) and that the L∞ norm is bounded by 1. If the only solution

is zero, we stop, since we know that g(x) ≥ 0 defines a facet of conv(P ). If there

is a nonzero solution (π, πo), then f(x) = πx − πo is the appropriate input for the

tilting procedure, which will return a new valid inequality with one more affinely
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independent point satisfying it at equality. However, the inequality that the tilting

procedure returns might actually define an affine subspace where P lies in, in other

words, if the tilting procedure returns h(x) ≥ 0 as a valid inequality, it may be the

case where P ∩ {x : h(x) = 0} = P . The following proposition shows that this

will happen only if λ+ = λ− = 0, where λ+ and λ− are the optimal solutions to

TILT (f, g, x̄, Po) and TILT (−f, g, x̄, Po) respectively.

Proposition 3.2.11. Let λ+ and λ− be the optimal solutions to TILT (f, g, x̄, Po) and

TILT (−f, g, x̄, Po) respectively. Then λ+ = λ− = 0 if and only if P ∩ {x : f(x) =

0} = P .

Proof. We know that λ+ = max{λ : f(x) − λg(x) ≥ 0, ∀x ∈ P} and λ− = max{λ :

−f(x)− λg(x) ≥ 0, ∀x ∈ P}. Also, by assumption, the tilting procedure receives as

an input a point x̄ ∈ P such that g(x̄) > 0.

So, if P ∩ {x : f(x) = 0} = P , then λ+ ≤ f(x̄)
g(x̄)

= 0. Moreover λ = 0 is feasible

for max{λ : f(x) − λg(x) ≥ 0, ∀x ∈ P}, thus λ+ = 0. The proof that λ− = 0 is

analogous.

Finally, if λ+ = λ− = 0, then f(x)− λ+g(x) = f(x) = πx− πo ≥ 0 and −f(x) −

λ−g(x) = −f(x) = −πx+ πo ≥ 0 are valid for P . Thus f(x) = 0 for all x ∈ P .

Therefore, if λ+ = λ− = 0, Proposition 3.2.11 implies that the inequality f(x)

returned by the tilting procedure gives us a new point π ∈ P⊥
o . Indeed, f(x) = 0 for

all x ∈ P implies that π ∈ P⊥
o , and since (π, πo) was obtained as a solution to (42)

we have that π is orthogonal to all elements currently in P⊥
o .

Now if either λ+ or λ− is nonzero, recall that our main goal is to obtain a facet-

defining inequality of conv(P ) that separates a point x∗ from P . In that context,

we want to make sure that if the inequality g(x) ≥ 0 separates a point x∗ from P

and λ+ or λ− are not zero, then at least one of the inequalities f(x) − λ+g(x) ≥ 0

or −f(x) − λ−g(x) ≥ 0 obtained by tilting also separates x∗ from P . The following
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proposition guarantess that this happens.

Proposition 3.2.12 (Espinoza [47]). If λ+ or λ− are nonzero and g(x∗) < 0, then

either f(x∗)− λ+g(x∗) < 0 or −f(x∗)− λ−g(x∗) < 0.

Proof. Note that since we have x̄ such that f(x̄) = 0 and g(x̄) > 0, and since f(x̄)−

λ+g(x̄) ≥ 0 and −f(x̄) − λ−g(x̄) ≥ 0, we must have λ+ ≤ 0 and λ− ≤ 0. But since

they cannot be both zero, we have that λ+ + λ− < 0.

Moreover, if we add the two inequalities f(x)−λ+g(x) ≥ 0 to −f(x)−λ−g(x) ≥ 0

we get−(λ++λ−)g(x) ≥ 0. Therefore since λ++λ− < 0, we have that f(x)−λ+g(x) ≥

0 and −f(x)− λ−g(x) ≥ 0 implies g(x) ≥ 0. This implies that {x : f(x)− λ+g(x) ≥

0 and − f(x) − λ−g(x) ≥ 0} ⊆ {x : g(x) ≥ 0}, so at least one of the inequalities is

violated by x∗.

These are the main ingredients of using the tilting procedure to get a facet-defining

inequality of conv(P ) from an inequality defining a non-empty face of conv(P ). For

more details on this, see [5, 47].

3.2.5 Connection to fractional programming

In this section we present a connection between problem (32) and fractional program-

ming. It is worth noting that a connection between tilting and fractional programming

has already been mentioned in Applegate et al. [6] and that Dinkelbach [43] already

uses (32) in his algorithm for fractional programming (though for a bounded feasible

region). Moreover, Wolsey [101] states the lifting problem for integer variables as also

solving a fractional programming problem, though the method proposed to solve it

is to enumerate all possible integer values of the denominator and solve all resulting

MIPs. Nevertheless, we present such a connection here for completeness and to make

it easier to understand the applicability (or lack thereof) of results from one area

(lifting, tilting and fractional programming) to the others.
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Fractional programming is an important problem with several applications and

has received much attention in the research literature. The term usually refers to

optimization of ratios or sum of ratios of functions (linear or nonlinear), but it also

includes optimization of the largest/smallest ratios. The constraint set can be linear,

nonlinear, continuous or integer. In the context of this thesis, we will focus on the

case where we want to optimize a single ratio between two affine functions and the

feasible space being a mixed-integer set defined by linear inequalities. Specifically,

the mixed-integer linear fractional programming consists of solving

min

{

f(x)

g(x)
: x ∈ P

}

(43)

where f(x) and g(x) are affine functions of x, P is a mixed-integer set defined by

linear inequalities and g(x) > 0 for all x ∈ P . For simplicity, we will call this problem

the fractional programming problem.

The assumption that g(x) > 0 for all x ∈ P is to make sure that f(x)
g(x)

is well-defined

for all x ∈ P . Notice that if no assumptions were made on P , then there may not

be a point attaining the smallest ratio. Indeed, consider the following very simple

example:

inf

{

1

1 + x
: x ≥ 0

}

.

It is easy to see that the infimum of 0 is not attained for any x ≥ 0 and thus

problem (43) would not be well-defined. For this reason, it is common in the literature

on fractional programming to assume that P is bounded (we will discuss this a bit

further in a while).

Perhaps the best-known algorithm for tackling the purely linear case, that is,

the case where there are no integrality requirements, is Dinkelbach’s [44] algorithm,

which applies to a wide range of fractional programming problems even when f, g

and the description of P involve nonlinear constraints. Another well-known approach

for such a case is that of Charnes and Cooper [26], which consists in defining a
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standard linear program over a new set of variables in such a way that the solution

to this linear program can be translated to the optimal solution to problem (43). A

third methodology consists in using simplex-like algorithms which iteratively explore

extreme-point solutions (see, for example Martos [81, 82]). There are also several

other methods used, which we will refrain from exhaustively listing, for example

interior-point methods [4]. In the mixed-integer linear fractional programming case,

the basic approach is to do branch-and-bound, as in the standard MIP case. For

a comprehensive survey of these and other methods for fractional programming see

Bajalinov [14], Stancu-Minasian [96] and Schaible [95].

Curiously, it seems that the case where P is bounded is the most studied case in

the fractional programming literature. Indeed, the textbook of Stancu-Minasian [96]

always makes this assumption. The textbook of Bajalinov [14] reserves most of its

attention to this case, briefly mentioning what can happen in the unbounded case as

well as some methods which work for either case.

Now notice that, even if we define the fractional programming problem as finding

inf
{

f(x)
g(x)

: x ∈ P
}

, we can rephrase it as finding a maximum λ such that λ ≤ f(x)
g(x)

for

all x ∈ P , and this problem is equivalent to problem (32). Therefore, solving prob-

lem (32) allows us to solve the fractional programming problem with an unbounded

feasible region and Algorithm 2 can be interpreted as an extension of Dinkelbach’s

algorithm for such a case.

We do not know what to expect in terms of performance of the algorithms pre-

sented in this chapter in comparison with the algorithms specific for fractional pro-

gramming. On one hand, one could argue that Algorithms 1 and 2 have to solve sev-

eral MIPs and that Algorithm 3 explores an “unusual” branch-and-bound tree which

may be much larger than any branch-and-bound tree explored in fractional program-

ming. However, it seems that a great deal of the effort in fractional programming
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is to extend what is known for the MIP case (simplex, interior-point, branch-and-

bound, etc.) and even though a great deal of work has been done over the years in

fractional programming, we believe that MIP technology is still more developed than

that used in fractional programming, especially in the implementation details and

code optimization. Therefore, since all the algorithms presented in this chapter use

MIP algorithms as subroutines, or can be implemented with a standard MIP solver,

it may be the case that in practice they still may outperform the algorithms specific

for fractional programming. Unfortunately, we were not able to implement or obtain

any implementation of the fractional programming algorithms. In any case, our main

focus was to solve the lifting problem for which most fractional programming algo-

rithms may not be applied directly, since the assumption that g(x) > 0 for all x ∈ P

does not hold and therefore we did not pursue this line of research any further.

3.3 Multilifting

Consider now the case where we have L > 1 inequalities gl(x) ≥ 0 and we want to lift

an inequality f(x) ≥ 0 valid for P (g1, . . . , gL) into an inequality f(x)−
L
∑

l=1

λlgl(x) ≥ 0

that is valid for P .

One possible way to obtain the λ coefficients is to sequentially lift each inequality

gl(x) ≥ 0 one at a time, which was the focus of the previous section. Another

possible way is to use super-additive lifting functions leading to sequence-independent

lifting (for example [10, 11, 66, 67, 102]). A third way, proposed by Easton and

Gutierrez [46], is to predetermine that λ is going to be a multiple of a fixed vector

λ̄ ∈ RL, that is, λ = αλ̄ for some α ∈ R, consequently reducing the problem to the

single-lifting case. All of these methods, however, cannot guarantee that all possible

lifting coefficients are considered. In what follows, we study the general problem of

obtaining the lifting coefficients λ.
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We are interested in algorithms to find “good” values of λ ∈ RL. In the single-

lifting case the “good” value of λ was the maximal value. In the multilifting case, we

evaluate λ by means of a given cost vector z ∈ RL
+ such that z 6= 0. So we define the

multilifting problem as

max {zλ : λ ∈ Λ(P )} (44)

where Λ(P ) is defined as

Λ(P ) :=

{

λ ∈ RL : f(x)−
L
∑

l=1

λlgl(x) ≥ 0, ∀x ∈ P

}

and gl(x) ≥ 0 for all x ∈ P and for all l = 1, . . . , L. Moreover, we will assume

throughout this section that P (g1, . . . , gL) 6= ∅.

Multilifting is much more general than single-lifting and, as expected, more com-

plex as well. This section is dedicated to start a discussion on the problem by under-

standing when it is feasible, bounded and what is the relationship between solving

(44) and the other methods for obtaining valid lifting coefficients λ ∈ RL.

We start by analyzing when (44) is feasible. As in the single-lifting case, this is

not a difficult task, as shown in the following proposition.

Proposition 3.3.1. The set Λ(P ) is nonempty if and only if

gl(x) = 0, ∀l = 1, . . . , L implies f(x) ≥ 0, ∀x ∈ P (45)

Proof. It is clear that if Λ(P ) is nonempty, then (45) has to hold.

Therefore we focus on proving the reverse implication. We will do so by induction

on L.

The base case L = 1 is true due to Proposition 3.2.2.

Now assume that the statement is true for L− 1. We wish to prove that it is also

true for L.
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Notice that (45) is equivalent to

gL(x) = 0 implies f(x) ≥ 0, ∀x ∈ P (g1, . . . , gL−1) (46)

Moreover, since P (g1, . . . , gL) 6= ∅, there exists a point x′ in P (g1, . . . , gL−1) such that

gL(x′) = 0. Therefore (46) implies that

go
L(r) = 0 implies f o(r) ≥ 0, ∀r ∈ cone(P (g1, . . . , gL−1)).

But by Proposition 3.2.2, this implies that there exists λL such that h(x) =

f(x)−λLgL(x) ≥ 0 is valid for P (g1, . . . , gL−1). This means that there exists λL such

that

gl(x) = 0, ∀l = 1, . . . , L− 1 implies h(x) ≥ 0, ∀x ∈ P.

By induction, there exists λ1, . . . , λL−1 such that h(x) −
L−1
∑

l=1

λlgl(x) ≥ 0 is valid for

P , therefore Λ(P ) is not empty.

Notice that, as in the case of single-lifting, it is also true that the multilifting prob-

lem is always feasible. Unfortunately, unboundedness is not as easy to characterize as

in the single-lifting case. However, the following proposition relates the single-lifting

coefficient with a particular problem in multilifting and helps us deal better with

unboundedness.

Proposition 3.3.2. Let f(x)−
k−1
∑

l=1

λ∗l gl(x) ≥ 0 be a valid inequality for P (gk, . . . , gL)

and consider the following two problems, which are assumed to be feasible,

max

{

λk : f(x)−
k−1
∑

l=1

λ∗l gl(x)− λkgk(x) ≥ 0, for all x ∈ P (gk+1, . . . , gL)

}

(47)

max {λk : λ ∈ Λ(P ); λl = λ∗l , ∀l = 1, . . . , k − 1} . (48)

Then we have that (47) = (48).

Proof. Pick any point λ′ ∈ Λ(P ) feasible for (48). By definition f(x)−
L
∑

l=1

λ′lgl(x) ≥ 0

is valid for x ∈ P . But then, f(x)−
k
∑

l=1

λ′lgl(x) = f(x)−
k−1
∑

l=1

λ∗l gl(x)− λ
′
kgk(x) ≥ 0 is
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valid for all x ∈ P (gk+1, . . . , gL). Therefore λ′l is also feasible for (47) and hence (48)

≤ (47).

Conversely, let λ∗k be the optimal solution to (47). Since the multilifting problem is

always feasible, we can lift f(x)−
k
∑

l=1

λ∗l gl(x) ≥ 0 to a valid inequality for P , therefore

there exists a point in Λ(P ) such that λl = λ∗l for all l = 1, . . . , k. Thus (47)≤ (48).

Proposition 3.3.2 allows us to state the following corollary, giving a necessary

condition for unboundedness.

Corollary 3.3.3. If (44) is unbounded, then there exists a single lifting problem

max{λk : f(x)− λkgk(x) ≥ 0, for all x ∈ P (g1, . . . , gk−1, gk+1, . . . , gL)}

that is also unbounded.

Proof. If (44) is unbounded, then there must exist k ∈ 1, . . . , L such that max{λk :

λ ∈ Λ(P )} =∞. Thus, the result follows from Proposition 3.3.2.

Notice that the reverse is not necessarily true. In fact, even if the single-lifting

problem

max{λk : f(x)− λkgk(x) ≥ 0, for all x ∈ P (g1, . . . , gk−1, gk+1, . . . , gL)}

is unbounded, the multilifting problem can still be bounded if zk = 0, that is, the

objective function coefficient of λk in (44) is zero. However, Corollary 3.3.3 and

Proposition 3.2.3 imply that as long as we guarantee that for each l = 1, . . . , L there

exists a point xl ∈ P such that gl(x
l) > 0, then (44) is always bounded for any

objective function z ∈ RL
+.

Also notice that, in addition to helping us obtain necessary conditions for the

unboundedness of (44), Proposition 3.3.2 establishes a relationship between the co-

efficients obtained by sequential lifting and the ones obtained by multilifting. As

mentioned in the beginning of this section, besides sequential lifting, there were two
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other general approaches for obtaining the lifting coefficients λ. One is the Easton and

Gutierrez [46] approach which, as mentioned before, reduces the multilifting problem

to one single-lifting problem. The other approach is sequence-independent lifting.

Since we know the relationship between multilifting and the first two approaches, we

would like to end this section by understanding the relationship between sequence-

independent lifting and (44). In order to understand this relationship, we make a

series of observations about Λ(P ) that will be helpful later.

Observation 3.3.4. Consider two mixed integer sets P and Q:

1. Consider λ1, λ2 ∈ RL. If λ1 ∈ Λ(P ) and λ2 ≤ λ1 then λ2 ∈ Λ(P ).

2. The set Λ(P ) is a polyhedron.

3. If Λ(P ) is nonempty, then it is full-dimensional.

4. If P ⊆ Q then Λ(Q) ⊆ Λ(P ).

5. Any inequality ρλ ≤ ρo valid for all λ ∈ Λ(P ) satisfies ρ ≥ 0 .

Proof. Observation 1 follows from the definition of Λ(P ) and it has Observation 3

as a consequence. Observation 2 follows from using the decomposition of conv(P )

into extreme points and rays. Observation 4 also follows from the definition of Λ(P ).

Finally, by Observation 1, the unit vector −ei is a ray of Λ(P ). Therefore any

inequality ρλ ≥ ρo valid for all λ ∈ Λ(P ) satisfies ρ(−ei) ≤ 0 ⇒ ρi ≥ 0 for all

i = 1, . . . , L. Thus Observation 5 is true.

We now define some additional notation. Let f(x) ≥ 0 be an inequality valid for

P (g1, . . . , gL) and let α ∈ SL be a permutation of {1, . . . , L}. We denote by λα the set

of coefficients λ obtained by sequentially lifting f(x) ≥ 0 in the order (α(1), . . . , α(L)),

that is, λα
α(k) is the optimal solution to

max

{

λα(k) : f(x)−
k−1
∑

l=1

λα
α(l)gα(l)(x)− λα(k)gα(k)(x) ≥ 0, ∀x ∈ P (gα(k+1), . . . , gα(L))

}

,
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for all k = 1, . . . , L.

Now we need to establish what points in Λ(P ) can be obtained by performing

sequential lifting. The following proposition allows us to do so.

Proposition 3.3.5. Let α ∈ SL. Then λα is an extreme point of Λ(P ).

Proof. We will prove this for α being the identity, since for all others it is the exact

same proof, except that the notation becomes more complicated.

Suppose there exists λ′, λ′′ ∈ Λ(P ) such that λα is a convex combination of λ′ and

λ′′.

Let k be the smallest index such that λα
k 6= λ′k and λα

k 6= λ′′k. We may assume

without loss of generality that λα
k < λ′k.

But notice that since λ′l = λα
l for all l < k, we have that λ′k is feasible for (48),

which contradicts the maximality of λα
k . Therefore, we have that there does not exist

such an index k, which implies that λ′ = λ′′ = λα and hence λα is an extreme point

of Λ(P )

We are now able to derive a relationship between sequence-independent lifting

and the set Λ(P ).

Proposition 3.3.6. Suppose that (44) is always bounded for any z ∈ RL
+. Then the

following conditions are equivalent:

1. Λ(P ) has a unique extreme point.

2. Λ(P ) = {λ ∈ RL : λ ≤ u} for some vector u ∈ RL.

3. λα = λα′

for any α, α′ ∈ SL.

Proof. First, since (44) is always bounded for any z ∈ RL
+, let ul = max{λl : λ ∈

Λ(P )} for all l ∈ {1, . . . , L}.

(3) ⇒ (1)
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For all l = 1, . . . , L, let αl ∈ SL be such that αl(1) = l, that is, the first con-

straint to be lifted sequentially is gl(x) ≥ 0. Proposition (47) implies that λαl

l = ul

for all l = 1, . . . , L. Now let λ∗ = λα for all α ∈ SL and note that λαl

= λ∗ for all

l = 1, . . . , L, which implies that λ∗ = u. Since all points λ ∈ Λ(P ) satisfy λ ≤ u = λ∗,

it follows that λ∗ is the unique extreme point of Λ(P ).

(1) ⇒ (2)

It is easy to see that λl ≤ ul defines a facet of Λ(P ), since we can just pick any

point λ̄ satisfying λ̄l = ul and the affinely independent points λ̄ − ei in Λ(P ) for all

i = 1, . . . , L such that i 6= l. This gives us a total of L affinely independent points

satisfying λl ≤ ul at equality.

Now notice that any facet has at least one extreme point satisfying it at equality.

Thus, the unique extreme point of Λ(P ) is u. Now pick any facet-defining inequality

ρx ≤ ρo of Λ(P ). Since u is the unique extreme point we have that ρo = ρu. But

from Observation 3.3.4 we know ρ ≥ 0. Thus ρx ≤ ρu is implied by x ≤ u. So, the

only facet-defining inequalities of Λ(P ) are x ≤ u.

(1) ⇒ (3)

Follows trivially from Proposition 3.3.5.

(2) ⇒ (1)

Trivial.

Proposition 3.3.6 characterizes when sequence independent lifting occurs in terms

of the polyhedron Λ(P ) and suggests that we can try to pursue sequence independent

lifting by restricting ourselves to subsets of Λ(P ) that are guaranteed to have a unique

extreme point. Obtaining such sets is not necessarily an easy task, but we believe

that such a relation is important to be able to start thinking about the subject in the
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context of multilifting.

3.4 Final remarks

So far, we were able to prove some properties of the multilifting problem and its

relationship to other approaches for obtaining valid lifting coefficients λ ∈ RL.

With respect to actually solving the multilifting problem, the only way we know

how to solve it is to use the following trivial algorithm: Let EP (P ) represent the set

of all extreme points of conv(P ). Likewise, let ER(P ) represent the set of all extreme

rays. It is easy to see that problem (44) is equivalent to the linear programming

problem:

max
L
∑

l=1

zlλl

f(xk)−
L
∑

l=1

λlgl(x
k) ≥ 0 ∀xk ∈ EP (P )

f o(rj)−
L
∑

l=1

λlg
o
l (r

j) ≥ 0 ∀rj ∈ ER(P ).

This problem can be solved by a dynamic cut-generation algorithm making use of a

mixed integer programming oracle for optimizing over P that would find inequalities

that are violated.

It would be interesting to understand better the multilifting problem and to de-

velop algorithms to solve it exactly or approximately within a reasonable time.
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CHAPTER IV

BENCHMARKING MIXED-INTEGER KNAPSACK

CUTS

4.1 Introduction

Consider positive integers n,m and let d ∈ Qm, A ∈ Qm×n, l ∈ {Q ∪ {−∞}}n and

u ∈ {Q ∪ {+∞}}n. Let I ⊆ N := {1, . . . , n} and consider the mixed integer set

P = {x ∈ Rn : Ax ≤ d, l ≤ x ≤ u, xi ∈ Z, ∀i ∈ I}.

We say that a mixed integer knapsack set of the form

K = {x ∈ Rn : ax ≤ b, l ≤ x ≤ u, xi ∈ Z, ∀i ∈ I}

with b ∈ Q, a ∈ Qn is implied by P if (a, b) is a non-negative linear combination

of rows obtained from (A, d). Observe that if K is implied by P , then P ⊆ K.

Hence, any inequality which is valid for K is also valid for P . Recall that we denote

by mixed-integer knapsack cuts (or knapsack cuts for short) the inequalities that are

valid for some implied knapsack K.

As pointed out in Section 1.2, deriving strong knapsack cuts is of great practical

importance to Mixed Integer Programming (MIP). In fact, most cutting planes known

for general mixed integer programming are knapsack cuts. For example, Gomory

Mixed Integer (GMI) cuts [56, 84] are knapsack cuts derived from the tableaus of

linear programming relaxations, and Lifted Cover Inequalities [32, 64] are knapsack

cuts derived from the original rows of P . Other classes of knapsack cuts include

mixed-integer-rounding (MIR) cuts and their variations [31, 78, 85], split cuts [29],

and group cuts [37, 57] — to name but a few.
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In practice, the most successful classes of knapsack cuts for MIP are the GMI/MIR

cuts [21]. Dash and Günlük [38] have recently done an empirical study to better un-

derstand this practical success. They show that, in a significant number of benchmark

MIP instances, after adding GMI cuts for all the optimal tableau rows and reoptimiz-

ing the continuous relaxation, there are no more violated group cuts. Their results

are quite surprising, and already suggest how strong are GMI cuts within the context

of group cuts. Goycoolea [62] extended the results of Dash and Günlük by showing

that in most cases, after adding GMI cuts for all the optimal tableau rows and re-

optimizing the continuous relaxation, there are still violated mixed-integer knapsack

cuts.

Though the results in Goycoolea [62] may seem to indicate that GMI cuts are

not that strong in the context of knapsack cuts, it may still be the case that, even

though there are violated knapsack cuts, these cuts do not significantly improve the

performance already obtained by adding only GMI cuts. Therefore, a natural question

to answer is: In the cases where there are some violated knapsack cuts, do these cuts

give any significant improvement in the continuous relaxation bound?

A slightly different way to pose this question is: How much of the duality gap can

we close using only knapsack cuts derived from a given family of implied knapsack

sets? Answering such a question gives rise to an empirical methodology for evaluating

sub-classes of knapsack cuts using the objective function of the continuous relaxation

as a measure of quality. Formally, consider P as defined above, c ∈ Qn, and C a set

of valid inequalities for P . Define

z∗(C) = min{cx : Ax ≤ d, l ≤ x ≤ u, πx ≤ πo ∀(π, πo) ∈ C}.

Observe that the value z∗(C) defines a benchmark by which to evaluate classes of cuts

that are subsets of C. In other words, if there is a subset C′ of C such that z∗(C′) is

very close to z∗(C), then C′ must contain most of the “important” cuts in C, so we

can empirically say that C′ is a “good” family of cuts. This idea will be applied in
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our context in the following way: Given a family of implied knapsack sets K, let CK

andMK represent, respectively, the set of all knapsack cuts and MIR cuts which can

be derived from sets K ∈ K. SinceMK ⊆ CK it is easy to see that z∗(CK) ≥ z∗(MK)

and that the proximity of these two values gives an indication of the strength of MIR

inequalities derived from that particular family K.

We perform experiments, computing the values z∗(CF ) and z∗(CT ), where F is the

set of original formulation rows and T is the set of first tableau rows. Note that MIR

cuts obtained from rows of a simplex tableau are simply GMI cuts. In this study we

are able to obtain results for a large subset of MIPLIB 3.0 [19] and MIPLIB 2003 [2]

instances, including general mixed integer problems.

There have been several related papers computing the value of the continuous

relaxation using all cuts in a certain class of knapsack cuts. Boyd [23], Yan and

Boyd [103] and Kaparis and Letchford [74] compute z∗(CF ), where F is the set of

original formulation rows. They perform these tests on a subset of pure and mixed

0-1 instances in MIPLIB 3.0. Balas and Saxena [17] and Dash et al. [38] compute

z∗(MA) for all MIPLIB 3.0 problems, where A is the set of all implied knapsack

polyhedra. Those results generalize the results of Fischetti and Lodi [49] and Bonami

et al. [22] which consider Chvátal-Gomory cuts and projected Chvátal-Gomory cuts

respectively. Finally, Fischetti and Lodi [48] compute z∗(CA) but only for pure 0-1

problems. We summarize these results and compare them to ours in Table 1.

Finally, note that, since our method establishes benchmarks for knapsack cuts,

we use rational arithmetic to ensure that the results obtained are accurate. Indeed,

Boyd [23] already cites numerical difficulties in P2756, a pure 0-1 instance, and as a

consequence, he gets different bounds than us and Kaparis and Letchford [74]. We

expect that more numerical difficulties would arise in mixed integer instances with

general bounds and considering other implied knapsack sets besides the formulation

rows.
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Table 1: Computational studies of classes of cuts

Paper Instance set Implied Knapsack Set (K) Class of Cuts

Boyd [23] Pure 0-1 Formulation Knapsack
Yan and Boyd [103] Mixed 0-1 Formulation Knapsack
Fischetti and Lodi [49] Pure integer All CG
Bonami et al. [22] General MIP All Pro-CG
Fischetti and Lodi [48] Pure 0-1 All Knapsack
Balas and Saxena [17] General MIP All MIR
Dash et al. [38] General MIP All MIR
Kaparis and Letchford [74] Pure 0-1 Formulation Knapsack
This thesis General MIP Formulation and Tableaus Knapsack

In Section 4.2 we discuss how to solve the basic problem of separating over a

single mixed integer knapsack set. In Section 4.3 we describe the computational

improvements that need to be made to the basic separation problem in order to

make it more computationally tractable. Computational results are presented in

Section 4.4, while final remarks are given in Section 4.5.

4.2 Identifying a violated knapsack cut

Consider x∗ ∈ Qn and a feasible mixed integer knapsack polyhedron K := {x ∈ Rn :

ax ≤ b, l ≤ x ≤ u, xi ∈ Z, ∀i ∈ I}. In this section we will present a basic algorithm

to resolve the following questions: Is x∗ ∈ conv(K)? If not, can we find an inequality

πx ≤ πo which is valid for K, and such that πx∗ > πo?

Throughout this section we assume that K has no free variables, since it is easy to

substitute a free variable by two non-negative variables. Under that assumption and,

by possibly complementing variables, we will also assume without loss of generality

that li > −∞ for all i = 1, . . . , n. Further, we assume that the bound constraints are

tight, that is, for every finite bound there exists a feasible solution which meets that

bound at equality. We may assume this condition because if the bounds are not tight

it is trivial to strengthen and make them so. Finally, we assume that li < ui for all

i ∈ 1, . . . , n, as otherwise the problem is either infeasible or, in case of equality, the
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variable can be ignored and treated as a constant.

Let {x1, x2, . . . , xq} and {r1, r2, . . . , rt} represent the extreme points and rays of

conv(K). The following proposition, which follows from the work of Applegate et.

al [5], suggests a natural algorithm for addressing our concern.

Proposition 4.2.1. Consider the following linear programming (LP) problem with

variables u, v, π ∈ Rn, and πo ∈ R:

LP1 :min
n
∑

i=1

(ui + vi)

s.t. πxk − πo ≤ 0 ∀k = 1 . . . q (C1)

πrk ≤ 0 ∀k = 1 . . . t (C2)

πx∗ − πo = 1 (C3)

π + u− v = 0 (C4)

u ≥ 0, v ≥ 0.

If this problem is infeasible, then x∗ ∈ conv(K), and thus there exists no knapsack cut

violated by x∗. Otherwise, this problem admits an optimal solution (u, v, π, πo) such

that inequality πx ≤ πo is a valid knapsack cut maximizing

πx∗ − πo

||π||1

That is, the hyperplane defined by (π, πo) maximizes the L1 distance to x∗.

Because LP1 has an exponential number of rows, we use a dynamic constraint

generation algorithm to solve the problem. We begin with constraints (C3)-(C4) and

a subset of constraints (C1)-(C2). We refer to this problem with a reduced number

of constraints as the master problem. The dynamic constraint generation algorithm

requires solving the problem

K(π) := max{πx : x ∈ K} (49)
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at each iteration. We call K(π) the oracle problem and in order to solve it we use

a specialized mixed-integer knapsack solver. Details of this solver are described in

Goycoolea [62].

If the oracle problem is unbounded at any given iteration, then there exists an ex-

treme ray rj of conv(K) such that πrj > 0. That is, there exists a violated constraint

in (C2) which can be added. If this problem is not unbounded, then there exists an

optimal solution corresponding to an extreme point xk of conv(K). If πxk > πo then

this extreme point results in a violated constraint of (C1) which can be added. Other-

wise, it means that all constraints of the problem are satisfied. Because there can only

be a finite number of extreme points and rays for a set K, this dynamic constraint

generation algorithm is assured to converge in a finite number of iterations.

Notice that it is not hard to ensure that a mixed-integer knapsack solver will

return an extreme ray of conv(K) if the oracle sub-problem is unbounded. In fact,

the solver described in Goycoolea [62] does so. However, when the oracle sub-problem

has a finite optimum, it is much harder to ensure that the optimal solution returned

by it is an extreme point of conv(K). Despite this fact, we can still ensure that the

dynamic constraint generation algorithm converges finitely. In fact, it is easy to see

that if we use any finite set of points in K containing the extreme points of conv(K),

Proposition 4.2.1 still remains valid and the dynamic cut generation converges finitely.

Espinoza [47] proposes that this can be achieved if the solution x∗ returned by K(π)

satisfies the following two conditions:

1. |x∗i | ≤ L for some constant L, for all i ∈ I;

2. x∗ is an extreme point of KC(x∗) = K ∩ {x ∈ Rn : xi = x∗i , ∀i ∈ I}.

In the remainder of this section we present a simple post-processing algorithm

which, given an optimal solution to K(π), returns another (or possibly the same)

optimal solution satisfying the conditions proposed by Espinoza.
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The post-processing procedure is described in Algorithm 4, and consists of two

phases: the first phase (lines 1–6) ensures that the integer variables have bounded L∞

norm by using domination, and the second phase (line 7) ensures that the solution

satisfies condition 2.

In order to show that Algorithm 4 returns a solution that satisfies both conditions

proposed by Espinoza, we review the concept of domination and a related proposition.

Consider indices i, j ∈ {1, . . . , n}, and non-zero integers ki, kj. If aiki + ajkj ≥

0 and πiki + πjkj < 0 we say that (i, j, ki, kj) defines an integer cost-domination

tuple. If i < j, ki > 0, aiki + ajkj ≥ 0 and πiki + πjkj = 0 we say that (i, j, ki, kj)

defines an integer lexicographic-domination tuple.

Proposition 4.2.2 (Goycoolea [62]). Consider an integer cost/lexicographic-domi-

nation tuple (i, j, ki, kj) and let x be a feasible MIKP solution. Define δ ∈ Zn such

that δi = ki, δj = kj and δq = 0 for all q ∈ {1, . . . , n} \ {i, j}. If

li + ki ≤ xi ≤ ui + ki and lj + kj ≤ xj ≤ uj + kj (50)

Then x is cost/lexicographically-dominated by x− δ. Moreover, we say that x violates

the domination tuple (i, j, ki, kj).

In Goycoolea [62] it is also shown that minimal integer-domination tuples exist,

in other words, for every (i, j), there exists a minimal domination tuple (i, j, ko
i , k

o
j )

such that for every integer domination tuple (i, j, ki, kj), |ki| ≥ |k
o
i | and |kj| ≥ |k

o
j |.

Since L is the set of all possible minimal integer lexicographic-domination tuples,

phase 1 ensures that no tuple in L is violated by the returned optimal solution after

the first phase. In the following proposition, we show that this fact implies that the

integer variables have bounded L∞ norm.

Proposition 4.2.3. Consider a MIKP instance max{πx : x ∈ K}, which has been

preprocessed according to the preprocessing algorithm proposed in Goycoolea [62]. Let

99



Algorithm 4: The Post-Processing Algorithm

Input: An instance of the mixed integer knapsack problem, an optimal
solution x∗ to this instance, and the set L of all minimal integer
lexicographic-domination tuples.

while ∃(i, j, ki, kj) ∈ L that is violated by x∗ do1

δi ←− ki2

δj ←− kj3

δq ←− 0, ∀q 6= i, j4

while x∗ − δ is feasible do5

x∗ ←− x∗ − δ6

x∗ ←− optimal solution to max{cx : x ∈ K, xi = x∗i , ∀i ∈ I}7

x∗ correspond to an optimal solution of this instance which has been post-processed as

indicated in lines 1–6 of Algorithm 4. There exists a constant L depending only on

a, b, l and u, such that |x∗i | ≤ L for all i ∈ N .

Proof. Consider an instance of MIKP and an optimal solution x∗ obtained from the

post-processing algorithm. Let M1 = max{(ui − li) : ui 6= ∞ and i ∈ I}. Let

M2 = max{max{|ki|, |kj|} : (i, j, ki, kj) ∈ L}. Let M = max{M1,M2}.

Observe, first, that at most one variable xi can be such that xi > li + M . In

fact, suppose that there are two variables xi, xj such that xi > li + M and xj >

lj + M . We know that there exists a minimal domination pair (i, j, ki, kj). Define

δ = ki
πi

ai
+ kj

πj

aj
∈ Zn. Since necessarily ui = uj = ∞ and M ≥ |ki|, M ≥ |kj|,

it follows that x∗ satisfies li + ki ≤ x∗i ≤ ui + ki and lj + kj ≤ x∗j ≤ uj + kj and

thus violates (i, j, ki, kj). So, from Proposition 4.2.2 we know that x∗ is dominated

by x∗ − δ. Given that x∗ is optimal, we know that x∗ cannot be cost-dominated.

Thus (i, j, ki, kj) ∈ L, which contradicts the fact that after post-processing there is

no violated tuple in L.

Now let xi be the single variable such that x∗i > li + M . If ai > 0, then x∗i ≤

b−
P

j 6=i ajx∗
j

ai
. Since for all j 6= i, we have that x∗j ≤ li + M , it is clear that x∗i can

be bounded by a constant αi depending only on a, b, l, u and M . If ai < 0, then let
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αi = max

{

0,
b−

P

j 6=i

ajx∗
j

ai

}

. If x∗i > αi, then we can define a new solution x′ by letting

x′j = x∗j , ∀j 6= i and x′i = αi. Clearly x′ is feasible. Goycoolea’s [62] preprocessing

algorithm implies that ai < 0 ⇐⇒ πi < 0, thus since ai < 0, we have that πi < 0

and therefore πx′ < πx∗. Since x∗ is optimal we obtain a contradiction. By letting

L = max{M,αi} we obtain our result.

It is worth to note that the preprocessing algorithm of Goycoolea [62] is very

simple to implement and only makes sure that the mixed-integer knapsack optimiza-

tion problem is not trivial to solve, is bounded, and has no variables that can be

immediately fixed at bounds.

It is easy to see how step 7 ensures condition 2, since KC(x∗) is a polyhedron

and the optimal solution to the LP in step 7 will be an extreme point of KC(x∗).

Therefore, we have shown that, after applying Algorithm 4 all conditions proposed

by Espinoza are satisified.

Note that in the loop of lines 1–6, we are always getting a lexicographically smaller

solution, so it is easy to see that the loop terminates after a finite number of iterations.

As a final remark, note that, in practice, it is faster to solve the dual of LP1, since

it has a fixed number of rows. This requires implementing this procedure as a column

generation algorithm rather than as a a dynamic constraint generation algorithm.

Also, observe that if this algorithm finds a violated knapsack cut, then this cut will

correspond to a non-empty face of conv(K). This follows follows from the fact that

the optimal solution to LP1 maximizes the L1 distance from x∗ to the hyperplane

defined by (π, πo). For more details, see Espinoza [47].

4.3 Improving the performance

The dynamic cut generation algorithm, as presented in Section 4.2, is sufficient to

solve LP1 and allows us to obtain separating knapsack cuts, or show that none exist.

Unfortunately, the algorithm as presented is prohibitively slow. In Sections 4.3.1 -
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4.3.5 we present several steps which help speed up the procedure.

4.3.1 Determine if the problem admits a trivial solution.

We first try to identify cases where there is a fast way to determine if x∗ ∈ conv(K)

or produce a cut separating x∗ from conv(K). In order to achieve this we test for the

following conditions.

1. Is x∗ ∈ conv(K)?

For this, define NK = {i ∈ 1, . . . , n : ai 6= 0}. We know that x∗ ∈ conv(K) if

any of the following conditions are met:

• ai ∈ {−1, 1} for all i ∈ NK and b ∈ Z,

• NK ∩ I = ∅,

• x∗i ∈ Z for all i ∈ I ∩NK .

In fact, the first two conditions imply that conv(K) is defined by the knapsack

and bound constraints, and the third condition implies that x∗ is feasible for

K.

2. Is x∗ /∈ conv(K)?

For this, attempt to find a violated MIR inequality. In our implementation we

use the MIR separation heuristic described in [62]. If this heuristic is succesful

we can terminate the algorithm early and utilize the violated MIR inequality as

a separating knapsack cut. Observe that one could also attempt to find violated

inequalities from among other classes of cuts which are easy to separate, such

as lifted cover inequalities.

4.3.2 Eliminate variables from LP1.

Say that a knapsack cut for K is trivial if it is implied by the linear programming

relaxation of K. A proof of the following result concerning non-trivial knapsack cuts
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can be found in Atamtürk [10].

Proposition 4.3.1. Every non-trivial facet-defining knapsack cut πx ≤ πo of conv(K)

satisfies the following properties:

(i) If ai > 0, then πi ≥ 0.

(ii) If ai < 0, then πi ≤ 0.

(iii) πi = 0 for all i /∈ I such that ai > 0 and ui = +∞.

(iv) πi = 0 for all i /∈ I such that ai < 0 and li = −∞.

(v) There exists a constant α > 0 such that πi = αai for all i /∈ I such that ai > 0

and li = −∞, and for all i /∈ I such that ai < 0 and ui = +∞.

The following result concerning violated and non-trivial knapsack cuts is a simple

generalization of a remark made in Boyd [23].

Proposition 4.3.2. Consider x∗ /∈ conv(K). Let H+ = {i ∈ 1, . . . , n : ai > 0, x∗i =

li} and H− = {i ∈ 1, . . . , n : ai < 0, x∗i = ui}. If there does not exist a trivial

inequality separating x∗ from conv(K), then there exists a separating knapsack cut

πx ≤ πo such that πi = 0, ∀i ∈ H+ ∪H−.

Proof. Since x∗ /∈ conv(K), then by assumption there exists a nontrivial facet-defining

inequality π̂x ≤ π̂o for conv(K) violated by x∗. Define πo = π̂o −
∑

i∈H+ π̂ili −
∑

i∈H− π̂iui and

πi =











0 if i ∈ H+ ∪H−

π̂i otherwise.

Let x ∈ conv(K). Consider i ∈ H+. From Proposition 4.3.1 we know that ai > 0

implies π̂i ≥ 0, and, thus, π̂ixi ≥ π̂ili. Likewise, consider i ∈ H−. From Proposition

4.3.1 we know that ai < 0 implies π̂i ≤ 0, and, thus, π̂ixi ≥ π̂iui. Hence, π̂o ≥
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π̂x ≥ πx +
∑

i∈H+

π̂ili +
∑

i∈H−

π̂iui, and, so, πx ≤ πo. On the other hand, π̂o < π̂x∗ =

πx∗ +
∑

i∈H+

π̂ili +
∑

i∈H−

π̂iui. Thus, πx∗ > πo, and we conclude the result.

From Proposition 4.3.1 and Proposition 4.3.2 we can see that variables πi with i ∈

1, . . . , n can be assumed to have value zero whenever any of the following conditions

are met:

• i /∈ I, ai > 0 and ui = +∞,

• i /∈ I, ai < 0 and li = −∞,

• ai > 0 and x∗i = li,

• ai < 0 and x∗i = ui.

In these cases the corresponding variables can simply be eliminated from LP1. Fur-

ther, from Proposition 4.3.1 it can be seen that if we add a non-negative continuous

variable α to LP1, we can replace all variables πi satisfying the conditions of (v) by the

corresponding terms αai. This can effectively reduce the variable space by eliminat-

ing all remaining continuous unbounded variables. Finally, observe that Proposition

4.3.1 allows us to add non-negativity bounds on all varibales πi such that ai > 0, and

non-positivity bounds on all variables πi such that ai < 0.

4.3.3 Fix variables and lift back again

Given a mixed integer knapsack set K and a point x∗ we are concerned with deter-

mining if x∗ ∈ conv(K), or if we can find a separating hyperplane.

To help improve the performance, we can use a problem of smaller dimension to

determine if x∗ ∈ conv(K). For that purpose, define U = {i ∈ 1, . . . , n : x∗i = ui}

and L = {i ∈ 1, . . . , n : x∗i = li} and let K(L,U) = K ∩ {x ∈ Rn : xi = li ∀i ∈

L} ∩ {x ∈ Rn : xi = ui ∀i ∈ U}. It is easy to see that x∗ ∈ conv(K) if and only if

x∗ ∈ conv(K(L,U)). However, this latter problem is much easier to solve since we
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can treat all variables xi with i ∈ L ∪ U as constants, thus obtaining a problem of

smaller dimension. In practice, this means we can apply the dynamic cut generation

methodology on the smaller knapsack constraint

∑

i/∈L∪U

aixi ≤ b−
∑

i∈L

aili −
∑

i∈U

aiui.

If solving this problem reveals that x∗ ∈ conv(K(L,U)) then we conclude that

x∗ ∈ conv(K). We call the problem of determining if x∗ ∈ conv(K(L,U)) as the

membership problem.

Using the membership problem can greatly help us speed up the separation process

in case x∗ ∈ conv(K). However, if x∗ /∈ conv(K(L,U)) the membership problem will

return an inequality
∑

i/∈L∪U

πixi ≤ πo separating x∗ from conv(K(L,U)) but which is

not necessarily valid for K.

To obtain a valid inequality for conv(K) that separates x∗ from it, we could

just run the whole separation process in the full space once we determine that x∗ /∈

conv(K). However, this approach seems to waste the effort in determining that

x∗ /∈ conv(K) and obtaining an inequality
∑

i/∈L∪U

πixi ≤ πo separating x∗ fromK(L,U).

Another alternative is to apply lifting to that constraint to obtain coefficients πi for

all i ∈ L∪U such that
∑

i/∈L∪U

πixi +
∑

i∈L

πi(xi− li) +
∑

i∈U

πi(xi− ui) ≤ πo is valid for K.

In our study we used the sequential lifting procedure described in Chapter 3 which

allow us to lift both continuous and general integer variables. The functions we use

to obtain the lower dimension restriction of K are just the functions defined by the

bounds, that is, xi − li for all i ∈ L and ui − xi for all i ∈ U . Also, the sequence in

which we lifted the variables is completely arbitrary (from lowest to highest index).

4.3.4 Early termination rules

Recall that the dynamic cut generation algorithm described for solving LP1 iterated as

follows: At the beginning of each iteration it started with a solution (π, πo) satisfying

πx∗ = πo + 1. Then, the algorithm solved the oracle sub-problem max{πx : x ∈ K}
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to optimality. The stopping condition of the dynamic cut generation algorithm was

that the optimal answer to this sub-problem should be finite, and of value less than

or equal to πo. In what follows we present two different ways in which this scheme

can be modified in such a way as to still guarantee convergence.

• Method 1: If, while solving max{πx : x ∈ K}, we encounter a solution x̂ that

is feasible for K and such that πx̂ > πo, we can stop the execution of the oracle

sub-problem and add the constraint πx̂ ≤ πo to LP1 rather than continuing to

solve the oracle to optimality.

• Method 2: Let v∗ be the optimal value of max{πx : x ∈ K}. If v∗ > πo,

then πx ≤ πo is clearly not valid for conv(K). However, if πo < v∗ < πo + 1,

then inequality πx ≤ v∗ is both valid for conv(K) and violated by x∗. In this

case we may terminate the dynamic cut generation algorithm and conclude that

x∗ /∈ conv(K), providing the inequality (π, v∗) as a separating cut.

Observe that both methods cannot be used simultaneously, given that the latter

requires solving the sub-problem to optimality.

4.3.5 Dealing with rational arithmetic

As mentioned in Section 4.1, we used rational arithmetic to be able to obtain accurate

bounds for our benchmarks. However, as noted in Applegate et al. [7], doing all

computations in rational arithmetic can be orders of magnitude slower than doing all

computations in floating point arithmetic. We therefore used an approach similar to

the one proposed in Dhiflaoui et al. [42], Koch [75] and Applegate et al. [7], which is

to use floating point arithmetic at first, gradually increasing the number of bits used

and only using rational arithmetic when strictly necessary. We call this the increasing

precision approach.

An easy way to make sure that the separation problem returns a correct answer,

is to ensure that the optimal solution to the master problem and the solution to
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the oracle problem K(π) = max{πx : x ∈ K} are both performed in exact arith-

metic. However, in either case, we can use floating point arithmetic to speed up the

computations.

Notice first that we solve the oracle problem K(π) in order to verify if any con-

straint (C1) or (C2) are violated by the current candidate cut πx ≤ πo obtained

by the master problem. If we have a solution x̂ ∈ K such that πx̂ > πo, then x̂

does not need to be the optimal solution to K(π). In fact, we can just add the con-

straint πx ≤ πo to (C1) and iterate. Therefore, we solve K(π) using floating point

arithmetic, and convert the solution x′ it returns in floating point to a solution x̂ in

rational arithmetic and check if πx̂ > πo. The only cases in which we need to either

switch to a higher precision or solve K(π) in exact arithmetic are the cases where the

solution x′ returned cannot be converted to a feasible solution x̂ ∈ K or when the

converted solution x̂ satisfies πx̂ ≤ πo. In first case, we have no feasible solution and

in the latter case, we need to make sure that it is indeed the case that πx ≤ πo for

all x ∈ K, otherwise we could generate an invalid cut.

With respect to solving the master problem, notice that any feasible solution to

LP1 will give us a cut that is valid for K and is violated by x∗. The objective function

just serves as a guide so that the cut returned by LP1 is “good” in a certain way

(the distance from the hyperplane defined by (π, πo) to x∗ is maximized). However,

if we end up with an inequality that is feasible but not optimal by using floating

point arithmetic, we still get an inequality valid for K that is violated by x∗. Even

though the solution obtained by “solving” LP1 in floating point arithmetic may not

be the true optimal, it is reasonable to expect that it is a “good” solution. Moreover,

(π, πo) does not even need to be feasible for LP1, in the sense that it may violate

constraint (C3) by a small amount as long as πx∗ > πo. Therefore, as long as we are

sure that the solution to K(π) is correct, that is, we are guaranteed that our current

candidate cut πx ≤ πo is indeed satisfied by all points in K, we will, in principle, not
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need to ever solve LP1 in exact arithmetic. Due to this observation, we try to solve

the master problem in floating point arithmetic and convert its floating point solution

(π′, π′
o) to a rational solution (π̂, π̂o) and call the oracle problem K(π̂) to check if any

constraints in (C1) or (C2) is violated.

The only problem that we may face is the case that K(π̂) returns a point xk (or a

ray rj) that violates constraint (C1) (or (C2)) but the violation is small enough that

after adding the corresponding cut to the master problem and resolving it, the optimal

solution to the master problem does not change, which would then lead to cycling.

This can happen if we are using floating point arithmetic, since if the cuts are only

violated by a small amount, floating point arithmetic solvers will consider that they

are not violated at all and will conclude that the optimal solution does not change.

In that case, we choose to start solving the master problem in a higher precision, or

decide to solve it in rational arithmetic if our floating point representation is already

using more than 1024 bits.

Notice that this approach is better than using an increasing precision exact LP

solver (like the one from Applegate et al.[7]) each time we solve the master problem.

This is true, since such solvers will always check the optimality of the basis in rational

arithmetic each time it is invoked and that step is very expensive. We on the other

hand do not need an optimal solution for LP1 and therefore we can afford not to do

exact solves unless it is needed due to the abovementioned cycling problems.

4.4 Computational experiments

In this section we describe the results of our computational experiments. All imple-

mentations were developed in the “C” and “C++” programming languages, using

the Linux operating system (v2.4.27) on Intel Xeon dual-processor computers (2GB

of RAM, at 2.66GHz). As mentioned before, generating cuts which are invalid is a
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real point of concern, so we use rational arithmetic to avoid any errors in computa-

tions. Specifically, we used the exact LP solver of Applegate et al. [7] for solving the

master problem and the GNU Multiple Precision (GMP) Arithmetic library [63] for

implementing all other computations.

In order to test our results we use the MIPLIB 3.0 [19] and MIPLIB 2003 [2] data

sets (92 problems in total). Section 4.4.1 is dedicated to tests of the effectiveness of

each of the improvements presented in Section 4.3. In Section 4.4.3 we present the

benchmarks we obtained for MIK cuts and use it to evaluate the practical performance

of MIR inequalities.

Throughout our experiments we computed the values z∗(CK), that is, the value of

the optimal solution to the LP relaxation of a mixed-integer program (P ) after adding

all possible mixed-integer knapsack cuts derived from mixed-integer knapsacks in K.

In these experiments we only consider the sets K = F , i.e., the family of knapsack

sets induced by the original formulation rows, and K = T , i.e., the family of knapsack

sets induced by the tableau rows of the optimal LP relaxation of the original MIP

(without any cuts). Since we wish to compute z∗(CF ) and z∗(CT ) for all problems in

MIPLIB 3.0 and MIPLIB 2003, we get a total of 184 instances.

4.4.1 Testing the improvements

We have presented several computational improvements needed to make the compu-

tation of z∗(CK) practical. This section presents the computational experiments that

were performed in order to test the efficacy of each feature and to present the best

set of parameters that we have found.

We use the time it takes to compute z∗(CK) for each of the instances as a measure

of the quality of a given choice of parameters. We believe that this measure is good

since it establishes a common goal for all methods and evaluates how fast can that

goal be reached. This allows a fair comparison between methods that compromise
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the quality of the cuts obtained for gains in the time it takes to generate one cut. We

also imposed the time limit of 3 hours for our tests. If z∗(CK) has not been computed

within the time limit, it is considered that the solution time was +∞.

The only feature we applied directly without experimenting first was the test

presented in Section 4.3.1 to determine if x∗ ∈ conv(K), since these are very com-

putationally inexpensive and will clearly benefit our algorithm. Therefore, all the

experiments performed assume that such a feature is always in use.

We tested several different combinations of the parameters presented throughout

this chapter. To make the presentation clearer, we present in Table 2 a list of the

different configurations used and the corresponding parameter settings.

Table 2: Parameter settings.
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alloff – – – – – – – – –
onlymir Yes – – – – – – – –
onlyprop1 – Yes – – – – – – –
onlyprop2 – – Yes – – – – – –
onlyprop12 – Yes Yes – – – – – –
onlye1 – – – – – Yes – – –
onlye2 – – – – – – Yes – –
onlyor – – – – – – – Yes –
onlymas – – – – – – – – Yes
memb – – – Yes – – – – –
lift – – – Yes Yes – – – –
membincmas – – – Yes – – – – Yes
best Yes Yes Yes Yes Yes – – – Yes
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We first tested the effect of each of the proposed improvements individually, to

assess which of them seem promising when compared to doing the straightforward

appraoch of solving the separation problem without any improvements (alloff pa-

rameter setting). Since there are many features to be tested, we will present them

grouped as they were presented throughout this chapter.

Figure 3 presents the results of using MIR inequalities as a quick heuristic to

determine if there is a MIK cut separating x∗ from conv(K). Since all our results

on this section are presented using performance profiles (including Figure 3) we will

briefly explain how to read performance profiles. Performance profiles are used to

compare two or more solution strategies according to some metric. In our case, the

metric used is the time required to compute z∗(CK). Each point (x, y) of the curves

tells us that in y percent of the instances, this particular strategy was at most x times

slower than the fastest solver for that instance (for a more detailed explanation of

performance profiles, see [45]). For instance, by looking at the point where x = 1

we see that onlymir is faster than alloff in about 26% of the instances and alloff

is faster in about 16% of the instances. By looking at the point where x = 10, we

can see that onlymir is at most 10 times slower than alloff in 40% of the instances,

while alloff is at most 10 times slower in a little over 35% of the instances. From

the figure it is also clear that onlymir was not able to compute z∗(CK) in 60% of the

instances, since the plot for onlymir never goes above 40%. Likewise, alloff was not

able to compute z∗(CK) in about 64% of the instances.

In general, a quick way to interpret performance profiles is to look at the lines. If

one line is always above the other, then the corresponding strategy is considered to

perform better. Therefore, the experiments show that using MIR as a quick heuristic

to determine if there is a cut separating x∗ from conv(K) is good in practice. Notice

that it was expected that MIR would make each round of cuts faster, since the

heuristic we use to separate them is extremely fast. However, it could be the case
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that the MIR cuts were too weak, in which case one could need many more rounds

of cuts to reach z∗(CK), which could eventually make the overall running time slower.

The experiments show that this does not happen.
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Figure 3: Performance profile of using MIR heuristic.

Figure 4 shows how much Propositions 4.3.1 and 4.3.2 help compared to the alloff

setting. It is clear that using Proposition 4.3.1 helps reduce the overall running time.

The results for Proposition 4.3.2 are not that significant. Indeed there seems to be a

slight gain in performance by using Proposition 4.3.2. Even though the gain may be

small, it is certainly present and we found that testing in other parameter settings,

the use of Proposition 4.3.2 does not seem to cause any loss in performance. Therefore

we decided it was a good idea to use it.

Figure 5 shows the results of using early termination rules 1 and 2, presented in

Section 4.3.4. Notice that the scale of the horizontal axis has changed. The maximum

value displayed is now 2.5. We choose to do so since the plots did not change for the

values of the horizontal axis greater than 2.5. The results are somewhat surprising:
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Figure 4: Performance profile of using Propositions 4.3.1 and 4.3.2.

it seems no strategy is clearly better than the others. On one hand, using either

early termination rule seems to make the procedure faster in some instances, but it

has a tailing off effect, making the procedure slower in some harder instances. In

general, though, it seems that using early termination rule 2 is better than using

rule 1. These experiments show that the tradeoff between making each round of cuts

faster by possibly compromising the quality of the cuts does not necessarily make the

whole process converge faster. In the end, from these experiments, we concluded that

it was better not to use either of the early termination rules. Our reasoning was that

it was better to have a method that solves all instances not taking much more time

than the faster solver instead of a method that solves some of the instances faster,

but some much slower.

In Figure 6 we present the results for testing the strategies for dealing with rational

arithmetic presented in Section 4.3.5. Recall that we proposed in that section that

we could solve both the master problem in increasing precision or the oracle problem
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Figure 5: Performance profile of the early termination rules.

K(π) in increasing precision. Again, the results are surprising. It is clear that solving

the master problem in increasing precision is a good strategy. However, note that

using an increasing precision oracle actually makes the performance worse. We believe

this is due to the fact that more often than not the effort of solving the oracle in

floating point arithmetic is wasted, since its solution is either not optimal or not

feasible.

We leave the analysis of the strategies involving lifting and membership mode

(presented in Section 4.3.3) to the next section, since those results are relevant for

Chapter 3 and deserve a more thorough analysis. To finalize this subsection, we

present in Figure 7 the performance profile of the best strategy we found according

to our experiments. It is worth noting that we tried small variations of this strategy

by turning on/off some individual parameters, but strategy best still outperformed

all others. It is clear that there is a substantial gain in performance obtained by

combining all techniques presented in this chapter. Indeed we believe it would be
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Figure 6: Performance profile of the different increasing precision rules.

extremely difficult to compute z∗(CK) for most instances without these improvements,

even if given large amounts of computing time. Algorithm 5 summarizes the final

algorithm using the best combination of parameters found by our experiments.

4.4.2 Testing the effectiveness of lifting

Even though the tests presented in this subsection are similar to the ones presented so

far, we decided to devote a separate subsection to lifting since these tests are relevant

to both the current chapter and Chapter 3. We will first focus on the memb, lift

and alloff strategies.

Recall that the strategy memb is to use K(L,U) to determine if x∗ ∈ conv(K)

and, in case x∗ /∈ conv(K) then obtain a valid inequality for K violated by x∗ solving

the separation problem LP1 on the whole set K. Strategy lift instead uses the

inequality separating x∗ from conv(K(L,U)) as a starting point and sequentially lifts

the coefficients of variables in L and U to obtain a valid inequality for K. Figure 8

shows that, as expected, using memb is better than not. Also, it is easy to see that
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Algorithm 5: knapsack separator(K, x∗)

Input: A mixed integer knapsack set K, and a vector x∗.
Output: An answer to the question “Is x∗ ∈ conv(K)?”. In case that the

answer is FALSE, the algorithm also returns a separating cut.

Test if x∗ and K verify any of the sufficient conditions described in Section1

4.3.1 for showing that x∗ ∈ conv(K). If the answer is affirmative then STOP
and report that x∗ ∈ conv(K).
Run the MIR separation heuristic using K and x∗ as input. If this heuristic2

finds a violated MIR cut then STOP, report that x∗ /∈ conv(K), and return the
MIR inequality which was found.
Simplify the problem by fixing variables which are at their bounds, as3

indicated in Section 4.3.3, and reduce to a smaller dimensional knapsack
separation problem.
Formulate problem LP1 in the reduced variable space without adding any of4

the constraints in (C1)-(C2).
Apply Propositions 4.3.1 and 4.3.2 to simplify LP1 by eliminating variables5

from consideration and adding bounds.
Solve LP1 using the dynamic row generation algorithm, using increasing6

precision for the master and rational arithmetic for the oracle.
If solving LP1 reveals that x∗ ∈ conv(K), then STOP and report that7

x∗ ∈ conv(K).
Let (π̂, π̂o) represent the optimal solution to LP1.8

Lift cut π̂x ≤ π̂o to obtain a cut πx ≤ πo which is valid for K.9

STOP and return the cut (π, πo).10
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Figure 7: Performance profile of the best configuration.

strategy lift is better than memb or alloff. This result is relevant not only in the

context of separating mixed-integer knapsack cuts. It also shows that, if you are given

an optimization oracle that enables you to optimize over a mixed-integer set K and

possibly some restrictions of it obtained by fixing certain variables at some values,

it is better to use the lifting approach than to use the straightforward separation

approach. This shows that the algorithms developed in Chapter 3 produce good

results in practice, at least in this context.

To try to understand a little more why lift performs better than memb, we

computed some statistics to try to understand where most of the computing time

is spent. For those experiments, we only considered instances for which there was

some gain in bound by using MIK cuts. The reason for doing so is that for all other

instances we expect very few (if any) knapsack cuts to be generated and therefore

lift or memb would have little or no difference. This leaves us with a total of 59

instances. Results are presented in Table 3. Row Total time represents the total
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Figure 8: Performance profile of different lifting strategies.

amount of time used to compute z∗(CK) for all 59 instances (adding up all times).

If an instance was not completed within 3 hours, the amount of time considered for

calculating Total time was 10800 seconds (3 hours). Rows Oracle time and Master

time represent the total time added for all instances that was spent in oracle and

master calls respectively (in seconds and in percentage of the Total time). Rows

Average oracle call time and Average master call time represent the average time, in

seconds, it takes for each oracle and master call to be completed, respectively.

The results in Table 3 are surprising. We expected the oracle calls in lift to

take less time in average than the oracle calls in memb, since after establishing that

x∗ /∈ conv(K) all oracle calls in memb are performed in the full variable space, while

the oracle calls in lift are not — all variables not yet lifted are considered to be fixed.

Also surprising is the fact that almost 94% of the time in memb is spent in solving

the master problem. In fact, such a startling statistic raises the question if the only

reason why lift outperforms memb is that we are not efficient enough in solving the
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master problem. To try to answer to such a question, we ran membincmas, which is

memb but now using the increasing precision strategy for solving the master problem,

which would make it be solved much faster. Notice that this can be considered an

unfair advantage to membincmas if compared to lift, since the first uses floating

point arithmetic in increasing precision and the latter uses only rational arithmetic,

which is known to be orders of magnitude slower. However, as can be seen in Figure 8,

the lift strategy still outperforms membincmas, which indicates that it is indeed a

successful strategy.

Table 3: Statistics for lift vs. memb.
lift memb

Total time (s) 254761 427739

Oracle time
(s) 105722 1102
% 41% 0.3%

Master time
(s) 120983 399964
% 47% 94%

Average oracle call time (s) 0.06 0.003
Average master call time (s) 0.39 0.95

Finally we conclude by noting that one of the possible reasons why lift per-

forms better than memb and membincmas is that using sequential lifting, we

have a guarantee that the inequality that we obtain at the end of the process has

a high dimension. On the other hand, doing the separation using LP1 straight away

does not have such guarantees. Thus, lift should produce better inequalities than

memb/membincmas, converging faster to z∗(CK).

4.4.3 Benchmarking the MIR inequalities

We now describe our experiments computing the values z∗(CK) and z∗(MK) and our

use of these values to benchmark the performance of MIR inequalities, as detailed in

Section 4.1.
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As a first step, we implemented the MIR separation heuristic described in Goy-

coolea [62]. This heuristic takes as input a mixed integer knapsack polyhedron K, a

vector x∗, and attempts to find an MIR inequality which is valid for K and violated

by x∗. In order to do this, the heuristic scales the knapsack set and complements vari-

ables in different ways, attempting to obtain an MIR inequality each time by applying

a rounding procedure. We henceforth refer to this heuristic as mir heuristic(K, x∗).

Given a mixed integer programming problem and a set of implied mixed integer knap-

sack polyedra, we can use this heuristic to compute an approximation of z∗(MK) as

shown in Algorithm 6. This is only an approximation of the value z∗(MK), because

there could potentially be violated MIR inequalities for a polyhedron K ∈ K which

mir heuristic fails to find. A better approximation can probably be obtained by

using the approch of Balas and Saxena [17] or the approach of Dash et al. [38] as a

subroutine instead of using mir heuristic.

Algorithm 6: Computing an approximation of z∗(MK)

Input: A vector c ∈ Rn, a mixed integer polyhedron P , and a set of implied
mixed integer knapsack polyhedra K.

Let R be the linear programming relaxation of P ;1

Let x∗ be the optimal solution of max{cx : x ∈ R};2

Let C = ∅;3

foreach K ∈ K do4

if mir heuristic(K, x∗) finds a violated cut (π, πo) then5

Add cut (π, πo) to C;6

if C 6= ∅ then7

Add cuts in C to R;8

Resolve max{cx : x ∈ R} letting x∗ correspond to the optimal solution;9

Go to line 3;10

else11

Stop.12

As a second step, we implemented the knapsack separator algorithm de-

scribed in Section 4.2 (for a summary see Algorithm 5). Observe from Algorithm 5
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that knapsack separator needs an MIR generator as a subroutine. We use mir

heuristic for this purpose. Given a mixed integer programming problem and a set

of implied mixed integer knapsack polyedra we can use knapsack separator to

compute z∗(CK) as shown in Algorithm 7.

Algorithm 7: Computing z∗(CK)

Input: A vector c ∈ Rn, a mixed integer polyhedron P , and a set of implied
mixed integer knapsack polyhedra K.

Let R be the linear programming relaxation of P ;1

Let x∗ be the optimal solution of max{cx : x ∈ R};2

Let C = ∅;3

foreach K ∈ K do4

if knapsack separator(K, x∗) finds a violated cut (π, πo) then5

Add cut (π, πo) to C;6

if C 6= ∅ then7

Add cuts in C to R;8

Resolve max{cx : x ∈ R} letting x∗ correspond to the optimal solution;9

Go to line 3;10

else11

Stop.12

The following proposition and the fact that knapsack separator returns a

nonempty face of conv(K) ensure the finiteness of Algorithm 7:

Proposition 4.4.1. If each cut added in line 6 of Algorithm 7 defines a nonempty

face of conv(K), then Algorithm 7 terminates in a finite number of iterations.

Proof. Follows immediately, since for every K ∈ K, conv(K) has only a finite number

of nonempty faces.

Tables 4.4.3.1 and 4.4.3.2 present the results for K = F and K = T respectively.

For each problem instance let z∗UB represent the value of the optimal (or best known)

solution and z∗LP the LP relaxation value. Also, let zKM be the bound obtained by
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adding only MIR inequalities according to Algorithm 6. For each set K and each

instance we compute the following performance measures:

ORIG-GAP: Performance of the original LP formulation. That is, the value of the

LP relaxation gap

z∗UB − z
∗
LP

|z∗UB|
.

MIR: Performance of MIR separation heuristic. That is, how much of the LP gap

was closed by the heuristic

zKM − z
∗
LP

z∗UB − z
∗
LP

.

KNAP: Performance of the knapsack cuts. That is, how much of the LP gap was

closed by the knapsack cuts

z∗(CK)− z∗LP

z∗UB − z
∗
LP

.

MIR-REL: Relative performance of MIR separation heuristic. That is, how much

of the LP gap closed by the knapsack cuts was closed by the MIR cuts

zKM − z
∗
LP

z∗(CK)− z∗LP

4.4.3.1 Knapsack cuts derived from formulation rows

We now discuss the computational results obtained for K = F . Of the 92 instances

in MIPLIB 3.0 and MIPLIB2003, we were able to compute the values z∗(CK) for 83

of them. The 9 problems which we were unable to solve were atlanta-ip, cap6000,

dano3mip, harp2, momentum3, markshare1, markshare2, mkc and stp3d. Of the 83

problems solved, 4 of them were such that ORIG-GAP was equal to 0.0 (disctom, dsb-

mip, enigma, and noswot), and 53 of them were such that KNAP and MIR were both

equal to 0.0. In Table 4.4.3.1 we present the results for the remaining 26 problems.

That is, the only ones in which knapsack cuts improved the bound.
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Table 4: Benchmarks for Formulation Closure
Instance ORIG-GAP MIR KNAP MIR-REL
arki001 0.02% 12.99% 13.12% 99.01 %
fiber 61.55% 91.07% 93.82% 97.06 %
gen 0.16% 99.78% 99.78% 100 %
gesa2 1.18% 69.96% 71.03% 98.48 %
gesa3 0.56% 47.80% 49.33% 96.90 %
gt2 36.41% 92.56% 94.52% 97.93 %
l152lav 1.39% 0.01% 1.36% 0.41 %
lseu 25.48% 67.91% 76.09% 89.25 %
mitre 0.36% 89.14% 100.00% 89.14 %
mod008 5.23% 71.23% 89.21% 79.84 %
mod010 0.24% 18.34% 18.34% 100 %
msc98-ip 1.61% 0.16% 0.16% 100%
net12 91.94% 1.39% 1.39% 100%
nsrand-ipx 4.53% 9.93% 9.93% 100%
p0033 18.40% 76.33% 87.42% 87.31 %
p0201 9.72% 33.78% 33.78% 100 %
p0282 31.56% 94.08% 98.59% 95.42 %
p0548 96.37% 53.69% 84.34% 62.76 %
p2756 13.93% 44.46% 86.35% 51.49 %
qnet1 10.95% 50.48% 89.06% 56.68 %
qnet1 o 24.54% 84.32% 95.12% 88.65 %
rgn 40.63% 57.49 57.49% 100 %
roll3000 13.91% 55.28% 55.28% 100%
sp97ar 1.38% 1.70% 1.70% 100%
timtab1 96.25% 21.13% 21.13% 100%
timtab2 93.49% 12.79% 12.79% 100%

First, note that knapsack cuts alone can considerably close the remaining LP gap

in some problems (column KNAP). In fact, in 11 problems out of the 26 problems

in which knapsack cuts improved the gap, over 84% of the gap was closed, and in 15

out of 26 problems, over 50 % of the gap was closed. On average, the GAP closed by

the knapsack cuts among these 26 instances is around 55%. Note, however, that in

53 instances knapsack cuts do nothing to improve the gap. If we consider the average

GAP closed including these 53 instances, the average drops to 18.24%.

Second, consider the column MIR in which we can get an idea of how well the

mixed integer rounding cut closure compares to the knapsack cut closure. Observe
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that of the 26 problems, in 21 of them, by using the MIR cuts alone, we close over 87%

of the GAP closed by the knapsack cuts. This indicates that MIR inequalities are a

very important subset of knapsack inequalities, at least for the instances considered.

A natural question is the following: How much could we improve the value of MIR-

PERF if we used an exact MIR separation algorithm as opposed to a heuristic? In

an attempt to answer this question we fine-tuned the settings of the MIR heuristic

for the problems p0033, p0548 and qnet1. In these, we managed to improve the value

of MIR-PERF from 87.31% to 100%, from 62.76% to 63.66% and from 56.68% to

77.27% respectively. This indicates that the true value of MIR-REL might be much

closer to 100% than suggested by the table.

4.4.3.2 Knapsack cuts derived from tableau rows

In order to obtain T for a given problem instance, we first solve the linear program-

ming relaxation of the corresponding problem and let T be the optimal tableau rows

in the augmented variable space consisting of both structural and slack variables.

When attempting to generate a cut from a tableau row our algorithms all worked in

this augmented space. Whenever a cut was generated from a tableau row, we would

first substitute out slack variables before adding it back to the LP. Note that slack

variables were always assumed to be non-negative and continuous.

We now discuss the computational results obtained forK = T . Of the 92 instances

in MIPLIB 3.0 and MIPLIB2003, we were able to compute the values z∗(CT ) for 65

of them. Of these 65 problems, 4 of them were such that ORIG-GAP was equal to

0.0 (disctom, dsbmip, enigma, and noswot), and 9 of them were such that KNAP and

MIR were both equal to 0.0 (glass, liu, msc98-ip, mzzv11, mzzv42z, net12, rd-rplusc-

21, stein27 and stein45). In Table 4.4.3.1 we present the results for the remaining 52

problems. That is, the only ones in which knapsack cuts improved the bound.

First, it is important to remark that separating knapsack cuts from tableau rows
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Table 5: Benchmarks for Tableau Closure
Instance ORIG-GAP MIR KNAP MIR-REL
air03 0.38% 100.00% 100.00% 100%
a1c1s1 91.33% 18.75% 18.75% 100%
aflow30a 15.10% 12.02% 12.02% 100%
aflow40b 13.90% 7.45% 7.45% 100%
bell3a 1.80% 60.15% 60.15% 100%
bell5 3.99% 14.53% 14.68% 98.94%
blend2 8.99% 20.63% 20.63% 100%
danoint 4.62% 1.74% 1.74% 100%
dcmulti 2.24% 50.46% 50.49% 99.94%
egout 73.67% 55.33% 55.33% 100%
fiber 61.55% 75.89% 77.27% 98.21%
fixnet6 69.85% 11.08% 11.08% 100%
flugpl 2.86% 11.74% 11.74% 100%
gen 0.16% 61.67% 61.97% 99.52%
gesa2 1.18% 28.13% 28.13% 99.98%
gesa2 o 1.18% 29.55% 29.65% 99.67%
gesa3 0.56% 45.76% 45.83% 99.85%
gesa3 o 0.56% 49.96% 49.99% 99.94%
gt2 36.41% 84.56% 90.02% 93.93%
khb05250 10.31% 75.14% 75.14% 100%
lseu 25.48% 61.21% 61.21% 100%
manna81 1.01% 30.08% 30.08% 100%
misc03 43.15% 7.24% 7.24% 100%
misc06 0.07% 26.98% 26.98% 100%
misc07 49.64% 0.72% 0.72% 100%
mod008 5.23% 22.57% 22.59% 99.92%
mod011 13.86% 22.17% 22.17% 100%
modglob 1.49% 18.05% 18.05% 100%
momentum2 41.32% 40.13% 40.13% 100%
nsrand-ipx 4.53% 23.34% 23.34% 100%
nw04 3.27% 22.37% 22.37% 100%
opt1217 25.13% 23.09% 23.09% 100%
p0033 18.40% 74.71% 74.71% 100%
p0201 9.72% 34.36% 34.36% 100%
p0282 31.56% 9.21% 12.48% 73.79%
p0548 96.37% 70.97% 92.74% 76.52%
p2756 13.93% 22.38% 45.42% 49.28%
pp08a 62.61% 50.97% 50.97% 100%
pp08aCUTS 25.43% 32.30% 32.54% 99.26%
protfold 35.35% 3.79% 3.79% 100%
qiu 601.15% 3.47% 3.47% 100%
rentacar 5.11% 27.42% 27.42% 100%
rgn 40.63% 9.78% 9.78% 100%
roll3000 13.91% 0.16% 0.16% 100%
set1ch 41.31% 39.18% 39.18% 100%
sp97ar 1.38% 4.23% 4.23% 100%
swath 28.44% 33.22% 33.58% 98.91%
timtab1 96.25% 23.59% 23.59% 100%
timtab2 93.49% 11.91% 11.91% 100%
tr12-30 89.12% 28.47% 28.47% 100%
vpm1 22.92% 47.27% 49.09% 96.30%
vpm2 28.08% 19.17% 19.39% 98.85%

is considerably more difficult than separating knapsack cuts from original formulation

rows. This is due to several reasons: Tableau rows are typically much more dense,

coefficients tend to be numerically very bad, and rows tend to have many continuous

variables. This added difficulty is reflected in the fact that out of 92 instances, after
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several days of runs we managed to solve 65 instances to completion, as opposed to

the 83 which we solved when considering formulation rows.

Second, it is interesting to note that the value KNAP is very erratic, uniformly

ranging in values from 100% to 0.0%. In contrast to the case of formulation rows,

only 9 instances are such that KNAP-PERF is 0.0%.

The last, and perhaps most startling, observation is that the MIR-REL is very

often close to 100%. If this result were true in general, it would be very surprising.

However, because there are still 27 instances which have not been solved one must be

very careful. Because of the way in which we computed these numbers, it could be the

case that those instances with MIR-REL close to 100% are easier for our methodology

to solve. It is very reasonable to expect that instances with MIR-REL well below 100%

are more difficult to solve as they require more iterations of the knapsack separation

algorithm as opposed to iterations of the MIR separation heuristic.

4.5 Final remarks

One of the goals of this study has been to assess the overall effectiveness of MIR in-

equalities relative to knapsack cuts. The motivation being the empirical observation

that though much research has been conducted studying inequalities derived from sin-

gle row systems, no such class of inequalities has been able to systematically improve

upon the performance of MIRs. In this regard, the results we present are surprising.

We observe that in several test problems, the bound obtained by using just MIR

inequalities is very similar in value (if not equal) to the bound obtained using all

possible knapsack cuts. Though it is important to note that this observation is

limited in the number of test problems considered, it does help explain the lack of

success in generating other cuts from tableau and formulation rows, and, suggests

that for further bound improvements we might have to consider new row aggregation

schemes, or cuts derived from multiple row systems.
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Notice, however, that our benchmarks only take into account the bound improve-

ment which can be obtained after several rounds of knapsack cuts. In that sense, it is

still possible to obtain classes of knapsack cuts that perform better than MIR/GMI

cuts even in the cases where the relative gap closed by the MIR/GMI inequalities is

100%. A more successful class of knapsack cuts would, for example, be able to obtain

the same bound as MIR/GMI much faster, with a fewer number of cuts and a fewer

number of rounds of cutting planes.

Another remark is that we put great care into ensuring that the generated cuts

are valid and that the procedure runs correctly, but this makes the methodology very

slow and also makes all the improvements presented in this chapter mandatory to

perform these experiments in practice. Even with all the improvements, some of the

computed KNAP values took as much as 5 days to obtain. Some of the unsolved

instances have been ran for over a week without a final answer being reported. Part

of the difficulty arises from the fact that rational arithmetic is being employed. In

average, we have observed that performing rational arithmetic computations takes

orders of magnitude longer than floating-point computations.

As a final remark, we note that, recently, knapsack cuts have been used in practice

to help solve some combinatorial optimization problems [13]. Following up on this, it

would be interesting to see if we can also use our knapsack cut generation procedure

in practice to help solve other mixed-integer programming problems.
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CHAPTER V

NUMERICALLY ACCURATE GOMORY

MIXED-INTEGER CUTS

5.1 Introduction

As mentioned in Chapter 1, MIP is a very powerful and useful tool in operations

research, which has evolved immensely in the past 50 years. For example, according

to Bixby et al. [21], in the eight-year span between 1996 and 2004 alone, there was a

speedup of almost two orders of magnitude (almost 100 times faster) in the solution

of a set of benchmark instances.

This evolution has turned MIP into a practical tool with widespread use to solve

many practical problems. In fact, nowadays, MIP is often used as a subroutine in

complex systems to solve real-world problems and even as a subroutine inside MIP

software itself.

In spite of all this progress in the solution of MIPs, one major flaw of most MIP

solvers available to date is that usually there is no guarantee that they will return the

correct optimal solution. This happens because most MIP solvers use floating-point

arithmetic computations which have intrinsic arithmetic errors, and, therefore, several

crucial decisions that guarantee the correctness of MIP algorithms are also subject

to the same errors. This issue is usually addressed by using tolerances that try to

mitigate the effect of these imprecise computations. For instance, if the solver finds a

number in floating-point that is equal to 3.0000001, it may consider it as having the

value of 3, regarding the fractional part of 0.0000001 as an error.

While this approach has been successful in making MIP solvers less prone to

numerical instability and more reliable in returning “good” feasible solutions, there is
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still no guarantee that the solution that is returned by most MIP solvers is the true

optimal solution.

One may argue that, in most applications, the data is already imprecise and

therefore one is not really interested in the true optimal solution, but in a solution

of “good quality”. However, there are contexts in which the true optimal solution is

required. First, consider that MIPs are starting to be used as subroutines, even inside

MIP software, which means errors in the solution of MIPs can start propagating and

becoming more significant and troublesome. Also, there are applications like combi-

natorial auctions, in which obtaining the incorrect optimal solution would be highly

undesirable. Finally, if MIP is made to be reliable in the sense that it will always

return the correct optimal solution, it can be used to help answer some theoretical

questions, similar to the use of linear programming (for example, the proof of the

Kepler conjecture by Hales [68]).

Producing correct solutions to linear programming problems has been studied in

several papers [7, 52, 73, 42, 75]. Doing the same for MIPs, however, is more com-

plicated since there are many more components involved in the solution of MIPs and

one would need to make sure all of them are implemented without error. One possible

approach is to implement an MIP solver doing most of its operations using rational

arithmetic. This has been tried by William Cook and Daniel Espinoza (unpublished),

but it was not competitive with floating-point based codes since rational arithmetic

is orders of magnitude slower than floating-point. Therefore, ideally, one would like

to take advantage of the speed of floating-point arithmetic, without suffering from its

numerical inaccuracies.

In this chapter, we address this issue under the point of view of one of the most

important components in MIP solvers [21], namely cutting-planes, more specifically

Gomory Mixed-Integer (GMI) cuts. These are the most effective cutting planes used

in solving MIPs, but their validity is purely based on the correctness of algebraic
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calculations and, therefore, if generated using floating-point arithmetic, they may not

be valid. Indeed, Margot [79] presents computational experiments that show that

GMI cuts can be invalid even in small binary instances.

We call a cutting-plane generation process safe in a specified model of arithmetic

if it is guaranteed to produce only inequalities that are valid for all feasible solutions

to a given MIP problem. We present a simple and easy-to-implement way to generate

safe GMI cuts in floating-point arithmetic. As discussed above, this gives us the

advantage of being fast without having to compromise on the correctness of the cuts.

Another benefit of this procedure is that MIP solvers tend not to add multiple rounds

of Gomory cuts, for numerical stability and to avoid the propagation of error when

generating possibly invalid cuts based on already invalid ones. This measure, while

necessary if no guarantee of validity is present, reduces the potential gain that one can

have in reducing the duality gap by adding those cuts to the LP relaxation. Indeed,

our experiments show that this gain can be significant.

It is worth mentioning that Neumaier and Shcherbina [87] have proposed a way to

generate safe cuts, using a combination of interval arithmetic and directed rounding.

However, since interval arithmetic is not readily available in most computer languages,

their approach is not straightforward to implement. In contrast, our approach is based

on standard IEEE floating-point operations [71] and can be easily implemented in any

programming language that complies with those standards.

In Section 5.2 we define the MIR procedure for generating a cut from a mixed-

integer knapsack set. General properties of floating-point arithmetic are discussed in

Section 5.3, together with simple procedures for safe row aggregation and safe sub-

stitution of slack variables. In Section 5.4 we present the safe MIR procedure and in

Section 5.5 we extend this to a safe procedure for the more general complemented-MIR

cuts. In addition to our discussion of cutting planes, we also present the Neumaier-

Shcherbina method for obtaining valid dual bounds for bounded LP problems in
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Section 5.6. We present this method to illustrate how the rounding operations can

be used to help in making other components of the solution of MIPs error-free. In

Section 5.7 we present the computational experiments we performed using the safe

MIR cuts. Final remarks are presented in Section 5.8

5.2 MIR inequalities

As mentioned in the previous section, this chapter is devoted to generating safe GMI

cuts. However, since GMI cuts are simply an application of the mixed-integer round-

ing (MIR) procedure to the tableau rows, we will make all our developments for MIR

cuts and they will be immediately applicable to GMI cuts.

Let n be a positive integer and let N denote the set {1, . . . , n}. Consider a ∈ Qn,

b ∈ Q, and a partition (I, C) of N . A single-row relaxation of an MIP model can take

the form

K = {x ∈ Rn :

n
∑

j=1

ajxj ≥ b, x ≥ 0, xj ∈ Z ∀j ∈ I}. (51)

The defining inequality of K can, for example, be one of the original MIP constraints

or, more generally, a nonnegative linear combination of the original constraints.

Let S = {j ∈ I : âj ≤ b̂}. The MIR inequality

∑

j∈S

(âj + b̂ ⌊aj⌋)xj +
∑

j∈I\S

(b̂+ b̂ ⌊aj⌋)xj +
∑

j∈C

max{aj , 0}xj ≥ b̂ ⌈b⌉ (52)

is valid for K and can therefore be considered for use as a cutting plane to improve

the LP relaxation of the original MIP model.

Defining f(q1, q2) := min{q̂1, q̂2}+ q̂2⌊q1⌋ and h(q) := max{q, 0}, the MIR inequal-

ity (52) can be written as

∑

i∈I

f(ai, b)xi +
∑

i∈C

h(ai)xi ≥ b̂⌈b⌉. (53)

This compact notation will be convenient in our discussion of accurate versions of the

inequality.
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For each j ∈ C, let lj ∈ Q and uj ∈ Q ∪ {+∞}. For each j ∈ I, let lj ∈ Z and

uj ∈ Z ∪ {+∞}. Assume 0 ≤ lj ≤ uj for each j ∈ N and consider the set

KB = {x ∈ Rn :
∑

i∈N

ajxj ≥ b, lj ≤ xj ≤ uj ∀j ∈ N and xj ∈ Z ∀j ∈ I}. (54)

The lower and upper bounds on the variables lead to a slightly more general form

of the MIR inequality, called the complemented-MIR (c-MIR) inequalities [78]. The

name derives from the fact that the c-MIR inequalities are obtained by complementing

variables.

Let U,L be disjoint subsets of N such that every j ∈ U satisfies uj < ∞. By

substituting variables xj with j ∈ U by uj − xj , and variables xj with j ∈ L by

xj − lj , applying the MIR procedure, and substituting back, we obtain the following

c-MIR inequality for KB:

−
∑

U∩I

f(−aj , r)xj +
∑

I\U

f(aj , r)xj −
∑

U∩C

h(−aj)xj +
∑

C\U

h(aj)xj ≥ R, (55)

where

r = b−
∑

j∈U

ajuj −
∑

j∈L

ajlj

and

R = r̂⌈r⌉ −
∑

U∩I

f(−aj , r)uj +
∑

L∩I

f(aj, r)lj −
∑

U∩C

h(−aj)uj +
∑

L∩C

h(aj)lj .

Marchand and Wolsey [78] have demonstrated the effectiveness of c-MIR cuts in

practical computations with MIP test instances.

If the defining inequality of KB is taken as a row of an optimal simplex tableau

for the LP relaxation of an MIP instance, then the c-MIR cut is a form of the GMI

cut.

5.3 Floating-point arithmetic

The validity of MIR and c-MIR inequalities, for the sets K and KB, relies on the

correctness of arithmetic calculations, which cannot be guaranteed when floating-

point arithmetic is employed. Moreover, if the defining inequality for K or KB is
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obtained by aggregating several of the original constraints from an MIP instance,

then caution must be taken to ensure that the set itself is a valid relaxation. To

discuss an approach for dealing with these issues, we give a brief description of the

floating-point-arithmetic platform.

5.3.1 The model of floating-point arithmetic

A floating-point number consists of a sign, exponent, and a significand. Standard

IEEE double precision floating-point arithmetic allots 11 bits for the exponent and

52 bits for the significand [53]. In our discussion we assume only that the number of

bits assigned to the exponent and significand are fixed to some known values.

With the above assumption, let M ⊆ Q be the set of floating-point representable

reals. Note that M is finite. If q ∈ M, then both −q and q̂ are members of M . Also,

if a, b ∈ M, then min{a, b} and max{a, b} are members of M .

The set M does not have much structure; it is not a monoid since associativity

for addition does not hold.

5.3.2 Approximating real functions

Given a function f : Rn → R, we say that a function fup : Mn → M upper approxi-

mates f in M if

fup(x) ≥ f(x) if x ∈ Mn

and we say that a function f dn : Mn →M lower approximates f in M if

fdn(x) ≤ f(x) if x ∈Mn.

Note that the basic arithmetic operations + and ∗ are functions from R2 → R. Let

+up : M2 → M and +dn : M2 → M be upper and lower approximations of +, and

let ∗up : M2 → M and ∗dn : M2 → M be upper and lower approximations of ∗.

(In the C programming language [72], IEEE floating-point rounding conventions can

be set to produce upper and lower approximations using the fesetround function.
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Upper approximations are obtained by first calling the function with the argument

FE UPWARD and then carrying out the usual arithmetic operation. Similarly, lower

approximations are obtained using the FE DOWNWARD argument.)

To simplify notation, we write

a + b := +up(a, b) and a + b := +dn(a, b)

for addition and similarly for subtraction and multiplication.

Let n ≥ 3 be an integer and let ai ∈M, πi ∈M for i = 1, . . . , n. We define upper

and lower approximations for
n
∑

i=1

πiai by

n
∑

i=1

πiai :=





n−1
∑

i=1

πiai



+ πnan

and
n
∑

i=1

πiai :=





n−1
∑

i=1

πiai



+ πnan

respectively. It is important to notice that any ordering of a1, . . . , an will yield an

upper/lower approximation of
n
∑

i=1

πiai, but different orders may yield different results.

Thus, the operation is not commutative.

5.3.3 Safe row aggregation

Consider a polyhedron

P = {x ∈ Rn : Ax ≥ d, l ≤ x ≤ u}

with A ∈Mm×n, d ∈Mm, u ∈ {M ∪ {+∞}}n, l ∈Mn, and 0 ≤ l ≤ u. Given a set of

multipliers λ ∈Mm, with λ ≥ 0, the inequality λTAx ≥ λTd is satisfied by all x ∈ P ,

but this may not be true in the presence of rounding errors. Nonetheless, since x ≥ 0,

we have that
n
∑

j=1

(

m
∑

i=1

λiaij

)

xj ≥
m
∑

i=1

λidi
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is always a valid inequality. This process permits the safe aggregation of systems of

inequalities.

The same concept can be applied to equality systems Ax = d, but in this case the

multipliers λ need not be restricted to nonnegative values.

5.3.4 Safe substitution of slack variables

Suppose P ⊆ Rn+1 is a polyhedron such that every point (x, s) ∈ P satisfies the

equation
n
∑

j=1

vjxj + βs = vo (56)

with β ∈ {−1,+1}. Consider an inequality

n
∑

j=1

πjxj + ρs ≥ πo (57)

that is valid for P . We wish to eliminate s from (57), while maintaining its validity.

Note that adding −ρβ times (56) to (57) gives the inequality

n
∑

j=1

(πj − ρβvj)xj + (ρ− ρ)s ≥ πo − ρβvo.

Assuming all coefficients in (56) and (57) are in M, this suggests that we apply safe

row aggregation using λ = −ρβ ∈M for (56) and λ = 1 ∈M for (57). The coefficient

of the s variable in the resulting inequality is

1ρ+ (−ρβ)β = ρ+−ρβ2 = ρ+−ρ = ρ− ρ = 0

and thus we have safely removed s from (57).

5.4 Safe MIR inequalities

For the single-row relaxation (51) in Section 5.2, we described the MIR inequality

∑

i∈I

f(ai, b)xi +
∑

i∈C

h(ai)xi ≥ b̂⌈b⌉
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where f(q1, q2) := min{q̂1, q̂2}+q̂2⌊q1⌋ and h(q) := max{q, 0}. To obtain a safe version

of this cutting plane in floating-point arithmetic, define the upper approximation

fup : M×M→ M of f as

fup(q1, q2) :=
(

min{q̂1, q̂2}+ q̂2 ⌊q1⌋
)

and define hup(q) := h(q) (no rounding is needed).

Since x ≥ 0, we have

∑

i∈I

fup(ai, b)xi +
∑

i∈C

hup(ai)xi ≥
∑

i∈I

f(ai, b)xi +
∑

i∈C

h(ai)xi ≥ b̂ ⌈b⌉ ≥ b̂ ⌈b⌉.

Therefore
∑

i∈I

fup(ai, b)xi +
∑

i∈C

hup(ai)xi ≥ b̂ ⌈b⌉ (58)

is a safe MIR inequality.

5.5 Safe c-MIR inequalities

Consider again the set

KB = {x ∈ Rn :
∑

i∈N

ajxj ≥ b, lj ≤ xj ≤ uj ∀j ∈ N and xj ∈ Z ∀j ∈ I}

defined in Section 5.2.

Let sets U, S, L form a partition of N = {1, . . . , n}, such that every j ∈ U satisfies

uj < ∞ and every j ∈ S satisfies lj ≥ 0. For each j ∈ U , define xu
j = uj − xj . Also,

define xl
j = xj − lj for each j ∈ L and xl

j = xj for each j ∈ S. Observe that xu
j and

xl
j are both bounded below by zero. Furthermore, if j ∈ I and xj takes an integer

value, so will xu
j or xl

j , depending on if j ∈ U or j ∈ L ∪ S.

By substituting variables xj with j ∈ U by uj − x
u
j , variables xj with j ∈ L by

xl
j + lj and denoting xl

j = xj for j ∈ S, we obtain the inequality

∑

j∈U

(−aj)x
u
j +

∑

j /∈U

ajx
l
j ≥ b−

∑

j∈U

ajuj −
∑

j∈L

ajlj. (59)
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Now note that regardless of the sign of aj , uj and lj , we have ajuj ≥ ajuj and

ajlj ≥ ajlj. It follows that

∑

j∈U

ajuj ≥
∑

j∈U

ajuj ≥
∑

j∈U

ajuj

and
∑

j∈L

ajlj ≥
∑

j∈L

ajlj ≥
∑

j∈L

ajlj

and thus we have the valid inequality

∑

j∈U

(−aj)x
u
j +

∑

j /∈U

ajx
l
j ≥ b−

∑

j∈U

ajuj −
∑

j∈L

ajlj. (60)

Observe that xu
j , x

l
j ≥ 0 for all j ∈ N , hence we can apply the MIR procedure

to obtain a valid inequality for (60) subject to the corresponding nonnegativity con-

straints.

Let r = b−
∑

j∈U

ajuj −
∑

j∈L

ajlj ∈M. If we apply (58) we obtain

∑

U∩I

fup(−aj , r)x
u
j +

∑

I\U

fup(aj, r)x
l
j +

∑

U∩C

hup(−aj)x
u
j +

∑

C\U

hup(aj)x
l
j ≥ r̂ ⌈r⌉.

If we substitute back the variables we get the following valid inequality in terms of

our original variables:

∑

S∩I

fup(aj , r)xj +
∑

U∩I

fup(−aj , r)(uj − xj) +
∑

L∩I

fup(aj , r)(xj − lj)

+
∑

S∩C

hup(aj)xj +
∑

U∩C

hup(−aj)(uj − xj) +
∑

L∩C

hup(aj)(xj − lj) ≥ r̂ ⌈r⌉.

Rearranging the terms we obtain

∑

U∩I

fup(−aj , r) ∗ (−1)xj +
∑

I\U

fup(aj , r)xj

+
∑

U∩C

hup(−aj) ∗ (−1)xj +
∑

C\U

hup(aj)xj ≥ r̂ ⌈r⌉+

∑

U∩I

fup(−aj , r) ∗ (−1)uj +
∑

L∩I

fup(aj , r)lj

+
∑

U∩C

hup(−aj) ∗ (−1)uj +
∑

L∩C

hup(aj)lj .
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Now regardless of the signs of uj, lj , we have

r̂ ⌈r⌉+
∑

U∩I

fup(−aj , r) ∗ (−1)uj +
∑

L∩I

fup(aj , r)lj

+
∑

U∩C

hup(−aj) ∗ (−1)uj +
∑

L∩C

hup(aj)lj ≥ R

where

R = r̂ ⌈r⌉+
∑

U∩I

(fup(−aj , r) ∗ (−1))uj +
∑

L∩I

fup(aj, r)lj

+
∑

U∩C

(hup(−aj) ∗ (−1))uj +
∑

L∩C

hup(aj)lj .

Thus

∑

U∩I

fup(−aj , r) ∗ (−1)xj +
∑

I\U

fup(aj , r)xj

+
∑

U∩C

hup(−aj) ∗ (−1)xj +
∑

C\U

hup(aj)xj ≥ R

is a valid inequality for KB with all coefficients in M.

5.6 Safe dual bounds

In this section we describe the technique of Neumaier and Shcherbina [87] for com-

puting valid dual LP bounds using floating-point arithmetic.

Consider the bounded LP

min{cTx : Ax ≥ b, 0 ≤ l ≤ x ≤ u} (61)

and its dual

max{bT y + lTw − uT z : ATy + w − z = c, y, w, z ≥ 0} (62)

where we assume all components of u are finite.
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If (61) is a relaxation of an MIP instance, then an optimal solution provides a

bound on the MIP objective value. The problem we face is that because of intrinsic

errors in floating-point arithmetic, obtaining an optimal solution to (61) may be

difficult. Note, however, that any feasible solution to the dual (62) will also give a

bound via the LP weak duality theorem.

Consider any assignment of (potentially infeasible) values y∗ to the dual variables

y. If ATy∗ = c, then bT y∗ is a lower bound for (61). However, ensuring that ATy∗ = c

may itself be difficult in floating-point arithmetic. We get around this problem by

taking advantage of the form of (62).

For j ∈ {1, . . . , n}, the jth constraint of (62) is
m
∑

i=1

yiaij +wj − zj = cj . Given y∗,

we have wj − zj = cj −
m
∑

i=1

y∗i aij . Set z∗j = max{0,
m
∑

i=1

y∗i aij − cj}. Clearly, z∗j ∈M and

z∗j ≥
m
∑

i=1

y∗i aij − cj ≥
m
∑

i=1

y∗i aij − cj .

Thus, we can set w∗
j = z∗j − (

m
∑

i=1

y∗i aij − cj) ≥ 0.

It is difficult to guarantee that w∗
j ∈M, but since l ≥ 0 we have

m
∑

i=1

biy
∗
i +

n
∑

j=1

ljw
∗
j −

n
∑

j=1

ujz
∗
j ≥

m
∑

i=1

biy
∗
i +

n
∑

j=1

(−uj)z
∗
j ≥

m
∑

i=1

biy
∗
i +

n
∑

j=1

(−uj)z
∗
j

To obtain a good lower bound, the values y∗ can be taken as the optimal dual

solution returned by a floating-point LP solver. Such values y∗ are likely to be only

slightly infeasible. Note that the bound we obtain via the safe procedure may be less

than the floating-point solver’s claimed objective value, due to possible increases in

z∗ and to dropping the w∗ variables.

This approach is similar to the bounding technique adopted in the TSP code

of Applegate et al. [6]. In their work, the dual values y∗ are truncated to a fixed

precision, appropriate fixed-precision values are assigned to w and z, and the dual

bound is computed in the same fixed precision with overflow checking enabled. An
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advantage of the method described above is that the bound can be computed entirely

in floating-point arithmetic.

5.7 Computational study

In our study we consider two scenarios where safe MIR procedures can potentially

be useful. The first set of tests is concerned with the use of safe cuts in cases that

demand accurate bounds. We use the TSP as a case study, applying multiple rounds

of safe Gomory cuts to improve LP relaxations generated by TSP-specific methods.

The second tests consider the repeated application of Gomory cuts for general

MIP instances. Generating Gomory cuts based on previous cuts can quickly lead to

inaccurate results with standard MIP software. Our tests aim to give an indication of

the possible improvements in LP bounds that can be obtained by adopting the safe

methods, where multiple rounds of cuts can be added without loss of accuracy.

Note that as an alternative to our safe MIR approach, the computations could

be carried out entirely in exact rational arithmetic, using the LP solver of Applegate

et al. [7] and rational versions of the MIR procedure. On large instances such an

approach is considerably more time-consuming, however, due to the complexity of

rational computations on the difficult LP instances that are created. Moreover, the

approach adopted here demonstrates the feasibility of including safe MIR methods in

standard floating-point-based software.

5.7.1 Selection of Gomory cuts

Given an MIP instance, our cut-generation process begins by adding a slack variable

to each row of the model to obtain equality constraints. If a row is such that all of

the participating variables are integer, all of the left-hand-side coefficients are integer,

and the right-hand-side is integer, then the corresponding slack variable is defined to

be integer.

The resulting LP relaxation is solved with the simplex algorithm, producing a
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basic optimal solution x∗. We improve the relaxation by adding rounds of Gomory

cuts, where each round consists of the following steps.

1. Variable complementation. Define the index sets U = {j : x∗j = uj, 1 ≤ j ≤ n}

and L = {j : x∗j = lj , 1 ≤ j ≤ n}.

2. Rank the fractional variables. The integer variables xj that take on a fractional

value x∗j in the current basis are ranked in non-decreasing value of |x∗j − 0.5|.

3. Row selection. Select the 500 highest-ranking variables and safely compute the

corresponding tableau rows.

4. Compute the cuts. Process the selected rows in the ranked order. For each row

safely compute the c-MIR inequality using the sets U and L as defined above,

after scaling by K = 1, K = 2, and K = 3, as proposed in Cornuéjols et al. [31].

Stop this procedure if 500 (sufficiently) violated cuts are generated before all

selected variables are processed.

5. Add the cuts. Add the computed cuts to the LP and resolve.

6. Remove cuts. Remove from the LP all previously added cuts that are no longer

violated.

This is a straightforward implementation of Gomory cuts. For a discussion of general

cut selection see Achterberg [1] and Goycoolea [62].

5.7.2 TSPLIB results

Early cutting-plane research on the TSP by Martin [80], Miliotis [83], and others

adopted general-purpose MIP codes for improving LP relaxations. In later work,

these methods were replaced by algorithms for generating TSP-specific cutting planes.

With the safe MIR procedures it is possible to combine these ideas, employing general

cuts to further improve relaxations obtained by problem-specific methods.
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Table 6: MIP Relaxations of the TSP
Name Variables TSP Optimal LP Value +Cuts Gap Closed

pcb3038 6976 137694 137684.25 137684.52 2.51%
fnl4461 10129 182566 182558.55 182559.97 19.08%
rl5915 24939 565530 565484.03 565487.91 8.44%
rl5934 25285 556045 555994.47 556001.02 12.97%
pla7397 27209 23260728 23258946.65 23259208.71 14.71%
rl11849 70259 923288 923208.71 923210.01 1.53%
usa13509 129837 19982859 19981199.08 19981229.43 1.83%
brd14051 83221 469385 469353.80 469353.91 0.35%
d15112 110072 1573084 1572966.32 1572967.08 0.64%
d18512 141025 645238 645194.86 645195.17 0.71%
pla33810 67683 (+) 660048945 66001233.03 66001901.19 1.40%
pla85900 167870 (+) 142382641 142296659.63 142299299.63 3.07%

We consider MIP relaxations obtained by long runs of the Concorde TSP solver

(Applegate et al. [6]). In Table 5.7.2 we give statistics for the relaxations for all

TSPLIB instances having at least 3,000 cities, with the exception of fl3795. In the

case of fl3795, the Concorde LP bound establishes the optimality of the tour. Except

for pla33810 and pla85900, the set of variables in each case is obtained by reduced-

cost fixing based on the Concorde relaxation (the variables set to 0 are removed from

the LP), thus any LP bound obtained with general MIP cuts is a valid bound for the

original TSP. In the cases of the two largest instances, pla33810 and pla85900, only a

subset of the variables is given due to the large number that remain after reduced-cost

fixing.

The relaxations were found with concorde -mC48 -Z3, the strongest recommended

setting of the Concorde separation routines. This setting uses repeated local cuts, up

to size 48, as well as the domino-parity inequalities (see Applegate et al. [6]).

The optimal value of the Concorde LP for each instance is reported in the “LP

Value” column of Table 5.7.2. In the “+Cuts” column we report the improved lower

bounds obtained by multiple rounds of safe Gomory cuts, after applying the safe-LP

bounding technique from Section 5.6. The improvements range from 0.35% of the
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Table 7: Valid MIP Relaxation for pla85900
Name Variables TSP Optimal LP Value +Cuts Gap Closed
pla85900f 300969 142382641 142381453.65 142381460.98 0.62%

Concorde LP optimality gap for brd14051, up to 19.09% of the gap for fnl4461. It is

interesting, however, that the very strong LP relaxations obtained by Concorde could

be improved with general-purpose MIP cuts, suggesting that this may be a technique

worth considering for problem classes that have not received the intense study given

to the TSP.

To further illustrate the use of of the safe MIR procedure, we constructed a valid

MIP relaxation for the 85900-city TSP instance pla85900, using the full set of variables

that were not eliminated by reduced-cost fixing. This much stronger relaxation was

obtained from the very long computation described in Applegate at al. [6]. The result

after adding Gomory cuts to this instance is reported in Table 5.7.2, showing a 0.62%

decrease in the gap. Although this is a modest improvement, it is possible that the

LP solution is sufficiently altered to permit the further use of Concorde’s TSP-specific

cutting planes in an iterative fashion. (We have not tested this idea.)

5.7.3 MIPLIB results

To test the effectiveness of repeated rounds of Gomory cuts in general, we constructed

a test set consisting of the union of the following instances.

• The full set of 65 instances in the MIPLIB 3.0 collection [19].

• The 27 instances in the MIPLIB 2003 collection [2] that are not included in

MIPLIB 3.0.

• The 13 TSPLIB-MIP instances described in Section 5.7.2

We excluded four of these instances due to the presence of variables that may assume

negative values (that are not handled in our current implementation), leaving a total
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of 101 instances.

To illustrate the impact of multiple rounds of safe cutting planes, we recorded

the lower bounds obtained after 1, 2, 4, 8, 16, and 128 rounds of our cutting-plane

procedure; if the optimal LP basis does not change after a round of cutting planes,

then the particular run is terminated. In these tests, three of the instances were

excluded since they each have zero integrality gap, leaving a total of 98 examples.

The results are displayed as curves in Figure 9. The points (x, y) in each curve

represent how many instances y closed at least x fraction of the starting integrality

gap, after adding the indicated number of rounds of cuts. For example, after one
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Figure 9: GAP closed after multiple rounds of safe Gomory cuts.

round of cuts 50% of the gap was closed in 12 instances, whereas four rounds of cuts

closed 50% of the gap in 26 instances.

A similar chart is given in Figure 10, comparing the final bounds obtained with

128 rounds of safe cuts versus 128 rounds of the standard unsafe version of Gomory

cuts. The two curves indicate that no significant loss in the bounds is incurred with

the use of the accurate cutting planes.
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Figure 10: GAP closed by adding at most 128 rounds of Gomory cuts (safe vs.
unsafe).

5.7.4 Running time

We now analyze the impact on running time by using safe GMI cuts. Figure 11

shows the performance profile comparing the average time it takes to generate the

GMI cuts per round. It serves the purpose of trying to assess the impact that changing

the rounding mode frequently has in the running time. By analyzing the performance

profile, it can be seen that the average time per round spent generating cuts is worse

in the safe version of the MIR. This result is expected, since the operation of changing

the rounding mode back and forth has a negative effect on the running time. However,

note that in only one instance the safe procedure takes more than twice the amount

of time that the unsafe does. Moreover, a relevant information that is not present in

the performance profiles is that the average time to generate cuts per round in that

instance is 0.12 seconds. Therefore, the loss in time, even though is noticeable, is not

large and should be relatively small compared to total running times to solve MIPs.

Notice that this comparison of times takes into account merely the generation of

cuts. However, the cuts that are added can have an influence in the total running
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Figure 11: Performance profile of average time (per round) to generate cuts.

time even if the time to generate cuts is almost identical. As an example of how this

situation may occur, consider that if we add different cuts, the LP relaxation may

become harder to solve using, for example, safe cuts due to density of cuts or maybe

due to numerical difficulties. However, we chose not to compare these times since

these may depend on several other factors, including the LP solver used. Moreover,

those results would not take into account, for instance, the fact that if we are using

unsafe cuts then we can use tolerances to make the cut sparser, making the LP easier

to solve. These are issues that one needs to consider carefully when implementing

safe cuts.

5.8 Final remarks

The results obtained by using safe GMI cuts are encouraging: with a small loss in

terms of running time, we were able to generate several rounds of safe cuts, which in

turn allowed us to significantly close the duality gap in comparison with adding only
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one round of GMI cuts.

It would be interesting to derive ways to use the techniques presented in this

chapter to generate other classes of safe cuts that are used in practice.

In addition, there is still much work to be done in order to obtain a numerically

accurate and fast MIP solver. Generating numerically accurate GMI cuts is only the

first effort in that direction. For example, it would be of great interest if one could

generate numerically accurate dual bounds using floating-point arithmetic even for

instances with unbounded variables.
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