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Abstract 
 Part of the optical clearing study in biological tissues concerns the determination of the diffusion char- 
acteristics of water and optical clearing agents in the subject tissue. Such information is sufficient to characterize 
the time dependence of the optical clearing mechanisms—tissue dehydration and refractive index (RI) matching. 
We have used a simple method based on collimated optical transmittance measurements made from muscle 
samples under treatment with aqueous solutions containing different concentrations of ethylene glycol (EG), to 
determine the diffusion time values of water and EG in skeletal muscle. By representing the estimated mean 
diffusion time values from each treatment as a function of agent concentration in solution, we could identify the 
real diffusion times for water and agent. These values allowed for the calculation of the correspondent diffusion 
coefficients for those fluids. With these results, we have demonstrated that the dehydration mechanism is the 
one that dominates optical clearing in the first minute of treatment, while the RI matching takes over the optical 
clearing operations after that and remains for a longer time of treatment up to about 10 min, as we could see for 
EG and thin tissue samples of 0.5 mm.  
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1 Introduction and Motivation 

The study of drug and fluid diffusions and delivery into biologi- 

cal tissues represents an important research field with applica- 

tions in different areas like clinical practice, pharmacology, and 

cosmetics. Moreover, the study of fluid diffusion is also of the 

greatest importance in biophotonics research,1  since the  diffu- 

sion of fluids is at the basis of the mechanisms that compose 

the optical immersion clearing method. In effect, most biologi- 

 

for a diagnosis.7 The various research studies done so far with 

this method have used different types of biological tissues and 

optical clearing agents (OCAs) to obtain the decreased light 

scattering during the applied treatments.7–18 The transparency 

effect initiates with the administration of an OCA to the tissue, 

which can be made topically or by tissue immersion in the agent. 

Once the OCA enters in contact with the tissue, the optical trans- 

parency effect is created through the cooperation of two mech- 
18 

cal tissues present a characteristic high-scattering coefficient and anisms: tissue dehydration and RI matching. As an example, 

consequently are considered turbid to the passage of light. Such 

high-scattering coefficients are observed not only by the exist- 

ence of discrete scatterer elements inside the tissues, but also due 

to the significant difference between the refractive index (RI) 

values of these scatterers and of the surrounding media—the 

interstitial fluid.2 Such significant light scattering in biological 

tissues is a major inconvenience when optical technologies are 

applied to perform diagnosis or treatment procedures, since light 

scattering limits tissue depth and beam collimation.2–6 A poten- 

tial method to reduce light scattering in biological tissues  is 

the optical immersion clearing method, which allows reaching 

higher tissue depths with higher beam collimation through the 

creation of a temporary transparency effect in the tissue. Such 

improvement in the optical beam inside the tissue will make pos- 

sible deeper laser surgery and deeper optical image acquisition 

when an ex vivo tissue sample is immersed in a solution that 
contains an active OCA, an osmotic pressure will be created 

over the sample, forcing it to lose water from the interstitial 

space, and consequently originating a lesser sample thickness 

and better ordering of tissue  scatterers.  On  the  other hand, 

the OCA in the immersing solution will diffuse into the sample 

and place itself in the interstitial locations, close to the scatterers. 

Since OCAs present a higher RI than water and are closer to the 

RI of the tissue scatterers like mitochondria, tissue cells, organ- 

elles, or muscle fibers, the partial replacement of the interstitial 

water by the OCA provides the RI matching mechanism and 

consequently decreases light scattering inside the tissue.18 The 

dehydration mechanism described above considers that the 

water flows from the ex vivo tissue sample to the environment 

permanently. In the case of in vivo study, the dehydration 

mechanism is not so simple, since the tissue under study is 

 
 

 
 



 

 

 

in biological contact with adjacent tissues and the water content 

in the surrounding tissues might limit the loss of water in the 

tissue under study. From the previous description and consider- 

time. Such a type of diffusion is described by Fick’s law of 
diffusion:1,18,30–32 

ing the ex vivo study, we see that during optical clearing there 

will be a flux of water out of the tissue sample and a flux of OCA 

into the tissue. These two fluxes are associated with the two 

 
 

mechanisms of optical clearing, but they do not occur independ- 

ently. For this reason, it is important to find a way to characterize 

both of these fluxes and discriminate one from the  other. 

Here, as part of our research regarding the optical clearing of 

ex vivo skeletal muscle samples with different OCAs, we have 

used a simple method to estimate the diffusion properties of 

OCAs and water to discriminate between the two fluxes. By 

obtaining such data, we could present a more detailed charac- 

terization of the optical clearing effects created. Our  objective 

Equation (1) characterizes the time dependence of the agent 
concentration Ca at any unidirectional position x between the 

two surfaces of the tissue slab. The diffusion coefficient of 

the agent inside the tissue is represented in Eq. (1) as Da.
18 

Such a coefficient is related to the diffusion time of the agent 
in the tissue by Eq. (2) for a diffusion occurring through both 

slab surfaces:1,18,30,31
 

in the present study was to validate the simple and innovative 

method to determine the diffusion properties of OCAs in   bio- 
 

  
logical tissues. In this study, we have used ethylene glycol (EG) 

to perform the optical clearing treatments of the muscle 

samples. 

This paper is organized as follows. Section 2 presents the 

theoretical fundamentals of the method used in our research, 

the preparation of the muscle samples, and OCA solutions    to 

Assuming that the volume of the solution used is signifi- 

cantly higher than the volume of the slab sample (e.g., 10×), 

the amount of the dissolved matter mt in the tissue at an instant 

t relative to its equilibrium value m∞ can be determined by 

Eq. 

(3):18,31
 

be used in the experiments. Section 3 presents the results 

obtained and the discussion of those results. Section 4 presents 

the final conclusions of our  research. 

  

2 Materials and Methods 
   

2.1 Methods 

The diffusion of OCAs in biological tissues and blood in vitro 
and in vivo has been studied by several researchers using differ- 

ent methods.19–23 There are two parameters that characterize the 

 
 

The ratio presented in Eq. (3) represents the volume averaged 

concentration of an agent CaðtÞ that is located inside the slab 

sample  at  a  particular  time  t.  The  solution  of  Eq.  (3)  using 
1,18,32 

diffusion of an OCA in a biological tissue—the diffusion  time a first-order approximation is given by 

and the diffusion coefficient. These parameters are different for    
each combination tissue/OCA and their determination is  most 
significant to help in characterizing the optical clearing effect 

created.  Some  publications  have reported  the  diffusion time 

  

for some OCAs such as dimethyl sulfoxide,24 glucose,19,21,25 

manitol,21 sucrose,26 glycerol,4 lactose, and fructose26 in differ- 
ent biological tissues and phantoms. On the other hand, a recent 
publication shows the results from a study of glucose diffusion 

permeability in normal and cancerous esophageal tissues.20 

Different studies to evaluate OCA concentration efficiency 
with tissue depth and improved contrast of optical coherence 

tomography or second-harmonic generation images at deeper 

tissue layers have also been reported.3,5,27,28 Mathematical mod- 
els have also been developed to describe OCA diffusion in bio- 

logical tissues.1,18,25,29
 

The method that we have selected to study and discriminate 

between the two diffusion fluxes of OCA and water during opti- 

cal clearing is based on collimated transmittance measurements. 

Due to the nature of these measurements, our study is reported 

for in vitro samples. Such a method allows the estimation of 

the characteristic diffusion time and diffusion coefficient both 

for OCA and water and is well described in   literature.1,6,18
 

To characterize the water and OCA fluxes created by an opti- 

cal immersion treatment of the skeletal muscle, we consider 

the muscle sample to have a slab form with  thickness  d. 

When this ex vivo sample is immersed in an aqueous solution 

containing an OCA, the agent diffuses from the environment 

into the sample through both surfaces of the slab at the same 

Equation (4) provides a relation between the time   depend- 
ence of the agent’s concentration within the sample and the 

characteristic diffusion time of the agent inside the  sample.33 

If we use this characteristic diffusion time τ in Eq. (2), we 
can calculate the corresponding diffusion  coefficient. These 

are the two parameters that we want to estimate for the optical 

clearing of biological samples. We have to note that Eqs. (1)–(4) 

are valid for the description of free diffusion of one type of mol- 

ecules in a medium. When two fluxes are induced in the system, 

such as OCA flux directed into the tissue and water flux out, 

these equations can also be applicable, but the diffusion coef- 

ficient Da or the diffusion time τ in that case will characterize 

diffusivity of both fluxes in accordance with strengths of each of 

these fluxes. 

If we use a spectrometer and a broadband light source to per- 

form collimated transmittance (Tc) measurements from a slab 

muscle sample during optical clearing immersion treatment 

with an aqueous solution that contains an active OCA in a par- 

ticular concentration, then it is possible to create a time depend- 

ence for Tc for various wavelengths. Each of the individual time 

dependencies can be fitted with lines that are described math- 

ematically in accordance with Eq. (4), since the Tc time depend- 

ence translates the two fluxes. When the fittings are made for 

each of the wavelengths, we obtain the characteristic diffusion 



 

 

 

time of the mixed agent/tissue water fluxes within the tissue. The 

mean diffusion time obtained from each of the fittings can be 

calculated for that particular treatment. By repeating this pro- 

cedure for other treatments with different concentrations of 

agent in the immersing solution, we will obtain a collection 

of diffusion times that can be represented as a function of 

OCA concentration in solution. Such data can be fitted with 

a smooth line to estimate the dependence between the diffusion 

time and agent concentration in solution. If the agent’s concen- 

trations in solution are well chosen, then we will be able to 

retrieve valuable information from the fitting line as we have 

already observed in our previous study with glucose solutions.33 

In that study, we have observed that the fitting line presents a 

peak for a concentration of 40.5% of glucose in the immersing 

solution. Such a peak indicates optimal diffusion of glucose into 

the muscle for this concentration due to the equilibrium verified 

for this agent concentration between tissue-free water and the 

immersing solution water. This means that we were also able 

to identify the amount of free water in the skeletal muscle as 

59.5% of the sample volume. On the other hand, the magnitude 

of the peak indicates the true diffusion time value of the OCA in 

the muscle. Such value can then be used in Eq. (2) to calculate 

the diffusion coefficient of the agent in the tissue. In opposition 

to this particular treatment that verifies the water equilibrium 

between tissue and immersing solution, highly concentrated 

solutions have low water content. For those nearly saturated 

solutions, the water content is practically null and the effect 

seen in the Tc time dependence corresponds only to water dif- 

fusion related to the dehydration mechanism of optical clearing. 

Such a fact is created by the large OCA content in the immersing 

solution, which provides a strong osmotic pressure over the tis- 

sue sample, forcing water to flow out without the occurrence of 

agent flux into the tissue. Using the same methodology as in the 

study with glucose solutions,33 we now present here a similar 
study performed with solutions of EG that were used to treat 

skeletal muscle samples. Our purpose is to compare results 

obtained from the studies performed with both agents for val- 

idation. EG cannot be considered as an OCA to be used for clini- 

cal procedures, since it is a toxic alcohol that originates several 

pathological changes if in contact with different biological tis- 

sues.34 On the other hand, if we are interested in acquiring infor- 
mation to be used in treatment procedures related to accidental 

exposure, then the diffusion study of EG in the muscle can prove 

itself valuable. 

Considering the data already collected from the study with 

glucose solutions, we have elected to perform a similar study 

with EG solutions to characterize its diffusion in the skeletal 

muscle and to compare results with the study with glucose. 

The following subsections contain information about the EG 

solutions, the muscle samples, and the methodology used in 

our experiments. 

 
2.2 Muscle Samples 

We have selected the abdominal wall muscle from the Wistar 

Han rat to use in our studies. A single animal was sacrificed 

and the entire abdominal wall muscle was dissected from the 

animal. By slicing all the samples from this unique muscle 

block, we have guaranteed a maximum physiological similarity 

between samples used in all studies. We have prepared smaller 

samples from the muscle block with a circular-slab form and a 

diameter of approximately 10 mm. These samples were sliced at 

a  cryostat  with  a  thickness  of  0.5  mm.  The volume  of the 

samples was 39.27 mm3. We have  prepared  nine  samples 

with this thickness to be used in the experimental   studies. 

 
2.3 Ethylene Glycol Solutions 

To perform the optical clearing treatments, we have prepared 

several aqueous solutions with different  concentrations  of 
EG. We have diluted commercial EG with 99% purity in dis- 

tilled water to prepare the various solutions to be used in the 

various treatments. Similarly to our previous study with glucose 

solutions,33 we have prepared the EG solutions in the following 
concentrations: 20%, 25%, 30%, 35%, 40%, 45%, 50%,  55%, 

and 60%. An independent study was performed for muscle sam- 

ples under treatment with each of these solutions. The prepara- 

tion of these solutions was controlled by the measurement of 

the RI of the solution with an Abbe refractometer. According to 

available experimental data,35  aqueous solutions of EG  have 
an RI of 589.6 nm at 20°C, that is described   by 

  

The RI values measured by the Abbe refractometer also refer 

to 589.6 nm. We have used Eq. (5) to calculate the RI values 

for the desired solutions. These calculated RI values are pre- 

sented in Table 1. Using these calculated values as reference, 

we have mixed EG and water until the RI value measured on 

the Abbe refractometer was the same as the one calculated for 

each solution. 

 
2.4 Experimental Methodology 

In each of the treatments that we have performed, the collimated 

transmittance spectra were measured from the samples with the 

experimental assembly represented in Fig. 1. 

The setup presented in Fig. 1 is in cross section. The glass 

that is placed below the sample has a 1-mm thickness and it is 

used to create a cuvette to sustain the optical clearing solutions 

during the treatments. The illumination  beam  presented  at 

the bottom in Fig. 1 is delivered by an optical fiber cable and 

collimating lens, and it presents a diameter of 6 mm below the 

glass. Such a beam comes from a tungsten-halogen lamp (model 

HL-2000 from Avantes Corporation™—wavelength range from 

 

Table 1   Optical clearing solutions. 

Concentration of ethylene glycol (EG) (%) Refractive index (RI) 

20 1.3525 

25 1.3576 

30 1.3626 

35 1.3676 

40 1.3725 

45 1.3776 

50 1.3825 

55 1.3876 

60 1.3925 

 



 

 

 

time dependencies were first displaced vertically to have Tc ¼ 
0 at t ¼ 0 s, and then they were normalized entirely to the high- 

est value observed in the time dependence. After    performing 
these adjustments, we have fitted these time  dependencies 
with curves that have equations like Eq. (4), but with a small 

correction—we have normalized the concentration of agent in 

the tissue to the concentration of agent in the immersing solution 
so it can mimic the displaced and normalized Tc time depend- 

ence data: 

 
  

 

 

 

 

 

 

 

 
Fig. 1  Experimental setup to measure the collimated transmittance. 

 
 

360 to 2000 nm) and the spectra measured from this setup are 

acquired with an AvaSpec-2048-USB2 spectrometer, also from 

Avantes. This spectrometer has a grating set for 200 to 1100 nm 

and a 50-μm  slit. 
We have initiated the measurements for each treatment by 

measuring the reference spectrum from the light source.  Such 

a reference spectrum was acquired with the same setup as rep- 

resented in Fig. 1, but without the sample placed at the center. 

After acquiring the reference spectrum from the light source, 

we have placed the muscle sample at the center of the setup pre- 

sented in Fig. 1 and have acquired the natural collimated trans- 

mitted spectrum. The measurements of collimated transmitted 

spectra of the muscle sample under treatment were performed 

after the solution was applied around the sample. The delivery 

of the immersing solution is made with a syringe through a lat- 

eral hole of the sample chamber (not seen on Fig. 1). Using this 

method and injecting the solution smoothly, it spreads immedi- 

ately inside the chamber, below and above the muscle sample. 

The volume of the solution used was 10× the volume of the 

sample.  The  solution  is sustained  around the  sample  by the 
cuvette created by the glass and lateral walls presented in Fig. 1. 

Since we have measured both the reference and collimated 

transmitted spectra from the sample, we had to calculate the 

collimated transmittance spectra for the natural sample and for 

different times of treatment. To perform such calculations,  we 

have used Eq. (6): 
 

  

When performing these fittings, we have obtained the diffu- 

sion time value for each wavelength, τðλÞ. We calculated the 

mean of the diffusion time for each treatment from the various 

diffusion time values obtained from the individual time depend- 

encies of each wavelength. 

Such methodology was repeated for the treatments with each 

optical clearing solution. After calculating all the mean diffusion 

time values for each treatment, we have represented the mean 

diffusion time as a function  of  the  concentration  of  EG in 

the immersion solution. Such a representation was then fitted 

with a natural spline with the objective of characterizing the dif- 

fusion process. The results obtained using these methodologies 

are presented in the next  section. 
 

3    Results and Discussions 

As we have indicated in Sec. 2, we have prepared the muscle 

samples with slab geometry with a thickness  of 0.5 mm and 

the optical clearing solutions with the desired concentrations 

of EG. Using Eq. (5), we have calculated the RI values for 

the EG solutions, which were used as a reference in the prepa- 

ration of these solutions through the control measurement with 

the Abbe refractometer (Table 1). 

The RI values presented in Table 1 have a precision of four 

digits, but our Abbe refractometer only gives a precision of three 

digits. This means that we have optimized the immersion sol- 

utions by measuring the RI in the refractometer as close as pos- 

sible to the values presented in Table 1. With this method of 

visually measuring the RI of the solution in the Abbe refractom- 

eter, our final solutions have the same RI as presented in Table 1, 

but with an uncertainty of   ±0.0005. 

Using these solutions and the experimental assembly repre- 

sented in Fig. 1, we have measured the spectra from the refer- 

ence beam and from the sample and calculated the collimated 

transmittance spectra for the natural muscle and for the sample 

under treatment with each solution according to Eq. (6). Figure 2 

presents  the Tc  spectrum  of  the  natural  skeletal  muscle and 
Fig.  3  presents  the  time  dependence  of  Tc  for wavelengths 

  between 400 and 1000 nm for all treatments   studied. 

 

In  Eq.  (6),  T tcðλ; tÞ  represents  the  collimated  transmitted 

spectrum measured from the sample at a particular time of treat- 
ment, t. The correspondent spectrum for the natural sample is 
represented as T tcðλ; t ¼ 0Þ. The reference spectrum, measured 

from  the  illumination  beam  and  without  the  sample,  is  repre- 

sented in Eq. (6) as StcðλÞ.33
 

After obtaining all the spectra for a particular treatment, we 

have calculated the time dependencies of Tc for a collection 

of wavelengths between 600 and  800  nm,  the  band where 

the  skeletal  muscle  presents  significant  scattering.33     Those 

 

As we can see from the graphs in Fig. 3, the time dependence 

of Tc does not show a smooth behavior for all treatments. For 

the treatment with a concentration of 40% of EG, we see that 
smooth behavior. This fact indicates that for this concentration, 
or for a concentration near 40%, EG has an optimized diffusion 
into the muscle. 

For the treatments with EG in concentrations lower than 

40%, we see a very fast increase within the first 2 min of the 

treatment followed by a saturation regime that is maintained 

for a few minutes, before presenting a decreasing behavior at 

the end of the treatment. The time period for the saturation 



 

 

 
 

 

 
Fig. 2 Collimated transmittance of the natural skeletal muscle from 

the Wistar Han rat. 
 
 

regime increases with increasing concentration of EG in solu- 

tion, as we can see from graphs in Figs. 3(a) through 3(e). 

After the saturation regime, Tc shows a decreasing behavior, 

indicating that the sample has increased its thickness or has 

lost some EG to the outside. The magnitude of such a final 

decrease is higher for lower concentrated  solutions. 

For the treatments with solutions containing concentrations 

of EG higher than 40%, we see that, as the concentration of EG 

increases, the initial rise in Tc tends to become contained in the 

first 2 min of treatment once more. This fact indicates that as 
the concentration of EG increases in the immersion solution, 

the dehydration mechanism tends to dominate the optical clear- 

ing operations due to a higher osmotic pressure created over 

the tissue  by the agent.  After this initial  increase,  we   again 

see the saturation regime, which tends to take less time as the 

concentration of agent increases to give place to a second-step 

diffusion of EG into the tissue. This second-step diffusion of 

the agent into the muscle shows a higher increasing behavior 

for the higher concentrated solutions. 

According to the methodology that we have described in 

Sec. 2, to estimate the mean diffusion time for each treatment, 

we have considered time dependence curves like the ones pre- 

sented in Fig. 3, but only for wavelengths between 600 and 

800 nm, the band where the muscle presents more   scattering. 

We have displaced each of those curves to have Tc  ¼ 0 at t  ¼ 

0 (natural tissue). After that we have normalized each curve to 

its highest value, which corresponds to the beginning of the 

saturation regime. Figure 4 shows the displaced curves for  the 

various treatments and wavelengths, but without considering 

the normalization procedure for better visual perception. 

Although the graphs presented in Fig. 4 are not normalized, 

they provide some important information. The first piece of 

information retrieved from these graphs regards the treatment 

duration until the first stage of saturation begins. This time 

period varies from case to case as we can see by the upper 

time limit in each graph of Fig. 4. By analyzing each graph  of 

Fig. 4, we see that as the concentration of EG rises, the time limit 

of the graph increases until a concentration of 40% of EG is 

concentrations of EG lower and higher than 40%, the dehydra- 

tion mechanism dominates the optical clearing operations and 

for concentrations near 40%, the RI matching mechanism domi- 

nates. The optimal concentration of EG in solution is very close 

to 40%, as we have already observed in our previous study with 

glucose solutions.33
 

After performing normalization to the highest value in each 

case, each dataset from graphs in Fig. 4 was adjusted with an 

equation in the form of Eq. (7) to determine the diffusion time 

for each wavelength within the same treatment. Considering all 

the treatments studied, we presented in Table 2 the diffusion 

time values obtained for each curve for a particular treatment 

and the corresponding mean diffusion time for that treatment. 

After calculating the mean diffusion time values for each 

treatment, we have represented these values as a function of 

EG concentration in solution. Such a representation is shown 

in Fig. 5 along with the natural spline that was calculated to 

fit the data points. Figure 5 also contains the results from the 

study with glucose solutions for  comparison.33
 

The dashed curve in Fig. 5 shows that the diffusion of EG 

inside the skeletal muscle is maximal for a concentration of 

40.5% of EG in the immersion solution. The same concentration 

was observed from the data obtained in the glucose study (solid 

line in Fig. 5). This means that for a solution containing that 

particular concentration of agent, no effective net water flux 

between the tissue and surrounding solution is observed and 

the only effective flux is one of the agents from the solution 

into the muscle. In that case, the agent flux is maximized. 

This result is observed in both datasets of Fig. 5. This result 

means that the free water content in the muscle tissue is the 

same water content in the solutions that present 40.5% concen- 

tration of agent: EG or glucose and possibly for others. That 

water content is 59.5%. Such a value of the free water content 

for the rat skeletal muscle is the same as the mean data indicated 

in literature for human, rabbit, and rat muscle samples.36 This 

value is very important in the field of optical  clearing,   since 

it is the water portion that is free to move during the dehydration 

mechanism. Considering this data, we can calculate the bound 

water content in the muscle as 16.1%, which is the difference 

between total water (75.6%)37,38 and free water (59.5%). The 

bound water portion is tightly connected to the other tissue com- 

ponents and does not participate in the optical clearing pro- 

cedure, at least for a 30-min  treatment. 

The diffusion time of EG inside the muscle is also deter- 

mined from the graph in Fig. 5. It corresponds to the value 

observed at the peak of the spline curve. This way, from the 

graph  presented  in  Fig.  5,  we  obtain  a  diffusion  time    of 

446.0 s for EG in the muscle,  while  for  glucose  we have 

only 302.9 s. For a particular treatment of muscle with solutions 

of EG or glucose in any concentration, we can calculate the 

concentration of the OCA inside the tissue as time dependent 

by using these diffusion time values in Eq.  (4). 

Considering that the diffusion of EG into the muscle was 

made through both  surfaces  of  the  tissue  slab,  we  can 

apply Eq. (2) to calculate the  diffusion  coefficient of EG in 

the muscle: 

used. For concentrations higher than 40%, the inverse behavior 

is seen—the upper time limit of the graph lowers with the rising 

concentration of EG in solution. This information is very impor- 

 

  

tant, since it indicates which mechanism dominates the optical 

clearing treatment for each concentration of EG in solution. For 

In Eq. (8), d represents the sample thickness at the time of 

treatment that corresponds to the maximum diffusion seen    in 



 

 

 

 

 

Fig. 3 Time dependence of Tc for several wavelengths from treatments of skeletal muscle samples from 

the Wistar Han rat with ethylene glycol (EG) of different concentrations: (a) 20%, (b) 25%, (c) 30%, 

(d) 35%, (e) 40%, (f) 45%, (g) 50%, (h) 55%, and (i)  60%. 



 

 

 

 

 

Fig. 4 Time dependence T c data for wavelengths between 600 and 800 nm displaced to zero at t ¼ 0 

from treatments of skeletal muscle samples from the Wistar Han rat with EG of different concentrations: 

(a) 20%, (b) 25%, (c) 30%, (d) 35%, (e) 40%, (f) 45%, (g) 50%, (h) 55%, and (i)   60%. 



 

 

 
Table 2   The diffusion time experimental values. 

 

 
EG solution (%) 

 
Wavelength (nm) 

 
600 

 
620 

 
640 

 
660 

 
680 

 
700 

 
720 

 
740 

 
760 

 
780 

 
800 

20 τ (s) 70.1 68.2 66.6 65.6 64.3 62.6 69.9 59.6 58.7 57.9 70.1 

 

 
25 

Mean ± sd (s) 

τ (s) 

 

 
83.3 

 

 
81.2 

 

 
79.4 

 

 
78.2 

 

 
76.7 

64.9 ± 4.6 

74.8 

 

 
73.0 

 

 
71.5 

 

 
70.4 

 

 
69.5 

 

 
83.3 

 

 
30 

Mean ± sd (s) 

τ (s) 

 

 
92.6 

 

 
90.3 

 

 
88.4 

 

 
87.1 

 

 
85.6 

76.5 ± 5.0 

83.6 

 

 
81.5 

 

 
79.9 

 

 
78.7 

 

 
77.8 

 

 
92.6 

 

 
35 

Mean ± sd (s) 

τ (s) 

 

 
189.9 

 

 
186.6 

 

 
183.9 

 

 
182.0 

 

 
179.8 

85.3 ± 5.5 

177.0 

 

 
174.0 

 

 
171.4 

 

 
169.4 

 

 
168.0 

 

 
189.9 

 

 
40 

Mean ± sd (s) 

τ (s) 

 

 
450.9 

 

 
448.3 

 

 
446.2 

 

 
444.5 

 

 
442.6 

179.3 ± 7.9 

440.7 

 

 
438.8 

 

 
436.4 

 

 
433.9 

 

 
432.7 

 

 
450.9 

 

 
45 

Mean ± sd (s) 

τ (s) 

 

 
293.7 

 

 
290.4 

 

 
287.7 

 

 
285.8 

 

 
283.6 

442.4 ± 6.4 

280.9 

 

 
278.1 

 

 
275.3 

 

 
272.9 

 

 
271.5 

 

 
293.6 

 

 
50 

Mean ± sd (s) 

τ (s) 

 

 
137.9 

 

 
135.0 

 

 
132.6 

 

 
131.1 

 

 
129.1 

283.0 ± 8.0 

126.6 

 

 
124.1 

 

 
121.9 

 

 
120.3 

 

 
119.1 

 

 
137.9 

 

 
55 

Mean ± sd (s) 

τ (s) 

 

 
89.9 

 

 
88.0 

 

 
86.0 

 

 
84.3 

 

 
82.3 

128.7 ± 6.8 

79.9 

 

 
77.4 

 

 
75.2 

 

 
73.7 

 

 
73.1 

 

 
89.9 

 

 
60 

Mean ± sd (s) 

τ (s) 

 

 
64.4 

 

 
63.0 

 

 
61.6 

 

 
60.2 

 

 
58.2 

81.8 ± 6.3 

56.0 

 

 
54.0 

 

 
52.6 

 

 
51.5 

 

 
50.7 

 

 
64.4 

 Mean ± sd (s)      57.9 ± 5.2      

 

Fig. 5. For the case of EG, this time is 446 s and a thickness of 

0.045 cm was obtained from a sample under treatment with EG 

40% at the time of treatment of 446 s. For the study with glu- 

cose, we have done a similar calculation using the diffusion time 

of 303 s and the sample thickness measured at that particular 

time (0.042 cm) under treatment with glucose 40%. The calcu- 

lated  diffusion coefficient for glucose  in the skeletal   muscle 

is  5.90 × 10−7 cm2∕s. 

In addition to this information, we can also determine the 

diffusion time and the diffusion coefficient of water in the 

muscle from the graph of Fig. 5. To do that we will consider 

the diffusion time value observed for the highest concentrated 

solution of EG—EG 60%. For the treatment with this highly 

concentrated solution, we have an initial fast rise in the Tc 

time dependence in Fig. 3(i), which occurs before the first 

saturation regime. In this treatment and since the immersion 

solution is highly saturated with EG, the agent in the solution 

creates an osmotic pressure over the tissue at early treatment, 

leading to a fast dehydration  of the  tissue  sample. This    way, 

the fast rise observed at the beginning for this treatment corre- 

sponds only to the water flux out of the tissue. From Fig.  5, 

we see that the diffusion time that corresponds to the concentra- 

tion of 60% of EG in solution is 57.9 s. In our previous study with 

glucose solutions,33 we have determined a diffusion time of 58.4 s 

for water with a treatment with glucose 54% (also represented in 

Fig. 5), which is the maximum concentration possible for glucose 

in aqueous solution due to its solubility in water. As we can see, 

the diffusion time values of water in the muscle obtained from 

both treatments are very similar. Considering the value obtained 

with the EG study, we have used Eq. (2) to calculate the diffusion 

coefficient for water in the skeletal  muscle: 
 

Fig. 5 Mean diffusion time of EG versus EG concentration in solution: 
 

 
 

 

EG study—dashed line; glucose study—solid line (data taken from 
Ref. 33). 

 
   



 

 

 

The thickness value d used in Eq. (9) is the thickness of the 

sample obtained for 57.9 s in a treatment with EG 60%. For the 

treatment with glucose 54%, we have obtained a sample thick- 

ness of 0.0431 cm for 58.4 s of treatment. These values used in 

Eq. (9) give a diffusion coefficient for water relative to glucose 

treatments of 3.22×10−6 cm2∕s. Again, we see that the diffusion 
coefficient values obtained for water from the two treatments are 

very similar. 

This value is almost three times less than the diffusion 

coefficient   of   water   in   water   at   20°C,   i.e., Dwater∕water¼ 

8.9 × 10−6  cm2∕s at 20°C.39  Considering that a soft tissue con- 
tains a considerable amount of water, the diffusion of water mol- 
ecules in water is a good model for water diffusion in tissues. 

A threefold decrease of the diffusion rate of water in muscle 

tissue compared with its diffusion in water can be explained 

by a hidden diffusion due to water molecules interaction with 

organic matrix and limited cell membrane permeability. 

Such data are very important to understand and characterize 

the dehydration and the RI matching mechanisms involved in 

optical clearing of the skeletal muscle. 

Considering the diffusion coefficient of EG, glucose, and 

water in muscle, we can make some comparison with other val- 

ues published in literature. For instance, the diffusion coefficient 

of EG in water is 1.16×10−5 cm2∕s at 25°C.40 Despite the tem- 
perature difference, we see that the diffusion coefficient of EG in 

muscle that we have calculated with Eq. (8) is approximately 25 

times smaller than the value published for EG diffusion in water. 

Such a difference suggests that the permeability of the muscle 

cell membrane might significantly slow EG diffusion inside the 

muscle. Another more complex situation might be considered. It 

is known that the water also diffuses in EG. The literature indi- 

cates the diffusion coefficient of water in EG as 1.8×10−6 cm2∕s 
at 27°C.40  When performing the treatment of muscle with EG, 

we must consider that when water flows out the sample, it will 

certainly flow through the EG that is flowing into the muscle and 

this water flow toward the outside of the tissue might slow down 

the EG flow in. 

A similar behavior might exist in the case of glucose diffu- 

sion in muscle. It is known that the diffusion coefficient of glu- 

cose in water is 5.7×10–6cm2∕s (at 20°C).40 By comparing this 
value with the one that we have calculated for the diffusion of 

glucose in muscle (5.90×10−7 cm2∕s), we see that in muscle, 
glucose  has  a  diffusion  coefficient  approximately  10 times 

smaller than in water at the same temperature. This fact is an 

additional indication that both EG and glucose diffusions in 

muscle are limited by muscle cell membrane permeability and 

possibly the water diffusion through these agents might also 

contribute to slow their diffusion into the  muscle. 
 

4   Conclusions 

Considering the results that we have obtained with this study, we 

can now characterize both the mechanisms of optical clearing of 

the skeletal muscle—tissue dehydration and RI matching. The 

diffusion time values obtained for water and EG indicate that 

the dehydration mechanism occurs in a short time period at 

the beginning of the optical clearing treatment as a consequence 

of the osmotic pressure created by the EG in the immersion 

solution. The same conclusion was obtained from the glucose 

study, where we have obtained a very similar diffusion  time 

for water involved in the dehydration mechanism of optical 

clearing.33 The RI matching mechanism takes more time to 
occur than the dehydration mechanism. 

The method that we have used is simple and allows one to 

estimate both the diffusion time and the diffusion coefficient for 

water and EG inside the muscle. These characteristics are most 

valuable for optical clearing studies, but they are also important 

for other fields of research and clinical procedures, as we have 

already indicated. The method used in the present study can be 

applied to evaluate the diffusion characteristics of other agents, 

such as medications or metabolic products, in muscle or in other 

tissue samples. From the results obtained in the present study, 

we were able to identify the free water content of the skeletal 

muscle as 59.5%, which is the same value obtained from the 

glucose study.33
 

It is our commitment to continue this kind of research and 

we will use this simple method to perform other studies with 

other OCAs and with other biological tissues to estimate the 

characteristic diffusion properties in each case. 
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