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SUMMARY

Most combinatorial optimization problems are NP-hard, which implies that under well-

believed complexity assumptions, there exist no polynomial time algorithms to solve them.

To cope with the NP-hardness, approximation algorithms which return solutions close to

the optimal, have become a rich field of study. One successful method for designing approx-

imation algorithms has been to model the optimization problem as an integer program and

then using its polynomial time solvable linear programming relaxation for the design and

analysis of such algorithms. Such a technique is called the LP-based technique.

In this thesis, we study the algorithmic aspects of three classes of combinatorial opti-

mization problems using LP-based techniques as our main tool.

Connectivity Problems: We study the Steiner tree problem and devise new linear pro-

gramming relaxations for the problem. We show an equivalence of our relaxation with the

well studied bidirected cut relaxation for the Steiner tree problem. Furthermore, for a class

of graphs called quasi-bipartite graphs, we improve the best known upper bound on the

integrality gap from 3/2 to 4/3. Algorithmically, we obtain fast and simple approximation

algorithms for the Steiner tree problem on quasi-bipartite graphs.

Allocation Problems: We study the budgeted allocation problem of allocating a set of

indivisible items to a set of agents who bid on it but possess a hard budget constraint more

than which they are unwilling to pay. This problem is a special case of submodular welfare

maximization. We use a natural LP relaxation for the problem and improve the best known

approximation factor for the problem from ' 0.632 to 3/4. We also improve the inapprox-

imability factor of the problem to 15/16 and use our techniques to show inapproximability

results for many other allocation problems.

ix



We also study online allocation problems where the set of items are unknown and ap-

pear one at a time. Under some necessary assumptions we provide online algorithms for

many problems which attain the (almost) optimal competitive ratio. Both these works have

applications in the area of budgeted auctions, the most famous of which are the sponsored

search auctions hosted by search engines on the Internet.

Design Problems: We formally define and study design problems which ask how the

weights of an input instance can be designed, so that the minimum (or maximum) of

a certain function of the input can be maximized (respectively, minimized). We show

if the function can be approximated to any factor α, then the optimum design can be

approximated to the same factor.

We also show that (max-min) design problems are dual to packing problems. We use

the framework developed by our study of design problems to obtain results about fraction-

ally packing Steiner trees in a “black-box” fashion. Finally, we study integral packing of

spanning trees and provide an alternate proof of a theorem of Nash-Williams and Tutte

about packing spanning trees.
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CHAPTER I

INTRODUCTION

The field of optimization deals with finding an element from a set which optimizes, for

instance minimizes or maximizes, a certain function over all elements in the set. Discrete

optimization, also called combinatorial optimization, is the sub-field of optimization when

the set of elements is finite. Problems in combinatorial optimization are interesting if the

set is concisely represented and thus going over all the elements of the set, whose number

can be exponentially larger than the size of the representation, is no longer an interesting

option, and more efficient methods need to be found. For instance, a typical combinatorial

optimization problem is: Given a finite graph G with vertex set V and edge set E, find

a path between two specified vertices s and t which uses the minimum number of edges.

Here, the set of solutions is all the paths between s and t, however all these paths are

represented by the graph G which requires defining its two sets, the total size of which is

(|V |+ |E|). On the other hand the total number of paths between s and t could be almost

as large as 2|V |. A combinatorial optimization problem is said to be in the class P(Pfor

polynomial), if it can be solved in time which is bounded by a polynomial in the size of the

representation. For instance, the shortest-path problem mentioned in the above paragraph

has a polynomial time algorithm (given by Edsger Dijkstra) and is thus in P. Apart from

the obvious advantage of getting faster algorithms, research in combinatorial optimization

problems in Phave led to a deeper understanding of the problems themselves. An excellent

and comprehensive reference is the three-volume monograph of Alexander Schrijver [88].

However, many combinatorial optimization problems are NP-hard, that is, if one believe

the P 6=NPconjecture, then such problems do not have polynomial time algorithms. For

instance, going back to the above example, if instead of asking for the shortest path, we

wanted to find the longest path between s and t which repeats no vertices, the problem

becomes NP-hard.

How does one cope with NP-hardness? There are many ways researchers have done this

including design of heuristics which work well in practice, average case analysis of algorithms

which work well assuming some distribution on the input and approximation algorithms

which find solutions which are not optimal, but are guaranteed to be not too bad either. In

this thesis, we take the third way of coping with NP-hardness and investigate approximation

algorithms for three broad classes of problems: connectivity problems, allocation problems

and design/packing problems.

Throughout the thesis, we assume a certain acquaintance with terms, notations and

concepts related to graphs, optimization and algorithms. We provide a few preliminaries

1



regarding the same in the appendix.

1.1 Approximation Algorithms

Given an optimization problem Π, we call an algorithm A a polynomial time approximation

algorithm if it runs in polynomial time and returns a solution to the problem “close” to

the optimal. If the problem is a minimization problem, then the algorithm A is called a

ρ()-factor approximation algorithm, where ρ : R → R is a function taking reals to reals, if

for any instance I of the optimization problem Π, the solution returned by the algorithm

A is guaranteed to have cost

A(I) ≤ ρ(|I|) ·OPT(I)

where OPT(I) is the value of the optimum solution to I and |I| is the size of the represen-

tation of the instance I. Note that ρ(|I|) ≥ 1 as one cannot possibly do better than the

optimum. Furthermore A runs in time bounded by a polynomial in |I|. Similarly, if Π were

a maximization problem, the definition would be the same with the inequality reversed, and

ρ() would be less than 1.

For instance, for the NP-hard longest path problem defined above consider the algorithm

A which returns any path from s to t (we assume the graph is connected). Such an algorithm

can be easily implemented in polynomial time. Since the longest path itself can be as long

as n, the number of vertices, the algorithm A is a ρ(n) = 1
n -factor algorithm.

Obviously, the approximation algorithm given above is in some sense a trivial approxi-

mation algorithm and opens up the question whether there are better approximation algo-

rithms for the same. Such a case can be made for any NP-hard problem and this is what

concerns the theory of approximation algorithms: determining the approximibility, that is

the best approximation factor, of a given problem Π.

How does one find the factor of an approximation algorithm? Note that to show that A is

a ρ-factor approximation algorithm, we need to show for every instance A(I) ≤ ρ ·OPT(I)

(we abuse notation and omit the dependence of ρ on |I|). However, if Π is an NP-hard

problem, evaluating OPT(I) itself is NP-hard. One way which is almost always used to

prove that A is a ρ-factor algorithm is to find a bound on OPT(I) (a lower bound if Π is

a minimization problem, an upper if Π is maximization) which can be found in polynomial

time. For instance, for the longest path problem described above, the number of vertices

forms an upper bound on the longest path and indeed the algorithm compares with this

upper bound, rather than the true longest path itself.

A mantra for finding better approximation algorithms is to find better lower/upper

bounds. One such method of obtaining better (efficiently computable) bounds is to model

the combinatorial optimization problem as an integer program and then using the solution

of its linear programming relaxation as the bound.

2



1.1.1 LP relaxations and Approximation Algorithms

For the purpose of exposition, let us pick one of the most fundamental NP-hard combina-

torial optimization problems: the minimum vertex cover problem. Given a graph G(V,E)

and a weight vector w : V → R+, the minimum weight vertex cover problem is to find a

subset of vertices W ⊆ V of minimum weight such that every edge in E has at least one

end point in W .

Most combinatorial optimization problems can be cast as an integer program. For

instance, for the vertex cover problem the following integer program gives the optimum

solution to the problem.

OPT(G) = min{
∑
v∈V

w(v)xv : ∀(u, v) ∈ E, xu + xv ≥ 1; ∀v ∈ V, xv ∈ {0, 1} } (1)

The variable xv ∈ {0, 1} is an indicator variable for W : xv = 1 iff v ∈W . The constraint

implies that each edge has at least one end point in W . Thus the integer program exactly

corresponds to the minimum vertex cover problem.

However, since the vertex cover is NP-hard, finding the solution to program (1) is NP-

hard as well. But if we replace the constraint xv ∈ {0, 1} by 1 ≥ xv ≥ 0, the resulting

program is a linear program and one can solve it in polynomial time (either using the

ellipsoid method [58, 46] or interior point methods [56]).

LP(G) = min{
∑
v∈V

w(v)xv : ∀(u, v) ∈ E, xu + xv ≥ 1; ∀v ∈ V, 1 ≥ xv ≥ 0 } (2)

On the flip side, the solutions do not correspond to vertex cover solutions. Nevertheless,

since any integral solution (that is, those corresponding to the vertex cover solution) is a

valid solution to the linear program, the optimum of the linear program is a lower bound

on the minimum vertex cover. That is, for any graph G, LP(G) ≤ OPT(G). Thus, if one

could develop a polynomial time algorithm which given a graph G could return a vertex

cover of size A(G) ≤ ρ · LP(G), A would a ρ-factor approximation algorithm.

1.1.2 Approximation via LP-rounding algorithms

Apart from providing a lower bound on the optimum solution, the LP relaxation can ac-

tually be used to obtain the approximation algorithms themselves. Such approximation

algorithms are called LP-based approximation algorithms. One of the classes of LP-based

approximation algorithms are LP-rounding algorithms which take the optimal LP-solution

and round a set of the variables to obtain a valid solution. For instance, let {x∗v}v∈V be an

optimal solution to the LP relaxation LP (2) for the vertex cover solution. Consider the

following algorithm A : Pick all vertices v with x∗v ≥ 1/2 in W .

3



To see W is a valid vertex cover, consider any edge (u, v). From the constraint in the LP,

xu+xv ≥ 1, one of the two variables must be at least a 1/2 and thus picked in W . Moreover,

the weight of the vertices in W must be at most 2 · LP(G) since for each vertex picked v

in W , the LP pays at least w(v)/2 while the algorithm pays w(v). Thus the algorithm is a

polynomial time 2-factor algorithm.

LP-rounding algorithms have been successful in giving the best known approximation

algorithms for a host of problems. The LP-rounding technique itself has many different

variants worth mentioning. The example given above is a one-shot rounding which solves

the LP once and rounds a particular subset of variables to get the solution. There are

examples which use the fact that an extreme-point optimal solution of an LP can be found

and use the properties of the extreme-point solution to obtain algorithms. An example is

the algorithm for the minimum makespan machine scheduling problem of Lenstra, Shmoys

and Tardos [71] (also see Chapter 3). An interpretation of the LP optimum variables

as probabilities of rounding the variable has proven to give approximation algorithms for

multicommodity flows and routing [83]. Such a method is called randomized rounding.

More recently, Jain [51] devised the iterated rounding method which rounds variables one

at a time and re-solves the LP again on the residual problem after each rounding step.

Jain used this procedure to give a 2 factor algorithm for the Steiner network problem and

very recently, the method was used to obtain the best known approximation algorithms for

degree bounded network design [90, 68, 8, 69].

1.1.3 Approximation via Primal-Dual algorithms

Another class of LP-based approximation algorithms are primal-dual algorithms which not

only use the LP-relaxation, but also its dual. For instance, one can take the dual of the

LP-relaxation LP (2), which by strong LP-duality gives:

LP(G) = max{
∑

(u,v)∈E

yuv : ∀v ∈ V, y(δ(v)) ≤ w(v); ∀(u, v) ∈ E, yuv ≥ 0} (3)

Call a vertex v tight if the constraint corresponding to it in LP (3) holds with equality:

y(δ(v)) = w(v). Consider the following algorithm A: Initialize the set W to be empty and

let yuv = 0 for all edges (u, v). Raise the dual variables yuv for all edges which are not

incident to any tight vertex till some new vertex goes tight. If the vertex v goes tight, put

v in W and repeat till all edges are incident to tight vertices.

The set W is precisely the set of tight vertices and thus forms a vertex cover in the

end since all edges are incident to tight vertices. Let {yuv}(u,v)∈E be the final dual solution

returned by the algorithm. From the running of the algorithm it is clear that y is a feasible

solution for LP (3). Thus, LP(G) ≥
∑

(u,v)∈E yuv. We show that A is a 2-factor algo-

rithm by showing that the weight of the solution picked is less than 2
∑

(u,v)∈E yuv which

is ≤ 2LP(G) ≤ 2OPT(G). This follows from the fact that all vertices in W are tight:

4



∑
v∈W w(v) =

∑
v∈W y(δ(v)) ≤

∑
(u,v)∈E 2yu,v where the last inequality follows from the

fact that each edge has at most 2 end-points in W .

One of the advantages of primal-dual algorithms is that one does not need to solve any LP

and thus gives a purely combinatorial algorithm. However on the flip-side, these algorithms

are hard to develop since they typically use only “local information” and designing such

algorithms require considerable amount of finesse. We refer the reader to the book of

Vazirani [93], and the survey by Goemans and Williamson [45] for expositions on the primal-

dual method in approximation algorithms.

1.1.4 Limitations of an LP relaxation

Once again, this raises the following question: Can one obtain a better approximation

algorithm for the minimum vertex cover problem using the lower bound suggested by LP

(2)? In fact, one cannot as the following example shows. Consider the complete graph Kn

on n vertices with unit weight on each vertex. Note that any vertex cover will use at least

n−1 vertices. However, the solution xv = 1/2 for all vertices v ∈ V is still a feasible solution

of weight n/2. Thus any algorithm using this LP-bound cannot give a factor better than

2− 1/n.

Thus the example of the complete graph on n vertices demonstrates the limitation of

the LP-relaxation LP (2). This limitation is captured in the following definition of the

integrality gap of an LP-relaxation for an optimization problem Π.

Definition 1 Given a minimization problem Π and given an LP-relaxation LPΠ for the

problem, the integrality gap of the LP-relaxation is defined as

I(LPΠ) := sup
I

OPT(I)
LPΠ(I)

where the supremum is taken over all instances I of the minimization problem.

For maximization problems, the integrality gap is defined similarly with the supremum

replaced by an infimum.

It is clear that given any minimization problem Π and an LP-relaxation LPΠ for it,

the best approximation one can prove using the LP-optimum as a lower bound is at least

I(LPΠ). For instance the integrality gap of the LP-relaxation of the vertex cover problem

described above is 2.

1.1.5 Hardness of Approximation

As we saw, proving that the integrality gap of an LP relaxation for the vertex cover is 2 shows

that no better than a 2-factor approximation is possible using that particular relaxation.

However, this does not preclude the presence of another LP relaxation with a possibly

smaller integrality gap which might be used to obtain better approximation algorithms.
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A stronger evidence of inapproximability is provided if one shows that it is NP-hard to

approximate a problem better than a factor ρ. Such a breakthrough was made in the early

1990’s with the PCP theorem [6] which can be equivalently stated as:

Theorem 1.1.1 ([6]) Given a 3SAT formula φ = C1 ∧ C2 · · · ∧ Cm, where each Ci is a

disjunction of 3 literals, there exists a constant δ < 1, such that it is NP-hard to distinguish

between the two cases: (YES) There exists an assignment of variables such that all clauses

are satisfied, and (NO): No assignment of variables satisfy more than δ fraction of the

clauses.

Note that the above theorem implies that no factor better than δ is possible for the

Max-3SAT problem which given a formula asks for an assignment satisfying the maxi-

mum number of clauses. Such a result is called an hardness of approximation result. The

above theorem opened the floodgates for hardness of approximation results, notable among

which is the work of H̊astad [47] who showed many optimal inapproximability results, that

is, hardness of approximation factors which matched the factors of known approximation

algorithms.

Recently, Khot[59] conjectured a strengthening of the PCP theorem which is called the

Unique Games Conjecture (UGC). Assuming this conjecture, it was proved [61] that it is

NP-hard to approximate the minimum vertex cover problem to a factor better than 2− ε,
for any ε > 0. Without assuming this conjecture, the best known hardness factor for the

minimum vertex cover problem is 1.36 [30].

1.2 Contributions, Organization and Credits of this Thesis

In this thesis, we investigate algorithmic aspects of three classes of combinatorial optimiza-

tion problems. The three classes have been presented independently of each other in the

three parts, although we use and develop the linear programming relaxation techniques

discussed before to obtain our results. We now elaborate about each of them and state our

contributions.

1.2.1 Connectivity Problems

Given an undirected network with costs on edges, and a subset of vertices called terminals,

the minimum Steiner tree problem is to find the cheapest sub-network which maintains the

connectivity of the terminals. This is one of the classical NP-hard combinatorial optimiza-

tion problems with a slew of applications ranging from computational biology to VLSI chip

design to airport hub locations. The best known approximation algorithm for the minimum

Steiner tree problem is a 1.55-factor algorithm due to Robins and Zelikovsky [86] while the

best known hardness of approximation factor is 96/95 due to Chlebik and Chlebikova [23].
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In this thesis, we propose a new geometric lower bound on the cost of the minimum

weight Steiner tree. Informally, the lower bound corresponds to a linear function of a

distance-preserving l1 embedding of the vertices of the graph onto a k-dimensional λ-

simplex1. We show that the best lower bound can be captured via a linear program, which we

call the simplex-embedding LP. Moreover, we show that this LP is in some sense equivalent

to the bidirected cut LP relaxation for the minimum Steiner tree.

The bidirected cut LP relaxation is a well-studied relaxation for the Steiner tree problem

whose exact integrality gap is not known although the relaxation has been known for two

decades. Our new relaxation in fact gives a geometric approach to attack the bidirected cut

relaxation. We use this geometric framework to prove that for a large class of graphs, called

quasi-bipartite graphs, the integrality gap of the bidirected cut relaxation is at most 4/3.

The best known upper bound before our work was 3/2 due to Rajagopalan and Vazirani

[84].

We also give algorithms for the Steiner tree problem on quasi-bipartite graphs. One

of our algorithms, called Smart-Embed, runs in almost linear time to give a 3/2-factor

algorithm and another runs in almost quadratic time to give a
√

2 factor algorithm. The

algorithm which we use to prove the upper bound of 4/3 however runs in weakly polynomial

time. All our algorithms are primal-dual algorithms. We should remark here that the best

known approximation algorithm for quasi-bipartite graphs is also by Robins and Zelikovsky

[86] obtaining a factor of 1.28 and runs in almost cubic time. We also remark that their

algorithms are not LP-based.

Why is the bidirected cut relaxation for the Steiner tree problem important? First of

all, the largest lower bound on the integrality gap known is only 8/7 (by Goemans[42]

and Skutella [63]) and the true value could well be that, which would probably imply a

better approximation algorithm for the Steiner tree problem. Secondly, the bidirected cut

relaxation is a strengthening of another well-known relaxation for the Steiner tree problem

called the undirected cut relaxation. The undirected cut relaxation has an integrality gap

of 2 for the Steiner tree problem. More interestingly, the integrality gap is 2 even for

generalizations of the Steiner tree problem (the Steiner forest problem and the Steiner

network problem). One can thus hope for similar developments for these problems if progress

is made on the bidirected cut relaxation for Steiner trees. No approximation factor better

than 2 is known for these problems and the hardness is the same as that for the Steiner

tree problem. That said, we remark that generalizations of the bidirected cut relaxation to

the Steiner forest and network problems is not natural; and moreover for all we know the

1k is the number of terminals; a λ-simplex is the set of points with non-negative coordinates which add
up to λ; a distance preserving embedding is such that the l1-distance between the mapping of two vertices
doesn’t exceed twice the distance between them on the graph.
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integrality gap of the bidirected cut relaxation for the Steiner tree problem could might as

well be 2.

Details of the above can be found in Chapter 2. This is joint work with Nikhil Devanur

and my advisor, Vijay V. Vazirani, and a preliminary version of the work appeared in [17].

1.2.2 Allocation Problems

In its generality, a resource allocation problem is to utilize a fixed amount of resources as

effectively as possible, and such problems are ubiquitous in operations research, computer

science and economics. In this thesis, we look at allocation problems motivated by the

budgeted sponsored search auctions run by Internet search engine companies.

In a budgeted auction, bidders, who are the advertising companies in the sponsored

search context, bid on a set of items, which are query keywords (like ‘‘cheap hotels

Atlanta’’) and also specify a budget more than which they are unwilling to pay. Various

issues arise in such auctions and have led to many algorithmic and economic questions. We

discuss two such algorithmic questions in this thesis.

The first problem we study is the maximum budgeted allocation (MBA) problem: to

allocate a set of indivisible goods to budgeted bidders so as to maximize the total revenue

generated. Similar allocation problems have been studied in the literature, and in fact, a

generalization of this problem called the submodular welfare maximization (SWM) problem

has been extensively studied. In SWM, each agent i has a submodular utility function ui,

and the goal is to find an allocation of items maximizing the sum of utilities of the agents.

It is not hard to see that MBA is a special case of SWM.

The best known approximation algorithm of MBA before our work was in fact the best

algorithm for SWM due to Feige and Vondrák[35]. The factor was 1 − 1/e + ρ for some

ρ ≤ 0.001. Moreover, nothing better than NP-hardness was known for the problem. In this

thesis, we improve in both directions. We give a 3/4-factor approximation algorithm and

show that it is NP-hard to approximate MBA to a factor better than 15/16. Moreover,

we use our hardness techniques to prove improved inapproximability results for many other

allocation problems: (15/16 for SWM, 10/11 for GAP, 13/14 and 10/11 for node-weighted

and edge-weighted maximum spanning star forest problem).

In fact, we give two approximation algorithms for MBA. Both of the algorithms are based

on a natural LP relaxation for the problem. The first approximation algorithm is based on

the iterated rounding schema of Jain[51] and is the first iterated rounding algorithm for a

maximization problem. The second approximation algorithm is a primal-dual algorithm.

Ours is one of the few primal-dual algorithms for a maximization problem — the primal-dual

schema is normally tailored for minimization problems. Being primal-dual, our algorithm

does not require solving the linear program and thus has significantly lower running time.

However, the algorithm achieves only a factor of 3/4(1 − ε) and runs in time Õ(nm/ε),
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where n is the number of agents, m the number of items and the˜hides logarithmic factors.

This work is presented in Chapter 3 and is joint work with Gagan Goel [18].

The second class of problems we study are online allocation problems when the set of

items being allocated are not known. Rather, items arrive one-at-a-time and whenever an

item arrives an irrevocable decision about its allocation has to be made. We consider various

online allocation problems, the most general being online GAP and the most specific being

the online knapsack problem.

Once more, the main motivation for studying these problems are the budgeted sponsored

search auctions. In these auctions, the set of items which are queries on keywords are not

known in advance and a decision of which advertisement to display has to be made in

real time. Moreover, we also show that online allocation problems can also model bidding

strategies of various budget-constrained bidders.

We use competitive analysis to measure the performance of our algorithms. We show

that under certain necessary assumptions: a) weights of items being much smaller than the

capacity of bins and b) the ratio of profit-to-weight ratio of items being bounded by L and

U from below and above, our algorithms are (ln(U/L) + 2) competitive for online-GAP and

(ln(U/L) + 1) competitive for the online-knapsack problem. We show that our algorithms

are almost optimal by proving that any online algorithm for the online knapsack problem

will have a competitive ratio of (ln(U/L) + 1).

This work is presented in Chapter 4 and was started as an summer internship at HP

Labs, Palo Alto, as part of the keyword-bidding project. In fact the bidding strategies

implied by our algorithm (and modifications of it) were implemented and tested with real

data obtained from the Internet. These implementations performed with a much better

performance than those suggested by the theoretical result. In this thesis, we include only

the theoretical portion. The project was conducted along with Dr. Yunhong Zhou and Dr.

Rajan Lukose of HP Labs, Palo Alto, and parts of this work appeared in [20].

1.2.3 Design Problems

Consider the following question: Given an uncapacitated network, how should one distribute

on the arcs a total capacity of one unit so as to maximize the minimum cut in the network?

This question is what we call a typical design question and every optimization problem

has a design version of it. In this thesis, we formalize this notion, and show that if the

optimization version can be solved in polynomial time, then the design version can be

solved in polynomial time as well. Moreover, if the optimization problem has an α-factor

polytime approximation algorithm, then so does the design version. We first provide a proof

using the ellipsoid method for solving linear programs. In the special case when costs are

linear, we adapt algorithms from the learning theory literature to give faster algorithms for

the design versions. More precisely, we adapt the multiplicative weights update algorithm of

9



Freund and Schapire [38] to solve zero-sum games to get fast algorithms for design problems.

Design versions of optimization problems are closely related to packing versions of the

same. In the case when costs are linear, the max-min design version of a problem is dual to

the fractional packing version of the problem. Using our framework, we study the fractional

Steiner tree packing problem and derive old and new results about fractionally packing

Steiner trees in a “black-box” fashion. Furthermore, we look at the special case of packing

spanning trees, and give an alternate proof of the Nash-Williams-Tutte theorem about

packing spanning trees.

This work is presented in Chapters 5 and 6. Parts of this appeared as joint work with

Aranyak Mehta and Vijay V. Vazirani in [19].
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CHAPTER II

A GEOMETRIC APPROACH TO THE STEINER TREE PROBLEM

The Steiner tree problem is one of the basic problems of combinatorial optimization: Given

a weighted graph and a specified subset of vertices, find the smallest weight sub-graph in

which the subset of vertices are connected. It is not hard to see such a smallest weight

sub-graph is a tree.

Figure 1: Examples of Steiner trees

In the left-most graph, the dark nodes form the subset of vertices to be connected. The three trees
to the right are Steiner trees in decreasing order of number of edges.

The problem is fundamental in theoretical computer science with applications in various

fields including VLSI design layout, hub-locations in telecommunication, phylogenetic trees

in computational biology, and so on. Computationally however, it is among the classic 21

NP-complete problems of Karp [57] and the approximability of the problem is one of the

most notable open questions in the approximation algorithm theory.

In this chapter, we investigate the approximability of the metric Steiner tree problem via

LP-relaxations. We use geometry to develop a new way of lower bounding the cost of the

optimal Steiner tree. The best such lower bound can be captured via an LP, which we call

the simplex-embedding LP. A short description of this LP is that it is an l1-embedding of the

given metric on a simplex, maximizing a linear objective function. Interestingly enough, the

dual of the simplex-embedding LP is a relaxation of the metric Steiner tree problem having

the same integrality gap as the well-studied bidirected cut relaxation of Edmonds [31]; thus

our new relaxation gives a new geometric way of studying the bidirected cut relaxation.

For a special class of graphs called quasi-bipartite graphs, we use the geometric approach

to obtain dual-growing procedures and give three approximation algorithms for the metric

Steiner tree problem on quasi-bipartite graphs. The first is a straightforward primal-dual

algorithm achieving a factor of 3/2. We then modify the primal-dual schema via a new

algorithmic idea to get a
√

2 and 4/3-factor respectively. The first two algorithms run in

strongly polynomial time (almost linear and quadratic), while the one with the best factor
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has an implementation only in weakly polynomial time.

Related Work: Historically, the idea of using an extra vertex to get a shorter tree connect-

ing three points on the plane goes back to Torricelli and Fermat in the seventeenth century.

The Euclidean Steiner tree problem, in its full generality, was first defined by Gauss in a

letter to his student, Schumacher. This problem was made popular by the book of Courant

and Robbins [29], who attributed the problem to the nineteenth century geometer, Jakob

Steiner. The rich combinatorial structure of this problem was explored by many researchers;

e.g., see the books by Hwang, Richards and Winter [48] and Ivanov and Tuzhilin [49].

The use of the bidirected cut relaxation for the Steiner tree problem goes back to

Edmonds[31] who showed the relaxation is exact for the the case of spanning trees. Wong

[95] gave a dual ascent algorithm for this relaxation, and Chopra and Rao[26, 27] studied

the properties of facets of the polytope defined by the relaxation. Goemans and Myung[43]

study various undirected equivalent relaxations to the bidirected cut relaxation.

The best approximation algorithm for the Steiner tree problem is due to Robins and

Zelikovsky [86]. The authors prove a guarantee of 1.55 for general graphs and also show that

when restricted to the quasi-bipartite case, the factor of their algorithm can be improved to

1.28. However, it is not clear if their results imply an upper bound on the integrality gap

of the bidirected cut relaxation.

2.1 Preliminaries

Let G = (V,E) be an undirected graph with edge costs c : E → R. R ⊆ V denotes the set

of required vertices. These are also called terminals and we use both terms interchangeably.

The vertices in S = V \R are called Steiner vertices. The Steiner tree problem is to find the

minimum cost tree connecting all the required vertices and some subset of Steiner vertices.

We abuse notation and denote both the optimum tree and its cost as OPT . Also, given a

set of vertices X, we denote the minimum spanning tree on X and its cost as MST (X; c)

or simply as MST (X) when c is clear from the context. The edge costs can be extended

to all pairs of vertices such that they satisfy triangle inequality (simply define the cost of

(u, v) to be the cost of the shortest path from u to v). This version is called the metric

Steiner tree problem. The two versions are equivalent.

Let U := {U ( V : U ∩R 6= ∅ and U c ∩R 6= ∅} denote the subsets of V which contain

at least one required vertex but not all. Let δ(U) denote the edges with exactly one end

point in U . Note that any Steiner tree would use at least one edge in δ(U). This motivates

the following undirected cut relaxation of the Steiner tree problem:

min{
∑
e∈E

c(e)xe : x(δ(U)) ≥ 1, ∀U ∈ U ; x ≥ 0}
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The MST on R is known [44] to be within factor 2 of the fractional optimum of this LP,

so this relaxation has an integrality gap of at most 2. However, even in the case when G is

just an n-cycle with each edge having cost 1, and S = ∅, that is, all vertices are required;

the solution giving xe = 1/2 on all edges is a valid solution of cost n/2. The minimum

spanning tree is n − 1 and thus making n large, the integrality gap of the undirected cut

relaxation can be arbitrarily close to 2, even for instances problem when there are no Steiner

vertices.

2.1.1 The bidirected cut relaxation

Edmonds [31] introduced the following stronger relaxation called the bidirected cut relax-

ation1. Fix an arbitrary required vertex r as the root. Now replace each undirected edge

(u, v) with two directed arcs ~(u, v) and ~(v, u), each of cost c(u, v) (hence the name: bidi-

rected). Call the set of arcs ~E. The set of valid sets U are now those which contain the

root but not all the required vertices. Thus U := {U ( V : U ∩ R 6= ∅ and r /∈ U}. The

observation now is that if the edges of any Steiner tree are directed to point away from the

root, then at least one arc in this directed arborescence must be in the cut set δ+(U) of

arcs going out of U . This gives the bidirected cut relaxation for the minimum Steiner tree

problem.

min{
∑
e∈ ~E

c(e)x~e : x(δ+(U)) ≥ 1, ∀U ∈ U ; x ≥ 0} (BCR)

We denote the optimum of the above LP on a graph G as BCR(G). Firstly, observe that

the bidirected cut relaxation is stronger than the undirected cut relaxation. To see this note

that any solution to LP(BCR) corresponds to a solution to the undirected cut relaxation:

for every undirected edge add the variables on its two corresponding arcs. Edmonds [31]

showed that the bidirected cut relaxation is exact for the MST problem, i.e., the integrality

gap of the relaxation is 1 for spanning tree instances. In fact, in Section 2.3 we will prove

a much stronger statement.

For Steiner trees however, no upper bound better than 2 (which is implied by the

undirected cut relaxation) is known on the integrality gap of LP(BCR). Nevertheless, it is

believed to be strictly better. Goemans [42] showed an example where the gap is 8
7 , which

is the largest known. The only algorithmic results using the bidirected relaxation that we

are aware of prior to our work are: a 6/5 factor algorithm for the class of graphs containing

at most 3 required vertices [42] and a factor 3/2 algorithm by Rajagopalan and Vazirani

[84] for the class of quasi-bipartite graphs, i.e., graphs that do not have edges connecting

pairs of Steiner vertices.

1Actually, Edmonds only was concerned with the spanning tree problem, however the generalization to
the Steiner tree problem is natural
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A graph is called quasi-bipartite if there are no edges between any two Steiner vertices2.

The class of quasi-bipartite graphs is a non-trivial class for the bidirected cut relaxation.

In fact, recently Skutella (as reported by Könemann et.al.[63]) exhibited a quasi-bipartite

graph on 15 vertices for which the integrality gap of the bidirected cut relaxation is 8/7.

This ratio matches the erstwhile best known example on general graphs of Goemans[42]

where the ratio was met as a limit. Moreover, the best known hardness results for the

Steiner tree problem in this class of graphs is quite close to that known in general graphs

(128
127 versus 96

95)[23].

The bidirected cut relaxation has interesting structural properties which have been ex-

ploited in diverse settings. [53] use this LP for giving a factor 2 budget-balanced group-

strategy-proof cost-sharing method for the Steiner tree game. Let α denote the integrality

gap of this relaxation. Agarwal and Charikar [1] (see also Chapter 6) prove that for the

problem of multi-casting in undirected networks, the coding gain achievable using network

coding is precisely equal to α. The latter result holds when restricted to quasi-bipartite

networks as well. Consequently, for these networks, the previous best bound was 3/2 [84],

and our result improves it to 4/3.

Organization: In Section (2.2) we show the geometric theorem giving the lower bound,

and other results relevant to it. In Section(2.3), we demonstrate a dual-growing embedding

procedure for quasi-bipartite graphs. In Sections (2.4), (2.5) and (2.6) we give our 3/2,
√

2

and 4
3 factor primal-dual approximation algorithms respectively.

2.2 A Geometric Lower Bound and its Consequences

We first present a special case of the geometric theorem, for the sake of ease of presentation.

Let ∆k be the unit simplex in Rk, that is, ∆k := {x ∈ Rk :
∑

i∈[k] x(i) = 1}, where x(i) is

the ith coordinate of x. The corners of ∆k are the unit vectors in Rk. Let T be any Steiner

tree in ∆k connecting the corners, that is, T is a tree whose vertices are the corners and

any number of finitely many other points in ∆k. That is, T is a finite tree whose vertices

are picked from ∆k and contains the corners as a subset. For any point v in T , let degT (v)

denote the degree of the vertex in the tree T . Define the distance between two points to

be half the l1-distance, also called the variational distance; for any two points x, y ∈ ∆k,

d(x, y) := 1
2

∑k
i=1 |x(i)− y(i)|. (The half is so that two corners are at a distance of 1). For

any edge e = (x, y), let d(e) := d(x, y). Let d(T ) :=
∑

e∈T d(e). Then

Theorem 2.2.1 d(T ) ≥ k − 1.

2This might seem to contradict the assumption that the graph can be assumed to have all edges present.
To be more precise the the cost of an edge between any two Steiner vertices equals the cost of the shortest
path between the two and no two Steiner vertices are adjacent in the path.
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Note that if the vertices in T were only the corners, that is T was a spanning tree, then

the relation holds with equality since any two corners are at a distance of 1. The theorem

says that any other Steiner points from the simplex don’t improve upon the MST, w.r.t

d(). This is somewhat counter-intuitive, since in most geometric spaces, the Steiner points

do improve upon the MST. What is special here is the l1-distance, and the location of the

points on the simplex.

Proof: Let R = {e1, e2, . . . , ek} be the unit vectors in Rk. The proof follows by a careful3

counting argument. First of all, we get rid of the absolute values that occur in the l1

distance. For every edge (x, y) in T , and i ∈ [k], note that either x is on the unique path

from y to ei or y is on the unique path from x to ei, depending on who is nearer to ei in T .

If x is on the unique path from y to ei in T , then we lower bound |x(i)− y(i)| by x(i)− y(i)

(and vice versa).

d(T ) =
1
2

∑
(x,y)∈E

∑
i∈[k]

|x(i)− y(i)| ≥ 1
2

∑
(x,y)∈E

∑
i∈[k]

sgni(x, y) · (x(i)− y(i)),

where sgni(x, y) is 1 if x is nearer to ei than y in T , and −1 otherwise. Thus d(T ) is lower

bounded by a linear combination of the x(i)’s for every vertex x in T , and every coordinate

i.

Note that in the summation, x(i) occurs with a positive sign for each of its neighbor in

T which is farther from ei than itself. Thus, the coefficient of x(i) is 1
2 (degT (x)− 2), except

for ei(i), whose coefficient is 1
2degT (ei). Therefore,

d(T ) ≥ 1
2

∑
x∈T,i∈[k]

(degT (x)− 2)x(i) +
1
2

∑
i∈[k]

2ei(i)

=
1
2

∑
x∈T

(degT (x)− 2) +
∑
i∈[k]

1

= k − 1.

where the equality in the second line holds because
∑

i∈[k] x(i) = 1 and the last equality

follows from the fact that in a tree
∑

x∈T deg(x) = 2|T | − 2. 2

The general theorem allows two concessions on the location of the points: first, the points

need not be on the unit simplex, all points are in the λ-simplex ∆(λ)
k , defined as {x ∈ Rk :∑

i∈[k] x(i) = λ}, for some parameter λ > 0. The second is that the required points need

not be at the corners of the simplex. In particular, let z1, z2, · · · , zk be any k points in ∆(λ)
k

and T be any tree connecting these points using any finite number of other points in ∆(λ)
k .

Let d() be the variational distance defined above. Then,

Theorem 2.2.2 d(T ) ≥ γ(z) := (
∑

i∈[k] zi(i)− λ).

3An easy counting argument shows that d(T ) ≥ 1
2
(k − 1).
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Note that when the zi’s are corners of a unit simplex, the above implies Theorem (2.2.1).

Proof: Let e1, · · · , ek now be the corners of the λ-simplex. From T , construct the tree

T ′ connecting the point zi to ei. Note that the distance between zi and ei is d(zi, ei) =

λ − zi(i). Theorem (2.2.1) can be easily modified to give d(T ′) ≥ (k − 1) · λ. Thus,

d(T ) = d(T ′)−
∑

i∈[k](λ− zi(i)) ≥ (k − 1) · λ−
∑

i∈[k](λ− zi(i)) = γ(z). 2

Theorem (2.2.2) can be used to get a lower bound on the minimum Steiner tree in a

graph G = (R∪S,E) as follows. Given G, suppose |R| = k and R = [k]. Embed the vertices

of the graph onto z : V → ∆(λ)
k , and call an embedding valid if for all edges (u, v) ∈ E,

c(u, v) ≥ d(zu, zv). Henceforth, we will abuse notation and denote d(zu, zv) as d(u, v). Now

given any valid embedding z, for any Steiner tree T of G, c(T ) ≥ d(T ) ≥ γ(z), where d(T )

is the length of the tree formed by the embedded points. In particular, we have

Theorem 2.2.3 If z is a valid embedding of G, then OPT ≥ γ(z).

2.2.1 Connections to the bidirected cut relaxation

For any embedding of vertices, Theorem (2.2.3) provides a lower bound on the minimum

Steiner tree in the graph. Thus the best lower bound is given by max {γ(z) : z is valid}.
The above maximum can be obtained by solving the following linear program which we call

the simplex-embedding LP.

max {γ(z) =
∑
i∈[k]

zi(i)− λ : (SimpEmb)

∑
i∈k

zv(i) = λ, ∀v ∈ V ;

zv(i)− zu(i) ≤ di(u, v) ∀i ∈ [k], (u, v) ∈ E;

zu(i)− zv(i) ≤ di(u, v), ∀i ∈ [k], (uv) ∈ E;
1
2

∑
i∈[k]

di(u, v) ≤ c(u, v), ∀(u, v) ∈ E;

zv(i), di(u, v) ≥ 0, ∀v ∈ V, i ∈ [k], (u, v) ∈ E}

Given input graph G, let SE(G) denote the maximum of the above LP. In the next

theorem we prove that for any graph G and cost vectors c, SE(G) = BCR(G). That is, the

lower bound obtained by the above LP and the bidirected cut relaxation is the same. The

proof uses the dual of the simplex-embedding LP which is as follows (after a scaling step).
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SE(G) = minimize {
∑

(u,v)∈E

c(u, v)xuv : (SE-Dual)

xuv ≥ fi(uv) + fi(vu), ∀i ∈ [k], (u, v) ∈ E;∑
v:(u,v)∈E

(fi(uv)− fi(vu)) ≥ α(v), ∀i ∈ [k], v ∈ V \ i;

∑
v:(i,v)∈E

(fi(iv)− fi(vi)) ≥ α(i) + 2, ∀i ∈ [k];

∑
v

α(v) = −2;

fi(uv), fi(vu), xuv ≥ 0, ∀(u, v) ∈ E, i ∈ [k]}.

To interpret LP(SE-Dual), one can think of xuv as capacity of edge (u, v). There are

k circulations — fi for every required vertex i each satisfying the capacity constraint and

moreover, the supplies (excess flows) for fi at every vertex v is α(v) (it could be negative)

except at the vertex i, where it is α(i) + 2. The last equality constraint implies the total

supplies sum up to zero, as it should be in a circulation.

We now show directly that LP(SE-Dual) is a relaxation of the minimum Steiner tree problem

thus giving a direct proof of Theorem (2.2.3). Given any Steiner tree T , consider the

following solution to LP(SE-Dual): xuv = 1 for all (u, v) ∈ E(T ), and 0 for all other edges;

α(v) = degT (v) − 2 for all v ∈ V (T ) and 0 for all other vertices. Note that
∑

v α(v) = −2

and
∑

(u,v)∈E c(u, v)xuv is the cost of the tree. It remains to define the circulations. For

required vertex i, consider the unique out-tree rooted at i formed by directing all edges of T

away from i. For every edge (u, v) in T , let fi(uv) or fi(vu) be 1 depending on the direction

of the arc in the out-tree. All other arcs carry 0 circulation. Note that for any vertex v in the

tree other than i, the total flow coming in is 1, and flow going out is degT (v)− 1; while for

i, the total flow going out is degT (i). Thus the circulation satisfies the supply constraints.

This shows that LP(SE-Dual) is a relaxation of the minimum Steiner tree problem.

The following theorem shows the equivalence between LP(SE-Dual) and LP(BCR). In

[43], Goemans and Myung provide two vertex weighted relaxations which are equivalent to

the bidirected cut relaxation. Although our relaxation is different, our proof of equivalence

follows on similar lines.

Theorem 2.2.4 Given any graph G, SE(G) = BCR(G).

Proof: Theorem (2.2.4) follows by showing there exists a feasible solution to LP (BCR) of

value Γ if and only if there exists a feasible solution to LP (SE-Dual) of value Γ. Note that

LP(BCR) is the following:
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min{
∑
e∈ ~E

c(e)x~e : x(δ+(U)) ≥ 1, ∀U ∈ U ; x ≥ 0}

LP (BCR) ≥ LP (SE-Dual): Let {y ~(u,v)
} ~(u,v)∈ ~E be a feasible solution of LP (BCR) of cost Γ

with root r. The corresponding solution to LP (SE-Dual) is as follows: xuv := y ~(u,v)
+ y ~(v,u)

and α(v) is the supply at vertex v which is the difference of the outgoing y ~(v,u)
’s and the

incoming y ~(u,v)
’s, except at r where α(r) is the supply−2. This ensures the sum of α’s is

−2. What remains is to describe the flows. The flow corresponding to r just mimics the

y ~(u,v)
’s. That is fr(uv) := y ~(u,v)

and fr(vu) := y ~(v,u)
, for all edges (u, v). It is easy to

see that every constraint is till now satisfied. To get the flows corresponding to another

required vertex j, we use the fact that the minimum r-j cut in the digraph with arc set ~E

and capacities y ~(u,v)
’s is at least 1 since the solution is feasible for LP (BCR). This implies

there is a standard flow grj from r to j in this digraph. The flow fj is found by subtracting

2grj from fr.

To be precise, for each edge (u, v) we set

fj(uv) := max[0, fr(uv)− 2grj( ~(u, v))] + max[0, 2grj( ~(v, u))− fr(vu)]

and

fj(vu) := max[0, fr(vu)− 2grj( ~(v, u))] + max[0, 2grj( ~(u, v))− fr(uv)]

It is easy to check that fj satisfies the constraints of LP(SE-Dual). Since grj increases the

supply of j by 2 and decreases that of i by 2, the supply constraints are guaranteed. The

capacity constraints are guaranteed by noting

fj(uv) + fj(vu) ≤ max[(fr(uv) + fr(vu)), (fr(uv)− fr(vu) + 2grj( ~(v, u)))]

both of which are less than y ~(u,v)
+ y ~(v,u)

= xuv.

Thus the solution is feasible for LP(SE-Dual) and is of value Γ.

LP(SE-Dual) ≥ LP(BCR): Let ({x}, {fi}, {α}) (respectively over edges, arcs and ver-

tices) be a solution to LP (SE-Dual). WLOG by adding circulations if necessary, we can

assume for all edges (u, v), and i we have xuv = fi(uv) + fi(vu). For LP(BCR), let r be the

chosen root. Then the solution is: for all edges (u, v), y ~(u,v)
:= fr(uv) and y ~(v,u)

:= fr(vu)

To see feasibility for LP (BCR), we must show across any cut S separating r and a required

vertex j, we have
∑

~(u,v)∈δ+(S)
fr(uv) ≥ 1. To see this, consider the flow grj : the difference

between fr and fj . To be precise:

grj( ~(u, v)) = max[0, fr(uv)− fj(uv)] + max[0, fj(vu)− fr(vu)]

Observe that the supply of the flow grj on every vertex other than r or j is 0 and on r

is 2 and j is −2. This is because the supplies of fr and fj match on every vertex other than
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r and j where they differ by 2. Thus it is a standard flow from r to j of value 2, implying

across any cut S as above,
∑

~(u,v)∈δ+(S)
grj( ~(u, v)) ≥ 2. The proof ends by noting for any

arc ~(u, v), grj( ~(u, v)) ≤ 2fr(uv), because each term in the above definition of grj , is less

than fr(uv). The second term is less since fr(uv) + fr(vu) = xuv ≥ fj(vu). 2

What the above theorem shows is that the LP(SimpEmb) can be interpreted as a ge-

ometric dual to the bidirected cut relaxation. In Section 2.3 we explain how we design

algorithms using the primal-dual schema with this new geometric dual.

2.2.2 A stronger LP relaxation

Note that in LP(SE-Dual), the α(v)’s are free variables. This is because the interpretation of

α(v) as degT (v)− 2 implies that for leaves α(v) could be negative. However, in any optimal

Steiner tree, no Steiner vertex would be a leaf. Therefore, we could add the constraint

(α(v) ≥ 0, ∀v ∈ S), and the new relaxation, call it LP(SE-Dual2), would still be a feasible

relaxation for the minimum Steiner tree problem.

minimize {
∑

(u,v)∈E

c(u, v)xuv : (SE-Dual2)

xuv ≥ fi(uv) + fi(vu), ∀i ∈ [k], (u, v) ∈ E;∑
v:(u,v)∈E

(fi(uv)− fi(vu)) ≥ α(v), ∀i ∈ [k], v ∈ V \ i;

∑
v:(i,v)∈E

(fi(iv)− fi(vi)) ≥ α(i) + 2, ∀i ∈ [k];

∑
v

α(v) = −2;

fi(uv), fi(vu), xuv ≥ 0, ∀(u, v) ∈ E, i ∈ [k];

α(v) ≥ 0, ∀v ∈ S}. (4)

The corresponding change in the simplex-embedding LP is that for the Steiner vertices,

the equality constraint
∑

i∈[k] zv(i) = λ is relaxed to an inequality constraint
∑

i∈[k] zv(i) ≥
λ. Call this new LP, LP(SimpEmb2). In other words, the Steiner vertices are allowed to em-

bed “above” the simplex. It is not too hard to extend Theorem(2.2.2) to capture this as well.

It is clear that the optimum value of LP(SimpEmb2) is at least that of LP(SimpEmb) and

thus it gives as good a lower bound. In fact, the following example in Figure(2.2.2) shows

that on some instances the former is strictly better, and thus LP(SE-Dual2) is strictly a

better relaxation than LP(SE-Dual) and also by Theorem(2.2.4), better than LP(BCR).

Nevertheless, the worst integrality gap known for LP(SE-Dual2) is also 8/7. Moreover,

in the remainder of the paper we will investigate LP(SimpEmb) and thus all our results will
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Figure 2: Integrality gap example for bidirected cut relaxation

Integrality gap of the bidirected cut relaxation for the graph is known to be 16/15 (due to Goemans).
The middle figure shows an embedding on the simplex attaining a value of 15. The figure to the
right shows how we can get a higher value if we allow Steiner vertices to move above the simplex.
Note that the Steiner vertex at the center is not on the 16-simplex.

imply results for the bidirected cut relaxation.

2.2.3 Primal-Dual schema with the geometric dual

All the algorithms we give for the minimum Steiner tree problem fall in the following primal-

dual schema: we construct a Steiner tree T and a feasible embedding z of the vertices of the

graph onto a λ-simplex; moreover we prove c(T ) ≤ ρ · γ(z), and thus get a ρ-approximation

for the Steiner tree problem as well as an upper bound on the integrality gap of LP(SE-Dual)

and LP(BCR).

In the remainder of the paper we restrict ourselves to the special class of graphs called

quasi-bipartite graphs. Such graphs do not have Steiner-Steiner edges. The best known

upper bound on the integrality gap of LP(BCR) on such graphs was 3/2[84].

For such graphs, we first describe the dual growing procedure, Embed, which gives us

a feasible embedding of vertices. Embed has the property that on quasi-bipartite graphs,

if the MST on the required vertices is optimal, then it returns an embedding z equalling

the cost of the MST on terminals. Otherwise, it returns a Steiner vertex v which helps the

MST on the terminals.

The Embed algorithm stops after returning the first Steiner vertex. In fact, one can

extend Embed, however a natural extension doesn’t give good enough dual (the dual ob-

tained can be as small as 1/2 of the cost of the optimal tree). In Section 2.4, we show how

to modify Embed and give a fast and simple primal-dual algorithm achieving the upper

bound of 3/2 for quasi-bipartite graphs. The algorithm runs in near linear time compared

to the previous weakly-polynomial time algorithm of Rizzi [85].

In Sections 2.5 and 2.6, we use Embed in rounds (with a processing step before each

round) to get
√

2 and 4
3 factor approximations respectively for quasi-bipartite graphs. The

√
2 algorithm runs in strongly polynomial time, while the 4/3 algorithm takes the same
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time as Rizzi’s algorithm.

2.3 The Embed algorithm

In this section, we describe the dual growing procedure Embed which given a quasi-bipartite

graph G and a cost function c does the following.

Case 1: If MST (R) is the optimal Steiner tree, then it returns a feasible embedding z

such that γ(z) = MST (R). Note, in this case, MST (R) = OPT = BCR, since

MST (R) ≥ OPT ≥ BCR ≥ γ(z).

Case 2: Or, returns a Steiner vertex v whose addition strictly helps the MST on R, that

is, MST (R ∪ v) < MST (R). We say that Embed crystallizes v.

The following theorem is immediate.

Theorem 2.3.1 Given a quasi-bipartite instance G, if the addition of no Steiner vertex

reduces the cost of MST (R), then MST (R) = BCR(G). In particular the integrality gap

for the instance is 1.

Note that the theorem implies the following important property about the bidirected cut

relaxation for quasi-bipartite graphs: If the minimum spanning tree is optimal, then the

relaxation is exact. We are now ready to describe Embed.

The following is a continuous description of the algorithm, which can be easily dis-

cretized. The algorithm has a notion of time. It starts at time t = 0 and time increases at

unit rate. At any time t, all required vertices are on the t-simplex, all Steiner vertices are

below the t-simplex (sum of coordinates is less than t). The algorithm maintains a set of

terminal-terminal edges T , which form a forest at any time t. Let K denote a connected

component of required vertices formed with the edges of T . At time t = 0, the algorithm

starts with T = ∅ and the components are singleton required vertices. All vertices start at

the origin at t = 0. Before describing how the embedding at time t is formed, we make a

few definitions.

Definition 1 At any point of time, d(u, v) is the half-l1 distance between zu and zv, that is,

d(u, v) := 1
2

∑
i |zu(i)−zv(i)|. Another useful notation would be d+({u, v}) :=

∑
i∈Su(zu(i)−

zv(i)), where Su are the coordinates in which u dominates v. That is, Su := {i : zu(i) ≥
zv(i)}. Note that d+ takes an ordered pair of vertices. Also observe that if zu and zv are

both on the simplex, then d+({u, v}) = d+({v, u}) = d(u, v).

Definition 2 Given a vertex v and a component K, let d(v,K) := minu∈K d(u, v). Simi-

larly define d+({v,K}) and d+({K, v}). For any two components K,L ∈ K, let c(K,L) :=

minu∈K,v∈L c(u, v). An edge (u, v) is tight if d(u, v) = c(u, v).
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Definition 3 A Steiner vertex v links to a component K if there exists i ∈ K so that

d+({i, v}) = c(i, v). The edge (i, v) is called a link of v to K.

Algorithm 1 Embed

Required vertices: For each component K and required vertex i ∈ K, the algorithm

increases the jth coordinate of i at rate 1/|K|, for each j ∈ K. Clearly, this will

keep required vertex i on the t-simplex. When an edge (i, j) goes tight, the algorithm

merges the components containing i and j and adds (i, j) to T . It is instructive to

note that when restricted to only required vertices, this actually mimics Kruskal’s

MST algorithm.

Steiner vertices: For each Steiner vertex v, the algorithm increases its coordinates de-

pending on the components it has linked to. For each component K that v is linked

to, the coordinates of v corresponding to K increase at rate 1/|K|. Thus, henceforth

d+({i, v}) remains the same for all terminals i ∈ K. Note that at t = 0, the Steiner

vertex is linked to no component and remains at the origin till t = c(i, v), where i is

the closest terminal to v.

The algorithm terminates if the number of components becomes 1 (Case 1) or a Steiner

vertex v hits the simplex (Case 2). In Case 1, the algorithm runs the following projection

step.

Projection Step: If Case 1 happens at time t = λ, for every Steiner vertex v and coor-

dinate j, zv(j) := zv(j) λP
i zv(i) . The coordinates of the required vertices are kept the

same.

The embedding procedure is described in Algorithm 1. The example in Figure 2.3

illustrates the algorithm on a graph with three required vertices.

We now show Algorithm 1 satisfies the conditions mentioned at the beginning of the

section. In Case 1, the algorithm returns a tree T and embedding z. The way the required

vertices are moved, it is clear that no terminal-terminal edge is over tight. To see that

terminal-Steiner edges are not over tight, note that before the projection step, we have for

every terminal i and every Steiner vertex v, d+({i, v}) ≤ c(i, v) (otherwise v links to the

component containing i). After projection step, the coordinates of the Steiner vertex only

increase, which means d+({i, v}) only decreases. Moreover, since v is on the simplex, we

have d+({i, v}) = d(i, v) and thus d(i, v) ≤ c(i, v).

We now need to show that tree T has cost γ(z). In fact we prove something stronger.

Given any connected component K, denote the restriction of T to K as T [K].
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Figure 3: Snapshots of the running of Embed on the graph above at times t = 2, 3, 4, 5.

Snapshots of the running of Embed on the graph above at times t = 2, 3, 4, 5. At time t = 2, the
Steiner vertex v links to the required vertices x and y, and increases its x and y coordinates at rate
1. At time t = 3, x, y merge. The edge (x, y) goes into Remove(v). At time t = 4, v links to z, and
moves in the zth coordinate as well. At t = 5, it hits the 5-simplex, terminating the algorithm. The
tree shown with dotted lines pays exactly for the dual and is cheaper than the MST.

Lemma 2.3.2 At any instant of time t, for any connected component K,

c(T [K]) =
∑

i∈K zi(i)− t.

Proof: At time t = 0, the lemma holds vacuously. Since the quantity
∑

i∈K zi(i) increases

at the same rate as time, we need to prove the lemma only in the time instants when two

components merge. Suppose K,K ′ merge at time instant t due to edge (i, j) which comes in

the tree, with i ∈ K, j ∈ K ′. Note d(i, j) = c(i, j) = t. So for the new connected component

K∪K ′,
∑

i∈K∪K′ zi(i)−t =
∑

i∈K zi(i)−t+
∑

i∈K′ zi(i)−t+t = c(T [K])+c(T [K ′])+c(i, j) =

c(T [K ∪K ′]). 2

In Case 2, when v hits the simplex, the algorithm returns v as the Steiner vertex helping

the minimum spanning tree. In fact, we show that if v is linked to K1, · · · ,Kr when it hits

the simplex, then v helps the MST of the required vertices in P =
⋃
lKl. This suffices since⋃

l T [Kl] can be extended to an MST of R.

With each Steiner vertex v, we associate a subset of edges Remove(v) of T . Suppose v

is linked to K and K ′ and these merge at time t, due to edge (i, j), i ∈ K and j ∈ K ′. At

this point, (i, j) is added to the set Remove(v). Thus, a Steiner vertex may have more than

one link into the same component, but for each extra link, there is an edge in Remove(v).

Let Tv be the tree formed by adding all the links incident at v to
⋃
l T [Kl] and deleting

Remove(v). The proof of the following lemma is very similar to that of Lemma (2.3.2).
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Lemma 2.3.3 At any instant of time, c(Tv) =
∑

i∈P zi(i)−
∑

i∈P zv(i).

Proof: At time t = 0, the lemma holds vacuously. Since the quantity
∑

i∈P zv(i) increases

precisely at the rate
∑

i∈P zi(i), we need only check the lemma in when v links to a new

component K. Suppose this happens at time t. This means, there is a terminal j ∈ K with

c(v, j) = t. Note that
∑

i∈K zi(i) = t, by the way required vertices move. Thus the increase

in both left-hand side and right-hand side is t, and thus equality holds. 2

Hence when v hits the simplex,
∑

i∈P zv(i) = t, and so c(Tv) =
∑

i∈P zi(i) − t <

MST (P ). Thus, we have proved the following theorem.

Theorem 2.3.4 Given a quasi-bipartite graph G, the algorithm Embed either returns a

terminal spanning tree T and feasible embedding z with c(T ) = MST (R) = γ(z); or returns

a Steiner vertex v with MST (R ∪ v) < MST (R).

Remark: Note that the above algorithm and analysis do not use the fact the cost satisfies

triangle inequality. We would need this for our algorithms in Sections 2.5 and 2.6 to work.

2.4 A 3
2
-factor approximation algorithm

The dual growing procedure Embed suggests the following primal-dual algorithm: At each

step, maintain the connected components of T ; when a Steiner vertex v hits the simplex,

merge all the components v was linked to by adding v and the various links connected to it

to T and continue the dual growing procedure.

However, as the example in Figure(2.4) suggests, such an algorithm cannot give anything

better than a factor 2.

...

...
Kl,k}

Figure 4: Example showing drawback of Embed

In the above graph, the black vertices are terminals and the white vertices are Steiner. There are l
Steiner vertices connected to k terminals via a complete bipartite graph Kl,k. Think of l >> k >> 1.
There are l other terminals forming a perfect matching with the l Steiner vertices. Each edge is of
length 1. Note that the optimum Steiner tree costs at least 2l. In the procedure Embed, all the
Steiner vertices hit the t-simplex simultaneously at time t = 1 + 1

k . Subsequently, no more dual can
be grown and thus the total dual obtained is around k + l.

The above example suggests a shortcoming of the Embed procedure: it grows the

coordinates of all the Steiner vertices, although in any tree, at most one Steiner vertex is

useful. To be precise, the k vertices at the bottom increases the coordinates of all the l

24



Steiner vertices at a very high rate (at rate k), although only one of them is useful for

connecting the k terminals.

The main idea behind the 3/2-factor algorithm is it uses Embed to recognize useful

Steiner vertices early (not wait till they hit the simplex) and on recognizing merge the

components linked to the vertex so that these components do not raise the coordinates of

other Steiner vertices.

In short, the algorithm runs Embed until some Steiner vertex is linked to three distinct

connected components. If that is the case, it merges all the components, and adds the

Steiner vertex and the three links to the tree. The idea is that this Steiner vertex should

be helpful. If some Steiner vertex now hits the simplex, it must do so being connected to

only two components. In this case, the algorithm merges these two components, and adds

the Steiner vertex and the two links to the tree, and continues. The algorithm terminates

when there is a single component. We state the algorithm formally in Algorithm 2. We use

the definitions 1,2 and 3 from Section 2.3.

The algorithm maintains a set of edges and vertices, T , which is initialized to E(T ) = ∅
and V (T ) = R. At every time interval t, the algorithm maintains a family of connected

components K of T ; and an embedding z : V → Rk
+ of the vertices. At time t = 0, all the

vertices of the graph are embedded at the origin. Time increases at rate 1.
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Algorithm 2 Smart-Embed

Until a Merge Step happens or the number of components become 1 do:

Component Vertices: For each component K ∈ K, and for each terminal i ∈ K ∩R, the

algorithm increases the ith coordinate of every vertex v ∈ K (required or Steiner) at

rate 1/|K ∩R|.

Other Vertices: For each Steiner vertex v not in any component, the algorithm increases

its coordinates depending on the components it has linked to. For each component K

that v is linked to, the coordinates of v corresponding to K increase at rate 1/|K∩R|.

Merge Step: A Merge Step happens when one of the three events take place:

1. For some two components K,L ∈ K, we have c(K,L) = t. In this case, we merge

K and L into one component. All Steiner vertices linked to either K or L now link

to the new component. Moreover, if a Steiner vertex is linked to both K and L, the

costlier of its links to K and L is removed. This maintains that a Steiner vertex has

only one link to a component. Let (u, v) be the edge which achieves c(K,L). Add

(u, v) to T .

2. Some Steiner vertex v not in any component hits the t-simplex, that is,
∑

i∈[k] zv(i) =

t. In this case, merge v and all the components it links to into one single component.

For each component K, v links to, add the cheapest links of v to K to T . Add v to

T as well.

3. Some Steiner vertex v not in any component links to three components Ki,Kj ,Kl. In

this case, merge v and Ki,Kj ,Kl into one component. Once more all Steiner vertices

linked to either Ki,Kj or Kl now link to the new component. Steiner vertices which

link to two out of the three, discard their costlier link, as in Step 1. Add v and its

links to Ki,Kj ,Kl to T . Also project v onto the t-simplex as in Embed.

It is clear that the algorithm returns a Steiner tree T in the end. Moreover, the feasibility

of the embedding returned by Embed also implies the feasibility of the embedding z returned

by Smart-Embed. We finish the section with the following theorem which shows that the

tree is within 3/2 of the optimal.

Theorem 2.4.1 The algorithm Smart-Embed returns a tree T and a feasible embedding

z, with c(T ) ≤ 3
2γ(z).

Proof:

We show that at any time t, for any connected componentK we have c(T [K]) ≤ 3
2(
∑

i∈K∩R zi(i)−
t). Henceforth, we abuse notation and denote c(T [K]) by c(K). The proof is by induction
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on t. At t = 0, the inequality holds vacuously. Moreover it is enough to check that the

inequality is preserved after every merge step as between merge steps both sides of the

inequality remain unchanged.

Suppose at time t, a merging of type 1 occurs: components K and L merge into one com-

ponent, and the edge (u, v) is added to T . By induction we have c(K) ≤ 3
2(
∑

i∈K∩R zi(i)−t)
and c(L) ≤ 3

2(
∑

i∈L∩R zi(i)− t). The cost of the new component (K ∪ L) increases by the

cost of the edge (u, v). Note that by definition, c(u, v) = t. That is,

c(K ∪ L) = c(K) + c(L) + t ≤ 3
2

(
∑

i∈K∩R
zi(i)− t) +

3
2

(
∑
i∈L∩R

zi(i)− t) + t (5)

≤ 3
2

(
∑

i∈(K∪L)∩R

zi(i)− t)

Suppose at time t, a merging of type 2 occurs: the Steiner vertex v hits the simplex. First

observe that there are exactly 2 components v is linked to. The algorithm maintains that a

Steiner vertex is linked to at most 2 components. Moreover, if there is only 1 component v

is linked to, the rate of growth of sum of its coordinates is the same as that for the terminals

and the Steiner vertex won’t hit the simplex.

Call the two components K and L. Let the links to K and L be (v, i) and (v, j)

respectively. Without loss of generality let (v, i) be the shorter one with c(v, i) =: a ≤
c(v, j) =: b ≤ t. Note that the increase in the left hand side is a+ b. That is, c(K ∪L∪v) =

c(K) + c(L) + (a + b). Now note that whenever a link from v is removed (this happens

only when two components linked to the same Steiner vertex merge), we always remove

the costlier link from v. Thus, the smaller link (v, i) is in fact the first link of v. That is,

before time a, the coordinates of v were all 0. By the running of the algorithm, a Steiner

vertex is linked to at most two components at all times. Thus, the rate of increase of sum

of coordinates is at most 2. Therefore at time t when the vertex hits the simplex, the sum

of coordinates (which is t since it hits the simplex) is at most 2(t− a). This gives a bound

on t: 2(t− a) ≥ t implying t ≥ a/2. Furthermore, note that t ≥ b since the terminal j links

to a vertex v at time c(j, v) = b which must be before t. This gives us

c(K ∪ L ∪ v) ≤ c(K) + c(L) +
3
2
t ≤ 3

2
(

∑
i∈(K∪L)∩R

zi(i)− t)

where the last inequality follows as in Inequality 5.

Suppose a merging of type 3 happens at time t: a Steiner vertex links to components

K,L,M via links (v, i), (v, j) and (v, l) respectively. Each of these links have cost less than

t. Thus the cost of the new component

c(K ∪ L ∪M ∪ v) ≤ c(K) + c(L) + c(M) + 3t ≤ 3
2

(
∑

i∈(K∪L∪M)

zi(i)− t)
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where the last inequality follows from by induction on the components K,L,M . This

completes the proof. 2

2.4.1 Implementation in Õ(|E|) time

We now describe an implementation of the Algorithm Smart-Embed which runs in almost

linear time (O((|E| + |V |) log |V |). Note that Smart-Embed has a notion of time, and

this implementation mimics the same by only maintaining the times at which the merge

operations of Smart-Embed take place.

For every edge (u, v) ∈ E, we maintain a variable t(u, v) := c(u, v) the cost of the

edge. The idea is that the edge (u, v) comes to play in Smart-Embed precisely at time

t = t(u, v). For instance, if the vertices u and v are required, at time t = t(u, v) the

components containing them merge. Moreover a Steiner vertex v links to a component at

time t(u, v) for some terminal u in the component.

We also maintain a time-variable t(v) for every Steiner vertex v which is not in any

component. t(v) stands for the time at which the Steiner vertex v will hit the simplex if

no other merge steps occur in between. Initially t(v) is set to ∞ (which for implementation

issues can be assumed to be an integer larger than sum of all edge weights).

We maintain a list L of t(u, v)’s (for all edges (u, v)) and t(v)’s (for Steiner vertices

v). These are precisely the set of times at which the merge steps of Smart-Embed take

place. We remark that the list is not static as t(v)’s can change as the algorithm progresses.

However, we always maintain L sorted in non-decreasing order of times. The implementa-

tion reads the list L in the sorted order and depending on the entry read, and whenever

applicable, performs one of the three merge steps of Smart-Embed. We show that these

merges can all be made to run with an amortized O(log |V |) time per entry in L, and since

there are at most O(|E|+ |V |) entries in L, the implementation runs in almost linear time

of O((|E|+ |V |) log |V |).

Data Structures:

We now describe the data structure used for the implementation. The data structures are

similar to disjoint set data structures implemented via linked lists (see for example, [28]).

These are used in an implementation of Kruskal’s minimum spanning tree algorithm.

For each vertex v of the graph, we maintain 4 pointers: head - which points to the

connected component containing v, next - which points to the next vertex in v’s connected

component, copy1 and copy2 - these point to two copies of the same vertex, as we see these

will be used by only Steiner vertices and for terminals the two pointers will always be null.

The components K ∈ K are stored as linked lists of vertices. For every component,

one of the vertices will be an identifier vertex. Each vertex in the component will point to

this identifier vertex via their head pointers. Thus, given a vertex v, the component which
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contains it can be found in O(1) time. Initially, we start with |V | linked lists, one for each

vertex. However, there are only |R| (number of terminals) components corresponding to

the terminals; the head pointers of the Steiner vertices are initialized to null. For each

component, we also maintain the size of the component. We also maintain a pointer tail

which points to the last vertex in the list.

For each Steiner vertex v ∈ S, we store two copies of it, call them vA and vB. These

correspond to the two possible components a Steiner vertex could link to. Each of these

copies are linked with the original vertex via their copy pointers. Whenever a Steiner vertex

v is picked in a component, these copies are deleted and the Steiner vertex is treated like a

terminal henceforth.

For every component K, we maintain another linked-list, Steiner(K), which contains

the list of all Steiner vertices K is linked to. The list contains only copies of the Steiner

vertices and not the original Steiner vertex. Steiner(K) is stored similarly as K is stored:

a linked list with all Steiner vertices pointing to an identifier vertex for Steiner(K). The

lists K and Steiner(K) are doubly linked to each other for all K, thus given a Steiner

vertex v one can find the components to which it is linked to in O(1) operations. In fact,

we will call this function Link(v) which returns a set (which we also call Link(v), abusing

notation) of (identifiers of) connected components linked to v. Link(v) is of at most size

two, for all Steiner vertices v. For any Steiner vertex v, we also maintain a set of edges

link-edges(v) which contains the unique links of v to the various components in Link(v).

To calculate t(v), we maintain a bunch of variables for every Steiner vertex v. We store

a variable z(v) for every Steiner vertex which is supposed to contain the sum-of-coordinates

of v as in Smart-Embed. z(v) is initialized to 0 for every Steiner vertex. We maintain a

variable last(v), which is the last time when a modification had to be made to z(v). These

will correspond to instances when v links to a component, or when two components linked

to v merge. last(v) is also initialized to 0. We maintain rate(v), which is the rate at which

z(v) increases since last(v). rate(v) will always equal to |Link(v)|. Using last(v), rate(v)

and z(v), at any time t(u, v), one can easily figure out t(v): if rate(v) = 1, t(v) = ∞,

otherwise t(v) = t(u, v)− z(v).

We now describe how Smart-Embed can be implemented using these data structures. The

algorithm details are in Algorithm 3. Initially, the set of components K is initialized to be

all singleton terminals. That is, all terminals have their head pointer pointing to themselves.

All t(v)’s are set to∞. The list L is read in non-decreasing order. If the entry read is t(u, v)

for some edge (u, v) and u and v are not in the same component, then the following is done.

If u and v are both terminals, the components corresponding to them are merged and (u, v)

is added to the tree. The set of Steiner vertices Steiner(K(u)) and Steiner(K(v)) are

also merged and for Steiner vertices v linked to both K(u) and K(v), z(v), last(v), rate(v)
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and t(v) are modified. If u is a terminal and v is a vertex not linked to K(u), then either

v links to K(u) if |Link(v)| ≤ 1, or a merge step corresponding to merge step 3 of Smart-

Embed takes place. If the entry of L read corresponds to t(v) for some Steiner vertex v,

then it means v has hit the simplex in Smart-Embed. The components in Link(v) are

merged and the link-edges link-edges(v) are added to the tree. The algorithm terminates

when there is a single component formed.

What remains to be described is how to perform the merge steps in O(log |V |) amortized

time per entry of L. It is known that if the sets to be merged are always disjoint, then

this can be done using the disjoint-set data structures. In our case, any two components

are disjoint. However, for two components K1 and K2, the list of linked Steiner vertices

Steiner(K1) and Steiner(K2) might not be disjoint and the above argument for disjoint

data structures fail. Nevertheless, we can show that the total time taken by the merge steps

can be bounded by O(|E|+ |V | log |V |). The main idea is this: if the two sets Steiner(K1)

and Steiner(K2) have a “big” enough union, then the argument for disjoint set data

structures can be made to go through. If the union is not “big”, then the intersection must

be “big”. Note that a vertex v in the intersection of Steiner(K1) and Steiner(K2) is a

vertex linked to both K1 and K2. When two such components merge, the costlier of the

two link-edges in link-edges(v) is discarded and this never plays a role in the algorithm

subsequently. Thus, all the operations (which are only O(1)) made on v in this merge

operation can now be charged to the costlier edge in link-edges(v).
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Algorithm 3 Implementation of Smart Embed

1. Initialization:

• For every vertex u ∈ V , create linked list containing u with pointers head, next,
copy1, copy2. For terminals i ∈ R, head points to itself, next is initialized to
null, and the two copy pointers are always set to null. We also initialize the tail
pointers for each to point to itself.

• For Steiner vertices v ∈ S, head and next both point to null. For each v, create
two linked lists vA, vB which are the two copies of v. The two copy pointers of v
point to vA and vB respectively. All pointers of the copy nodes are set to null.

• For every Steiner vertex v ∈ S, create linked list Link(v) containing two pointers
initially set to null. Also create a list link-edges(v) initially set to null. Initialize
variables z(v) to 0, last(v) to 0, rate(v) to 0 and t(v) to ∞.

• Initialize the tree T to be a linked list of edges initialized to an empty list. L be
the list of t(u, v)’s and t(v)’s. Along with the value of the t(), we also store the
edge or the Steiner vertex responsible for it. L can be stored as a heap so that
insertion in sorted can be done in O(log |L|) time and the list can be read out in
a non-decreasing order with O(1) time per read.

2. Read the entries of L in non-decreasing order. If the entry read corresponds to a
Steiner vertex (that is t(v) for some Steiner vertex v), then merge the components v
is linked to along with the Steiner vertex v: For K1,K2 ∈ Link(v), Merge(K1,K2, v).
Delete the copies vA, vB, delete t(v) from L, and add the links of v to the tree, that
is, append link-edges(v) to T .

3. If the next term in the list L is the edge (u, v), then

(a) If u and v are in the same component, delete t(u, v) from L and proceed to the
next entry.

(b) If u ∈ R, v ∈ R, merge the two components containing them and add the edge
to the tree: Merge(K(u),K(v)) and append (u, v) to T .

(c) If u ∈ R, v ∈ S (or vice-versa) and K(u) /∈ Link(v), that is, v is not already
linked to the component containing u

i. If K(v) is not null, merge the components containing u and v and add the
edge (u, v) to the tree: Merge(K(u),K(v)) and append (u, v) to T .

ii. If |Link(v)| = 2, that is, v is already linked to 2 other components, merge
those with the component containing u and add v to the new component,
Merge(K(u),Link(v), v). Add the edge (u, v) and edges in link-edges(v)
to the tree: append (u, v) and link-edges(v) to T . Also delete the copies
of v and delete t(v) from L, as in Step 2.

iii. If |Link(v)| ≤ 1, then do the following: append the edge (u, v) to
link-edges(v); append a copy of v (choose arbitrarily if both copies have
their heads pointing to null) to Steiner(K(u)); append K(u) to Link(v);
recalculate z(v) = z(v) + rate(v) · (t(u, v)− last(v)), last(v) = t(u, v) and
rate(v) = rate(v) + 1. Recalculate t(v) to ∞ if (new) rate(v) = 1, or
t(v) = (t(u, v)− z(v)) and place it in the correct order in L.
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What remains to be described in the implementation is the Merge(K1,K2) step. When

two components merge, a number of things needs to be taken care of: firstly, the two linked

lists corresponding to the components need to be merged. Furthermore, the linked lists

Steiner(K1) and Steiner(K2) need to be merged and care needs to be taken that the

duplicate copies of the same Steiner vertex should be removed. Moreover, for precisely these

Steiner vertices which were linked to both K1 and K2, the variables z(v), last(v), rate(v)

and t(v) need to be recalculated.

The merge step is very similar to the weighted-union step used in disjoint-set data

structures. Since our sets (Steiner(K1) and Steiner(K2)) might not be disjoint, we need

a little more care. However, recognizing the duplicates only takes constant times more

time since the recognition requires going through the vertices of one component, and the

weighted union step does precisely that.

We now describe merge step in Algorithm 4.

Algorithm 4 Merge(K1,K2)

1. Choose the smaller linked list (which can be determined the size variable) of K1 and
K2, say it is K1. Append K1 to K2 using the tail pointer of K2. Update the tail
pointer of K2 to point to the last element of K1. For every vertex in K1, make the
head pointer point to the identifier of K2

2. Choose the smaller linked list among Steiner(K1) and Steiner(K2), say
Steiner(K2) and append Steiner(K2) to Steiner(K1) as in the merge of K1 and
K2. Also make the identifier of K2 (which now starts a list of the merged K1 and
K2) point to the identifier of Steiner(K1) (which now starts a list of the merged
Steiner(K1) and Steiner(K2)), and vice-versa. This takes care that the Link(v)
operation is consistent with the merges.

For every vertex v (or rather copy of v) in Steiner(K2) do the following: check if
a copy of it exists in Steiner(K1). This can be done in O(1) pointer chasing: for
a vertex vA in Steiner(K2), go to the original Steiner vertex v and figure out the
component containing the other copy. If a copy does not exist, move the head pointer
of v (the copy) to the identifier of Steiner(K1).

If a copy exists, and the original Steiner vertex be v, then this means that v is linked to
both K1 and K2. Remove the copy of v (call it vA) from Steiner(K2) and make the
head pointer of vA point to null. Also remove the costlier edge from link-edges(v).
Furthermore, for v recalculate the variables z(v), last(v), rate(v), t(v) as in last step
of the implementation above. The only difference being rate(v) decreases by 1 (note
that |Link(v)| also decreases by 1 too).

Theorem 2.4.2 Given a weighted quasi-bipartite graph G(V = R ∪ S,E; c), Algorithm 3

runs in time O((|E| + |V |) log(|V |)) and returns a tree T with cost within 3/2 times the

optimal Steiner tree.
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Proof: It is easy to see that the implementation mimics Algorithm 2 and thus from Theorem

2.4 the tree T returned is within 3/2 times the optimal tree. We need to argue about the

running time.

Note that the sorting of L (storing it as a heap) takes O((|E| + |V |) log(|V |)) time.

Suppose that for every entry of L, all the operations of Algorithm 3 took O(log |V |) time.

Then since the size of L is at most (|E|+ |V |) we would be done. In fact, it is easy to check

that all the steps take O(log |V |) time except the merge step. We now show that the total

time taken in merge steps across the run of the algorithm is O(|E|+ |V | log |V |) and we will

be done.

When two components K1,K2 are merged, one individual step of merge might take

O(min(|K1|, |K2|) + min(|Steiner(K1)|, |Steiner(K2)|) time which is linear. However,

since the smaller list is always appended to the larger list, an amortized analysis is possible.

Indeed this the most naive implementation of the “union” step in the disjoint step data

structures.

Consider the appending of K1 and K2. Note that every vertex which changes its head

pointer ends up in a component at least twice the size of the original component it was

in. This is because it was in the smaller component to begin with and the components

are disjoint. Thus, since the maximum size of a component in |V |, each vertex changes its

head pointer at most O(log |V |) times implying the total number of head pointer changes

for vertices in components throughout the run of the algorithm is at most O(|V | log |V |).
However the same accounting does not hold for the appending of Steiner(K1) and

Steiner(K2). This is because the two sets need not be disjoint and thus the doubling

argument does not hold. Nevertheless, we can argue the total number of operations when

we append two Steiner lists is also bounded by O(|E|+ |V | log |V |). This is because if the

union of the two lists Steiner(K1) and Steiner(K2) is not too large (say it is smaller

than 1.5 times the size of the smaller list), then the intersection will have to be large (larger

than 0.5 times the size of the smaller list). Moreover, for every Steiner vertex v in the

intersection, we remove one edge from link-edges(v) and this edge never appears again in

the algorithm.

Thus, whenever a Steiner vertex changes its head pointer, if it moves into a list larger

than 1.5 times the list it was in, we charge the movement of the pointer to the vertex. Thus

a single Steiner vertex can be charged at most O(log |V |) times. If the Steiner vertex which

changes its head pointer doesn’t move into a list larger than 1.5 times the list it was in, then

we charge the movement of head pointers of all the Steiner vertices in the smaller list equally

to the Steiner vertices in the intersection. Thus by the above observation about intersections

being large, every Steiner vertex in the intersection is charged 2. Moreover, vertices in the

intersection perform O(1) operations re-evaluating the various variables (z(v), last(v),etc),

thus the extra 2 can be swept in the O(1). Now, for every Steiner vertex in the intersection,
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we move the O(1) charge on it, on to the unique link-edge incident to it that is removed.

The crucial observation is that this link-edge is never brought back on to the algorithm,

and thus the charge on it remains O(1).

Therefore, adding up, the total number of operations for merge operations can be

charged to vertices and edges, each vertex having charge O(log |V |) and each edge hav-

ing charge O(1). The theorem follows. 2

2.5 A
√

2 Factor Approximation Algorithm

In this section and the next, we give algorithms for the Steiner tree problem using Embed

as a black-box unlike the 3/2-factor algorithm. We will require nothing more than the

statement of Theorem 2.3.4. Both algorithms would use Embed in rounds to obtain useful

Steiner vertices, although each round will be preceded by a pre-processing step. In this

section we look at a
√

2-factor algorithm.

Notation 1 MST (U ; c) denotes the minimum cost spanning tree on vertices U given the

costs c. Based on the context, it also denotes the cost of this tree.

We start by giving a high level idea of our algorithm. The algorithm will finally return a

cost c2 and a subset of Steiner vertices X ⊆ S such that

1. The optimal Steiner tree w.r.t. c2 is the MST on the terminals. Equivalently, by

Theorem 2.3.4, Embed when run on G, c2 terminates with a feasible embedding z

with γ(z) = MST (R; c2).

2. MST (X ∪R; c) ≤
√

2 ·MST (R; c2)

The costs c2 will be only smaller than c; therefore, z is also feasible for c. Hence, the

two conditions imply that we get a factor
√

2 approximation.

Initially, X = ∅ and we obtain c2 by reducing the costs of the required-required edges

by a factor of
√

2 and leaving the costs of required-Steiner edges unchanged. We denote the

reduced cost at this point as c1 which we use later. Clearly Condition 2 is satisfied now,

and will remain an invariant of the algorithm.

Suppose that condition 1 is not satisfied, that is, when Embed is run on G, c2, a Steiner

vertex v ∈ S hits the simplex. At this point, the algorithm adds v to X, and will modify

c2 by reducing the costs of certain required-required edges further, as detailed below. This

has the effect that if Embed is run with these new costs, v does not hit the simplex, while

still maintaining the invariant. Hence in each iteration, a new Steiner vertex is added to

X, implying termination in at most |S| rounds.

We now give the intuition behind modifying the costs so that the invariant is maintained.

The first step of scaling all the required-required edges acts as a “global filter” which filters
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out Steiner vertices that only help a little. If a Steiner vertex v now hits the simplex, then

adding it to X reduces the cost of MST (R ∪ X; c) so much that decreasing the cost of

required-required edges “local” to it to 1
2 of the original costs still maintains the invariant.

This requires an involved argument (Theorem (2.5.1)) that amortizes the improvements due

to all the vertices previously added to X. This has the additional required effect that v

itself is filtered out.

Now the formal description of the algorithm follows.

Definition 4 Applying the global filter with parameter ρ > 1 gives a cost c1 defined as

c1(i, j) = c(i,j)
ρ for all i, j ∈ R, and c1(i, v) = c(i, v) for all i ∈ R and v ∈ S.

Definition 5 Applying a local filter w.r.t X ⊆ S gives a cost c2. Let T1 = MST (R∪X; c1),

and for each u ∈ X, Clos(u) denote the closest required vertex to u. The cost c2 after

applying the local filter w.r.t X is defined as c2(Clos(u), j) = 1
2c(Clos(u), j) (half the original

cost), for every u ∈ X and j ∈ R (j 6= Clos(u)) that is adjacent to u in T1. c2(e) = c1(e)

(the global filter is retained) otherwise.

Algorithm 5 Primal-Dual

1. Apply global filter with parameter ρ =
√

2 to get c1.

Initialize X ← ∅; c2 ← c1.

2. Repeat till Embed returns z

Run Embed on G, c2.

If Embed returns v then

X = X ∪ v; Apply local filter w.r.t X to get c2.

3. Return T1 = MST (R ∪X; c1), z.

Theorem 2.5.1 The algorithm Primal-Dual terminates in at most |S| rounds, returning

a Steiner tree T1 and a feasible embedding z of G, c such that c(T1) ≤
√

2 · γ(z) ≤
√

2 ·OPT .

Proof: Let T1 = E0 ∪E1, where E0 denotes the required-Steiner edges and E1 denotes the

required-required edges of T1. We bound the costs of these two sets separately. Let E2 be

the set of edges modified by the local filter, that is, e such that c2(e) = 1
2c(e). Call such

edges diminished. Define T2 to be E2 ∪ E1. It can be shown that T2 is an MST (R, c2).

Claim 2.5.2 T2 is an MST of R with respect to cost c2.

Proof: By definition of the local filter, it is clear that E2 ∪ E1 is a terminal spanning

tree. If it is not a minimum one w.r.t cost c2, there exists an edge e ∈ E(T2) and an edge
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f /∈ E(T2) such that T2 − e + f is spanning and c2(f) < c2(e). Note that c2(f) = c1(f),

since f /∈ E2. Also, since f /∈ E1 ∪E0, T1 + f has a cycle, and in fact it is the precisely the

cycle formed in T2 + f with the edges in E2 replaced by length 2 paths containing a Steiner

vertex. Moreover, by definition of the local filter, there will be an edge e′ in the cycle in

T1 + f such that c1(e′) ≥ c2(e), and thus T1 + f − e′ will be a cheaper spanning tree of

R ∪X w.r.t. costs c1, contradicting the choice of T1. 2

Thus, from Theorem 2.3.4, c2(T2) = γ(z). We have c(T1) = c(E0) + c(E1), c2(T2) =

c2(E2) + c2(E1) and it is enough to prove that

• c(E0) ≤
√

2c2(E2).

This is essentially a consequence of the observation that c1(T1) ≤MST (R; c1). Since

T2 = E1 ∪ E2 is also a spanning tree of R, we get c1(T1) ≤ c1(T2). Expanding the

costs, we get

c1(E0) + c1(E1) ≤ c1(E2) + c1(E1).

Since E0 are required vertex-Steiner edges, c1(E0) = c(E0). c1(E2) = c(E2)/
√

2 =
√

2c2(E2) by definition, giving us c(E0) ≤
√

2c2(E2).

• c(E1) ≤
√

2c2(E1).

Since E1 costs are not modified by the local filter, c2(E1) = c1(E1) and in fact the

relation holds with equality.

2

In fact, the above algorithm has a faster implementation. Although the algorithm constructs

the set X in a certain order, it turns out that the order does not matter. Hence it is enough

to simply apply the global filter and go through the Steiner vertices (in any order) once,

picking the ones that help.

Algorithm 6 Reduced One-Pass Heuristic

1. Apply global filter with parameter ρ =
√

2 to get c1.
Initialize X ← ∅;

2. For all v ∈ S,
If MST (R ∪X ∪ v; c1) < MST (R ∪X; c1), then

X = X ∪ v ;

3. Return T1 = MST (R ∪X; c1).

Theorem 2.5.3 There exists a feasible embedding z of G, c such that for T1 returned by

Algorithm Reduced One-Pass Heuristic, c(T1) ≤
√

2 · γ(z).
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The proof of Theorem (2.5.3) is similar to Theorem (2.5.1). Note that the above algorithm

makes at most |S| minimum spanning tree computations and is hence is very efficient. In

particular, it runs in strongly polynomial time.

Proof: Let T1 be the tree returned by Algorithm Reduced One-Pass Heuristic with

X as the set of Steiner vertices in T1. Firstly observe that for any vertex v ∈ S \ X,

MST (R ∪X ∪ v; c1) ≥MST (R ∪X; c1). This is because, a Steiner vertex which does not

help the MST on R ∪ X at an earlier iteration cannot help the MST at a later iteration;

the heaviest edge in the unique path between any two terminals in T1 keeps on decreasing.

Note that we use the fact here that the graph is quasi-bipartite and a Steiner vertex can

connect only to terminals.

As in the proof of Theorem 2.5.1, let T1 = E0 ∪E1. Construct the costs c2 by applying

the local filter w.r.t X. Let E2 be the set of diminished edges and let T2 = E1 ∪ E2.

Once again, one can apply the same proof of Claim 2.5.2 to show that T2 = MST (R, c2).

Moreover,

Claim 2.5.4 For every Steiner vertex v ∈ S, MST (R ∪ v; c2) ≥MST (R; c2) = c2(T2).

Proof: Suppose for some Steiner vertex v, MST (R ∪ v; c2) < MST (R; c2). Thus there

exist a set of edges A, each of the form (v, j) where j is a terminal; and a set of terminal-

terminal edges in E(T2) so that c2(A) = c1(A) < c2(B); and T2 \ B ∪ A is a tree spanning

R ∪ v. Now, among the edges in B, some are diminished and some are in E(T1); and each

diminished edge e corresponds to two edges e1 and e2 in E(T1) one of which, say e1, has

c1(e1) ≥ c2(e). Thus from B, we get a subset of edges B′ ⊆ E(T1) with c1(B′) ≥ c2(B).

Moreover, note that T1 \ B′ ∪ A is a valid spanning tree of R ∪ X ∪ v. This implies

MST (R ∪X ∪ v; c1) < MST (R ∪X; c1), which is a contradiction. 2

Thus, in the quasi-bipartite graph G with costs c2, T2 is an MST spanning the terminals

and the addition of no Steiner vertex improves it. So, by Theorem 2.3.1, we know that

running Embed on (G; c2) will return a feasible dual z with c2(T2) = γ(z). Since c2 is only

reduced, this embedding is a feasible embedding of (G, c) as well. The proof ends by noting

that c(T1) ≤
√

2c2(T2) which is exactly as in the proof of Theorem 2.5.1. 2

2.6 A 4
3

Factor Approximation Algorithm

The primal-dual 4
3 approximation algorithm is along the lines of the one in the previous

section, with the major difference being that it drops Steiner vertices from X when ben-

eficial. The other differences are that it applies the global filter with ρ = 4/3, and the

definition of a local filter is somewhat different. And like the earlier algorithm, the order

of vertices picked/dropped does not matter. As a result it can be implemented as a local

search algorithm with an extra global filtering step, which is what we present here.
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Algorithm 7 Reduced-Local-Search

1. Apply global filter with parameter ρ = 4/3 to get c1.

Initialize X ← ∅, T1 = MST (R; c1);

2. Repeat

If ∃v such that MST (R ∪X ∪ v; c1) < c1(T1), X = X ∪ v.

If ∃v such that MST (R ∪X \ v; c1) < c1(T1), X = X \ v.

T1 = MST (R ∪X; c1).

Until No such v exists.

3. Return T1.

The plain local search algorithm (without the global filtering step) was studied [84] who

showed that this algorithm gives a 3/2 factor approximation for quasi-bipartite graphs. This

factor is tight. So the simple modification of applying a global filter provably improves the

performance of this algorithm. It was shown in [85] that this algorithm can be implemented

efficiently.

We show that T1 returned by the algorithm is within 4/3 of the optimal by exhibiting

an embedding z of value greater than 3/4 times the cost of T1. As in Section (2.5), the

analysis proceeds by defining cost c2 and constructing tree T2. The factor 4/3 comes from

the parameter ρ used in the global filter and the following property of T1.

Lemma 2.6.1 The degree of every Steiner vertex in T1 is at least 4.

Proof: It is easy to see that T1 doesn’t have vertices of degree 1 or 2. Suppose there existed

a Steiner vertex v ∈ T1 with deg(v) = 3. Let a, b, c be the required vertices connected to v

and assume c1(va) ≤ c1(vb) ≤ c1(vc) without loss of generality. Now by triangle inequality

property of c, we know c(va) + c(vb) ≥ c(ab). Since c(va) = c1(va) and c(vb) = c1(vb),

we get 3
4(c1(va) + c1(vb)) ≥ 3

4c(ab) = c1(ab). Similarly 3
4(c1(va) + c1(vc)) ≥ c1(ac). Thus

c1(ab)+c1(ac) ≤ 3
4(2c1(va)+c1(vb)+c1(vc)) ≤ c1(va)+c1(vb)+c1(vc). Thus MST (R∪X)

would choose (ab) and (ac), rather than choosing (va), (vb), (vc). 2

Theorem 2.6.2 For the tree T1 returned by Reduced-Local-Search, there exists a fea-

sible embedding z such that c(T1) ≤ 4
3 · γ(z).

Proof:

As in the proof of Theorem (2.5.1), denote the edges of T1 as E1 ∪ E0. Define c2

as: For every Steiner vertex v ∈ T1 and for every j 6= Clos(v) connected to v in T1,

let c2(Clos(v), j) = c1(vj). Note that c1(vj) ≤ c1(Clos(v), j), for otherwise T1 would

have picked (Clos(v), j) instead of (vj). Call these required vertex-required vertex edges
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diminished. For every other edge, c2(e) := c1(e). Let E2 be the set of diminished edges and

let T2 := E1 ∪ E2, be a required vertex spanning tree. By the conditions of the algorithm,

since T1 is an MST of R∪X with costs c1 and no Steiner vertices help X, T2 is an MST of

R with costs c2 and no Steiner vertex helps T2. Thus, by Theorem (2.3.1) running Embed

on G, c2 returns a feasible embedding z of value c2(T2). We now bound the cost of T1.

We have c(T1) = c(E1) + c(E0) = c(E1) + c1(E0). Note that c2(T2) = c1(E1) + c2(E2)

since E1 is not diminished. As in the proof of Theorem (2.5.1), we argue term by term. By

definition we have c(E1) = 3
4c1(E1).

Every Steiner vertex v ∈ T1 contributes deg(v)− 1 edges to E2 and deg(v) edges in E0,

where deg(v) is the degree of v in T1. By definition the deg(v)−1 edges have cost exactly the

cost of the largest deg(v)−1 edges of the deg(v) edges it contributes to E0. By lemma (2.6.1),

deg(v) ≥ 4 and thus we get c1(E0) ≤ 3
4c2(E2). Adding, we get c(T1) ≤ 4

3c2(T2) = 4
3γ(z). 2

2.7 Discussion

In this chapter, we gave a new way of lower bounding the cost of the minimum Steiner

tree in a graph via the simplex embedding LP (LP SimpEmb). We showed that for any

graph, this lower bound equals the lower bound obtained by the bidirected cut relaxation;

in fact we saw that the simplex embedding LP was in a sense equivalent to the dual of the

bidirected cut relaxation. We used this geometric way of looking at the dual to give faster

and better upper bounds on the integrality gap for a class of graphs called quasi-bipartite

graphs.

Clearly the most important question to address is whether the geometric approach to the

bidirected cut relaxation described here can be extended to general graphs. In fact, there is

a natural generalization of the Embed procedure described above to the case where there

are Steiner-Steiner edges; however, it has not yielded any results for the general case. As

noted above, one crucial property possessed by quasi-bipartite graphs is Theorem (2.3.1): if

the minimum spanning tree on the terminals is the optimal Steiner tree, then the relaxation

is exact. However, this property is not satisfied by general graphs. An example is given in

Figure 2.2.2: the MST on the terminals is optimal but the bidirected cut relaxation has a

gap of 16/15. An interesting question would be upper bounding the gap in such instances,

and then perhaps our techniques of reducing costs may be useful.
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CHAPTER III

APPROXIMABILITY OF MAXIMUM BUDGETED ALLOCATIONS

3.1 Introduction

Resource allocation problems of distributing a fixed supply of resources to multiple agents

in an “optimal” manner are ubiquitous in computer science and economics. In this chapter

we consider the following maximum budgeted allocation (MBA) problem: Given a set of m

indivisible items and n agents; each agent i willing to pay bij on item j and with a maximum

budget of Bi, the goal is to allocate items to agents to maximize revenue.

The problem naturally arises as a revenue maximization problem for the auctioneer

in an auction with budgeted agents. Examples of such auctions (see, for example [9])

include those used for the privatization of public assets in western Europe, or those for the

distribution of radio spectra in the US, where the magnitude of the transactions involved

put financial or liquidity constraints on bidders. With the growth of the Internet, budget-

constrained auctions have gained increasing relevance. Firstly, e-auctions held on the web

(on e-Bay, for instance) cater to the long-tail of users who are inherently budget-constrained.

Secondly, sponsored search auctions hosted by search engines (Google, Yahoo!, MSN and

the like), where advertisers bid on keywords, include budget specification as a feature.

A common (and natural) assumption in keyword auctions that is typically made is that

bids of advertisers are much smaller than the budgets. However, with the extension of

the sponsored search medium from the web onto the more classical media, such as radio

and television1 where this assumption is not as reasonable, the general budget-constrained

auctions need to be addressed.

MBA is known to be NP-hard — even in the case of two bidders it is not hard to see

that MBA encodes Partition 2. In this chapter we study the approximability of MBA

and improve upon the best known approximation and hardness of approximation factors.

Moreover, we use our hardness reductions to get better hardness results for other allocation

problems like submodular welfare maximization(SWM), generalized assignment problem

(GAP) and maximum spanning star-forest (MSSF).

3.1.1 Maximum Budgeted Allocation

We start with the formal problem definition.

1see for instance http://www.google.com/adwords/audioads/ and http://www.google.com/adwords/tvads
2Partition: Given n integers a1, · · · , an and a target B, decide whether there is a subset of these integers

adding up to exactly B
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Definition 2 Let Q and A be a set of m indivisible items and n agents respectively, with

agent i willing to pay bij for item j. Each agent i has a budget constraint Bi and on receiving

a set S ⊆ Q of items, pays min(Bi,
∑

j∈S bij). An allocation Γ : A→ 2Q is the partitioning

the sets of items Q into disjoint sets Γ(1), · · · ,Γ(n). The maximum budgeted allocation

problem, or simply MBA, is to find the allocation which maximizes the total revenue, that

is,
∑

i∈A min(Bi,
∑

j∈Γ(i) bij).

Note that we can assume without loss of generality that bij ≤ Bi, ∀i ∈ A, j ∈ Q. This is

because if bids are larger than budget, decreasing it to the budget does not change the value

of any allocation. Sometimes, motivated by the application, one can add the constraint that

bij ≤ β ·Bi for all i ∈ A and j ∈ Q, for some β ≤ 1. We call such an instance β-MBA.

Previous and Related Work: As noted above, MBA is NP-hard and this observation

was made concurrently by many authors ([41, 87, 4, 70]). The first approximation algorithm

for the problem was given by Garg, Kumar and Pandit[41] who gave a 2/(1 +
√

5)(' 0.618)

factor approximation. Andelman and Mansour[4] improved the factor to (1−1/e)(' 0.632).

For the special case when budgets of all bidders were equal, [4] improved the factor to 0.717.

We refer to the thesis of Andelman[3] for an exposition. Very recently, and independent of

our work, Azar et.al. [7] obtained a 2/3-factor for the general MBA problem. They also

considered a uniform version of the problem where for every item j, the bid of any agent is

either bj (independent of the agent) or 0. They gave a 1/
√

2(' 0.707) factor for the same.

All these algorithms are based on a natural LP relaxation (LP(6) in Section 3.1.3) which

we use as well.

In the setting of sponsored search auctions, MBA, or rather β-MBA with β → 0, has

been studied mainly in an online context. Mehta et.al.[77], and later Buchbinder et.al.[13],

gave (1 − 1/e)-competitive algorithms when the assumption of bids being small to budget

is made. The dependence of the factor on β is not quite clear from either of the works.

Moreover, as per our knowledge, nothing better was known concerning the approximability

of the offline β-MBA than what was suggested by algorithms for MBA.

Our results: We give two approximation algorithms for MBA. The first, based on iterative

LP rounding, attains a factor of 3/4. The algorithm described in Section 3.2. The second

algorithm, based on the primal-dual schema, is faster and attains a factor of 3/4(1 − ε),
for any ε > 0. The running time of the algorithm is Õ(nmε )3, and is thus almost linear for

constant ε and dense instances. We describe the algorithm in Section 3.3. Our algorithms

can be extended suitably for β-MBA as well giving a 1−β/4 factor approximation algorithm.

3the˜hides logarithmic factors
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In Section 3.4, we show it is NP hard to approximate MBA to a factor better than 15/16

via a gap-preserving reduction from Max-3-Lin(2). Our hardness instances are uniform

in the sense of Azar et.al. [7] implying uniform MBA is as hard. Our hardness reductions

extend to give a (1−β/16) hardness for β-MBA as well. Interestingly, our reductions can be

used to obtain better inapproximability results for other problems: SWM (15/16 hardness

even with demand queries), GAP (10/11 hardness) and MSSF(10/11 and 13/14 for the edge

and node weighted versions), which we elaborate below.

3.1.2 Relations to other allocation problems

Submodular Welfare Maximization (SWM): As in the definition of MBA, let Q be

a set of m indivisible items and A be a set of n agents. For agent i, let ui : 2Q → R+ be

a utility function where for a subset of items S ⊆ Q, ui(S) denote the utility obtained by

agent i when S is allocated to it. Given an allocation of items to agents, the total social

welfare is the sum of utilities of the agents. The welfare maximization problem is to find an

allocation of maximum social welfare.

Before discussing the complexity of the welfare maximization problem, one needs to

be careful of how the utility functions are represented. Since it takes exponential (in the

number of items) size to represent a general set-function, oracle access to these functions are

assumed and the complexity of the welfare maximization problem depends on the strength

of the oracle. The strongest such oracle that has been studied is the so-called demand

oracle: for any agent i and prices p1, p2, · · · , pm for all items in Q, returns a subset S ⊆ Q

which maximizes (ui(S)−
∑

j∈S pj).

Welfare maximization problems have been extensively studied (see, for example, [10]) in

the past few years with various assumptions made on the utility functions. One important

set of utility functions are monotone submodular utility functions. A utility function ui is

submodular if for any two subsets S, T of items, ui(S∪T ) +ui(S∩T ) ≤ ui(S) +ui(T ). The

welfare maximization problem when all the utility functions are submodular is called the

submodular welfare maximization problem or simply SWM. Feige and Vondrák [35] gave

an (1 − 1/e + ρ)-approximation for SWM with ρ ∼ 0.0001 and showed that it is NP-hard

to approximate SWM to better than 275/276.4

MBA is a special case of SWM. This follows from the observation that the utility func-

tion ui(S) = min(Bi,
∑

j∈S bij) when Bi, bij ’s are fixed is a submodular function. In Section

3.4.1, we show that in the hardness instances of MBA, the demand oracle can be simulated

in poly-time and therefore the 15/16 hardness of approximation for MBA implies a 15/16-

hardness of approximation for SWM as well.

4We remark that SWM with a different oracle, the value oracle which given a set and an agent returns
the utility of the agent for the set, has recently been resolved. There was a (1−1/e) hardness given by Khot
et.al.[60] and recently Vondrák[94] gave a matching polynomial time algorithm.
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Generalized Assignment Problem (GAP): GAP is a problem quite related to MBA:

Every item j, along with the bid (profit) bij for agent (bin) i, also has an inherent size

sij . Instead of a budget constraint, each agent (bin) has a capacity constraint Ci which

defines feasible sets: A set S is feasible for (bin) i if
∑

j∈S sij ≤ Ci. The goal is to find

a revenue (profit) maximizing feasible assignment. The main difference between GAP and

MBA is that in GAP we are not allowed to violate capacity constraints, while in MBA the

budget constraint only caps the revenue. As was noted by Chekuri and Khanna[21], a 1/2

approximation algorithm was implicit in the work of Shmoys and Tardos[89]. The factor

was improved by Fleischer et.al.[36] to 1− 1/e. In the same paper [35] where they give the

best known algorithm for SWM, Feige and Vondrák[35] also give a (1− 1/e+ ρ′) algorithm

for GAP (ρ′ ≤ 10−5). The best known hardness for GAP was 1 − ε, for some small ε

which was given by Chekuri and Khanna [21] via a reduction from maximum 3D-matching.

Improved hardness results for maximum 3D matching by Chlebik and Chlebikova[24], imply

a 422/423 hardness for GAP.

Although MBA and GAP are in some sense incomparable problems, we can use our

hardness techniques to get a 10/11 factor hardness of approximation for GAP in Section

3.4.3.

Maximum Spanning Star-Forest Problem (MSSF): Given an undirected unweighted

graph G, the MSSF problem is to find a forest with as many edges such that each tree in

the forest is a star - all but at most one vertex of the tree are leaves. The edge-weighted

MSSF is the natural generalization with weights on edges. The node-weighted MSSF has

weights on vertices and the weight of a star is the weight on the leaves. If the star is just

an edge, then the weight of the star is the maximum of the weights of the end points.

The unweighted and edge-weighted MSSF was introduced by Nguyen et.al [79] who

gave a 3/5 and 1/2-approximation respectively for the problems. They also showed APX

hardness of the unweighted version. Chen et.al. [22] improved the factor of unweighted

MSSF to 0.71 and introduced node-weighted MSSF giving a 0.64 factor algorithm for it.

They also give a 31/32 and 19/20 hardness for the node-weighted and edge-weighted MSSF

problems.

Although, at the face of it, MSSF does not seem to have a relation with MBA, once

again our hardness technique can be used to improve the hardness of node-weighted and

edge-weighted MSSF to 13/14 and 10/11, respectively. We describe this in Section 3.4.4.
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3.1.3 The LP Relaxation for MBA

One way to formulate MBA as an integer program is the following:

max{
∑
i∈A

πi : πi = min(Bi,
∑
j∈Q

bijxij), ∀i;
∑
i∈A

xij ≤ 1, ∀j; xij ∈ {0, 1} }

Relaxing the integrality constraints to non-negativity constraints gives an LP relaxation

for the problem. We work with the following equivalent LP relaxation of the problem.

The equivalence follows by noting that in there exists an optimal fractional solution, Bi ≥∑
j∈Q bijxij . This was noted by Andelman and Mansour[4] and a similar relaxation was

used by Garg et.al. [41].

max{
∑

i∈A,j∈Q
bijxij : ∀i ∈ A,

∑
j∈Q

bijxij ≤ Bi; ∀j ∈ Q,
∑
i∈A

xij ≤ 1; ∀i ∈ A, j ∈ Q, xij ≥ 0}

(6)

We remark that the assumption bij ≤ Bi is crucial for this LP to be of any use. Without

this assumption it is easy to construct examples having arbitrarily high integrality gaps.

Consider the instance with one item, n agents each having a budget 1 but bidding n on the

item. The LP has a solution of value n while the maximum welfare is obviously 1.

Moreover, the integrality gap of this LP is at most 3/4. In the following example in

Figure(3.1.3), the maximum revenue obtained by any feasible allocation is 3 while the value

of the LP is 4. The example is due to [4] and thus our main result shows that the integrality

gap is exactly 3/4.

1

2 3

A B

x = 1/2 x = 1/2

x = 1x = 1

Figure 5: Integrality gap example for LP (6)

Agents are black squares and have budget 2. The bids of agent A and B on item 1 is 2. A bids
1 on 2 and B bids 1 on 3. Note the agent who doesn’t get item 1 will spend only 1 and thus the
maximum allocation is 3. The LP however gets 4 as shown by the solution x.
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3.2 An iterative rounding algorithm for MBA

Let P be a problem instance defined by the bids and budgets of every agent, that is P :=

({bij}i,j , {Bi}i). With P, we associate a bipartite graph G(P) = (A∪Q,E), with (i, j) ∈ E
if i bids on j.

Let x∗(P) be an extreme point solution to LP(6) for the problem instance P. For

brevity, we omit writing the dependence on P when the instance is clear from context. Let

E∗ be the support of the solution, that is E∗ := {(i, j) ∈ E : x∗ij > 0}. Note that these are

the only important edges - one can discard all bids of agents i on item j when (i, j) /∈ E∗.
This does not change the LP optimum and a feasible integral solution in this instance is a

feasible solution of the original instance. Call the set of neighbors of an agent i in G[E∗] as

Γ(i). Call an agent tight if
∑

j bijx
∗
ij = Bi.

The starting point of the algorithm is the following claim about the structure of the

extreme point solution. Such an argument using polyhedral combinatorics, was first used

in the machine scheduling paper of Lenstra, Shmoys and Tardos [71]. A similar claim can

be found in the thesis of Andelman [3].

Claim 3.2.1 The graph, G[E∗], induced by E∗ can be assumed to be a forest. Moreover,

except for at most one, all the leaves of a connected component are items. Also at most one

agent in a connected component can be non-tight.

Proof: Consider the graph G[E∗]. Without loss of generality assume that it is a single

connected component. Otherwise we can treat every connected component as a separate

instance and argue on each of them separately. Thus, G[E∗] has (n+m) nodes. Also since

there are (n+m) constraints in the LP which are not non-negativity constraints, therefore

support of any extreme point solution can be of size atmost (n + m). This follows from

simple polyhedral combinatorics: at an extreme point, the number of inequalities going tight

is at least the number of variables. Since there are only (n+m) constraints which are not

non-negativity constraints, all but at most (n+m) variables must satisfy the non-negativity

constraints with equality, that is, should be 0. Thus |E∗| ≤ n+m.

Hence there is at most one cycle in G[E∗]. Suppose the cycle is: (i1, j1, i2, j2, · · · , jk, i1),

where {i1, · · · , ik} and {j1, · · · , jk} are the subsets of agents and items respectively. Con-

sider the feasible fractional solution obtained by decreasing x∗ on (i1, j1) by ε1 and increasing

on (i2, j1) by ε1, decreasing on (i2, j1) by ε2 , increasing on (i2, j1) by ε2, and so on. Note

that if the εi’s are small enough, the item constraints are satisfied. The relation between

ε1 and ε2 (and cascading to other εr’s) is: ε1bi2,j1 = ε2bi2,j2 , that is, the fraction of money

spent by i2 on j1 equals the money freed by j2. The exception is the last εk, which might

not satisfy the condition with ε1. If εkbi1,jk > ε1bi1,j1 , then just stop the increase on the

edge (i1, jk) to the point where there is equality. If εkbi1,jk < ε1bi1,j1 , then start the whole

procedure by increasing x∗ on the edge (i1, j1) instead of decreasing and so on. In one of
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the two cases, we will get a feasible solution of equal value and the εi’s can be so scaled so

as to reduce x∗ on one edge to 0. In other words, the cycle is broken without decreasing

the LP value.

Thus, G[E∗] is a tree. Moreover, since (n + m − 1) edges are positive, there must be

(n+m−1) equalities among the budget and the item constraints. Thus at most one budget

constraint can be violated which implies at most one agent can non tight. Now since the

bids are less than the budget, therefore if an agent is a leaf of the tree G[E∗] then he must

be non-tight. Hence atmost one agent can be a leaf of the tree G[E∗]. 2

Call an item a leaf item, if it is a leaf in G[E∗]. Also call an agent i a leaf agent if,

except for at most one, all of his neighboring items in E∗(P) are leaves. Note the above

claim implies each connected component has at least one leaf item and one leaf agent:

in any tree there are two leaves both of which cannot be agents, and there must be an

agent with all but one of its neighbors leaves and thus leaf items. For the sake of under-

standing, we first discuss the following natural iterative algorithm which assigns the leaf

items to their neighbors and then adjusts the budget and bids to get a new residual problem.

1/2-approx algorithm: Solve LP (P) to get x∗(P). Now pick a leaf agent i. Assign all

the leaf items in Γ(i) to i. Let j be the unique non-leaf item (if any) in Γ(i). Form the

new instance P ′ by removing Γ(i) \ j and all incident edges from P ′. Let b =
∑

l∈Γ(i)\j bil,

be the portion of budget spent by i. Now modify the budget of i and his bid on j in P ′ as

follows: B′i := Bi − b, and b′ij := min(bij , B′i). Its instructive to note the drop (bij − b′ij) is

at most b. (We use here the assumption bids are always smaller than budgets). Iterate on

the instance P ′.
The above algorithm is a 1/2-approximation algorithm. In every iteration, we show that

the revenue generated by the items allocated is at least 1/2 of the drop in the LP value

(LP (P)−LP (P ′)). Suppose in some iteration, i be the leaf agent chosen, and let j be the its

non-leaf neighbor, and let the revenue generated by algorithm be b. Note that x∗, the solu-

tion to P, restricted to the edges in P ′ is still a feasible solution. Thus the drop in the LP is:

b+(bij−b′ij)xij . Since (bij−b′ij) is atmost b, and xij at most 1, we get LP (P)−LP (P ′) ≤ 2b.

To prove a better factor in the analysis, one way is to give a better bound on the drop,

(LP (P) − LP (P ′)). Unfortunately, the above analysis is almost tight and there exists an

example (Figure 6 below) where the LP drop in the first iteration is ' twice the revenue

generated by the algorithm in that iteration.

Thus, for an improved analysis for this algorithm, one needs a better amortized analysis

across different iterations rather than analyzing iteration-by-iteration. This seems non-

trivial as we solve the LP again at each iteration and the solutions could be very different

across iterations making it harder to analyze over iterations.
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Figure 6: Example showing LP drop almost twice as value obtained by naive algorithm.

For some ε > 0 let k = 1/ε. In the instance, there are k+ 1 agents with budgets 1 denoted by black
squares and 2k items with bids as shown on the figure in the left. The LP value of this is k+ 1: the
ε edges have x = 1, the 1 edges forming a matching have x = 1 − ε and the rest have x = ε. After
the first iteration, the leaf items are assigned and the value obtained is kε = 1. The budgets of the
k agents at the bottom reduce to 1− ε and so do their modified bids, as shown on the figure in the
right. The LP solution for this instance is k − 1 + ε (k − 1 items going to bottom k − 1 agents and
the remaining item to the top guy). The LP drop is 2 − ε and thus is twice the value obtained as
ε→ 0.

Instead, we modify the above algorithm by defining the residual problem P ′ in an non-

trivial manner. After assigning leaf items to agent i, we do not decrease the budget by the

amount assigned, but keep it a little “larger”. Thus these agents lie about their budgets in

the subsequent rounds, and we call these lying agents. Since the budget doesn’t drop too

much, the LP value of the residual problem doesn’t drop much either. A possible trouble

would arise when items are being assigned to lying agents since they do not pay as much

as they have bid. This leads to a trade-off and we show by suitably modifying the residual

problem one can get a 3/4 approximation. We now elaborate.

Given a problem instance P0 := P, the algorithm proceeds in stages producing newer

instances at each stage. On going from Pi to Pi+1, at least one item is allocated to some

agent. Items are never de-allocated, thus the process ends in at most m stages. The

value of an item is defined to be the payment made by the agent who gets it. That is,

value(j) = min(bij , Bi − spent(i)), where spent(i) is the value of items allocated to i at the

time j was being allocated. We will always ensure the condition that a lying agent i bids

on at most one item j. We will call j the false item of i and the bid of i on j to be i’s false

bid. In the beginning no agent is lying.

We now describe the k-th iteration of the iterative algorithm which we call MBA-Iter

(Algorithm 8).

Claim 3.2.2 In each step, at least one item is allocated and thus MBA-Iter terminates
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Algorithm 8 k-th step of MBA-Iter

1. Solve LP (Pk). Remove all edges which are not in E∗(Pk). These edges will stay
removed in all subsequent steps.

2. If there is a lying agent i with x∗ij = 1 for his false item j, assign item j to him. In
the next instance, Pk+1, remove i and j. Proceed to (k + 1)-th iteration.

3. If there is a non-lying agent i such that all the items in Γ(i) are leaf items. Then
allocate Γ(i) to i. Remove i, Γ(i) and all the incident edges to get the new instance
Pk+1 and proceed to (k + 1)-th iteration step.

4. Pick a tight leaf agent i. Notice that i must have at least two items in Γ(i), otherwise
tightness would imply that the unique item is a leaf item and thus either step 2 or
step 3 must have been performed. Moreover, exactly one item in Γ(i) is not a leaf
item, and let j be this unique non-leaf item. Allocate all the items in Γ(i) \ j to i.
In Pk+1, remove Γ(i) \ j and all incident edges. Also, modify the budget and bids of
agent i. Note that agent i now bids only on item j as there are no other edges incident
to i. Let the new bid of agent i on item j be

b′ij := max(0,
4bijx∗ij −Bi

3x∗ij
)

Let the new budget of agent i be B′i := b′ij . Call i lying and j be his false item.
Proceed to (k + 1)-th iteration.

in m steps.

Proof: We show that one of the three steps 2,3 or 4 is always performed and thus some

item is always allocated. Consider any component. If a component has only one agent i,

then all the items in Γ(i) are leaf items. If Γ(i) has more than two items, then the agent

cannot be lying since the lying agent bids on only one item and Step 3 can be performed.

If Γ(i) = {j}, then x∗ij = 1 since otherwise x∗ij could be increased giving a better solution.

Thus Step 2 or 3 can always be performed depending on if i is lying or not. If the component

has at least two agents, then it must have two leaf agents. This can be seen by rooting the

tree at any item. At least one of them, say i, is tight by Claim 3.2.1. Thus Step 4 can be

performed. 2

Theorem 3.2.3 Given a problem instance P, the allocation obtained by algorithm MBA-

Iter attains value at least 3
4 · LP (P).

Proof: Let ∆k := LP (Pk)− LP (Pk+1) denote the drop in the optimum across the k-th

iteration. Denote the set of items allocated at step k as Qk. Note that the total value of the

algorithm is
∑

j∈Q value(j) =
∑

k(
∑

j∈Qk value(j)). Also, the LP optimum of the original
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solution is LP (P) =
∑

k ∆k since after the last item is allocated the LP value becomes 0.

The following lemma proves the theorem. 2

Lemma 3.2.4 In every stage k, value(Qk) :=
∑

j∈Qk value(j) ≥
3
4∆k.

Proof: Items are assigned in either Step 2,3 or 4. Let us analyze Step 2 first. Let i be the

lying agent obtaining his false item j. Since x∗ij = 1 and lying agents bid on only one item,

the remaining solution (keeping the same x∗ on all remaining edges) is a valid solution for

the LP in Pk+1. Thus

LP (Pk)− LP (Pk+1) ≤ b′,

where b′ is the false bid of lying agent i on item j. Let b be the bid of agent i on item j,

before it was made lying. Then, from Step 4 we know that b′ := 4bx−B
3x , where x was the

fraction of item j assigned to i and B is the budget of i. Moreover, the portion of budget

spent by i is at most (B− bx). This implies value(j) ≥ bx. The claim follows by noting for

all b ≤ B and all x,5

bx ≥ 3
4
· 4bx−B

3x
In Step 3, in fact the LP drop equals the value obtained - both the LP drop and the

value obtained is the sum of bids on items in Γ(i) or Bi, whichever is less.

Coming to step 4, Qk = Γ(i) \ j be the set of goods assigned to the tight, non-lying leaf

agent i. Let b and b′ denote the bids of i on j before and after the step: bij and b′ij . Let x

be x∗ij . Note that x∗il ≤ 1 for all l ∈ Qk. Also, x∗ restricted to the remaining goods still is a

feasible solution in the modified instance Pk+1. Since the bid on item j changes from b to

b′, the drop in the optimum is at most

LP (Pk)− LP (Pk+1) ≤ (
∑
l∈Qk

bil) + (bx− b′x)

Note that value(Qk) =
∑

l∈Qk bil ≥ B − bx by tightness of i. We now show (bx − b′x) ≤
1
3 · value(Qk) which would prove the lemma.

If b′ = 0, this means 4bx ≤ B. Thus, value(Qk) ≥ B − bx ≥ 3bx. Otherwise, we have

(bx− b′x) = bx− 4bx−B
3x

· x =
B − bx

3
≤ value(Qk)/3

implying the claim, as before. 2

3.3 Primal-dual algorithm for MBA

In this section we give a faster primal-dual algorithm for MBA although we lose a bit on

the factor. The main theorem of this section is the following:

54bx2 − 4bx+B = b(2x− 1)2 + (B − b) ≥ 0
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Theorem 3.3.1 For any ε > 0, there exists an algorithm which runs in Õ(nm/ε) time and

gives a 3
4 · (1− ε)-factor approximation algorithm for MBA.

Let us start by taking the dual of the LP relaxation LP(6).

DUAL := min{
∑
i∈A

Biαi +
∑
j∈Q

pj : ∀i ∈ A, j ∈ Q; pj ≥ bij(1− αi); ∀i ∈ A, j ∈ Q; pj , αi ≥ 0}

(7)

We make the following interpretation of the dual variables: Every agent retains αi of his

budget, and all his bids are modified to bij(1 − αi). The price pj of a good is the highest

modified bid on it. The dual program finds retention factors to minimize the sum of budgets

retained and prices of items. We start with a few definitions.

Definition 3 Let Γ : A → 2Q be an allocation of items to agents and let the set Γ(i) be

called the items owned by i. Let Si :=
∑

j∈Γ(i) bij denote the total bids of i on items in Γ(i).

Note that the revenue generated by Γ from agent i is min(Si, Bi). Given αi’s, the prices

generated by Γ is defined as follows: pj = bij(1− αi), where j is owned by i. Call an item

wrongly allocated if pj < blj(1−αl) for some agent l, call it rightly allocated otherwise. An

allocation Γ is called valid (w.r.t αi’s) if all items are rightly allocated, that is, according to

the interpretation of the dual given above, all items go to agents with the highest modified

bid (bij(1 − αi)) on it. Note that if Γ is valid, (pj,αi)’s form a valid dual solution. Given

an ε > 0, Γ is ε-valid if pj/(1− ε) satisfies the dual feasibility constraints with the αi’s.

Observe that given αi’s; and given an allocation Γ and thus the prices pj generated by

it, the objective of the dual program can be treated agent-by-agent as follows

DUAL =
∑
i

Dual(i), where Dual(i) = Biαi +
∑
j∈Γ(i)

pj = Biαi + Si(1− αi) (8)

Now we are ready to describe the main idea of the primal-dual schema. The algorithm

starts with all αi’s set to 0 and an allocation valid w.r.t to these. We will “pay-off” this

dual by the value obtained from the allocation agent-by-agent. That is, we want to pay-off

Dual(i) with min(Bi, Si) for all agents i. Call an agent paid for if min(Bi, Si) ≥ 3
4Dual(i).

We will be done if we find αi’s and an allocation valid w.r.t these such that all agents are

paid for.

Let us look at when an agent is paid for. From the definition of Dual(i), an easy

calculation shows that an agent is paid for iff Si ∈ [L(αi), U(αi)] · Bi, where L(α) = 3α
1+3α

and U(α) = 4−3α
3−3α . Note that Si depends on Γ which was chosen to be valid w.r.t. αi’s.

Moreover, observe that increasing αi can only lead to the decrease of Si and vice-versa.

This suggests the following next step: for agents i which are unpaid for, if Si > U(αi)Bi,

increase αi and if Si < L(αi)Bi, decrease αi and modify Γ to be the valid allocation w.r.t

the αi’s.
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However, it is hard to analyze the termination of an algorithm which both increases and

decreases αi’s. This is where we use the following observation about the function L() and

U(). (In fact 3/4 is the largest factor for which the corresponding L() and U() have the

following property; see Remark 3.3.4 below).

Property 3.3.2 For all α, U(α) ≥ L(α) + 1. 6

The above property shows that an agent with Si > U(αi)Bi on losing a single item j

will still have Si > U(αi)Bi − bij ≥ (U(αi) − 1)Bi ≥ L(αi)Bi, for any αi ∈ [0, 1]. Also

observe that in the beginning when αi’s are 0, Si ≥ L(αi)Bi. Thus if we can make sure that

the size of Γ(i) decreases by at most one, when the αi’s of an unpaid agent i is increased,

then the case Si < L(αi)Bi never occurs and therefore we will never have to decrease α’s

and termination will be guaranteed.

However, an increase in αi can lead to movement of more than one item from the current

allocation of agent i to the new valid allocation. Thus to ensure steady progress is made

throughout, we move to ε-valid allocations and get a 3
4 · (1− ε) algorithm.

We now give details of the Algorithm 9.

Algorithm 9 MBA-PD: Primal Dual Algorithm for MBA
Define εi := ε · 1−αi

αi
. Throughout, pj will be the price generated by Γ and current αi’s.

1. Initialize αi = 0 for all agents. Let Γ be the allocation assigning item j to agent i

which maximizes bij .

2. Repeat the following till all agents are paid for:

Pick an agent i who is not paid for (that is Si > U(αi)Bi), arbitrarily. Repeat

till i becomes paid for:

If i has no wrongly allocated items in Γ(i), then increase αi → αi(1 + εi).

(Note that when αi = 0, εi is undefined. In that case, modify αi = ε from 0.)

Else pick any one wrongly allocated item j of agent i, and modify Γ by

allocating j to the agent l who maximizes blj(1 − αl). (Note that this makes j

rightly allocated but can potentially make agent l not paid for).

Claim 3.3.3 Throughout the algorithm, Si ≥ L(αi)Bi.

Proof: The claim is true to start with (L(0) = 0). Moreover, Si of an agent i decreases

only if i is not paid for, that is, Si > U(αi)Bi. Now, since items are transferred one at a

6U(α)− 1 = 1
3−3α

≥ 3α
1+3α

=: L(α)⇐ 1 + 3α ≥ 9α(1− α)⇐ 9α2 − 6α+ 1 ≥ 0
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time and each item can contribute at most Bi to Si, the fact U(α) ≥ 1 + L(α) for all α

proves the claim. 2

Remark 3.3.4 In general, one can compare Dual(i) and min(Si, Bi) to figure out what

L,U should be to get a ρ-approximation. As it turns out, the largest ρ for which U,L

satisfies property 3.3.2 is 3/4 (and it cannot be any larger due to the integrality gap example).

However, the bottleneck above is the fact that each item can contribute at most Bi to Si.

Note that in the case of β-MBA this is β · Bi and indeed this is what gives a better factor

algorithm. Details in Section 3.3.1.

Theorem 3.3.5 For any ε > 0, given αi’s, an allocation Γ ε-valid w.r.t it and pj, the prices

generated by Γ; if all agents are paid for then Γ is a 3/4(1 − ε)-factor approximation for

MBA.

Proof: Consider the dual solution (pj , αi). Since all agents are paid for, min(Bi, Si) ≥
3/4 ·Dual(i). Thus the total value obtained from Γ is at least 3/4

∑
i∈ADual(i). Moreover,

since Γ is ε-valid, (pj/(1 − ε), αi) forms a valid dual of cost 1
1−ε
∑

i∈ADual(i) which is an

upper bound on the optimum of the LP and thus the proof follows. 2

Along with Theorem 3.3.5, the following theorem about the running time proves Theorem

3.3.1.

Theorem 3.3.6 Algorithm MBA-PD terminates in (nm · ln (3m)/ε) iterations with an

allocation Γ with all agents paid for. Moreover, the allocation is ε-valid w.r.t the final αi’s.

Proof: Let us first show the allocation throughout remains ε-valid w.r.t. the αi’s. Note

that initially the allocation is valid. Subsequently, the price of an item j generated by Γ

decreases only when the αi of an agent i owning j increases. This happens only in Step 2,

and moreover j must be rightly allocated before the increase. Now the following calculation

shows that after the increase of αi, pj decreases by a factor of (1−ε). Thus, (pj/(1−ε), αi)’s
form a valid dual solution implying Γ is ε-valid.

p
(new)
j = bij(1− α(new)

i ) = bij(1− αi(1 + εi))

= bij(1− αi)(1− εiαi/(1− αi)) = p
(old)
j (1− ε)

Now in Step 2, note that until there are agents not paid for, either we decrease the

number of wrongly allocated items or we increase the αi for some agent i. That is, in

at most m iterations of Step 2, αi of some agent becomes αi(1 + εi). Now, note that

if αi > 1 − 1/3m for some agent, he is paid for. This follows simply by noting that

Si ≤ mBi = U(1− 1/3m) ·Bi and the fact that Si ≥ L(αi)Bi, for all αi.

Claim 3.3.7 If αi is increased t > 0 times, then it becomes 1− (1− ε)t.
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Proof: At t = 1, the claim is true as αi becomes ε. Suppose the claim is true for some

t ≥ 1. On the t+ 1th increase, αi goes to

αi(1 + εi) = αi + ε(1− αi) = αi(1− ε) + ε

= (1− (1− ε)t)(1− ε) + ε

= 1− (1− ε)t+1

2

Thus if αi is increased ln (3m)/ε times, i becomes paid for throughout the remainder of

the algorithm. Since there are n agents, and in each m-steps some agent’s αi increases, in

(nm · ln (3m)/ε) iterations all agents are paid for and the algorithm terminates. 2

3.3.1 Extension to β-MBA

The algorithm for β-MBA is exactly the same as Algorithm 9. The only difference is the

definition of paid for and L(), U(). Call an agent paid for if min(Bi, Si) ≥ 4−β
4 Dual(i).

Define the function L(α) := α(4−β)
α(4−β)+β and U(α) := (1−α)(4−β)+β

(1−α)(4−β) Note that when β = 1, the

definitions coincide with the definitions in the previous section.

Claim 3.3.8 Given αi’s, agent is paid for if Si ∈ [L(αi), U(αi)] ·Bi

Proof: Agent i is paid for if both Bi ≥ (4−β)
4 (Biαi + Si(1 − αi)) and Si ≥ (4−β)

4 (Biαi +

Si(1− αi)). Let us lose the subscript for the remainder of the proof.

The first implies

S(1− α) ≤ B(
4

(4− β)
− α)⇒ S(1− α) ≤ B (4− β)(1− α) + β

(4− β)
⇒ S ≤ U(α)B

The second implies

S(
4

(4− β)
− (1− α)) ≥ Bα⇒ S

α(4− β) + β

(4− β)
≥ Bα⇒ S ≥ L(α)B

2

Property 3.3.9 For all α, U(α) ≥ L(α) + β

Proof: Note that U(α) = 1 + β
(1−α)(4−β) and L(α) = 1− β

α(4−β)+β . Now,

U(α)− β ≥ L(α)⇐ β

(1− α)(4− β)
− β ≥ β

α(4− β) + β

⇐ 1
(1− α)(4− β)

≥ α(4− β)− (1− β)
α(4− β) + β

⇐ α(4− β) + β ≥ (4− β)2α(1− α)− (1− α)(1− β)(4− β)

⇐ α2(4− β)2 − α(4− β)((1− β) + (4− β)− 1) + β + (1− β)(4− β) ≥ 0

⇐ (α(4− β))2 − 2α(4− β)(2− β) + (2− β)2 ≥ 0

⇐ (α(4− β)− (2− β))2 ≥ 0
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which is true for any α. 2

Theorem 3.3.10 The algorithm 9 with the above definitions gives a (1−β/4)(1− ε)-factor

approximation for β-MBA in Õ(nm/ε) time.

Proof: Armed with the Property 3.3.9 which implies Si ≥ L(α)Bi for all i, the proof of

Theorem 3.3.6 can be modified (the only difference is we need to run till αi > 1−1/(4−β)m

instead of (1 − 1/3m)), to show that the algorithm terminates with an ε-valid allocation

with all agents paid for. The proof of the factor follows from the proof of Theorem 3.3.5

and Claim 3.3.8. 2

3.4 Inapproximability of MBA and related problems

In this section we study the inapproximability of MBA and the related problems as stated

in the introduction. The main theorem of this section is the following 15/16 hardness of

approximation factor for MBA.

Theorem 3.4.1 For any ε > 0, it is NP-hard to approximate MBA to a factor 15/16 + ε.

This holds even for uniform instances.

We give a reduction from Max-3-Lin(2) to MBA to prove the above theorem. The

Max-3-Lin(2) problem is as follows: Given a set of m equations in n variables over GF (2),

where each equation contains exactly 3 variables, find an assignment to the variables to

maximize the number of satisfied equations. H̊astad, in his seminal work [47], gave the

following theorem.

Theorem 3.4.2 [47] Given an instance I of Max-3-Lin(2), for any δ, η > 0, its NP hard

to distinguish between the two cases: Yes: There is an assignment satisfying (1−δ)-fraction

of equations, and No: No assignment satisfies more than (1/2 + η)-fraction of equations.

We now describe the main idea of the hardness reduction, the same idea will also be used

in the reduction for other problems. For every variable x in an Max-3-Lin(2) instance,

we will have two agents corresponding to the variable being 0 or 1. For each such pair of

agents we have a switch item, an item bid on only by this pair of agents, and the allocation

of the item will coincide with the assignment of the variable. For every equation e in the

Max-3-Lin(2) instance, we will have items coinciding with the satisfying assignments of

the equation. For instance if the equation e : x+ y + z = 0, we will have have items corre-

sponding to 〈x : 0, y : 0, z : 0〉, 〈x : 0, y : 1, z : 1〉 and so on. Each such item will be desired

by the three corresponding agents: for example 〈x : 0, y : 0, z : 0〉 will be wanted by the 0

agent corresponding to x, y and z. The bids and budgets are so set so that the switch items

are always allocated and thus each allocation corresponds to an assignment. In this way,
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an allocation instance encodes an assignment instance. The hardness of MBA and other

allocation problems follows from the hardness of Max-3-Lin(2). We give the details now.

Let I be an instance of Max-3-Lin(2). Denote the variables as x1, · · · , xn. Also let deg(xi)

be the degree of variable xi i.e. the number of equations in which variable xi occurs. Note

that
∑

i deg(xi) = 3m. We construct an instance R(I) of MBA as follows:

• For every variable xi, we have two agents which we label as 〈xi : 0〉 and 〈xi : 1〉,
corresponding to the two assignments. The budget of both these agents is 4deg(xi)

(4 per equation).

• There are two kinds of items. For every variable xi, we have a switch item si. Both

agents, 〈xi : 0〉 and 〈xi : 1〉 , bid their budget 4deg(xi) on si. No one else bids on si.

• For every equation e : xi + xj + xk = α (α ∈ {0, 1}), we have 4 kinds of items

corresponding to the four assignments to xi, xj , xk which satisfy the equation: 〈xi :

α, xj : α, xk : α〉, 〈xi : α, xj : ᾱ, xk : ᾱ〉, 〈xi : ᾱ, xj : ᾱ, xk : α〉 and 〈xi : ᾱ, xj : α, xk :

ᾱ〉. For each equation, we have 3 copies of each of the four items. The set of all

12 items are called equation items, and denoted by Se. Thus we have 12m equation

items, in all.

For every equation item of the form 〈xi : αi, xj : αj , xk : αk〉, only three agents bid on

it: the agents 〈xi : αi〉, 〈xj : αj〉 and 〈xk : αk〉. The bids are of value 1 each.

Figure 7 illustrates the reduction above locally on three variables x1, x2, x3 for the equa-

tion x1 + x2 + x3 = 1.

x1:1 x2:0,x3:0 

x1:0, x2:0,x3:1 x1:0, x2:1,x3:0 

x1 + x2 + x3 = 1
x1:1, x2:1,x3:1 

x1:0 x1:1

x2:0

x3:0

x2:1

x3:1

Switch Items

Equation Items

Figure 7: Hardness gadget.
The hardness gadget for reduction of MBA to Max-3-Lin(2). Dotted lines are a bid of 1 and the

solid lines are a bid equalling the budget, 4deg(xi).

We call a solution to R(I) a valid assignment if it allocates all the switch items. The

following lemma is not hard to see.
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Lemma 3.4.3 There always exists an optimal solution to R(I) in which every switch item

is allocated, that is the solution is valid.

Proof: Suppose there is a solution which is not valid. Thus there is a switch item si which

is not allocated. Allocating si to either 〈xi : 0〉 or 〈xi : 1〉 and de-allocating the items

allocated to the agent can only increase the value of the allocation. 2

Suppose R(I) allocates switch item si to agent 〈xi : 0〉, then we say that R(I) assigns

xi to 1, and similarly if si is allocated to 〈xi : 1〉 then we say xi is assigned to 0. Thus by

lemma 3.4.3, every optimal solution of R(I) also gives an assignment of variables for I, and

we call this the assignment by R(I). Now observe the following property which is used to

prove a crucial lemma 3.4.5:

Property 3.4.4 If (xi = αi, xj = αj , xk = αk) is a satisfying assignment for the equation

xi+xj+xk = α, then the other three satisfying assignments are (xi = ᾱi, xj = ᾱj , xk = αk),

(xi = ᾱi, xj = αj , xk = ᾱk), and (xi = αi, xj = ᾱj , xk = ᾱk).

Since agents who get switch items exhaust their budget, any more equation items given

to them generate no extra revenue. We say that an equation item can be allocated in R(I)

only if it generates revenue, that is, it is not allocated to an agent who has spent all his

budget.

Lemma 3.4.5 Given an assignment of variables by R(I), if an equation e is satisfied then

all the 12 items of Se can be allocated in R(I). Otherwise, at most 9 items of Se can be

allocated in R(I).

Proof: If an equation e is satisfied, then there must be one equation item 〈xi : αi, xj :

αj , xk : αk〉 such that xr is assigned αr (r = i, j, k) in the assignment by R(I) (that is the

switch item sr is given to 〈xr : ᾱr〉). Assign the 12 items of Se as follows: give one the

three copies of 〈xi : αi, xj : αj , xk : αk〉 to agents 〈xi : αi〉, 〈xj : αj〉 and 〈xk : αk〉. Note

that none of them have got the switch item. Moreover, for the other items in Se, give all

3 copies of 〈xi : αi, xj : ᾱj , xk : ᾱk〉 to agent 〈xi : αi〉, and similarly for the three copies of

〈xi : ᾱi, xj : αj , xk : ᾱk〉 and 〈xi : ᾱi, xj : ᾱj , xk : αk〉. Since each agent gets 4 items, he does

not exhaust his budget.

If an equation e is not satisfied, then observe that there must be an equation item

〈xi : αi, xj : αj , xk : αk〉 such that xr is assigned ᾱr (r = i, j, k) in the assignment. That

is, all the three agents bidding on this item have their budgets filled up via switch items.

Thus none of the copies of this equation item can be allocated, implying at most 9 items

can be allocated. 2

The following two lemma along with H̊astad’s theorem prove the hardness for maximum

budgeted allocation given in Theorem 3.4.1.
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Lemma 3.4.6 If OPT (I) ≥ m(1 − ε), then the maximum budgeted allocation revenue of

R(I) is at least 24m− 12mε.

Proof: Allocate the switch elements in R(I) so that the assignment of variables by R(I)

is same as the assignment of I. That is, if xi is assigned 1 in the solution to I, allocate

si to 〈xi : 0〉, and vice versa if xi is assigned 0. For every equation which is satisfied,

allocate the 12 equation items as described in Lemma(3.4.5). Since each agent gets at most

4 items per equation, it gets at most 4deg(xi) revenue which is under his budget. Thus the

total budgeted allocation gives revenue: gain from switch items + gain from equation items

=
∑

i 4deg(xi) + 12m(1− ε) = 24m− 12mε. 2

Lemma 3.4.7 If OPT (I) ≤ m(1/2 +η), then the maximum budgeted allocation revenue of

R(I) is at most 22.5m+ 3mη

Proof: Suppose not. i.e . the maximum revenue of R(I) is strictly greater than 22.5m +

3mη. Since the switch items can attain at most 12m revenue, 10.5m+ 3mη must have been

obtained from equation items. We claim that there must be strictly more than m(1/2 +

η) equations so that at least 10 out of their 12 equation items are allocated. Otherwise

the revenue generated will be at most 12m(1/2 + η) + 9m(1/2 − η) = 10.5m + 3mη The

contradiction follows from Lemma(3.4.5). 2

3.4.1 Hardness of SMW with demand oracle

As noted in Section 3.1.2, MBA is a special case of SMW. Thus the hardness of approxima-

tion in Theorem 3.4.1 would imply a hardness of approximation for SMW with the demand

oracle, if the demand oracle could be simulated in poly-time in the hard instances of MBA.

Lemma 3.4.9 below shows that this indeed is the case which gives the following theorem.

Theorem 3.4.8 For any ε > 0, it is NP-hard to approximate submodular welfare with

demand queries to a factor 15/16 + ε.

Lemma 3.4.9 Given any instance I of Max-3-Lin(2), in the corresponding instance R(I)

as defined in Section 3.4 the demand oracle can be simulated in polynomial time.

Proof: We need to show that for any agent i and given prices p1, p2 · · · to the various

items, one can find a subset of items S which maximizes (min(Bi,
∑

j∈S bij) −
∑

j∈S pj).

Call such a bundle the optimal bundle. Observe that in the instance R(I), the bid of an

agent i is 1 on an equation item and Bi on the switch item. Therefore, the optimal bundle

S either consists of just the switch item or consists of Bi equation items. The best equation

items are obviously those of the smallest price and thus can be found easily (in particular

in polynomial time). 2
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3.4.2 Hardness of β-MBA

The hardness reduction given above can be easily modified to give a hardness result for

β-MBA, for any constant 1 ≥ β > 0. Note that the budget of an agent is four times the

degree of the analogous variable. We increase the budget of agents 〈xi : 0〉 and 〈xi : 1〉 to
1
β4deg(xi). For each agent, introduce dummy items so that the total bid of an agent on

these dummy items is ( 1
β − 1) times its original budget. The rest of the reduction remains

the same. Call this new instance β-R(I).

Claim 3.4.10 We can assume that in any optimal allocation, all the dummy items are

assigned

Proof: If a dummy item is not assigned and assigning it exceeds the budget of the agent

implies the agent must be allocated an equation item. De-allocating the equation item and

allocating the dummy item gives an allocation of at least the original cost. 2

Once the dummy items are assigned, the instance reduces to the original instance. We

have the following analogous lemmas of Lemma3.4.6 and Lemma3.4.7.

Lemma 3.4.11 If OPT (I) ≥ m(1− ε), then the maximum budgeted allocation revenue of

β-R(I) is at least 24m− 12mε+ 24m( 1
β − 1). If OPT (I) ≤ m(1/2 + η), then the maximum

budgeted allocation revenue of R(I) is at most 22.5m+ 3mη + 24m( 1
β − 1)

Proof: The extra 24m( 1
β − 1) is just the total value of the dummy items which is obtained

in both cases. 2

The above theorem with H̊astad’s theorem gives the following hardness result for β-MBA.

Theorem 3.4.12 For any ε > 0, it is NP-hard to approximate β-MBA to a factor 1 −
β/16 + ε.

3.4.3 Hardness of GAP

To remind, in the generalized assignment problem (GAP) we have n bins each with a ca-

pacity Bi. There are a set of items with item j having a profit pij and size sij corresponding

to bin i. The objective is to find an allocation of items to bins so that no capacities are

violated and the total profit obtained is maximized.

One of the bottlenecks for getting a better lower bound for MBA is the extra contribution

of switch items which are always allocated irrespective of I. A way of decreasing the effect

of these switch items is to decrease their value. In the case of MBA this implies reducing

the bids of agents on switch items. Note that this might lead to an agent having a switch

item and an equation item as he has budget remaining, and thus the allocation does not

correspond to an assignment for the variables. This is where the generality of GAP helps
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us: the switch item will have a reduced profit but the size will still be the capacity of the

agent (bin). However, since we would want switch items to be always allocated, we cannot

reduce their profits by too much. We use this idea to get the following theorem.

Theorem 3.4.13 For any ε > 0, it is NP-hard to approximate GAP to a factor 10/11 + ε.

We now describe our gadget more in detail. The gadget is very much like the one used

for MBA.

• For every variable xi, we have two bins 〈xi : 0〉 and 〈xi : 1〉, corresponding to the two

assignments. The capacity of both these bins is 2deg(xi) (2 per equation).

• There are two kinds of items. For every variable xi, we have a switch item si. si can

go to only one of the two bins, 〈xi : 0〉 and 〈xi : 1〉. Its capacity for both bins is

2deg(xi) while its profit is deg(xi)/2.

• For every equation of the form e : xi + xj + xk = α (α ∈ {0, 1}), we have a set Se of 4

items, called equation items, corresponding to the four assignments to xi, xj , xk which

satisfy the equation: 〈xi : α, xj : α, xk : α〉, 〈xi : α, xj : ᾱ, xk : ᾱ〉, 〈xi : ᾱ, xj : ᾱ, xk : α〉
and 〈xi : ᾱ, xj : α, xk : ᾱ〉. Thus we have 4m equation items, in all. Every equation

item of the form 〈xi : αi, xj : αj , xk : αk〉, can go to any one of the three bins 〈xi : αi〉,
〈xj : αj〉 and 〈xk : αk〉. The profit and size for each of this bins is 1.

We will use R(I) to refer to the instance of GAP obtained from the instance I of Max-

3-Lin(2). Lets say a solution to an instance R(I) of GAP is a k-assignment solution if

exactly k switch items have been allocated. We will use valid-assignment to refer to the

n-assignment solution.

Lemma 3.4.14 For every solution of R(I) which is a k-assignment solution such that

variable xi is unassigned ( i.e. item si is neither allocated to 〈xi : 0〉 nor 〈xi : 1〉 ) there

exists a k-assignment solution of at least the same value in which xi is unassigned and both

〈xi : 0〉 and 〈xi : 1〉 together gets atmost one item from Se for every equation e of xi. i.e.

they both get a total of atmost deg(xi) items.

Proof: Suppose not. i.e. there exists an equation e (say xi +xj +xk = α) s.t. both 〈xi : 0〉
and 〈xi : 1〉 together gets atleast two items out of Se. Notice that the switch items of xj and

xk can fill the capacity of atmost one bin out of their respective two bins. Suppose the free

bins are 〈xj : α〉 and 〈xk : α〉 (The other cases can be considered similarly). Now except

for the item 〈xi : α, xj : ᾱ, xk : ᾱ〉, all the other 3 items in Se are wanted by 〈xj : α〉 and

〈xk : α〉. By the above property, all of these 3 items can be allcocated to the bins 〈xj : α〉
and 〈xk : α〉. Thus we can reallocate the items of Se such that atmost one item out of Se
is allocated to the corresponding bins of variable xi without decreasing the profit. 2
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Now by the above lemma, for any unassigned variable xi in a k-assignment solution,

one of the bins out of 〈xi : 0〉 and 〈xi : 1〉 will have atmost deg(xi)/2 items. We can remove

these items and allocate the switch element of xi without reducing the profit. Thus we get

the following corollary.

Corollary 3.4.15 For every optimal solution of R(I) which is a k-assignment solution

there exists a (k+1)-assignment solution which is also optimal. Therefore, there exists a

optimal solution of R(I) which is a valid assignment

Now using arguments similar to lemma 3.4.5 , one can show the following:

Lemma 3.4.16 Consider a valid-assignment solution (say v-sol) of R(I). If an equation e

is satisfied by the assignment of variables given by v-sol then all the 4 items of Se can be

allocated in v-sol. Otherwise atmost 3 items out of Se can be allocated in v-sol.

Now using arguments similar to lemma 3.4.6 and 3.4.7, one can prove the following

lemma which along with H̊astad’s theorem implies Theorem 3.4.13.

Lemma 3.4.17 Let I be an instance of Max-3-Lin(2) and R(I) be its reduction to GAP,

then:

• If OPT (I) ≥ m(1− ε), then the maximum profit of R(I) is at least 5.5m− 4mε.

• If OPT (I) ≤ m(1/2 + η), then the maximum profit of R(I) is at most 5m+mη

Proof: Suppose OPT (I) ≥ m(1 − ε). Allocate switch elements in R(I) so that the as-

signment of variables is same as the one given by optimal solution of I. Now the profit

from switch items equals:
∑

i(deg(xi)/2) = 3m/2. Also by lemma 3.4.16, the profit from

equation items is atleast 4m(1− ε). Combining both, we get the first part of the lemma.

Suppose OPT (I) ≤ m(1/2 + η). By corollary 3.4.15, there exists a optimum solution of

R(I) which is a valid assignment. Consider any such solution. Now the claim is that for no

more than m(1/2 + η) equations, all the 4 items of Se’s can be allocated in this solution. If

they do, then along with lemma 3.4.16 it contradicts the fact that OPT (I) ≤ m(1/2 + η).

Thus profit from equation items can be atmost: 4m(1/2 + η) + 3m(1/2− η) = 7m/2 +mη.

Hence total profit can be atmost 3m/2 + 7m/2 +mη. 2

3.4.4 Hardness of weighted MSSF

Given an undirected graph G, the unweighted maximum spanning star forest problem

(MSSF) is to find a forest with as many edges such that each tree in the forest is a star.

The edge-weighted MSSF (eMSSF) is the natural generalization with weights on edges. The

node-weighted MSSF (nMSSF) has weights on vertices and the weight of a star is the weight
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on the leaves. If the star is just an edge, then the weight of the star is the maximum of the

weights of the end points.

It is clear that the non-trivial part of the above problem is to identify the vertices which

are the centers of the stars. Once more, we reduce Max-3-Lin(2) to both eMSSF and

nMSSF. Let us discuss the edge-weighted MSSF first. For every variable x in an instance of

Max-3-Lin(2), we introduce two vertices: 〈x : 0〉, 〈x : 1〉. The interpretation is clear: we

will enforce that exactly one of these vertices will be the center which will coincide with the

assignment in the Max-3-Lin(2) instance. Such an enforcing is brought about by putting

a heavy cost edge between the vertices. For every equation we will add vertices as we did

in the reduction to GAP.

In the node-weighted MSSF, we need to add an extra vertex, the switch vertex, along

with the two vertices 〈x : 0〉, 〈x : 1〉. These vertices form a triangle and have a weight high

enough to ensure that exactly one of 〈x : 0〉, 〈x : 1〉 is chosen as a center in any optimum

solution to nMSSF.

We remark that Chen et.al [22] also use a similar gadget as the one above, although

their reduction is from a variation of MAX-3-SAT and thus their results are weaker.

Hardness of eMSSF: Let I be an instance of Max-3-Lin(2). Denote the variables as

x1, · · · , xn. Also let deg(xi) be the degree of variable xi i.e. the number of equations in

which variable xi occurs. Note that
∑

i deg(xi) = 3m. We construct an instance E(I) of

eMSSF as follows:

• For every variable xi, we have two variables which we label as 〈xi : 0〉 and 〈xi : 1〉,
corresponding to the two assignments. These variables are called variable vertices.

There is an edge between them of weight deg(xi)/2.

• For every equation e : xi + xj + xk = α (α ∈ {0, 1}), we have 4 vertices corresponding

to the four assignments to xi, xj , xk which satisfy the equation: 〈xi : α, xj : α, xk : α〉,
〈xi : α, xj : ᾱ, xk : ᾱ〉, 〈xi : ᾱ, xj : ᾱ, xk : α〉 and 〈xi : ᾱ, xj : α, xk : ᾱ〉. This set

of vertices are called equation vertices denoted by Se. Thus we have 4m equation

vertices in all. Each equation vertex of the form 〈xi : αi, xj : αj , xk : αk〉 is connected

to three variable vertices: 〈xi : αi〉, 〈xj : αj〉 and 〈xk : αk〉. The weight of all these

edges is 1. Thus, the degree of every equation vertex is 3 and the degree of every

variable vertex 〈xi : 0〉 or 〈xi : 1〉 is 2deg(xi).

Lemma 3.4.18 Given any solution to E(I), there exists a solution of at least the same

weight where the centers are exactly one variable vertex per variable.

Proof: Firstly note that if none of the variable vertices are centers then one can make one

of them a center and connect the other to it and get a solution of higher cost (note that the
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degrees of the variables in the equations can be assumed to be bigger than 4 by replication).

The proof is in two steps. Call a variable xi ∈ I unassigned if both of 〈xi : 0〉 and 〈xi : 1〉 is

a center. Call a solution of E(I) k-satisfied if exactly k of the variables are assigned. The

claim is that there exists a solution of equal or more weight which is n-satisfied. We do this

via induction.

We show that if a solution to E(I) is k-satisfied with k < n,then we can get a solution of

at least this weight which is k+1-satisfied. Pick a variable xi which is unassigned. For every

equation e : xi + xj + xk = 0, say, containing xi we claim that one can assume of the four

equation vertices in Se, only one is connected to 〈xi : 0〉 and 〈xi : 1〉. This is because at least

one of the two variable vertices corresponding to both xj and xk are centers. Suppose these

are 〈xj : 0〉 and 〈xk : 0〉. Now note that of the four vertices in Se only 〈xi : 0, xj : 1, xk : 1〉
is not neighboring to either of these centers. The three remaining can be moved to these

without any decrease in the weight of the solution and the claim follows.

Thus, we can assume that for every unassigned variable xi in the k-satisfied solution,

one of the two variable vertices 〈xi : 0〉 or 〈xi : 1〉 (say 〈xi : 0〉), is connected to at most

deg(xi)/2 equation vertices. Therefore, disconnecting all the equation items connected to

〈xi : 0〉, making it a leaf and connecting it to 〈xi : 1〉, gives a k + 1-satisfied solution of

weight at least the original weight. 2

Now we get the hardness of eMSSF using the theorem of H̊astad.

Theorem 3.4.19 For any ε > 0, it is NP-hard to approximate edge-weighted MSSF to a

factor 10/11 + ε.

Proof: The proof follows from the following two calculations and Theorem 3.4.2.

• If OPT (I) ≥ m(1 − δ), then the maximum profit of E(I) is at least 5.5m − 4mδ.

For every variable xi, if the assignment of xi is α ∈ {0, 1}, make 〈xi : α〉 the center.

Observe that for every satisfied equation e : xi + xj + xk = α, all the four vertices of

Se can be connected to a center. Thus the weight of E(I) is at least
∑

i deg(xi)/2 +

4m(1− δ) = 5.5m− 4mδ.

• If OPT (I) ≤ m(1/2 + η), then the maximum profit of E(I) is at most 5m+mη From

the claim above we can assume for each variable xi, one of its two variable vertices

is a center. This defines an assignment of truth values to the variables and around

half of the equations are not satisfied by this assignment. The observation is that for

any unsatisfied equation e : xi + xj + xk = α, one of the four equation vertices in

Se is not connected to any center. Thus, the total weight of any solution is at most∑
i deg(xi)/2 + 4m(1/2 + η) + 3m(1/2− η) = 5m+mη.

2
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Hardness of nMSSF: Let I be an instance of Max-3-Lin(2). The only difference between

the instance of nMSSF, N(I), and the eMSSF E(I) is that for every variable xi ∈ I, along

with the variable vertices 〈xi : 0〉 and 〈xi : 1〉, we have a switch vertex si. The three vertices

from a triangle and the node-weights of all of them are deg(xi)/2. The rest of the instance

of N(I) is exactly like E(I) with the edge-weights being replaced by node-weights of 1 on

the equation vertices.

The reason we require the third switch vertex per variable is that otherwise we cannot

argue that in any solution to N(I) at least one of the variable vertices should be a center.

With the switch vertex, we can argue that this is the case. If none of the variable vertices

is a center, then the switch item is not connected to any vertex. Thus making any one of

the variable vertices as a center connected to the switch item gives a solution to N(I) of

weight at least the original weight.

Lemma 3.4.18 now holds as in the case of E(I) and thus similar to Theorem 3.4.20 we

have the following hardness of node-weighted MSSF.

Theorem 3.4.20 For any ε > 0, it is NP-hard to approximate edge-weighted MSSF to a

factor 13/14 + ε.

Proof: The proof follows from the following two calculations and Theorem 3.4.2.

• If OPT (I) ≥ m(1 − δ), then the maximum profit of N(I) is at least 7m − 4mδ. For

every variable xi, if the assignment of xi is α ∈ {0, 1}, make 〈xi : α〉 the center.

Connect the switch item and the vertex 〈xi : ᾱ〉 to this center. Observe that for every

satisfied equation e : xi + xj + xk = α, all the four vertices of Se can be connected to

a center. Thus the weight of N(I) is at least
∑

i deg(xi) + 4m(1− δ) = 7m− 4mδ.

• If OPT (I) ≤ m(1/2+η), then the maximum profit of N(I) is at most 6.5m+mη From

the claim above we can assume for each variable xi, one of its two variable vertices

is a center. This defines an assignment of truth values to the variables and around

half of the equations are not satisfied by this assignment. The observation is that for

any unsatisfied equation e : xi + xj + xk = α, one of the four equation vertices in

Se is not connected to any center. Thus, the total weight of any solution is at most∑
i deg(xi) + 4m(1/2 + η) + 3m(1/2− η) = 6.5m+mη.

2

3.5 Discussion

In this chapter we studied the maximum budgeted allocation problem and showed that the

true approximability lies between 3/4 and 15/16. Our algorithms were based on a natural

LP relaxation of the problem and we, in some sense, got the best out if it: the integrality
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gap of the LP is 3/4. An approach to get better approximation algorithms might be looking

at stronger LP relaxations to the problem. One such relaxation is the configurational LP

relaxation which we describe below.

3.5.1 The configurational LP relaxation

In this relaxation, we have a variable xi,S for every agent i and every subset of items S ⊆ Q.

The LP is as follows

Max {
∑
i

∑
S⊆Q

ui(S)xi,S (9)

s.t.: ∀i ∈ A,
∑
S⊆Q

xi,S ≤ 1;

∀j ∈ Q,
∑

i,S⊆Q:j∈S
xi,S ≤ 1;

∀i ∈ A,S ⊆ Q, xi,S ≥ 0}

The first constraint implies that each agent gets at most one subset of items. The second

implies that each item is at most one subset. The value generated on giving a subset S to

agent i is ui(S) = min(Bi,
∑

j∈S bij).

Solving the LP: Observe that the LP has exponentially (in n and m) many variables and

an obvious question is how to solve the LP. One does so by going to the dual LP which will

have exponentially many constraints but only polynomially many variables. Such a trick is

now standard first used by Carr and Vempala [16]. The dual of LP 9 is as follows

Min {
∑
i∈A

αi +
∑
j∈Q

pj (10)

s.t.:∀i ∈ A,S ⊆ Q, αi +
∑
j∈S

pj ≥ ui(S);

∀i ∈ A, ∀j ∈ Q, αi, pj ≥ 0}

Suppose, for the time being, the LP10 has a separation oracle: Given (αi, pj) one can say in

polynomial time if it is feasible for LP10 or find a subset of agents S with αi +
∑

j∈S pj <

ui(S). If so, then the ellipsoid algorithm can be used to solve the LP by making a polynomial

number of queries to the separation oracle. Moreover, the subsets returned by the separation

oracle are enough to describe the optimal solution to the dual. In other words, in the primal

LP 9, only the variables corresponding to these constraints need be positive and the rest

can be set to 0 and the optimum is not changed. Since they are only polynomially many,

LP 9 can now be solved in polynomial time. Moreover, if one had an r-separation oracle

(r ≤ 1): Given (αi, pj) one can say in polynomial time if 1
r · (αi, pj) is feasible for LP10 or
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find a subset of agents S with αi +
∑

j∈S pj < ui(S); then the above argument can be used

to get an r-approximation for the primal LP 9.

Note that the separation problem for LP 10 is precisely the demand oracle problem

described Section 3.1.2: given prices pj to items, for every agent i find a subset of items

maximizing (ui(S) −
∑

j∈S pj) where ui(S) = min(Bi,
∑

j∈S bij). The problem is NP-hard

with a reduction from Partition. Given an instance of partition of n integers b1, b2, · · · , bn
and a target integer B, consider the instance of the separation problem with n items having

bids b1 to bn and prices b1/2, · · · , bn/2 and budget B. Note that the maximum value of the

separation problem is at most B/2 and moreover the optimum is B/2 if and only if there

is a subset of the integers adding exactly to B.

We now demonstrate an (1 − ε)-separation oracle for LP 10 using the FPTAS for the

knapsack problem. The sketch below is not the fastest implementation as we interested

mainly in the existence of polynomial time algorithms. In the knapsack problem, we are

given a capacity of B and n items having profits pj and weight wj and the goal is to obtain

a subset of items having maximum profit with the total weight being less than B. The

problem in NP-hard, but an FPTAS exists. Moreover, there is an exact algorithm which

runs in time O(n2P ) where P is the largest profit. Given the separation problem for LP 10,

we consider the items in any arbitrary order. The first item has a bid of b1 and price p1.

Suppose the item is picked in the optimum solution, call it S. If so, then
∑

j∈S bij ≤ B+b1,

as otherwise one could discard the first item and get a better solution. Thus the optimum

solution of the separation problem given the first item is picked is precisely

max
0≤x≤b1

{Knapsack[{(b2 − p2, b2), · · · , (bn − pn, bn)}, B − x] + (x− p1)}

(x−p1) is the value of the item 1 after the items from b2, · · · , bn use up B−x of the budget.

One can repeat the procedure n times removing one item at a time and in the end taking

the best solution over all iterations. This gives the optimum solution in time O(n3B2),

where B is the budget.

To make the above algorithm run in polynomial time, we round down to the nearest

integer all the budgets, bids and prices by a factor of εB/n. The solution to this reduced

instance can be found in time O(n5/ε) and the same solution, scaled back, can be shown to

be within (1− ε) of the optimal solution (see for example, [93]).

Integrality gap of the configurational LP: In the next theorem we show that the

integrality gap of the configurational LP is between 3/4 and 5/6. The lower bound follows

basically by showing that the value of LP 9 is at most the value of LP 6 (and thus is a

better upper bound on the optimum). The upper bound follows from an example which we

demonstrate below.
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Theorem 3.5.1 The integrality gap of the configurational LP of MBA is between 3/4 and

5/6.

Proof: An easy way to see that the configurational LP is stronger than LP(6) is by looking

at the duals of both LP’s. One can show that any solution (αi, pj) to LP(7) corresponds to

a feasible solution (Biαi, pj) to LP 10 of equal value. Thus the configurational LP value is

smaller than that of LP(6).

The 5/6-example is as follows: The instance consists of 4 agents a1, b1, a2, b2. a1, a2 have a

budget of 1, b1, b2 have a budget of 2. There are five items: c, x1, y1 and x2, y2. Only b1

and b2 bid on c and bid 2. For i = 1, 2, ai and bi each bid on xi and yi, and the bid is 1.

a1 a2b1 b2
c

x1 x2

y1 y2

2 2

1 1 1 1

1111

Figure 8: Integrality gap example for configurational LP.

Once again, if c is given to b1, then either a2 or b2 ends up spending 1 less than his

budget. Thus, the optimum MBA solution is 5. But there is a solution to the configurational

LP(9) of value 6. The sets are S1 = {x1}, S2 = {y1}, S3 = {x2}, S4 = {y2}, S5 = {c},S6 =

{x1, y1} and S7 = {x2, y2}. The solution is: xa1,S1 = xa1,S2 = xa2,S3 = xa2,S4 = 1/2 and

xb1,S6 = xb1,S5 = xb2,S5 = xb2,S7 = 1/2. 2

The above theorem is about all we know for the configurational LP relaxation for MBA.

We believe that the integrality gap should be strictly better (larger) than 3/4 although it is

not clear how to do so. Configurational LPs have been used for other allocation problems;

in fact the best known approximation algorithm of Feige and Vondrák [35] for SMW and

GAP proceeds by rounding the solution of the LP. However, we do not know how to use

the “simplicity” of the submodular functions of MBA to get a better bound. (Feige and

Vondrák get a factor strictly bigger than 1− 1/e). We leave the question of pinning down

the exact integrality gap of this LP as an open question and believe the resolution might

require some new techniques.

66



CHAPTER IV

ONLINE ALLOCATION PROBLEMS WITH APPLICATIONS TO

BUDGETED AUCTIONS

In this chapter we consider the online version of a few allocation problems. The most

basic allocation problem we consider is Knapsack: Given a knapsack (bin) of capacity of

B and m items having profits pj and weight wj , the goal is to obtain a subset of items

having maximum profit with the total weight being at most B. The most general allocation

problem which generalizes Knapsack we consider is GAP: Given a set A of n knapsacks (or

bins) of capacity B1, · · · , Bn, a set of m items Q, with item j having a profit pij and weight

wij for bin i, the goal is to find an allocation of items to bins such that the total weight in

each bin does not exceed the capacity and the total profit across bins is maximized.

We devise algorithms for online versions of these allocation problems. That is, the set

of items Q is not known at the beginning and items arrive one at a time. At each instant,

the algorithm must decide what to do with the item (place it in a bin or discard it), and

the decision once made is irrevocable - discarded items cannot be recalled back and items

once allocated cannot be de-allocated. Nevertheless, the decisions can be made based on

items seen so far.

We analyze the performance of our algorithms using competitive analysis. That is, given

any set of items J , we compare the profit obtained by our algorithms to the best profit that

could have been obtained by any (computationally all-powerful) “offline” algorithm who

has complete knowledge about the set of items.

Comparing with such an all powerful benchmark has its difficulties - as we make clear

later, if one makes no assumptions then no competitive algorithms are possible. We make

the following two (necessary) assumptions throughout the chapter:

1. The weights of each item is much smaller than the capacity of the bins. In particular,

there is an ε > 0 very close to 0, such that wij/Bi ≤ ε for all i ∈ A, j ∈ Q.

2. The profit-to-weight ratios are neither too high, nor too small. That is, there exists

U,L > 0 such that for all i ∈ A, j ∈ Q,

L ≤ pij
wij
≤ U

Our main results are a (ln(U/L) + 2)-competitive algorithm for online GAP and the on-

line multiple choice knapsack problem (Online-MCKP) and a (ln(U/L) + 1)-competitive

algorithm for the single and multiple knapsack problem. We also show these algorithms
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are almost optimal. For the simplest case of the single knapsack problem, we show no

algorithm can achieve a competitive ratio better than (ln(U/L)+1). All our algorithms are

deterministic.

Relation to budgeted auctions: Apart from being natural questions in the field of online

algorithms, the online versions of allocation problems have applications in auctions where

the supply is unknown and arbitrary.

Consider the auction of many copies of a single item (say license to some computer

software) although the total number of copies is unknown. The auctions runs over time

and budget-constrained bidders are allowed to change their bids over time. At each instant

a copy of the item arrives, the current bids of bidders are looked at and a second-price

auction occurs: the highest bidder is given the item and charged the bid of the second

highest one. We argue that a fixed single bidder who can see the bids of the other bidders

(this may sometime be possible and, as we will see, sometimes unnecessary), is solving an

online knapsack problem. At any point of time before arrival of a new item, the bidder has

to decide whether to bid the highest or not - in the former case he gets a profit of the value

of the item and his budget depletes by the second highest bid (which corresponds to picking

an item), in the latter case he makes none and loses no money (which corresponds to the

discard of an item).

Online allocation problems are also useful in designing auctions when the supply is

unknown. For instance, consider the auction scenario before, except that there is not a

single item but many such items. Moreover, suppose giving an item j to bidder i gives

a profit of pij while it depletes the bidder’s budget by wij = the bid on the item. Thus

the online version of GAP can be used to obtain a socially efficient 1 first-price auction of

these items. If one considers only the profit of the auctioneer instead, then the design of

the optimum auction is precisely the special case of online GAP with pij = wij .

The most famous (and financially significant) such unknown supply auctions are the

contemporary sponsored search auctions hosted by Internet search engines. In these auc-

tions, bidders, who are advertisers, bid on keywords (like “color printers” or “turkish

towels”) and each time this keyword is queried by some user via the search engine, the

auction takes place. Thus the total supply of the items (queries of keywords) is unknown.

We discuss these auctions in a little more detail in Section 4.4.

4.1 The online knapsack problem

The online knapsack problem was first studied by Marchetti-Spaccamela and Vercellis [75].

Indeed, they were the first to show that no non-trivial competitive algorithms existed for

1An auction is called efficient if the total utility of all the agents (bidders and auctioneer) is maximized.
An auction is called optimal if it maximizes the revenue to the auctioneer
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the general case of the online knapsack problem. To see this, consider the case where the

capacity B = 1 and consider two input sequences both having two items, σ1 = {(1, 1), (0, 1)}
and σ2 = {(1, 1), (∞, 1)}. Its easy to see any deterministic online algorithm will be infinitely

worse than the omniscient algorithm on at least one of the inputs. It is not too hard to

generalize this argument to randomized online algorithms as well.

Besides giving the impossibility result, [75] studied the online knapsack problem in

the average case setting with the profits and weights of the items being picked from a

fixed distribution. They gave an online algorithm which in this setting gave a profit an

additive factor away from the optimal. Lueker [73] improved the additive factor and gave

an optimal algorithm in this setting. Other variants of the stochastic knapsack problems

were considered by Papastavrou et.al [81, 62] and Van-Slyke and Young [92]. Other variants

of the online knapsack problem like the removable online knapsack problems [50] and online

partially fractional knapsack problems [80] have also been studied recently.

As far our knowledge, we do not know of any work on the online knapsack problem

with the assumptions that we make. However, recently, in a series of works Buchbinder and

Naor [14, 15] designed online algorithms for fractional versions of general packing problems,

our allocation problems are also packing problems. One can derive O(ln(U/L))-competitive

online algorithms for our problems using their framework. Nevertheless, we believe our

algorithms are much simpler for the special case we consider and furthermore our results

are optimal or off by an additive +1.

In this section we present two (ln(U/L)+1)-competitive algorithms for the online knapsack

problem. The first is an extremely simple randomized online algorithm and works only when

the input sequence of items is oblivious, that is, the item coming next doesn’t depend on the

choices of the algorithm. The second is a deterministic (although it is not a derandomization

of the above) online algorithm which works with adaptive sequences of items as well.

Given an item j, we call the ratio of the profit pj of the item to its weight wj the

efficiency of the item. The second assumption which we work on is that the efficiency of an

item is between L and U .

Randomized Algorithm: Let D be the following continuous distribution from 0 to U ,

with the density function f(x) = c
x , for L ≤ x ≤ U , and f(x) = c/L for 0 ≤ x ≤ L, where

c = 1
1+ln(U/L) Note that

∫ U
0 f(x)dx = 1, and this is a valid density function.

Algorithm 10 Online-KP-Randomized

Pick a threshold T from the distribution D.
Whenever item j arrives, pick it iff

pj
wj
≥ T and capacity remaining ≥ wj .
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Theorem 4.1.1 Online-KP-Randomized has randomized competitive ratio (ln(U/L) +

1).

Proof: Let σ be an input sequence of items andA(σ) be the profit obtained by the algorithm

above. E[A(σ)] is the expected profit, with the expectation over the random choice of the

threshold T .

Suppose that the optimum offline fills the knapsack up to capacity α · B, for some

α ≤ 1. Given an input sequence of items σ, for x ∈ [0, U ], let ρ(x) denote the fraction of

the knapsack filled by the optimum offline algorithm with items whose efficiency ratio is

more than x. Note that ρ is an integrable2 decreasing function with ρ(0) = ρ(L) = α and

ρ(U) = 0.

Also observe that the profit obtained by the optimum offline algorithm is given by:

OPT(σ) =
∫

x · B(−d(ρ(x))) =
∫ U

0
ρ(x)dx · B (11)

The first integral is written with an abuse of notation: it is actually the sum of integrals

with the same integrand with ranges where ρ is continuous. The second equality follows

from simple calculus.

Now note that if the random threshold chosen is T ≥ L, then the algorithm would have

a profit of at least Tρ(T ) ·B as there are items which fill at least ρ(T ) ·B and have efficiency

more than T . Also if 0 ≤ T ≤ L, then the algorithm would have a profit of at least L · B.

(Actually, we have used assumption 1 (wj � B); refer to the remark after the proof.)

Thus the expected profit of the algorithm

E[A(σ)] ≥
∫ L

0
LBf(x)dx+

∫ U

L
xρ(x)Bf(x)dx

= LB

∫ L

0

c

L
dx+B

∫ U

L
xρ(x)

c

x
dx

≥ cB

∫ L

0
ρ(x)dx+ cB

∫ U

L
ρ(x)dx

= c ·OPT

where the last but one inequality uses ρ(x) = α ≤ 1 for x ∈ [0, L]. The proof follows by

observing c = 1
ln(U/L)+1 . 2

Remark: Note that we are use the fact that the weights are much smaller than the capacity

when we say the algorithm fills Tρ(T ) · B portion of the knapsack with items of efficiency

more than T . To be precise, with assumption 1, we would say the algorithm has a profit

at least Tρ(T ) · B(1 − ε), since the algorithm is guaranteed to fill ρ(T ) · B(1 − ε) capac-

ity with items with efficiency more than T . Thus, to be precise, the competitive ratio is

2In fact, ρ is a step function with a finite number of steps
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1
(1−ε)(ln(U/L) + 1).

Remark: Note that the algorithm works well only in expectation and against oblivious ad-

versaries. If the threshold choice is known, then an adversary can produce an arbitrarily

bad input sequence.

Deterministic Algorithm: Now we present the deterministic algorithm for the online

knapsack problem which works against all adversaries achieving the optimal bound of

ln(U/L) + 1. In the remainder of the chapter, e denotes the base of the natural logarithm.

Algorithm 11 Online-KP-Threshold

Let Ψ(z) ≡ (Ue/L)z(L/e).
When item j arrives, let zj be the fraction of capacity filled, pick element j iff

pj
wj
≥ Ψ(zj).

Observe that for z ∈ [0, c] where c ≡ 1
1+ln(U/L) , Ψ(z) ≤ L, thus the algorithm will pick all

items available until c fraction of the knapsack is filled. In fact, we will assume henceforth

Ψ(z) = L for z ∈ [0, c]. When z = 1, Ψ(z) = U , and since Ψ is strictly increasing, the

algorithm will never over-fill the knapsack.

Theorem 4.1.2 Online-KP-Threshold has a competitive ratio of ln(U/L) + 1.

Proof: Fix an input sequence σ. Let the algorithm terminate filling Z fraction of the

knapsack and obtaining a value of A(σ). Let S and S∗ respectively be the set of items

picked by the Algorithm Online-KP-Threshold and the optimum. Denote the weight

and the value of the common items by W =
∑

j∈(S∩S∗)wj and P =
∑

j∈(S∩S∗) pj . For

each item j not picked by the algorithm, its efficiency is < Ψ(zj) ≤ Ψ(Z) since Ψ(z) is the

monotone increasing function of z. Thus,

OPT(σ) ≤ P + Ψ(Z)(B−W)

Since A(σ) = P +
∑

j∈(S\S∗) pj =: p(S \ S∗), the above inequality implies that

OPT(σ)
A(σ)

≤ P + Ψ(Z)(B −W )
P + p(S \ S∗)

. (12)

Since each item j picked in S must have efficiency at least Ψ(zj) where zj is the fraction
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of the knapsack filled at that instant, we have

P ≥
∑

j∈S∩S∗
Ψ(zj)wj =: P1, (13)

p(S \ S∗) ≥
∑

j∈S\S∗
Ψ(zj)wj =: P2. (14)

Since OPT(σ) ≥ A(σ), inequality (12) implies

OPT(σ)
A(σ)

≤ P + Ψ(Z)(B −W )
P + p(S \ S∗)

≤ P1 + Ψ(Z)(B −W )
P1 + p(S \ S∗)

(15)

Noting that P1 ≤ Ψ(Z)w(S ∩S∗) = Ψ(Z)W and plugging in the values of P1 and P2 we

get

OPT(σ)
A(σ)

≤ Ψ(Z)∑
j∈S Ψ(zj)∆zj

(16)

where ∆zj = zj+1 − zj = wj/B for all j.

Now based on the assumption that the weights are much smaller than B, we can approx-

imate the summation via an integration (refer to the remark following the proof). Thus,

∑
j∈S

Ψ(zj)∆zj ≈
∫ Z

0
Ψ(z)dz

=
∫ c

0
Ldz +

∫ Z

c
Ψ(z)dz

= cL+
L

e

(Ue/L)Z − (Ue/L)c

ln(Ue/L)

=
L

e

(Ue/L)Z

ln(Ue/L)
=

Ψ(Z)
ln(U/L) + 1

and along with inequality (16) this completes the proof. 2

Remark: Just as in Theorem 4.1.1, we can make the approximation made above precise.

Since Ψ(z) is an increasing function of z, we obtain
∑

j∈S Ψ(zj)∆zj ≥ (1 − ε)
∫ Z

0 Ψ(z)dz

where ε = (maxj wj)/B is a small constant. Thus, to be precise, the competitive ratio is

actually ln(Ue/L) · 1
1−ε .

4.1.1 Extension to online multiple knapsack problem

In the multiple knapsack problem, as the name suggests we have n knapsacks or bins, each

having a capacity of B1, · · · , Bn. However, the profit and weights of items are independent

of the bins.

The offline version of the multiple knapsack problem is harder than the single knapsack

problem (the latter has an FPTAS while the former has only a PTAS[21] and does not
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have an FPTAS unless P=NP). The hardness arises from the fact that even if the set of

items to be picked is known, to distribute among the different knapsacks is an instance

of bin-packing. However, when we make assumption 1, that is, the weights of items are

much smaller than the capacity of the knapsack, this issue of selecting bins doesn’t apply

any more and thus the multiple knapsack problem is in some sense as easy as the single

knapsack problem.

In fact, the algorithm for the online multiple knapsack problem is the same as Algorithm

11 with an item j picked if its efficiency is larger than the Ψ() of some bin (ties broken

arbitrarily). The proof of the following theorem is very similar to the proof of Theorem

4.1.2.

Theorem 4.1.3 Online-KP-Threshold with the above modification is a (ln(U/L) + 1)-

competitive algorithm for the online multiple knapsack problem.

Proof: Let σ be a fixed input sequence and let the algorithm terminate filling Z1, Z2, · · · , Zn
fraction respectively of the n knapsacks obtaining a value of A(σ). Let S be the set of items

picked by the algorithm and let S1, S2, · · · , Sn be the natural partition of S: Si is set of

items the algorithm picks in the ith knapsack.

Let Wi :=
∑

j∈(Si∩S∗)wj and Pi =
∑

j∈(S∩S∗) pj . As before we have that for each item

j not picked by the algorithm, its efficiency is ≤ Ψ(Zi), for all i. Thus we get

OPT(σ)
A(σ)

≤
∑n

i=1( Pi + Ψ(Zi)(Bi −Wi) )∑n
i=1( Pi + p(Si \ S∗) )

.

As in the proof of Theorem 4.1.2, we have for all i, Pi ≥
∑

j∈Si∩S∗ Ψ(zij)wj where zij is

the fraction of the capacity of the ith knapsack filled when item j arrives. Thus,

OPT(σ)
A(σ)

≤
∑n

i=1(
∑

j∈Si∩S∗ Ψ(zij)wj + Ψ(Zi)(Bi −Wi) )∑n
i=1(

∑
j∈Si∩S∗ Ψ(zij)wj + p(Si \ S∗) )

(17)

The numerator is less than
∑n

i=1( Ψ(Zi)Wi + Ψ(Zi)(Bi −Wi) =
∑n

i=1 Ψ(Zi)Bi.

The denominator is equal to
∑n

i=1(
∑

j∈Si Ψ(zij)Bi ·∆zij ), where ∆zij := zi,j+1 − zij =

wj/Bi.

As in the proof of Theorem 4.1.2, each of the ratios (Ψ(Zi)/
∑

j∈Si Ψ(zij)∆zij) is less than
1

(ln (U/L)+1) implying the RHS of inequality 17 is less than 1
(ln (U/L)+1) completing the proof.

2

4.2 Extensions to online multiple choice knapsack problem and online
GAP

The online multiple choice knapsack problem (MCKP) is a generalization of the online single

knapsack problem. At each time instant t, a set of items Nt arrives and the algorithm
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has to choose at most one item from the set. The goal again is to get as high a profit

without violating the capacity constraint of the knapsack. The algorithm for online MCKP

is a simple modification of the online single knapsack problem: for every set Nt, find the

elements which cross the threshold as per the online knapsack algorithm, and choose the

one with maximum profit. The analysis argument as shown in Theorem 4.2.1 follows the

argument of the online knapsack problem, except for the times when the algorithm picks

one item from a set and the optimum picks another. Since the algorithm picks the more

profitable of the two, these items can be “paid for” by the extra +1 in the competitive

factor.

Algorithm 12 Online-MCKP-Threshold

Let Ψ(z) ≡ (Ue/L)z(L/e).
At time t, let z(t) denote the fraction of capacity filled,

Et ≡
{
s ∈ Nt |

ps
ws
≥ Ψ(z(t))

}
,

pick element s ∈ Et with maximum ps

The above algorithm has a competitive ratio of ln(U/L) + 2, stated as the following

theorem.

Theorem 4.2.1 Algorithm Online-MCKP-Threshold has a competitive ratio of (ln(U/L)+

2).

Proof: For any input sequence of sets σ, let A(σ) be the profit obtained by the above

algorithm and OPT(σ) be the maximum profit obtainable. We claim that for any σ,

OPT(σ)−A(σ) ≤ (ln(U/L) + 1)A(σ).

Note that the claim immediately implies the theorem. As in the proof of Theorem 4.1.2,

let S and S∗ be the set of items picked by the algorithm and the optimum, respectively. Let

P = π(S ∩ S∗) denote the profit of the common items, W = w(S ∩ S∗) denote the weight.

As before, we want to bound the profit of the items picked by OPT but not by ALG. In the

multiple-choice case, unlike in the proof of Theorem 4.1.2, the efficiency of an item selected

by OPT from Nt is not necessarily bounded by Ψ(z(t)) since ALG may have also selected

a different item from Nt. Thus we partition the items picked by OPT and not by ALG

into two: items which do not satisfy the efficiency condition, and the items which do. Thus

the first kind of items have efficiency less than Ψ(z(t)), while for the second kind of items,

the total profit of these items is less than A(σ) since ALG picks the most profitable item

from the same set which satisfy the efficiency condition. We can exclude the second types

of items from further consideration since they in total result in at most a profit of A(σ).

Now we can assume that all items have efficiency < Ψ(z(t)) at time t, thus it returns to a
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similar situation as in the proof of Theorem 4.1.2. A similar proof shows that the above

claim holds. 2

In the online GAP problem, we have n bins with capacities B1, · · · , Bn and at each time

instant an item j comes with profit pij and weight wij for bin i. The goal is to allocate the

item to a bin or discard it. The algorithm is very similar to the above algorithm: for each

item, pick the bins which satisfy the threshold constraint of the single knapsack algorithm

and assign it to the bin to which it gives the highest profit.

Algorithm 13 Online-GAP-Threshold

Let Ψ(z) ≡ (Ue/L)z(L/e).
Whenever item j arrives, let z1, z2, · · · , zn be the fraction of the bins filled already.

Ej ≡
{
i ∈ [n] | pij

wij
≥ Ψ(zi)

}
,

Allocate item j to the bin i in Ej with maximum pij .

Theorem 4.2.2 Algorithm Online-GAP-Threshold has a competitive ratio of (ln(U/L)+

2) for online GAP.

Proof: Fix an input sequence σ of the item set Q. Suppose the algorithm Online-GAP-

Threshold fills the bins to capacity Z1, Z2, · · · , Zn. Let Si, S∗i ⊂ Q be the subset of items

allocated by the algorithm and optimum respectively to bin i. Also let S := ∪iSi and

S∗ := ∪iS∗i .

We partition the set S∗i \ S into X∗i and Y ∗i . X∗i contains all items j which are not

picked in Si since its efficiency is less than Ψ(zi,j) < Ψ(Zi), zij be the fraction of the ith

bin filled when the jth item arrived. Y ∗i are all those elements which satisfy the efficiency

condition but is allocated to a different bin since it gives more profit in that bin. Thus for

all i, the items in Y ∗i are allocated by the algorithm but not in bin i.

Observe that the value obtained by the algorithm on allocating items of Y ∗i (call it

pi(Y ∗i )) is more than that obtained by the optimum algorithm. This is because the algorithm

had an option of allocating these items to the bin to which the optimum algorithm allocated

(that is i) but chose a more profitable bin instead. Thus,

n∑
i=1

pi(Y ∗i ) ≤
n∑
i=1

pi(Si) (18)

Now as in the proof of Theorems 4.1.2 and 4.2.1, we have the following bound on the

remaining items picked by the optimum algorithm,∑n
i=1(pi(S∗i )− p(Y ∗i ))∑n

i=1 pi(Si)
≤

∑n
i=1 Ψ(Zi)Bi∑n

i=1(
∑

j∈Si Ψ(zij)Bi ·∆zij )
≤ (ln (U/L) + 1)
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Along with the inequality 18, we get the theorem. 2

Remark: An interesting special case which was noted in the introduction is the special

case of designing optimum auctions. In such cases, the profit (to the auctioneer, here) pij
and the weight wij both equal to the bid of bidder i on item j. Note that the algorithm

Online-GAP-Threshold reduces to the following greedy algorithm: give item to the

highest bidder and budget remaining. The competitive ratio of this greedy algorithm is

known to be 2 and this is what is implied by theorem 4.2.2.

4.3 A matching lower bound

In this section we use Yao’s minimax technique [96] to get a lower bound on the competitive

ratio of online knapsack problem, matching the upper bound given in Theorem 4.1.2.

Theorem 4.3.1 The competitive ratio of any (possibly randomized) online algorithm for

the online knapsack problem is at least (ln(U/L) + 1).

Proof: Yao’s minimax principle says for any input distribution D and any γ-competitive

randomized algorithm A,

1
γ
≤ min

σ

E[A(σ)]
OPT(σ)

≤ max
deterministic A

Eσ←D

[
A(σ)

OPT(σ)

]
To prove the theorem we specify a distribution D such that

max
deterministic A

Eσ←D

[
A(σ)

OPT(σ)

]
≤ 1

ln(U/L) + 1
. (19)

Fix a parameter η > 0. Let k be the largest integer such that (1 + η)k ≤ U/L, i.e., k =

b ln(U/L)
ln(1+η) c

The support of the input distribution D consists of the instances I0, I1, · · · , Ik, where

I0 is a stream of B identical items each with weight 1 and value L. I1 is I0 followed by a

stream of B identical items each with weight 1 and value (1 + η)L, and in general Ij+1 is Ij
followed by B items with weight 1 and value (1 + η)j+1L. The distribution D is specified

by giving probability pj to instance Ij (we specify pj ’s later).

Given knowledge of this distribution, any deterministic algorithm A can be fully specified

by the vector (f0, f1, · · · , fk), where fi is the fraction of the knapsack it fills with items

having efficiency ratio (1 + η)iL. Note that the fj ’s could depend on the pj ’s. Also note

that
∑k

j=0 fj ≤ 1.Thus we have

Eσ←D

[
A(σ)

OPT(σ)

]
=

k∑
i=0

pi
∑i

j=0(1 + η)jfj
(1 + η)i

=
k∑
j=0

fj

k∑
i=j

pi(1 + η)j−i
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Now we specify the pj ’s, pk := 1+η
(k+1)η+1 and p0 = p1 = · · · = pk−1 := η

(k+1)η+1 . Note that

the pj ’s sum to 1. Let X = (k + 1)η + 1. For any j,

k∑
i=j

pi(1 + η)j−i = pk(1 + η)j−k +
k−1∑
i=j

pi(1 + η)j−i

=
(1 + η)j−k+1

X
+
η

X

k−1∑
i=j

(1 + η)j−i

=
(1 + η)j−k+1

X
+
η

X
(
(1 + η)− (1 + η)j−k+1

η
)

=
1 + η

X
=

1 + η

(k + 1)η + 1

Thus we get

Eσ←D

[
A(σ)

OPT(σ)

]
=

1 + η

(k + 1)η + 1

k∑
j=0

fj ≤
1 + η

(k + 1)η + 1
≤ (1 + η)

η ln(U/L)
ln(1+η) + 1

where the inequality uses the fact that
∑k

i=0 fi ≤ 1 as the algorithm can not over-fill the

knapsack. The proof completes by setting η → 0 and noting that η
ln(1+η) → 1. 2

4.4 Applications to sponsored search auctions

Sponsored search auctions hosted by Internet search engines like Google, Yahoo! and MSN

to name a few, are a rapidly booming market generating billions of dollars of revenue

annually for the search companies. For any given keyword, hundreds of bidders bid on it

and are allowed to dynamically revise their bids. We assume there is a minimum bid bmin

to stay in the auction (usually it is 10 cents). At any moment of time a query is made for

the keyword, the search engine allocates the highest S bidders (b1 to bS , say) to the S slots

and displays their advertisements. The click-through-rate (CTR) of a slot s (probability an

advertisement on slot s is clicked), denoted as α(s), 3 is empirically assumed to decrease

from upper to lower slots. If an advertisement on slot s is clicked, the advertiser is charged

the bid of the bidder bs+1.

Suppose we want to devise a bidding strategy for an advertiser in such an auction.

Advertisers associate a revenue-per-click (also called value), which we assume to be V for

the advertiser in question (we call him bidder 0 henceforth). We also assume a budget B

over a time period T (say 24 hours if the budget is daily). The budget constraint is hard

in the sense once exhausted its not refilled and budget remaining at the end of T is taken

away.

3To be precise, the CTR of a slot depends on the advertiser, but we assume its the same for all only for
economy of notation.
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We discretize the time T into periods {1, 2, · · · , T} so that no bidder changes his bid in

the time interval [t, t+ 1). Let X(t) denote the expected number of queries for the keyword

in this interval. Thus, if at time t bidder 0 bids b0(t) and gets slot s, the expected revenue

he makes in the time slot is V X(t)α(s). Assume the bidder next to him also bids the same

amount. Thus bidder 0 pays b0(t)X(t)α(s).Our problem can be stated thus: At each time

t, bid b0(t), so as to maximize revenue keeping total cost within budget.

It is not too hard to see that if bids of all the agents at each time period is known (by

an omniscient bidder), then the best bidding strategy corresponds to solving a knapsack

problem (This observation was also made by [11].) Consider the single slot case first. Let

b(t) denote the highest bid of other bidders at time t. Thus the problem for the omniscient

bidder translates to just deciding which time periods to outbid. This corresponds to picking

a subset of items from T having values π(t) and weights w(t) with total weight constrained,

which is precisely the classic knapsack problem. In the multiple slot case, the omniscient

bidder also has to decide which slot he wants the advertisement in. Since he is constrained to

picking at most one slot, this corresponds to the multiple-choice knapsack problem: Given

sets of items, pick at most one item from each set to maximize value, keeping total weight

constrained by capacity of the knapsack.

Bidder 0 does not know the future, and thus designing bidding strategies for our prob-

lem amounts to designing algorithms for online versions of the knapsack problems which we

studied above. Indeed, in the case of sponsored search auctions, the two assumptions made

for the online knapsack problems can be justified.

Let us first consider the single slot case. As stated above, we are going to use the

algorithm for the online knapsack problem developed in Section 4.1 for this case. Firstly

we need to check if the assumptions go through. The first assumption translates to bids

of agents being much smaller than their budgets, which is a common assumption made in

these auctions. The second is about the boundedness of the profit-to-weight ratio of the

items. In the case of sponsored search auctions, the profit of an item (query) is the value

to the bidder, V . The weight is the money he pays if he wins, that is, b2, the bid of the

second-highest bidder. If one assumes a minimum bid bmin, we see that the profit-to-weight

ratio is upper bounded by U = V/bmin.4 Moreover, one can assume one does not bid more

than ones valuation. Thus on the queries in which the bidder wins, we have value more

than his bid more than the second bidder’s bid. Thus L = 1 is a lower bound on the

profit-to-weight ratio.

The strategies are derived from the online algorithms: Bidder 0 outbids only if the efficiency

4To get an idea of the magnitude, roughly on an average companies value a click at around $2-$3 while
bmin is around 10cents. Thus U is in the order of magnitude of 20 to 30
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is bigger than the threshold suggested by the algorithm.Since the threshold does not depend

on anything other than the fraction of knapsack filled, the strategies also depend only on

the fraction of budget spent and doesn’t require to know the parameters of the auction at

all. Thus the strategies are oblivious bidding strategies and in fact hold for any single item

auction where the assumptions (for the online knapsack problem) are met. The strategies

are formally stated as follows:

Bidding Strategy: Revenue-Maximizing Single-Slot

Let Ψ(z) ≡ (V e/bmin)z(1/e).

At time t, if fraction of budget spent is z(t), then bid b0(t) = V
1+Ψ(z(t))

We use Revenue to denote the revenue earned by the strategies and OPTr denote the

revenue of an omniscient bidder. Then the following theorem follows from Theorem 4.1.2:

Theorem 4.4.1 OPTr ≤ ln
(

e·V
bmin

)
· Revenue .

The extension to multiple slots would use the online multiple choice knapsack problem

algorithm presented in Section 4.2. The only difference between the online multiple-choice

knapsack algorithm and the online single knapsack algorithm is that the former first filters

the items from the set which cross the threshold and then chooses the one with the highest

profit. In the sponsored search auction setting this translates to being in a slot which

satisfies the threshold condition and gives the highest value. Across slots, assuming click-

through-rate, α(s) decreased from top to bottom, higher slots give an advertiser more value.

Thus the advertiser should bid as high (as bidding high implies higher slots) as the threshold

condition suggests. Once again, the condition depends only on the money spent and thus we

get the same oblivious bidding strategy as the single slot case giving the following guarantee.

Theorem 4.4.2 The bidding strategy for single-slot auctions also gives the following guar-

antee for multiple-slot auctions:

OPTr ≤ (ln(V/bmin) + 2) · Revenue

4.5 Discussion

In this chapter, we looked at online allocation problems and gave almost optimal (in the

sense of competitive ratio) online algorithms. In fact, we give optimal algorithms for online

knapsack and online multiple knapsack, while for online GAP and multiple-choice knapsack

problems, we are off by an additive factor of 1. One possible question is to close this gap - we

believe for these problems one can probably get better algorithms than what we presented.

Our main motivation in studying online allocation problems were to develop bidding

strategies in budgeted auctions, particularly the sponsored search auctions. One of the
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shortcomings of the bidding strategies that are implied by our algorithms (those presented

in Section 4.4) is that on a “typical” instance, say a random instance, the strategies end up

not bidding high at all. The reason is that the algorithms are designed with an worst-case

adversary in mind while in real life (that is real auctions over the Web) this is hardly the

case.

A few modifications to the strategies were proposed in [20], the work on which this chap-

ter is based, like sniping at the end of the day, which helped in improving the performance

of these strategies in practice (simulations). However, to undertake a more theoretically

based study, one needs to develop better models of other bidders and incorporate the game-

theoretic elements as well.
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CHAPTER V

DESIGN IS AS EASY AS OPTIMIZATION

In this chapter, we undertake a systematic study of max-min and min-max optimization

problems subject to a global budget (or weight) constraint. We call such problems design

problems. Every optimization problem leads to a natural design problem; if the optimization

problem is a minimization (maximization) problem, its design version is a max-min (min-

max) problem.

The process of obtaining a design problem from an optimization problem is formally

defined in Section 5.1. As an illustration, the design problem obtained from the sparsest

cut problem is: We are given an undirected graph G(V,E) and a bound B on the total

weight. The problem is to find a way to distribute weight B on the edges of G so that the

sparsity of the sparsest cut is maximized. Observe that this is a max-min problem.

The history of such problems goes back all the way to Fulkerson [39], who considered

the problem of maximizing the minimum cut in a network whose edge capacities could be

augmented, given a bound on the total augmentation allowed. Observe that since the mini-

mum cut in a network equals the maximum flow, this max-min problem can be transformed

into a pure maximization problem: that of finding the augmented network that supports

maximum possible flow.

This brings us to the justification of the name “design problem”: Assume that the

underlying optimization problem is a minimization problem, i.e., among the set of feasible

solutions, which is typically exponentially large, it is seeking a minimum cost solution. Then

the corresponding design problem, with a given budget, is seeking an instance (among all

instances satisfying the budget constraint) in which the minimum cost solution is as large as

possible. Thus the task at hand is to design the best instance satisfying certain constraints

and properties. With this explanation, it should be clear that design problems arise in

numerous applications.

The main result in this chapter is that for a large class of optimization problems, the

design version of the problem is as easy to solve as the optimization problem itself. That

is if there is an α-approximation to the polynomial time algorithm, then there is an α-

approximation to the design problem as well (with possibly some additive error). The class

of problems we show this for are minimization problems with concave objective functions,

and maximizations problems with convex objective functions. An important special class is

the class of problems with linear objective functions. These classes will be defined formally

in Section 5.1. The general theorem is derived using the ellipsoid method and thus opens

up questions for faster algorithms. For the class of problems with linear objective functions,
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we use algorithms from learning theory to obtain faster algorithms.

Related work: As in the work of Fulkerson [39], Jüttner [54] studied a general class of

problems in which a transformation of a max-min problem into a purely maximization prob-

lem always works; he called it budgeted optimization problems. Start with any optimization

problem for which the set of feasible solutions forms a polytope. Then, the max-min or

min-max problem obtained from it (depending on whether the original problem is a mini-

mization or maximization problem) is in this class. Jüttner showed the general result that

if the original optimization problem has a strongly polynomial algorithm, then so does the

budgeted optimization problem. A key step in obtaining this result is captured in the so-

lution to Fulkerson’s problem. W.l.o.g. assume that the budgeted optimization problem is

a max-min problem, which has been obtained from a minimization problem. Now, using

fact that the set of feasible solutions of the latter form a polytope, it can be written as

a minimization LP. Its dual, a maximization LP, also achieves the same optimal solution,

thereby transforming the max-min problem into a max-max problem, which is simply a

maximization problem. The latter is solved using Megiddo’s parametric search method

[76]. Besides Jüttner’s work, we are not aware of any systematic study of the complexity of

design problems.

In retrospect, Jüttner has carved out a subclass of design problems that, via a polyno-

mial amount of work, can be restated as optimization problems. In fact, this observation

was independently made by us and is described in Section 5.2.2. This also has consequences

for packing problems which will be the focus of the next chapter. Here we study a more

general class of problems in which the underlying optimization problem can have an ar-

bitrary set of feasible solutions, may not even be polynomial time solvable and moreover

may not even be linear (but needs to be a concave minimization problem or a convex maxi-

mization problem; see Section 5.1). On the negative side, we only give polynomial, and not

strongly polynomial algorithms (exact or approximation) for design problems, whenever the

optimization problem has a polynomial time (exact or approximation) algorithm.

Two prominent design problems studied recently are: Boyd, Diaconis and Xiao [12]

study the design of the fastest mixing Markov chain on a graph with a budget constraint

on the weights of the edges of a fixed graph. Elson, Karp, Papadimitriou and Shenker [33]

study the synchronization design problem in sensornets, which is essentially the problem of

finding a Markov chain on a graph that minimizes the maximum commute time.

5.1 Formal definition of design

We present a general framework to define the design versions of optimization problems:

Definition 4 An optimization problem Π consists of a set of valid instances IΠ, and

an objective function obj. Each instance I is a tuple (EI ,SI ,wI). Henceforth we will drop
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the subscript when the instance is clear from context. E is a universe of elements, and each

element e ∈ E has an associated weight w(e) ≥ 0, a rational number, giving the vector w.

Throughout we will let n = |E|. Each instance also has a set of feasible solutions 1 S. For

an instance I = (E,S,w), and a feasible solution S ∈ S, the value of the objective function

is obj(I, S). We restrict this to be a function of S and w only, so we may write this as

fS(w), for some function fS. For a maximization problem, the goal is to find an optimal

solution:

S∗ = argmin
S∈S

fS(w)

We also define:

OPTΠ((E,S,w)) = min
S∈S

fS(w)

For α ≥ 1, a feasible solution S′ is called an α-approximate solution to I if:

fS′(w) ≤ α ·OPTΠ(I)

An algorithm is called an α-approximation algorithm for the problem Π if for every instance

I of Π, the algorithm returns an α-approximate solution to I. The goal of a maximization

problem is defined similarly.

Definition 5 The maxmin design version D(Π) of a minimization problem Π is defined

as follows: For every collection of valid instances of Π of the form I = (EI ,SI , ·), there

is one valid instance of D(Π): J = (EJ ,SJ , BJ), where EJ = EI , SJ = SI , and BJ is

a rational number, called the weight budget. A feasible solution to J is a weight vector

w = (w(e)){e∈EJ}, which satisfies the budget constraint
∑

e∈EJ w(e) ≤ BJ . Every feasible

solution w to J leads to an instance I = (EI ,SI ,w) of the optimization problem Π.

The goal of the maxmin design problem is to find a feasible solution w so that the

minimum objective function value of the resulting instance of the minimization problem is

as large as possible. That is, the goal is to find an optimal solution:

w∗ = argmax
w:

P
ew(e)≤B

OPTΠ((E,S,w))

We also define:

OPTD(Π) ((E,S, B)) = max
w:

P
ew(e)≤B

OPTΠ((E,S,w))

For α ≥ 1, a weight vector w′ is called an α-approximate solution to I if:

OPTΠ((E,S,w)) ≥ 1
α
·OPTD(Π)

An algorithm is called an α-approximation algorithm for a design problem D(Π) if for every

instance I of D(Π), the algorithm returns an α-approximate solution to I.

The minmax design version of a maximization problem is defined similarly.

1The number of feasible solutions may be exponential in n = |E|
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Definition 6 An optimization problem Π (and its design version D(Π)) is called linear if

all its instances I = (E,S,w), are of the following form: S ⊆ 2E, and ∀ S ∈ S : fS(w) =∑
e∈S ae,Swe, for some ae,S ≥ 0. A more general class of problems has the functions fS

being convex or concave functions of w. We shall call these concave minimization and

convex maximization problems.

Examples: Most optimization problems on graphs are linear, as defined above. For ex-

ample, in the Min-Steiner-Tree problem (Traveling-Salesman, Sparsest Cut), an instance

I = (E,S,w) has E being the set of edges of the given graph, S being the collection of all

sets of edges which form Steiner trees (Hamiltonian cycles, cuts), and w being the given

weights on the edges. An instance (E,S, B) of the design version of these problems would

be to allocate a budget of B to the edges of the graph so as to maximize the weight of the

minimum weight Steiner tree (maximize the weight of the best TSP tour, make the sparsest

cut as dense as possible). Clearly, some design problems make more intuitive sense than

others.

An example of a convex maximization problem is that of finding the maximum commute

time of a random walk on a graph over different pairs of vertices. Here an instance is

I = (E,S,w), where E is the set of edges of the graph, S is the collection of pairs of vertices,

and the wes are the relative conductances of the edges, giving the transition probabilities.

The functions fS are the commute time functions, known to be convex. The design version of

this problem is that of assigning transition probabilities to minimize the maximum commute

time.

5.2 Solving design problems

5.2.1 A general technique based on the ellipsoid method

Consider a concave minimization problem and its corresponding max-min design problem.

The analysis for convex min-max design problems is similar. The following theorem states

that if the optimization version can be solved in polynomial time, then the design version

can be solved up to additive error ε using the ellipsoid method.

Theorem 5.2.1 If we have an algorithm which solves the minimization problem Π =

(E,S,w) with a concave objective function fS(w) in polynomial time, then for any ε > 0,

we can solve the corresponding max-min design problem D(Π) up to an additive error of ε

in time polynomial in n and log 1
ε .

Proof: Note that the value of the optimal max-min design is given by the following program:

OPTD(Π) := max{λ : λ− fS(w) ≤ 0, ∀S ∈ S;
∑
e∈E

w(e) ≤ B; w(e) ≥ 0, ∀e ∈ E} (20)
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If fS() is concave, then the above program is also convex, since for any two feasible solutions

(λ,w) and (λ′,w′) and 0 ≤ µ ≤ 1, we have

fS(µw + (1− µ)w′) ≥ µfS(w) + (1− µ)fS(w′) ≥ µλ+ (1− µ)λ′

Hence, one can solve the above program using the ellipsoid method. Assuming an upper

bound F on the optimum, the algorithm proceeds with a guess λ of the optimum to the

program and tests for emptiness of the convex feasible set. For any ε > 0, in time polynomial

in the input size and log 1
ε , the ellipsoid method (see [46]) using the minimization problem

as a separating oracle2 to construct the ellipsoids, returns a feasible w, or asserts that

optimum is smaller than λ+ ε. Via a binary search to find λ∗ which takes time logF , the

theorem follows by noting that an upper bound on λ∗ is polynomial in the size of the value

returned by the minimization problem. 2

In the next theorem we show if the minimization problem has an α-approximation, then

so does the max-min design version.

Theorem 5.2.2 If we have a polynomial time algorithm returning an α-approximation to

the optimization problem Π, then we can find, for any ε > 0, an approximation algorithm

for the design problem D(Π), with a multiplicative factor of α and an additive error of ε.

Proof: We have a polytime algorithm which, given (E,S,w), returns a set S with objective

function value guaranteed to be at most α-factor away from the actual optimum: fS(w) ≤
αminT∈S fT (w). As in the proof of Theorem 5.2.1, given a guess λ, we run ellipsoid to

check if there exists a feasible w. The difference now is that the separation oracle is the

approximate minimization algorithm. Thus, for any ε > 0, the ellipsoid algorithm returns,

in time polynomial in input and log 1
ε , a solution (λ,w), so that the optimum is less than

λ + ε. However, since the separation oracle is approximate, (λ,w) might not be feasible

itself. Nevertheless, by the guarantee of the approximation, we know (λ/α,w) is feasible,

which implies the theorem. 2

Remark 5.2.3 We note that for linear optimization problems where the function fS() is

linear, the program 20 is a linear program, and (see [46]) the above two theorems hold

without any additive error.

The ellipsoid method may need to take a number of steps equal to a large polynomial.

In each step we need to solve an instance of the optimization problem Π. The ellipsoid

method also takes a huge time in practice. This motivates us to look for faster algorithms

for the design problem. In Section 5.3, we will provide a different general method which

works much faster.
2Here, and throughout, we will say that an (approximation) algorithm solves a optimization problem if

it gives the (approximately) optimum value as well as a set S which achieves this (approximately) optimum
value.
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5.2.2 A technique based on LP-relaxation

In this section we describe a general technique for solving design problems, in the case that

we have a linear programming relaxation for the minimization problem Π. This technique

is similar to that of Jüttner [54] and will be used in the coming chapter to obtain results

about packing.

Suppose we have:

OPTΠ ≥ min { w · x s.t Ax ≥ b; x ≥ 0 } (21)

Moreover, suppose there is an α-approximate polynomial time algorithm which returns a

solution S with fS(w) ≤ α ·L ≤ α ·OPTΠ, where L is the solution to LP(21) (That is, the

integrality gap of the LP is at most α). Then we have an α-approximation for the design

version as well.

Theorem 5.2.4 If we have an LP relaxation for the optimization problem Π, and a polyno-

mial time algorithm producing a solution within α ≥ 1 times the LP optimum, then we can

produce an α approximation algorithm for the corresponding design problem D(Π) which

requires solving a single LP having one constraint more than that of the LP relaxation.

Proof: Look at the dual of LP(21).

max { b · y s.t yTA ≤ w; y ≥ 0 } (22)

In the design problem, note that the weight vector w is no longer in the objective function

but appears in the constraints. Parameterizing the program on w, let the optimal solution

to LP 22 be D(w). From the previous supposition, we know there is an algorithm giving a

set S with the guarantee, D(w) ≤ fS(w) ≤ αD(w) for all weight vectors w.

To solve the design problem, we consider w as a variable in LP 22, and add the constraint

that the total weight is bounded by B. Thus we solve the following LP

max { b · y s.t yTA−w ≤ 0; w · 1 ≤ B; y,w ≥ 0 } (23)

Let the optimal solution to LP 23 be D∗. Let w′ be the optimum vector returned in

the solution of LP 23. Note that for any weight vector w satisfying w · 1 ≤ B, we have

D(w) ≤ D∗ with equality at w′. Solve LP 21 with w′ and obtain a set T with the guarantee

D∗ ≤ fT (w′) ≤ αD∗.
We now claim that T,w′ gives an α approximation to the design problem. To see this,

suppose w∗ was the weight vector achieving the maxmin design. Moreover, suppose S was

the set that minimized its objective value given w∗. We need to show αfT (w′) ≥ fS(w∗).

To see this note fS(w∗) ≤ αD(w∗) ≤ αD∗ ≤ αfT (w′). 2

As a corollary we get a log n approximation to maximum min-multicut, a 2-approximation

to the maximum min weighted vertex cover, a 2-approximation for max-min Steiner trees

and many such problems which have approximation algorithms via LP-relaxations.
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5.3 Faster algorithms for Design Problems

In this section we use techniques from learning theory to obtain faster algorithms for design

problems. We present the technique here for linear optimization problems. Assuming via

scaling that B = 1, the general theorem states that given an α-approximation to the linear

optimization problem, one can find an α-approximation to the design problem in time

O(log n/ε2) with additive error ε.

5.3.1 Linear Design Problems, Zero-sum Games and Multiplicative Updates

Recall the definition of linear optimization problems and their design versions: the instances

I = (E,S,w), are of the form S ⊆ 2E , and ∀ S ∈ S : fS(w) =
∑

e∈S ae,Swe. In this section

we shall take all the ae,S = 1 for the sake of succinct notation – all the proofs extend

naturally to the general case – so that fS(w) =
∑

e∈S we. Moreover, we will assume B = 1

as this is only a scaling factor for linear optimization problems.

Definition 7 Given an instance I = (E,S, B=1) of a maxmin design problem D(Π), the

equivalent zero-sum game G(I) is defined by an |E| × |S| matrix as follows: the rows

are indexed by E and the columns by S, and the entry (e, S) = 1 if e ∈ S, 0 otherwise. The

entries of the matrix represent the payment of the column player to the row player.

The game G(I) is equivalent to the instance I of the design problem in the following

way: A mixed strategy x of the row player in G(I) corresponds to a weight distribution w

in I. Given a mixed strategy x of the row player, the payment to the row player for the

pure strategy S of the column player is precisely the value of the objective function fS(w)

in I. Thus, given the row’s mixed strategy x, if the column player plays its best response

to x, then the payment to the row player is precisely OPTΠ(E,S,x). Finally, this means

that the set of maxmin strategies of the row player in G(I) is precisely the set of solutions

to the instance I of the design problem D(Π). The value of the game G(I) is precisely

OPTD(Π)(I).

The technique of multiplicative updates can be used to find approximate maxmin strate-

gies of a zero-sum game much faster than by solving a linear program [38]. In this section we

describe this technique in terms of solving instances of design problems. The algorithms and

proofs here follow the proofs of [38] as applied to our setting. The multiplicative updates

technique has proved to be extremely useful in a wide array of applications in computer sci-

ence - see e.g., the recent survey paper by Arora et al. [5]. We show here how this technique

can be used to transform an α-approximation algorithm for an optimization problem to an

α-approximation algorithm for its design version (for every α). We describe the algorithm

in Algorithm 14.

Intuitively, at each step t, the algorithm finds the minimum solution with respect to

weights wt, and then in the next step increases the weights on the elements in the solution
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Algorithm 14 Design-Linear

• Input: Instance I = (E,S, B = 1).

• Parameters: Real β > 1, integer T > 1, to be fixed later.

• Output: Weight vector w, an α-approximate solution to I.

1. Initialize ∀ e : z1(e) = 1. Let w1(e) = z1(e)/
∑

e z1(e).

2. Multiplicative update: For t = 1, . . . , T , do:

• Suppose A on input wt returns solution St.

• zt+1(e) = zt(e)β1(e,St) , where 1(e,St) = 1 if St contains e, 0 otherwise;

• wt+1(e) = zt+1(e)/
∑

e zt+1(e)

3. Return w := B
T

∑T
t=1 wt

returned. To analyze the algorithm, following [38] we define the quantity regret as

RT := max
w:

P
ew(e)=1

T∑
t=1

fSt(w)−
T∑
t=1

fSt(wt)

The following theorem was proved in [38].

Theorem [38]: Fixing the choice of β = 1 +
√

2 lnn
T , gives us

RT ≤
√
TO(
√

lnn)

Now we are ready to prove the bound on the quality of our solution.

Theorem 5.3.1 For every ε > 0, given an α-approximation algorithm A to a linear mini-

mization problem Π, algorithm Design-Linear, when run for T = O( logn
ε2α2 ) rounds, returns

an α-approximate solution to every instance I of the maxmin problem D(Π), up to an

additive error ε > 0.

Proof: We need to argue about the quantity minS fS(w). In the following, when we use

subscript w we assume that sum of weights is equal to 1, and that the weights will be scaled
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to sum to B at the end.. We follow the proof as in [38]. We have

min
S
fS(w) = min

S

1
T

T∑
t=1

fS(wt) (by linearity of fS)

≥ 1
T

T∑
t=1

min
S
fS(wt)

≥ 1
T

T∑
t=1

1
αfSt(wt) (A is an α-approximation algorithm)

≥ 1
α max

w

1
T

T∑
t=1

fSt(w)−O( 1
α

√
lnn
T ) (by Theorem of Freund-Schapire)

≥ 1
α max

w
min
S
fS(w)−O( 1

α

√
lnn
T ) (minimum is smaller than the average)

2

A multiplicative-error version can also be derived as follows.

Corollary 5.3.2 If the α-approximation algorithm A for Π runs in time TA, then given

any ε > 0, algorithm Design-Linear is (1+ε)α-approximate and runs in time O(TA n
2 lnn
ε2

).

Proof: The proof follows by noting that the optimum design solution must have weight

more than 1/n. The corollary follows by plugging in the value ε′ = ε/n in the previous

theorem. 2

5.4 The complexity of design problems

In this section we study the relationship of the complexity of design problems and the

complexity of the corresponding optimization problems.

The main result of this paper as described in Sections 5.2 and 5.3 is that solving a design

problem D(Π) is as easy as solving the corresponding optimization problem Π, for the class

of concave (convex) minimization (maximization) problems, up to arbitrarily small additive

errors. This is proved in Theorem 5.2.2. For linear optimization problems, if Π is in P then

D(Π) is also in P (see Remark 5.2.3 in Section 5.2.1). This may not be true for convex

or concave optimization problems, since it may be that Π is in P, but all optimal solutions

for D(Π) have irrational values. However, we can still solve D(Π) upto an arbitrarily small

additive approximation in polynomial time.

A natural question to ask is if the converse also holds, i.e. whether solving the optimiza-

tion problem is as easy as the design version of the same. The following shows that this is

not the case:

Theorem 5.4.1 There exists an linear minimization problem Π such that finding the value

of the minimum is NP-complete, but its design version D(Π) can be solved in polynomial

time.
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Proof: Call a graph a bridged clique if it consists of two cliques K1 and K2, and two edges

(u, u′), (v, v′) with u, v ∈ K1 and u′, v′ ∈ K2. Consider the problem of finding (the value

of) the cheapest tour on a weighted bridged clique. This problem is NP-hard as it involves

finding the cheapest hamiltonian paths between u, v and u′, v′ respectively. Now consider

the design version of the problem. We have to find a distribution of the weight budget on

a bridged clique so that the cost of the minimum weight tour is maximized. Since any tour

will have to pick both edges of the bridge, the optimal strategy is to divide the weights

only on the bridge edges. Thus the design version of this problem can be solved trivially in

polynomial time. This construction extends to any NP-complete problem. 2

We have seen that all design problems are as easy as their optimization versions (up to

additive errors), and that some are polynomial time solvable even though the optimization

versions are NP-hard. To complete the picture we show below that not all design problems

are easy:

Theorem 5.4.2 There exists an NP-complete linear minimization problem such that the

corresponding design problem is also NP-complete.

Proof: Consider the problem of finding the minimum weight Steiner tree in a weighted

graph. We prove in Section 6.2 of Chapter 6 (Theorem 6.1.1) that the value of the maxmin

Steiner tree is exactly the reciprocal of the maximum number of Steiner trees that can

be fractionally packed in the weighted graph. However, the fractional packing number of

Steiner trees is known to be NP-hard, as proved by Jain et al. [52]. 2

5.5 Discussion: Design versions of Counting Problems

In this paper we gave a systematic way of going from an optimization problem to a design

problem, and we studied their relative complexity. We leave open the issue of carrying out

an analogous plan of study for counting problems, in particular, #P-complete problems.

Two rather interesting design problems that arise from counting problems are the fol-

lowing. Determining their complexity is by itself a challenging open problem.

1. Network reliability: Given probabilities of edge failures in an undirected graph,

the problem of determining the probability that the graph gets disconnected is #P-

complete [82]. An FPRAS (fully polynomial randomized approximation scheme) for

this problem was given by Karger [55].

Consider the following design version of this problem. Let G = (V,E) be an undirected

graph. With each edge e we are specified a number pe such that 0 < pe < 1. We are

given a total weight of W . If weight w is placed on edge e then its failure probability

becomes pwe . The problem is to determine the optimal way of placing weight W on

the edges so that the failure probability of the resulting graph is minimized.
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2. Permanent: We will define a design version of the problem of computing the per-

manent of a non-negative matrix. Our problem turns out to be a generalization of

the van der Waerden Conjecture, which was settled positively by Falikman [34] and

Egorychev [32]. This conjecture states that the matrix that has all entries 1/n is the

doubly stochastic n× n matrix that has minimum permanent.

Let A be an n×n 0/1 matrix whose permanent is non-zero. This is the template matrix.

The problem is to replace the entries that are 1’s in A by non-negative numbers so

that the permanent of the resulting matrix is the minimum possible subject to the

condition that it is doubly stochastic.
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CHAPTER VI

FRACTIONAL AND INTEGRAL PACKING OF TREES

Given a set system (E,S ⊆ 2E), the maximum unweighted disjoint set packing problem asks

what is the maximum cardinality subfamily of S such that the members of the subfamily

are pairwise disjoint. Packing problems form a large part of combinatorial optimization,

and in this chapter we investigate the tree-packing problem: where the element set E is the

edge-set of an undirected graph and the family S are subsets of edges which induce trees.

Packing problems are closely related to design versions of problems (actually the max-

min design version). Given an minimization problem instance I = (E,S,w), note that

if in the set system (E,S) one could pack k disjoint sets, the max-min design version of

the minimization problem with B = 1 would be only smaller than 1/k. In Section 6.1,

we actually show that the optimum design equals the reciprocal of the fractional packing

number of the set system.

The above result along with the main theorem of Chapter 5 implies that fractional

packing is as easy as optimization. Moreover, in the special case of packing trees, we will

use the framework developed in Section 5.2.2 of Chapter 5 to obtain some results about

fractionally packing trees. Finally, in the last section of the chapter, we extend our results

to integral packing (the disjoint packing problem stated above) of spanning trees in a graph

obtaining an alternate proof of the around five-decade old theorem of Nash-Williams and

Tutte [78, 91].

6.1 Maxmin design is equivalent to fractional packing

Consider the tuple F = (E,S) as a general set system. The fractional packing number

kf (F) is defined as the maximum number of fractionally disjoints sets in S, that is,

kf (F) := max{
∑
S∈S

λS :
∑
S:e∈S

λS ≤ 1, ∀e ∈ E; λS ≥ 0, ∀S ∈ S}

Theorem 6.1.1 For any set system F = (E,S), we have kf (F) = 1/OPTD(Π)(E,S, 1),

that is, the fractional packing number equals the reciprocal of the maxmin design of the

linear instance (E,S) given budget of 1.

Proof: By duality, we can write kf (F) as

kf (F) = min{
∑
e∈E

xe :
∑
e∈S

xe ≥ 1, ∀S ∈ S; xe ≥ 0, ∀e ∈ E} (24)
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By definition (LP(20)),

OPTD(Π)(E,S, 1) = max{λ :
∑
e∈S

xe ≥ λ, ∀S ∈ S;
∑
e∈E

xe = 1; xe ≥ 0, ∀e ∈ E} (25)

We complete the proof by showing that the optimal solution of LP 24 is the reciprocal

of optimal solution of LP 25. Take an optimal solution {xe}e∈E to LP 24 of value kf .

Note that (1/kf , {we = xe/kf}e∈E) is a feasible solution for LP 25. This is because∑
e∈E we =

∑
e∈E xe/kf = 1 and for all sets S,

∑
e∈S we =

∑
e∈S xe/kf ≥ 1/kf . Simi-

larly, if (λ, {we}e∈E) is a solution to LP 25, then {xe = we
λ }e∈E is a solution to LP 24 of

value 1
λ . 2

6.2 Fractionally packing Steiner trees

In this section and the next, we focus on the packing problem of trees in undirected graphs.

In particular we study the problem of packing Steiner trees. We start with some prelimi-

naries about Steiner trees, we refer the reader to Chapter 2 for more on Steiner trees.

Preliminaries: We work with a multigraph G = (V,E). The vertex set is partitioned

into two sets V = R ∪ S. R is the set of required vertices, S the set of Steiner vertices. A

Steiner tree is a minimal subgraph of G connecting all the vertices in R. We denote the

set of Steiner trees of G as T (G), or simply T when the graph is clear from context. The

integral packing number of G is the maximum number of edge-disjoint Steiner trees in T
and is denoted by kint(G). The fractional packing number of G is the maximum number of

Steiner trees in T that can be packed fractionally and is denoted by kf (G). Thus,

kint(G) := max{
∑
T∈T

λ(T ) :
∑
T :e∈T

λ(T ) ≤ 1,∀e ∈ E; λ(T ) ∈ {0, 1}, ∀T ∈ T } (26)

kf (G) := max{
∑
T∈T

λ(T ) :
∑
T :e∈T

λ(T ) ≤ 1,∀e ∈ E; λ(T ) ≥ 0, ∀T ∈ T } (27)

Let Π, the Steiner tree polytope, be the convex hull of indicator vectors of the Steiner trees

of G, that is, Π := {x ∈ RE : x = 1T , T ∈ T }. 1T is the vector in RE with a 1 corresponding

to edges in T and 0 otherwise. Given weights w(e) on each edge of G, the minimum weight

Steiner tree would be denoted as MST (w). Note that MST (w) = min{
∑

ew(e) · x(e) :

x ∈ Π}. Determining MST (w) in general graphs is NP-hard. Π′ ⊆ RE is a relaxation if

Π ⊆ Π′. The LP min{
∑

ew(e) ·x(e) : x ∈ Π′} is called an LP relaxation for the Steiner tree

problem and is denoted as LΠ′(w).

The max-min Steiner tree problem is to find a weight assignment w : E → R+, so that∑
e∈E w(e) = 1 and the weight of the minimum weight Steiner tree is maximized. The
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weight of the max-min Steiner tree is denoted as MMST . Thus,

MMST := max{MST (w) :
∑
e∈E

w(e) = 1}

= max{ν : w(T ) ≥ ν, ∀T ∈ T ;
∑
e∈E

w(e) = 1}

The following observation is a special case of Theorem 6.1.1.

Theorem 6.2.1 For any graph G, MMST (G) = 1
kf (G)

A partition P = (V1, V2, · · · , Vp) of the vertices V is called a valid partition if p > 1 and

for all i = 1 · · · p, Vi ∩ R 6= ∅. The edges with each end point in separate partitions are

called cross-edges of the partition, E(P). The strength of a partition is the following ratio:
|E(P)|
p−1 , The Steiner strength of the graph, denoted by γ(G) is the minimum strength over

all valid partitions.

γ(G) := min
validP

|E(P)|
|P| − 1

(28)

Related Work: In 1961, in two separate papers (in the same journal!), Nash-Williams[78]

and Tutte[91], showed that in the case when there are no Steiner vertices, kint(G) = bγ(G)c.
They observed that this implied if a graph is 2k-edge-connected, then there are k-edge-

disjoint spanning trees. In 1999, Kriesell[64] conjectured the same when there are Steiner

vertices, with the connectivity requirements restricted to the required vertices. Kriesell[65]

proved this conjecture for the case when the degree of Steiner vertices is even using Mader’s

splitting theorem[74]. Frank et. al.[37], using generalizations of theorems of Nash-Williams

and Tutte to regular hypergraphs, proved that in graphs with no Steiner-Steiner edges

(quasi-bipartite graphs), Kriesell’s conjecture is true with the 2 replaced by 3. For general

graphs, Jain et.al.[52] proved Kriesell’s conjecture with 2 replaced by (ignoring lower order

terms) |R|/4. This was recently greatly improved to 24 in the remarkable work of Lap Chi

Lau[67].

6.3 Results on fractional packing number via LP relaxations for mini-
mum Steiner tree problem

Note that the max-min Steiner tree can be thought as

MMST = max
w:|w|=1

min
x∈Π

w · x

where |w| is the simply the sum
∑

ew(e). To convert this into a pure maximization linear

program, we take the dual of the program LΠ(w) := minx∈Π w · x. Denote the dual as

DΠ(w). Thus, the following is an exact linear program for MMST

MMST := max
w:|w|=1

DΠ(w)
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Obviously one doesn’t expect an explicit characterization of DΠ(w) given the NP-hardness

of finding MST (w). The observation now is that every LP relaxation for the minimum

Steiner tree problem gives an LP relaxation for the max-min Steiner tree problem.

Let Π′ be a relaxation of the Steiner tree polytope. Moreover suppose Π′ := {x : Ax ≥
1;x ≥ 0} can be explicitly characterized1. LΠ′(w) = min{w · x : Ax ≥ 1;x ≥ 0} is a lower

bound on MST (w). Taking the dual of LΠ′(w), we get DΠ′(w) = max{y ·1 : yTA ≤ w; y ≥
0} is also a lower bound on MST (w). This gives the following LP relaxation for MMST :

MMST ≥ max{y · 1 : yTA− w ≤ 0; |w| = 1; y, w ≥ 0} (29)

Moreover, if the integrality gap of the relaxation Π′ is α(Π′), that is, for any weight

w, we have LΠ′(w) ≤ MST (w) ≤ α(Π′) · LΠ′(w), we get the integrality gap of the above

relaxation is at most α(Π′). That is This gives us:

MMST ≤ α(Π′) ·max{y · 1 : yTA− w ≤ 0; |w| = 1; y, w ≥ 0} (30)

Taking duals of the above LP, we get

MMST ≤ α(Π′) ·min{µ : Ax ≥ 1; µ · 1− x ≥ 0; µ, x ≥ 0} (31)

In the remainder of the section we will plug in three different LP relaxations for the

minimum Steiner tree problem and use the above framework and Theorem 6.2.1 to obtain

three results about the fractional packing number.

The Undirected Cut Relaxation

Let U := {U ( V : U ∩R 6= ∅ and U c ∩R 6= ∅} denote the subsets of V which contain at

least one required vertex but not all. The undirected cut relaxation polytope ΠUC is the

following.

ΠUC := {x ∈ RE : x(δ(U)) ≥ 1, ∀U ∈ U ; x ≥ 0}

Plugging this in the inequality(31), we get

MMST ≤ α(ΠUC) ·min{µ : x(δ(U)) ≥ 1,∀U ∈ U ; µ ≥ x(e), ∀e ∈ E; µ, x ≥ 0}

This immediately implies the fractional version of Kriesell’s conjecture. The only other

paper to explicitly mention this is the work of Li and Li[72] who prove it using Mader’s

splitting theorem. The only tool we use is LP-duality.

Theorem 6.3.1 If between any two required vertices there are 2k edge-disjoint paths, then kf (G) ≥ k.

1More generally, Π′ could be {x : [A | B](x t)T ≥ 1;x, t ≥ 0} where t are auxiliary variables. We omit
this notation for the time being for brevity, although we will use auxiliary variables in the bi-directed cut
relaxation below.
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Proof: By Theorem (6.2.1), we need to prove MMST ≤ 1
k . Since it is known α(ΠUC) ≤ 2,

it is enough to show a feasible solution of 1
2k for the above LP. Since between any two

required vertices there are 2k edge-disjoint paths, by Menger’s theorem |δ(U)| ≥ 2k for all

U ∈ U and thus µ = x(e) = 1
2k for all edges e is a feasible solution. 2

Multiway Cut Relaxation

The multiway-cut relaxation polytope ΠMC is the following.

ΠUC := {x ∈ RE : x(E(P)) ≥ |P| − 1, ∀ valid P; x ≥ 0}

Plugging this in the inequality(31), we get

MMST ≤ α(ΠMC) ·min{µ : x(E(P)) ≥ |P| − 1, ∀valid P; µ ≥ x(e),∀e ∈ E; µ, x ≥ 0}

This leads us to the relation between fractional packing number and the Steiner strength

of the graph.

Theorem 6.3.2 For any graph, kf (G) ≤ γ(G) ≤ α(ΠMC) · kf (G)

Proof: The first inequality follows from the definition of kf (G) and γ(G). The second

inequality follows from the solution µ = x(e) = 1
γ(G) for all e, for the above LP. The

feasibility of the above solution follows from definition of γ(G). 2

Corollary 6.3.3 If the graph G has no Steiner vertices, that is, the Steiner trees are span-

ning trees, then kf (G) = γ(G).

Proof: This follows from the fact that α(ΠMC) = 1 for graphs with no Steiner vertices

[25, 40]. 2

Bi-directed cut relaxation

Call an arbitrary vertex r ∈ R as the root. Bi-direct every edge of the multigraph and

call the resulting set of arcs A giving each the same weight as the undirected edge. Let

U := {U ( V : U ∩ R 6= ∅ and r /∈ U} denote the subsets of V which contain at least one

required vertex but not the root. Consider the following polytope.

ΠBC := {x ∈ RA : x(δ+(U)) ≥ 1, ∀U ∈ U ; x ≥ 0}

The bi-directed polytope is obtained by projecting onto RE where the coordinate of an edge

is the addition of the values on its two bi-directed arcs. We abuse notation and call the earlier

polytope ΠBC . Note that, as was mentioned in a footnote before, ΠBC contains auxiliary

variables: the arc variables. Thus, ΠBC cannot be plugged in directly into inequality(31),

but rather into a more general inequality which can be derived similarly with the auxiliary

variables. We omit the exposition of the calculation. This gives

MMST ≤ α(ΠBC) ·min{µ : x(δ+(U)) ≥ 1, ∀U ∈ U ; µ ≥ x(e1) + x(e2),∀e ∈ E; µ, x ≥ 0}
(32)
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where e1 and e2 are the bi-directed arcs of the undirected edge e.

We now digress a little to understand the forthcoming result. Consider the undirected

multi-graph G as a communication network and root r as a source wishing to transmit to all

the other nodes inR. Normally, such a communication is established via sending information

on multi-cast trees which are nothing but Steiner trees. Edges have capacities (which can be

modeled via multiplicity) and thus the maximum transmission rate is precisely the fractional

packing number of the graph: Send λ(T ) amount of information across multicast tree T ,

where λ(T ) is the solution in the definition (26).

Over the past decade however, using a technique called network coding, the throughput

has been increased. In fact the network coding principle [2] is the following: The maximum

throughput achievable in a directed communication network between one source and many

sinks is the minimum over all required vertices, the throughput between the source and that

required vertex individually. Li and Li [72] noted that in an undirected graph this amounts

to finding the optimum distribution of an undirected edge’s capacity onto its bi-directed arcs

so as to maximize the minimum throughput between the source and any required vertex.

This is given via the following linear program whose optimum was called the network coding

throughput and denoted as χ(G) 2.

χ(G) := max{f : x(δ+U) ≥ f, ∀U ∈ U ; x(e1) + x(e2) ≤ 1,∀e ∈ E; x, f ≥ 0} (33)

Comparing the definition of χ(G) and the inequality (32) obtained on plugging the bi-

directed cut relaxation, the following theorem of Agarwal and Charikar [1] on the network

coding gain ( χ(G)
kf (G)) is immediate.

Theorem 6.3.4 [1] For any undirected graph G, kf (G) ≤ χ(G) ≤ α(ΠBC) · kf (G).

6.4 Integral packing of spanning trees

For this section assume that S = ∅. That is, we look at spanning trees. We prove the

following theorem of Nash-Williams [78] and Tutte [91]:

Theorem 6.4.1 If S = ∅, then kint(G) = bγ(G)c.

The proof has two steps. Call a graph G critical if it has an edge removing which

decreases the integral packing number. The first step is to show that for critical graphs the

integral packing number equals the strength. The second step is to use this property to

obtain the desired result.

Definition 8 A graph G is critical if there exists an edge e ∈ E such that kint(G \ e) =

kint(G)− 1. We call e the critical edge.

2One can also think of this as a fractional version of the orientation problem in directed graphs
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Lemma 6.4.2 For critical graphs G with critical edge e, we have kint(G) = γ(G) and

γ(G \ e) < γ(G).

Proof of Theorem(6.4.1): The easy part is kint(G) ≤ γ(G). To prove the equality, it is

enough to show γ(G) < kint(G) + 1. Assume that there is at least one spanning tree T in G

(that is G is connected). Let T = {e1, e2, · · · , er}. Construct the following series of graphs

G =: G0, G1, · · · , Gr, where Gi is constructed by adding a copy of edge ei to Gi−1. Note

that kint(Gr) ≥ kint(G) + 1 since Gr has the extra edge-disjoint copy of T . Moreover, since

we are adding one extra edge at each step, kint(Gi) ≤ kint(Gi−1) + 1. Thus there exists

some first Gi so that kint(Gi) = kint(Gi−1) + 1 = kint(G) + 1 implying Gi is critical. By

Lemma(6.4.2), γ(G) < γ(Gi) = kint(Gi) = kint(G) + 1 proving the theorem. �

Note that the above proof doesn’t use the fact that S = ∅.

Proof of Lemma(6.4.2): Let kint(G) = k, and let e∗ be the critical edge. Given a

set of k disjoint trees, which we describe in a moment how we choose, we run a process

described below which achieves the following goal: At each step, the process either (a)

gives a partition of the P with |E(P)|
|P|−1 = k, or (b) increases the size of the partition, or

(c) terminates. Moreover, the partition P satisfying (a) will contain the edge e∗, and thus

γ(G \ e∗) < γ(G). Since the size of a partition is smaller than the number of vertices, step

(b) cannot happen forever, and thus either we prove our theorem or the process terminates.

Our choice of disjoint trees is such that among all set of k disjoint trees, it terminates the

earliest. We then show for such a set if the process terminates, then one can find k edge

disjoint trees neither of which contain e∗ contradicting criticality. It remains to describe

the process.

Let (T1, T2, · · · , Tk) be a collection of edge disjoint spanning trees of G. Without loss of

generality assume e∗ ∈ T1. Call the set of edges not in any of the trees as N := E \ ∪iTi.
Let V1 and V2 be the partition of vertices defined by T1 and e∗. That is, V1 and V2 are

the vertices of the two connected components formed when e∗ is deleted from T1. Call this

partition P1 and initialize X1 to be E(P1). Note that e∗ ∈ E(P1). At each subsequent step,

we will refine the partition Pi to get Pi+1 and Xi+1 = E(Pi+1).

1. At step i, for all edges e ∈ Xi let w(e) := 1
ri

, where ri = |Pi|. Note that this weighing

is feasible. If |w| = k, we are done. If N ∩ Xi 6= ∅, we terminate the process. If

neither happens, there must be a tree Tj with |Tj ∩Xi| ≥ (ri + 1). There might be

many, pick one arbitrarily and call it responsible for step i+ 1.

2. Since Tj uses at least ri + 1 edges of E(Pi), there must be one component of Pi, say

Vr, so that Vr is disconnected in Tj . Form the partition Pi+1 by refining Vr to be the

various connected components of Vr in Tj .
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Let (T1, T2, · · · , Tk) be such that the process terminates the earliest. If the process termi-

nates at step 1, then it means there is an edge in n ∈ N from V1 to V2. Define T ′1 = T1−e∗+n
and note that (T ′1, T2, · · · , Tk) are k disjoint trees, none of which contains e∗ contradicting

the criticality of e∗.

Now we show that if the process terminates at step t > 1, then there is a set of k disjoint

trees on which the process terminates earlier which will contradict the choice of the disjoint

trees and complete the proof. By definition of termination, there exists a n ∈ N which

is in Xt but not in Xt−1. Suppose Tj is responsible for step t. By construction, Tj + n

contains a cycle whose edges intersect Xt−1. Let e be such an edge. Thus, T ′j := Tj + n− e
is a spanning tree. Consider the set of disjoint trees: (T1, · · · , T ′j , · · · , Tk). Since the edge

e ∈ N ′ where N ′ is the new set of edges not in any tree, note that the process on these k

disjoint trees will now terminate at step t− 1. �

We end with the following corollary which relates the fractional packing number and

the integral packing number of trees in graphs with no Steiner vertices.

Corollary 6.4.3 If S = ∅, then kint(G) = bkf (G)c.

Proof: Follows from Corollary 6.3.3 and Theorem 6.4.1. 2

6.5 Discussion

In Section 6.2, we saw that the plugging in of various LP relaxations of the minimum Steiner

tree into the general framework of max-min Steiner trees (inequalities (29),(30) and (31))

give non-trivial results about the fractional packing number. Such a study is by no means

restricted to the case of Steiner trees but holds for any optimization problem and might give

interesting results for the case in hand. To give an example, the following fractional version

of Lau’s conjecture [66] on packing subgraphs with specified connectivity requirements can

be proved by similar means mentioned in Section 6.2:

Theorem 6.5.1 Given an undirected multigraph G and connectivity requirements ruv for

each pair of vertices (u, v), if there are 2k · ruv edge-disjont paths between u and v, then the

fractional packing number for subgraphs satisfying the connectivity requirements is at least

k.

In Section 6.4, we have seen how critical instances of problems could possibly be used to

prove strong relations between fractional and integral packing numbers (Corollary 6.4.3).

In particular, we re-proved the classical theorem of Nash-Williams and Tutte about packing

spanning trees going via critical graphs. We believe our proof of equality of the two numbers

in these classes of graphs is new.

Our proof technique above can be extended to the problem of packing bases in a matroid.

In particular, call a matroid critical if deleting an element from its ground set strictly
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decreases the maximum number of disjoint bases that can be packed. We can prove the

following theorem:

Theorem 6.5.2 For a critical matroid M, we have kf (M) = kint(M). Moreover, for any

matroid M, kint(M) = bkf (M)c

We end this chapter with a conjecture that Corollary 6.4.3 extends for the general Steiner

case.

Conjecture 6.5.3 For any graph G, the maximum number of edge-disjoint Steiner trees

that can be packed fractionally is within 1 of the maximum number of edge-disjoint Steiner

trees that can be packed integrally.

If our conjecture is true, then along with Theorem 6.3.1 this will prove Kriesell’s conjec-

ture upto an additive 1. We believe the method outlined above could be useful in proving

so: that is, devising a notion of criticality and proving kf (G) = kint(G) for critical graphs.

However, we mention that there are examples which show that a similar generalization of

the relation between integral packing number and strength of a graph (Theorem 6.4.1) is

not true for general graphs.
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