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Abstract 1 

Background: Anticipatory postural adjustments during gait initiation have an 2 

important role in postural stability but also in gait performance. However, these first 3 

phase mechanisms of gait initiation have received little attention, particularly in 4 

subcortical post-stroke subjects, where bilateral postural control pathways can be 5 

impaired. This study aims to evaluate ankle anticipatory postural adjustments during 6 

gait initiation in chronic post-stroke subjects with lesion in the territory of middle 7 

cerebral artery.  8 

Methods: Eleven subjects with post-stroke hemiparesis with the ability to walk 9 

independently and twelve healthy controls participated in this study. Bilateral 10 

electromyographic activity of tibialis anterior, soleus and medial gastrocnemius was 11 

collected during gait initiation to assess the muscle onset timing, period of 12 

activation/deactivation and magnitude of muscle activity during postural phase of gait 13 

initiation. This phase was identified through centre of pressure signal.  14 

Findings: Post-stroke group presented only half of the tibialis anterior relative 15 

magnitude observed in healthy subjects in contralesional limb (t=2.38, p=0.027) and 16 

decreased soleus deactivation period (contralesional limb, t=2.25, p=0.04; ipsilesional 17 

limb, t=3.67, p=0.003) as well its onset timing (contralesional limb, t=3.2. p=0.005; 18 

ipsilesional limb, t=2.88, p=0.033) in both limbs. A decreased centre of pressure 19 

displacement backward (t=3.45, p=0.002) and toward the first swing limb (t=3.29, 20 

p=0.004) was observed in post-stroke subjects. 21 

Interpretation: These findings indicate that chronic post-stroke subjects with 22 

lesion at middle cerebral artery territory present dysfunction in ankle anticipatory 23 

postural adjustments in both limbs during gait initiation. 24 

Keywords: gait initiation; anticipatory postural adjustments; stroke; ankle muscles; 25 
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1. INTRODUCTION 3 

Gait initiation can be considered a unique and challenging task. The central 4 

nervous system uses stable, efficient mechanisms for dealing with the inherent 5 

instability during the transition from quiet standing, were all body segments possess 6 

only potential energy, to a steady state gait, where the body segments contain not only 7 

potential energy, but also kinetic energy, and thus a higher energy state (1). In fact, the 8 

initiation of gait is considered to be governed by a motor program, as stereotyped 9 

patterns of activity and invariant relative timing have been demonstrated (2-8). 10 

Inhibition of the tonically active soleus (SOL) followed by activation of the tibialis 11 

anterior (TA) early in gait initiation, with invariant relative timing between SOL 12 

inhibition and TA activation, has been described in healthy subjects (5, 7, 9). These first 13 

phase mechanisms of gait initiation, namely Anticipatory Postural Adjustments (APA) 14 

(2), enable centre of pressure (CoP) backward displacement (4, 7), contributing to 15 

postural stability (10, 11) and enable the optimum generation of momentum to reach the 16 

steady-state gait at the end of the first step (12).  17 

Unlike steady-state gait, gait initiation requires an asymmetric lower limbs role. 18 

While the first swing limb is responsible for applying a large vertical force to lift its foot 19 

from the ground (13), the contralateral limb (stance limb) is responsible for body 20 

support and for a greater forward propulsion (4, 14). These asymmetrical limb 21 

requirements may thus provide additional insight about gait impairments in pathologies 22 

with asymmetric distribution like stroke. However, gait initiation has received little 23 

attention in post-stroke subjects (see references (15-19)). The few studies available 24 

showed impairments in contralesional limb (CONTRA) that lead to a reduced step 25 

length and gait velocity and increased duration of postural phase during gait initiation in 26 
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acute post-stroke subjects (17, 20). Such impairments involve a reduction of the 1 

propulsion forces (20),  decreased TA (15), adductors and abductors muscle activity 2 

associated to later onset latencies (17). Despite a delay in the body’s forward 3 

acceleration associated to an increased forward push from ipsilesional limb to initiate 4 

gait (16), post-stroke subjects prefer the CONTRA limb as the starting leg in most cases 5 

(16).  Initiating with their CONTRA limb enables these individuals to use the IPSI limb 6 

as the main propulsion generator helped by the acceleration of the CONTRA swing 7 

limb, leading to a higher speed (20, 21). Despite research has been more focused on 8 

CONTRA limb, IPSI deficits were also demonstrated in gait initiation both when this 9 

limb was the stance limb or the first swing limb (16, 20). When post-stroke subjects 10 

initiate gait with this limb, the center of mass (CoM) move forward prior to the initial 11 

toe-off (16), when it is used as stance limb it develops a lower anteroposterior force 12 

(20).  13 

It has been demonstrated that subjects with stroke in subcortical areas in the 14 

territory of the middle cerebral artery (MCA) present dysfunction in the modulation 15 

process of CONTRA SOL muscle in various functional tasks (22-24) in both limbs, 16 

possible as a result of impairment of bilateral ventromedial disposed pathways, and 17 

failure in CONTRA TA activation, resultant from lesion in the unilateral disposed 18 

lateral cortico-spinal system (25). These deficits could explain bilateral impairments in 19 

post-stroke subjects during gait initiation. However, to the best of our knowledge no 20 

study evaluated APAs during gait initiation in chronic post-stroke subjects with lesion 21 

in the territory of the MCA. 22 

Stroke in this territory typically involve cortical and subcortical areas, or their 23 

axons, responsible for the control of APAs (11). The supplementary motor area (26, 27), 24 

premotor cortex (28) and pontomedullary reticular formation through brain stem–spinal 25 
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pathways that may be engaged through motor corticofugal connections (29-33), have an 1 

important role in APAs generation.  2 

This study aims to evaluate ankle APAs during gait initiation in chronic post-3 

stroke subjects with lesion in the territory of MCA. Based on neuroanatomic and 4 

neurophysiological foundations it can be hypothesised that post-stroke subjects present 5 

bilateral decreased modulation of ankle plantar flexors and CONTRA TA activation 6 

failure during postural phase of gait initiation. 7 

2. METHODS 8 

2.1 Subjects 9 

Eleven patients who had suffered a stroke at least 6 months earlier (6 females, 5 10 

males) and 12 healthy subjects (5 females, 7 males) participated in this study (Table 1). 11 

For the subjects with stroke, the mean time between their stroke and the time of 12 

inclusion in this study was 26.0 months (SD = 11.3). All subjects suffered an ischemic 13 

stroke: 3 of them had suffered an infarction in their left hemisphere, whereas 8 had 14 

suffered an infarction in their right hemisphere. To be included, patients were required 15 

to: (1) have suffered a first-ever ischemic stroke involving the MCA territory, as 16 

revealed by computed tomography, resulting in hemiparesis; (2) have a Fugl-Meyer 17 

(Assessment of Sensorimotor Recovery After Stroke scale) score in the motor 18 

subsection below 34; (3) have the ability to walk, with close supervision if necessary, 19 

but without physical assistance, as judged by the treating physiotherapist; (4) have the 20 

ability to stand with feet apart for 30 seconds or more; and (5) have provided written or 21 

verbal informed consent. Patients were excluded for one or more of the following 22 

reasons: (1) cognitive deficit that could hinder communication and cooperation 23 

(assessed by the Mini-Mental State Examination); (2) history of orthopaedic or 24 
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neurological (other than stroke) disorders, known to affect walking performance and 1 

quiet standing position; (3) history of stroke involving the brainstem or cerebellar areas; 2 

and (4) taking medication such has antispasticity medication that could affect motor 3 

performance and balance. Gait data of the group of subjects with stroke were compared 4 

with data obtained from healthy control subjects. All control group subjects were 5 

selected according to the same exclusion criteria applied to the stroke group, as well as 6 

being excluded if they had suffered any neurological disorder. The study was approved 7 

by the local ethics committee and implemented according to the Declaration of 8 

Helsinki. 9 

2.2 Instrumentation 10 

The values of the vertical (Fz), anteroposterior (Fx) and mediolateral (Fy) 11 

components of GRF, as well as the values of the moments of GRF in the frontal (My) 12 

and sagital (Mx) planes, were acquired using a force platea at a sampling rate of 100Hz 13 

(FP4060-08 model from Bertec Corporation (USA), connected to a Bertec AM 6300 14 

amplifier a and to an analogue board b, from Qualysis, Inc. (Sweden)).  15 

The activity of Gastrocnemius Medialis (GM), Soleus (SOL) and Tibialis Anterior 16 

(TA) of both lower limbs was assessed through electromyography (EMG). The bilateral 17 

EMG signal of these muscles was monitored using a bioPLUXc research wireless signal 18 

acquisition system (Plux Ltda, Portugal). The signals were collected at a sampling 19 

frequency of 1000 Hz and were pre-amplified in each electrode and then fed into a 20 

differential amplifier with an adjustable gain setting (25 - 500 Hz; common-mode 21 

rejection ratio (CMRR): 110 dB at 50 Hz, input impedance of 100 MΩ and gain of 22 

1000). Self-adhesive silver chloride EMG electrodes were used in a bipolar 23 

configuration and with a distance of 20 mm between detection surface centres. The skin 24 
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impedance was measured with an Electrode Impedance Checkerd (Noraxon USA, Inc.).  1 

The force plate signals were analysed with the Acqknowledge software (Biopac 2 

Systems, Inc., USA). All subjects used standard tennis footwear (1.5cm heel), in their 3 

adequate size, as different kind of footwear leads to different levels of postural stability 4 

reflected in centre of pressure oscillation (34). 5 

2.3 Procedures 6 

2.3.1 Skin preparation and placement of electrodes  7 

The skin surface of selected muscles of the midbelly and patella was prepared 8 

(shaved and then the dead skin cells and non-conductor elements were removed with 9 

alcohol and with an abrasive pad) to reduce the electrical resistance to <5000Ω, the 10 

electromyographic electrodes were placed according to anatomic references (Table 2). 11 

2.3.2 Data acquisition 12 

GRF and EMG data were acquired during gait initiation. All individuals were 13 

asked to stand as still as possible (35), with feet at pelvis width, keeping their arms by 14 

their sides and to focus on a target 2 meters away and at eye level during 30 seconds 15 

(36). After this interval subjects were asked to walk at self-adopted speed over a 5 m 16 

walkway, without explicit instructions. If a subject asked which leg to start with, the 17 

researcher replied ‘‘whatever feels natural for you’’, as lower limb preference plays an 18 

influential role in the control of frontal plane body motion during gait initiation (37). 19 

However, subjects were asked to keep the starting leg consistent over all trials (1). A 20 

trial was considered valid when the subject performed at least three steps (38, 39). Each 21 

subject performed three trials with rest periods of 60 seconds between trials (40).  All 22 

participants from post-stroke group initiated gait with their CONTRA limb. 23 

2.3.3 Data processing 24 



9 

 

GRF data were low-pass filtered using a fourth-ordered Butterworth filter by 1 

using a zero-phase lag with a cutoff frequency of 20 Hz (41). The acquired force and 2 

moment of force time series of each trial were used to calculate the CoP fluctuation in 3 

the AP and ML directions using the following approximation: 4 

,         (1) 5 

         (2) 6 

    7 

where My and Mx are the moments of GRF in the frontal and sagital planes, 8 

respectively, and Fz the vertical components of GRF collected with a force plate. 9 

In all subjects the beginning of CoP displacement was observed in the AP direction. 10 

As a consequence, time series of CoP displacement in AP direction was used to assess 11 

the onset of gait initiation ( 0T ). The CoPAP backward displacement onset was defined as 12 

the beginning of an interval lasting for at least 50 ms when its value was higher than the 13 

mean plus 3 SD of CoPAP displacement obtained during upright standing. CoP 14 

displacement in AP and ML directions, during postural control phase, was calculated 15 

through the difference between maximum CoP backward (first inflection of CoPAP ) and 16 

toward the swing limb (first inflection of CoPML) positions and 0T . 17 

The electromyographic signals were filtered using a zero-lag, second-order 18 

Butterworth filter with an effective band pass of 20 to 450Hz, and the root mean square 19 

was calculated. The muscle latency was detected in a time window from -450 in relation 20 

to 0T  (42) to the end of postural phase using a combination of computational algorithms 21 

and visual inspection (43). The latency for a specific muscle was defined as the instant 22 

lasting for at least 50 ms when its EMG amplitude was higher (activation) or lower 23 

(inhibition) than the mean of its baseline value plus 3 standard deviation (SD) (44), 24 
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measured from -500 to -450 ms (42). For each TA activation and SOL and GM 1 

deactivation periods, the magnitude of electromyographic signal was normalised by 2 

baseline values to assess the degree of magnitude modulation of each muscle during 3 

APAs in relation to upright standing. The limb that performed the first step was 4 

designed as first swing limb and the contralateral limb was designed as stance limb. 5 

2.3.3 Statistical Analysis 6 

The acquired data were analysed using the Statistic Package Social Science (SPSS)e 7 

software from IBM Company (USA). Mean and standard deviation were used for 8 

descriptive analysis. The Independent Sample T-test was used to compare CoP 9 

displacement and bilateral lower limb muscle onset/offset timings, muscle 10 

activation/deactivation duration and magnitude between healthy and post-stroke 11 

participants. Shapiro-Wilk test and histogram analysis indicated that data was normally 12 

distributed. A 0.05 significance level was used for inferential analysis. 13 

3. RESULTS 14 

Generally, lower magnitude levels of activity were observed in both TA and SOL 15 

and higher GM activity in post-stroke group regarding the first swing limb and stance 16 

limb (Figure 1). Statistical significant differences were observed in TA of first swing 17 

limb (t=2.38, p=0.027) where post-stroke group presented only half of the relative 18 

magnitude observed in healthy subjects. Because the magnitude of electromyographic 19 

activity during APAs was normalised to values obtained during upright standing, we 20 

have compared upright standing SOL, TA and GM magnitude between groups. No 21 

significant differences occurred between the IPSI and the CONTRA limbs of post-22 

stroke subjects and heathy subjects. 23 
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A tendency to a later onset timing of TA was also observed in post-stroke subjects 1 

in the first swing limb and the opposite was observed in stance limb. However, no 2 

significant differences were observed in temporal analysis of TA muscle. The 3 

differences between groups were more notorious in SOL muscle (Figure 1), as statistical 4 

significant differences occurred in SOL deactivation duration (first swing limb, t=2.25, 5 

p=0.04; stance limb, t=3.67, p=0.003) and in its onset timing in both limbs (first swing 6 

limb, t=3.2. p=0.005; stance limb, t=2.88, p=0.033). 7 

The results obtained in muscle timing and magnitude were accompanied by a 8 

decreased CoP displacement backward and toward the first swing limb in post-stroke 9 

subjects compared to healthy subjects. The post-stroke group presented only about half 10 

of the CoP displacement observed in healthy subjects for both directions (Figure 2). 11 

4. DISCUSSION 12 

The purpose of this study was to evaluate ankle APAs during gait initiation in 13 

chronic post-stroke subjects with lesion in the territory of MCA. The results obtained 14 

confirm our hypothesis that this group of subjects present bilateral SOL modulation 15 

impairment and CONTRA TA activation failure during gait initiation. These changes in 16 

muscle activation patterns lead to decreased CoP displacement backward and toward the 17 

first swing limb. This decreased CoP displacement lead to decreased CoM forward 18 

momentum (9) and ultimately to a reduction of gait velocity and step length (2, 45, 46). 19 

In fact, it has been reported that, in healthy subjects, the amplitude of CoP displacement 20 

backwards and towards the first swing limb, as well TA magnitude, increase with an 21 

increased speed of the intended gait to generate higher forward CoM propulsion (2, 7, 22 

12, 20, 47). In the present study, participants were instructed to walk at their confortable 23 

speed. As a consequence, post-stroke participants performed gait with lower speed 24 

when compared to healthy participants (Table 1). Based on previous studies, it can be 25 
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argued that this can result from impairments in APAs during gait initiation. However, 1 

no differences in CoP displacement were previously found between healthy and post-2 

stroke participants when healthy participants where instructed to walk with a speed 3 

close to the one chosen by the post-stroke group (0.73 m.s-1) (20). Based on this, it 4 

would be hypothesised that the diferences observed in APAs could result from the lower 5 

speed adopted by the post-stroke group and not the reverse. Despite the post-stroke 6 

participants of the presented study walked at a slower speed than the post-stroke 7 

participants of Tokuno et al (2006) study, similar values of CoP displacement were 8 

observed. Also, although healthy participants of the present study adopted a walking 9 

speed (0.77 m.s-1) similar to the slower speed adopted by participants of Tokuno et al 10 

(2006) study (0.73 m.s-1), CoP displacement was close to the one obtained when 11 

participants from the latter study walked at their confortable speed (1.07 m.s-1). These 12 

findings indicate that more similar CoP displacement values are obtained when subjects 13 

walk at their self-selected speed, than when subjects are asked to walk at the same 14 

speed. Based on this, it is reasonable to suggest that changes observed in APAs in post-15 

stroke subjects contribute to the decreased gait speed and not the reverse, as they 16 

walked at their self-selected speed. 17 

It should be noted that participants were instructed to initiate gait with their 18 

preferential limb and as a result post-stroke subjects initiated gait with their CONTRA 19 

limb. This preference has been interpreted as an adaptative strategy to increase forward 20 

propulsion (20). The results of the present study demonstrate that post-stroke subjects 21 

present not only half of the TA magnitude observed in healthy subjects, as well a 22 

decreased SOL inhibition in CONTRA limb. It has been demonstrated that the CoM 23 

movement forward and towards the initial stance leg during gait initiation, occurs 24 

approximately 300 ms after activation of the tibialis anterior muscle and that, backward 25 
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CoP displacement begins with an increase in the TA muscles (5). The similar TA 1 

activation timings obtained is post-stroke subjects and healthy controls in our study, are 2 

in accordance with other studies (48). The lower magnitude levels of CONTRA TA 3 

observed in the present study, together with decreased CONTRA plantarflexor, hip 4 

flexor and hip extensor strength (49, 50), can explain the reduction of propulsion forces 5 

(20), as well the increased duration of postural phase in post-stroke subjects (17, 20). 6 

This difficulty in modulating activity from quiet standing to gait initiation in CONTRA 7 

limb probably results from a deregulation of supplementary motor area (26, 27) and 8 

premotor cortex (28). The decreased TA activity can also result from reduced SOL 9 

deactivation period through reciprocal inhibition mechanism.  10 

It should be noted that a lesion in the premotor cortex affects the APAs of bilateral 11 

lower extremities in step initiation (28).These neuroanatomical foundations help 12 

understanding the modulation deficit over IPSI SOL muscle observed in the present 13 

study. Since forward propulsion is controlled by the unimpaired dorsolateral system, the 14 

deficits demonstrated in IPSI anteroposterior force (20) are probably related from 15 

impairments in APAs in IPSI SOL muscle during gait initiation. Postural control 16 

dysfunction of the IPSI limb has been demonstrated in other functional tasks (51, 52) 17 

and particularly in subjects with sub-cortical injuries located at the internal capsule level 18 

(22, 23, 53). In fact, injuries located at this region are typically associated with 19 

dysfunction of the ventral–medial systems, like corticoreticular pathway, and may 20 

justify changes in the activity of the IPSI SOL muscle (31). 21 

As only one force plate was used and the degree of weight distribution asymmetry 22 

was not assessed (20), it would be questioned the possible influence of it on bilateral 23 

impairments obtained. A decrease of CoP displacement has been demonstrated in 24 

healthy subjects, in the first swing limb, when there is a reduced loading over this limb 25 
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(54).  It has been argued that this asymmetrical weight bearing leads to change in 1 

proprioceptive information from cutaneous receptors and Golgi tendon organs, which in 2 

turn leads to reduced ankle muscle activity (55-57). The non-existence of significant 3 

differences in SOL, TA and GM muscle activity during upright standing between post-4 

stroke and healthy subjects, in the present study, supports the argumentation that 5 

changes observed in APAs result from a dysfunction of ventromedial disposed 6 

pathways and not from weight bearing asymmetry. This is also supported by the results 7 

obtained by Ko et al (2011) in post-stroke subjects, as APAs during gait initiation were 8 

observed in both asymmetric and symmetric weight bearing conditions (48). 9 

5. CONCLUSION 10 

The results obtained in this study indicate that chronic post-stroke subjects with 11 

lesion at MCA territory present dysfunction in ankle APAs in both limbs during gait 12 

initiation. CONTRA limb presents failure in modulating SOL inhibition and in 13 

activating TA, while IPSI limb present failure in modulating SOL inhibition. These 14 

impairments lead to decreased bilateral backward CoP displacement compromising 15 

stability and performance of gait initiation. From a clinical point of view, the results 16 

obtained in this study indicate that attention should be given to the postural phase of gait 17 

initiation in the rehabilitation of post-stroke subjects in both the IPSI and the CONTRA 18 

limbs.  19 
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 1 

Figure Captions 2 

Figure 1: Representation of activation periods of TA and deactivation periods of 3 

SOL and GM calculated from -450 ms in relation to T0 to the final of postural phase. 4 

Gray dashed lines represent values obtained in post-stroke subjects while dark dashed 5 

lines represent values obtained in healthy subjects. Statistically significant differences 6 

obtained between post-stroke subjects and healthy subjects in TA relative magnitude 7 

(*1), in SOL deactivation duration and onset timing in the first swing limb (*2), and in 8 

SOL deactivation duration and onset timing in the stance limb (*3) are represented. 9 

 10 

Figure 2: Mean (bars) and standard deviation (error bars) of CoP displacement 11 

backward and toward the first swing limb in healthy and post-stroke subjects. 12 


