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EFFECTS OF TREATMENT, AWARENESS
AND CONDOM USE IN A COINFECTION MODEL

FOR HIV AND HCV IN MSM

CARLA M. A. PINTO, ANA CARVALHO

We develop a new a coinfection model for hepatitis C virus (HCV) and the human 
immunodeficiency virus (HIV). We consider treatment for both diseases, screening, 
unawareness and awareness of HIV infection, and the use of condoms. We study the local 
stability of the disease-free equilibria for the full model and for the two submod-els (HCV 
only and HIV only submodels). We sketch bifurcation diagrams for different parameters, 
such as the probabilities that a contact will result in a HIV or an HCV infection. We 
present numerical simulations of the full model where the HIV, HCV and double endemic 
equilibria can be observed. We also show numerically the qualitative changes of the 
dynamical behavior of the full model for variation of relevant param-eters. We extrapolate 
the results from the model for actual measures that could be implemented in order to 
reduce the number of infected individuals.

Keywords: Mathematical Models; HIV/AIDS; HCV; MSM; Screening Coinfection.

1. Introduction

Human immunodeficiency virus (HIV) affects 34 to 46 million people throughout 
the world. Of these, about 4 to 5 million people are coinfected with hepatitis C 
virus (HCV).1 In Portugal, it is estimated that about 25% to 40% of the 41,086 
people infected with HIV are coinfected with HCV.2 Portugal is the third country, 
of the Western Europe, with higher prevalence and more new diagnosed cases of 
HIV/AIDS, per year.
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The current international consensus, to control the HIV epidemic, focuses on
the need for clear leadership on policies and programs for prevention, early diag-
nosis, treatment that respects human rights and quality of health care, effective
and accessible to everyone. Mathematical models have been used extensively in
the literature to model epidemiological and other biological phenomena.3,4 In what
concerns HIV/AIDS, new models incorporate a more detailed understanding of the
mechanisms associated to HIV infection, such as dissemination, and distribution
and impact of interventions on population.5,6 Consequently, the impact of health
policies, such as deficient access to health care, delayed treatment or the use of
screening for asymptomatic cases can be evaluated with these models.7 A model of
HIV/AIDS with screening was introduced in Ref. 8 and recently extended in Ref. 9.
Usually, the models of the dynamics of HIV/AIDS, incorporate progression, where
an infected individual goes through various stages of infectiousness before develop-
ing clinical AIDS. In Ref. 8, a model in which infection leads to asymptomatic HIV
infectives, who are later screened and then develop AIDS, without interventions,
is considered. A similar approach was previously studied in Ref. 5 with differen-
tial infectivity and staged progression models. In Ref. 9, the model in Ref. 8, was
modified to include highly active antiretroviral therapy (HAART) treatment.

Typically, the coinfection of HIV and other diseases is associated with more
serious risks and severe consequences for patients. In the coinfection with HCV,
HIV accelerates the progression of HCV, moreover, the risk of severe liver disease
is higher if the CD4 count falls below 200 cells/mm3.2 In addition, there is a higher
risk of cirrhosis, end-stage liver disease, hepatocellular carcinoma and liver-related
death.10 In Portugal, the end-stage liver disease is, after tuberculosis, the second
leading cause of death among HIV-positive people.2

Recent studies show, however, some successful treatments for HCV using drug
combination in individuals coinfected with HIV. Furthermore, most people with
HCV can be treated successfully for HIV.11 However, more studies are needed to
show the efficacy of new antiviral drugs for HCV in people coinfected with HIV.

In this paper, we study a mathematical model for HIV and HCV coinfection in
men who have sex with men (MSM). The model includes treatment for both dis-
eases, screening, awareness and unawareness of HIV infection, and effective protec-
tion against HIV and HCV by condom use. We believe this is a relevant study, since
HIV and HCV are common diseases worldwide and since 2000 outbreaks of acute
HCV among HIV-positive MSM, who denied injecting drugs, have been reported in
Europe,12 United States13 and Australia.14 This fact added to the increased sever-
ity of the coexistence of the two diseases, makes it extremely important to unravel
the dynamics of their coinfection.

HIV and HCV share the same transmission routes, namely by injection drug
use (IDU), sexual contact, mother to child transmission during pregnancy or birth,
blood and blood products transfusion, organs transplantation from infected donors
and exposure to blood by health care professionals.15 Here, we will only consider
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the transmission of HIV and HCV by sexual activity. HCV transmission by sex-
ual activity is believed to be inefficient and an accurate estimate for the value of
the risk associated to different sexual activities is still to be found. Moreover, the
HCV prevalence differs in what concerns the HIV transmission route, being the
higher associated to IDU. Nevertheless, there is stronger proof of sexually trans-
mitted HCV in HIV infected MSM.16,17 There is also increased concern with the
likely bridging of HCV transmission from the HIV-positive into the HIV-negative
MSM.17

Bearing these ideas in mind, the paper is organized as follows. The model is
described in Sec. 2. In Sec. 2.2, we compute the reproduction numbers and the
local stability of the disease-free equilibria. In Sec. 3, we present several bifurcation
diagrams that help to understand the dynamical behavior of the proposed model.
We compute the sensitivity indices of the reproduction number to relevant param-
eters of the model in Sec. 4. Simulation results of the full model are presented in
Sec. 5. Finally, in Sec. 6, we write the main conclusions of this work.

2. Model for HIV/AIDS and HCV Transmission

In this section, we describe the HIV and HCV coinfection model. We compute the
reproduction numbers of the full model, and the two submodels (HIV only and
HCV only models). We study the local stability of the disease-free equilibria. We
compute the sensitivity indices of the reproduction number to relevant parameters
of the model. We present bifurcation diagrams, built with the help of XPPAUT, to
better understand the dynamics of the proposed model.

2.1. Description of the model

The total population, N(t) is divided into the following 16 classes: the unscreened
susceptible individuals, Ss̃(t), the screened susceptible individuals, Ss(t), the HIV
unaware infected individuals, Iã(t), the HIV aware infected individuals, Ia(t), the
unaware individuals showing symptoms of AIDS, Aã(t), the aware individuals that
developed AIDS, Aa(t), the HCV infected individuals screened for HIV, Ic(t), the
HCV infected individuals unscreened for HIV, Ic̃(t), the chronic HCV infected indi-
viduals unscreened for HIV, Cs̃(t), the chronic HCV infected individuals screened
for HIV, Cs(t), the HCV and HIV unaware coinfected individuals, IcIã(t), the HCV
and HIV aware coinfected individuals, IcIa(t), the chronic HCV and HIV unaware
coinfected individuals, CI ã(t), the chronic HCV and HIV aware coinfected indi-
viduals, CI a(t), the HCV and AIDS dually infected individuals, IcA(t), and the
chronic HCV and AIDS coinfected individuals, CA(t).

The schematic diagram of the model is given in Fig. 1.
The population of size N(t), at time t, has constant inflow of susceptibles Ss̃(t)

and Ss(t), Λ = Λ1 + Λ2. The natural mortality rate is µ in all classes. Susceptible
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Fig. 1. Flow chart of the model.

unscreened individuals, Ss̃(t), get infected with HIV at a rate λh, where:

λh = c(1 − θ)bh
Ia(t) + Iã(t) + η1(IcIã(t) + IcIa(t))

N(t)
.

Parameter bh is the probability that a contact will result in an HIV infection
and c is the mean number of sexual partners that a susceptible individual acquires,
annually. To model the impact of condom use as a primary prevention tool, we
assume that the level of protection by condoms is given by θ ∈ [0, 1]. If θ = 0,
then condoms do not offer any protection, whereas θ = 1 implies perfect protec-
tion.6 Parameter η1 > 1 models the fact that dually infected individuals are more
infectious than their corresponding counterparts.18–20 Unscreened individuals are
screened at a rate k and move to the class of screened susceptible individuals, Ss(t).

Screened susceptible individuals, Ss(t) are infected with HIV at a rate (1−ψ)λh,
where 0 ≤ ψ ≤ 1 measures the efficacy of screening in reducing disease transmission.
If ψ = 0, then the screening has no effect on the behavior of individuals, on the
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contrary, if ψ = 1 then screening is 100% effective in preventing HIV transmission.
We consider that screened susceptible individuals can be infected. Routine testing
serves only one individual knowing his or her HIV status and accessing care if he
or she needs it. A proportion p of screened individuals enter the infected class of
individuals who are aware of their condition, Ia(t). A proportion (1− p) of infected
individuals that are not routinely screened go to the class Iã(t) and are unaware of
their infectious state. These unscreened individuals are screened after some time at a
rate k and moved to class Ia(t). Individuals at class Ia(t) receive HAART treatment,
nevertheless there are some that develop AIDS at a rate ρ2. Individuals in class Iã(t)
may also develop AIDS at a rate ρ1. We assume ρ1 ≥ ρ2, since individuals at class
Iã(t) do not receive HAART treatment, due to their unawareness of the disease
condition. The AIDS induced death rate is δ2.

Considering now HCV infection, susceptible unscreened individuals, Ss̃(t) are
infected with HCV at a rate λc, and move to class Ic̃, where:

λc = c(1 − θ)bc
Ic(t) + Ic̃(t) + η2(IcIã(t) + IcIa(t))

N(t)
.

Parameter bc is the probability that a contact will result in an HCV infection, η2 > 1
models the fact that dually infected individuals are more infectious than their cor-
responding counterparts.18–20 The HCV, unscreened for HIV, infected individuals,
Ic̃(t), recover spontaneously (or from treatment), at a rate υ, and return to class
Ss̃(t). They can also progress to a chronic stage, Cs̃(t), at a rate σ1. Or they can
be screened at a rate k and move to class Ic(t). These individuals are infected with
HIV at a rate δλh, where δ accounts for the susceptibility to HIV infection for HCV
infected people.20,21

The screened susceptible individuals, Ss(t) are infected with HCV at a rate λc
and moved to class Ic(t). The screened HCV infected individuals are infected with
HIV at a rate (1 − ψ)λhδ, recover at a rate υ and move back to class Ss(t), or
progress to a chronic phase at a rate σ1 and move to class Cs(t).

The chronic HCV infected individuals, unscreened for HIV, Cs̃(t), are infected
with HIV at a rate δλh and move to the class CI ã(t), and are screened at a rate k
and move to class Cs(t). The chronic HCV infected individuals, screened for HIV,
Cs(t), are infected with HIV at a rate (1 − ψ)δλh.

The HIV unaware infected individuals, Iã(t), are infected with HCV at a rate
σλc, and move to class IcIã(t), where σ > 1 is the modification parameter modeling
the increased risk of being infected with HCV when a person is already infected
with HIV.17,19,20 Reciprocally, the HCV infected individuals, screened for HIV,
Ic(t), are infected with HIV at a rate (1 − p)(1 − ψ)δλh and also move to class
IcIã(t). Individuals in class IcIã(t) spontaneously recover from HCV infection, at
a rate υ1, and move to class Iã(t), or progress to AIDS at a rate ρ2 and move to
class IcA(t). They can also be screened for HIV and move to class IcIa(t). Finally
individuals in class IcIã(t) can become chronic carriers at a rate σ2 and move to
class CI ã(t).
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The HIV aware infected individuals, Ia(t), are infected with HCV at a rate σλc,
and move to class IcIa(t). Reciprocally, the HCV infected individuals, Ic(t), are
infected with HIV at a rate δ(1 − ψ)λh. Individuals in class IcIa(t) spontaneously
recover from HCV infection at a rate υ1 and move to the class Ia(t). They progress
to AIDS at a rate ρ2, and move to class IcA(t). Or they may become HCV chronic
carriers, at a rate σ2, and move to class CI a(t).

The individuals with chronic HCV infection, and unscreened for HIV, Cs̃(t), are
infected with HIV at a rate δλh and move to class CI ã(t). Individuals in this class
are screened at a rate k and move to class CI a or progress to AIDS at a rate ρ2.
The HCV induced death is δ1 in all HCV classes.

The HCV infected individuals at chronic phase, screened for HIV, Cs(t), are
infected with HIV at a rate (1 − ψ)δλh. The chronic HCV carriers and HIV aware
dually infected individuals, CI a(t) progress to AIDS at a rate ρ2 and move to class
CA(t).

AIDS aware individuals, As(t), are infected with HCV at a rate σλc and move
to class IcA(t). The individuals in class IcA(t) are treated for HCV infection at a
rate υ2 and move to class As. The individuals in class IcA(t) become HCV chronic
carriers at a rate σ2 and move to class CA(t).

The parameters and variables of the model are summarized in Table 1.
The system of nonlinear ordinary differential equations for the proposed model

is given by:

dSs̃
dt

= Λ1 + υIc̃ − λhSs̃ − λcSs̃ − kSs̃ − µSs̃

dSs
dt

= Λ2 + kSs̃ − (1 − ψ)λhSs − λcSs + υIc − µSs

dIã
dt

= (1 − p)(1 − ψ)λhSs + λhSs̃ + υ1IcIã − (k + ρ1 + σλc + µ)Iã

dIa
dt

= p(1 − ψ)λhSs + kIã + υ1IcIa − (σλc + ρ2 + µ)Ia

dAã
dt

= ρ1Iã − (µ+ δ2)Aã

dAa
dt

= ρ2Ia + υ2IcA− (σλc + µ+ δ2)Aa

dIc̃
dt

= λcSs̃ − (k + υ + σ1 + δλh + µ+ δ1)Ic̃

dIc
dt

= λcSs + kIc̃ − (υ + σ1 + (1 − ψ)δλh + µ+ δ1)Ic

dCs̃
dt

= σ1Ic̃ − (k + δλh + µ+ δ1)Cs̃

dCs
dt

= σ1Ic + kCs̃ − ((1 − ψ)δλh + µ+ δ1)Cs
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Table 1. Definition of parameters and variable of model (2.1).

Variable/Parameter Description

Ss(t) susceptible screened individuals
Ss̃(t) susceptible unscreened individuals
Ia(t) HIV infected aware individuals
Iã(t) HIV infected unaware individuals
Aa(t) aware individuals showing symptoms of AIDS
Aã(t) unaware individuals showing symptoms of AIDS
Ic(t) screened for HIV, HCV infected individuals
Ic̃(t) unscreened for HIV, HCV infected individuals
Cs(t) screened for HIV, chronic HCV infected individuals
Cs̃(t) unscreened for HIV, chronic HCV infected individuals
IcIa(t) HCV and HIV aware coinfected individuals
IcIã(t) HCV and HIV unaware coinfected individuals
CI a(t) HIV aware and chronic HCV dually infected individuals
CI ã(t) HIV unaware and chronic HCV coinfected individuals
IcA(t) HCV and AIDS coinfected individuals
CA(t) chronic HCV and AIDS coinfected individuals
Λ1 recruitment rate of unscreened individuals
Λ2 recruitment rate of screened individuals
µ natural mortality rate
bh probability that a contact will result in an HIV infection
bc probability that a contact will result in an HCV infection
c mean number sexual partners a susceptible individual acquires
θ level of protection by condoms
p proportion of screened individuals aware of their HIV status
ψ efficacy of screening in reducing HIV transmission
υ, υi, i = 1, 2 recovery rate of treated for HCV
σi, i = 1, 2 rate of progression to chronic phase of HCV
δ1 mortality due to HCV
ρi, i = 1, 2 rate of progression to AIDS
k awareness of unscreened HIV infected individuals after being screened
δ2 mortality due to HIV
ηi, i =, 1, 2 modification parameter
σ modification parameter
δ modification parameter

dIcIã
dt

= (1 − p)(1 − ψ)δλhIc + δλhIc̃ + σλcIã − (k + σ2 + ρ2 + υ1 + µ+ δ1)IcIã

dIcIa
dt

= p(1 − ψ)δλhIc + σλcIa + kIcIã − (υ1 + ρ2 + σ2 + µ+ δ1)IcIa

dCIã
dt

= (1 − p)(1 − ψ)λhδCs + δλhCs̃ + σ2IcIã − (k + ρ2 + µ+ δ1)CI ã

dCIa
dt

= p(1 − ψ)δλhCs + σ2IcIa + kCIã − (ρ2 + µ+ δ1)CI a

dIcA

dt
= σλcAa + ρ2IcIã + ρ2IcIa − (υ2 + σ2 + µ+ δ1 + δ2)IcA

dCA

dt
= ρ2CI ã + ρ2CI a + σ2IcA− (µ+ δ1 + δ2)CA

(2.1)
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with non-negative initial conditions given by:

Ss(0) = Ss0, Ss̃ = Ss̃0, Iã(0) = Iã0, Ia = Ia0, Aa(0) = Aa0,

Aã = Aã0, Ic(0) = Ic0, Ic̃ = Ic̃0, Cs(0) = Cs0,

Cs̃ = Cs̃0IcIã = IcIã0, IcIa(0) = IcIa0, CI ã(0) = CI ã0,

CI a(0) = CI a0, IcA(0) = IcA0, CA(0) = CA0

(2.2)

Model (2.1) will be analyzed in the domain Ω ⊂ R
16
+0, given by:

Ω =
{

(Ss, Ss̃, Ia, Iã, Aa, Aã, Ic, Ic̃, Cs, Cs̃m, IcIa,CI a, IcIã,CI a,

CI ã, IcA,CA) ∈ R
16
+ : 0 ≤ N ≤ Λ1 + Λ2

µ

}

Theorem 2.1. The solutions of system (2.1) with initial conditions (2.2) satisfy
Ss̃(t) ≥ 0, Ss(t) ≥ 0, Iã(t) ≥ 0, Ia(t) ≥ 0, Aã(t) ≥ 0, Aa(t) ≥ 0, Ic̃(t) ≥ 0,
Ic(t) ≥ 0, Cs̃(t) ≥ 0, Cs(t) ≥ 0, IcIã(t) ≥ 0, IcIa(t) ≥ 0, CI ã(t) ≥ 0, CI a(t) ≥ 0,
IcA(t) ≥ 0, CA(t) ≥ 0 for all t > 0. The region Ω ∈ R

16
+0 is positively invariant and

attracting with respect to system (2.1).

Proof. From the first equation of model (2.1) we have:

Ṡs̃ ≥ −[λh + λc + k + µ]S

thus:

Ss̃(t) ≥ Ss̃(0)e[−R
t
0 [λh(s)+λc(s)+k+µ]ds] > 0.

Similarly for the second equation of system (2.1):

Ss ≥ Ss(0)e[−
R

t
0 ((1−ψ)+λc+µ)] > 0

In an analogous fashion, we can easily show that Ia(t), Iã, Aa(t), Aã, Ic(t), Ic̃,
Cs(t), Cs̃, IcIã(t), IcIa(t), CI ã(t), CI a(t), IcA(t) and CA(t) are all positive for all
t > 0. We now show that all feasible solutions are uniformly bounded in Ω. Adding
all equations of system (2.1), we obtain:

Ṅ = Λ1 + Λ2 − µN − δ2(Aa +Aã + IcA+ CA)

− δ1(Ic + Ic̃ + Cs + Cs̃ + IcIã + IcIa + CI ã + CI a).

Ṅ ≤ Λ1 + Λ2 − µN

Solving this differential equation, we note that:

0 ≤ N ≤ Λ
µ

+N(0)e−µt,

where Λ = Λ1 + Λ2, N(0) represents the initial value of the model’s variables.
Then 0 ≤ N ≤ Λ

µ , as t → ∞. Therefore, Λ
µ is an upper bound of N provided that
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N(0) ≤ Λ
µ . If N(0) > Λ

µ , then N(t) will decrease to this level. Thus, all feasible
solutions of the system enter or remain in the region Ω. Hence, the region of bio-
logical interest Ω is positively invariant under the flow induced by system (2.1).

2.2. Reproduction numbers and stability of disease-free equilibria

In this subsection, we compute the reproduction number, R0, of model (2.1). The
basic reproduction number is defined as the number of secondary infections due to
a single infection in a completely susceptible population.

We begin by considering the following two sub-models of model (2.1).
Model (2.3) is derived from model (2.1) by setting the variables concerning HIV
dynamics (Iã, Ia, As̃, As, IcIã, IcIa, CI ã, CI a, IcA and CA) to zero, and model (2.5)
follows from model (2.1) by setting the variables concerning HCV dynamics (Ic̃, Ic,
Cs̃, Cs, IcIã, IcIa, CI ã, CI a, IcA and CA) to zero.

We now compute the reproduction number, RHCV, of system (2.3). We use the
next generation method.22

dSs̃
dt

= Λ1 + υIc̃ − λcSs̃ − kSs̃ − µSs̃,
dS

dt
= Λ2 + kSs̃ − λcSs + υIc − µSs,

dIc̃
dt

= λcSs̃ − (k + υ + σ1 + µ+ δ1)Ic̃,
dIc
dt

= λcSs − (υ + σ1 + µ+ δ1)Ic,

dCs̃
dt

= σ1Ic̃ − (k + µ+ δ1)Cs̃,
dCs
dt

= σ1Ic + kCs̃ − (µ+ δ1)Cs,

(2.3)

where λc = c(1 − θ)bc Ic+Ic̃

N .
The disease-free equilibrium of model (2.3) is given by:

P 1
0 =

(
Λ1

k + µ
,
Λ2

µ
+

kΛ1

µ(k + µ)
, 0, 0, 0, 0

)
.

Using the notation of Ref. 22, matrices for the new infection terms, F , and the
other terms, V , are given by:

F =



c(1 − θ)bc Λ1µ

Λ1(µ+1)+Λ2(k+µ) c(1 − θ)bc Λ1µ
Λ1(µ+1)+Λ2(k+µ) 0 0

c(1 − θ)bc
Λ1µ+Λ2(k+µ)

Λ1(µ+1)+Λ2(k+µ) c(1 − θ)bc
Λ1µ+Λ2(k+µ)

Λ1(µ+1)+Λ2(k+µ) 0 0

0 0 0 0
0 0 0 0


,

V =



k + υ + σ1 + µ+ δ1 0 0 0

−k υ + σ1 + µ+ δ1 0 0
−σ1 0 k + µ+ δ1 0
0 −σ1 −k µ+ δ1


.
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The associative basic reproduction number is thus:

RHCV = ρ(FV −1) =
c(1 − θ)bc

υ + σ1 + µ+ δ1
, (2.4)

where ρ indicates the spectral radius of FV −1. By Theorem 2,22 we obtain the
following lemma.

Lemma 2.1. The disease-free equilibrium P 1
0 is locally asymptotically stable if

RHCV < 1 and unstable if RHCV > 1.

We proceed with the computation of the reproduction number, RHIV, of model
(2.5).

dSs̃
dt

= Λ1 − λhSs̃ − kSs̃ − µSs̃,
dSs
dt

= Λ2 + kSs̃ − (1 − ψ)λhSs − µSs,

dIã
dt

= (1 − p)(1 − ψ)λhSs + λhSs̃ − (k + ρ1 + µ)Iã,

dIa
dt

= p(1 − ψ)λhSs + kIã − (ρ2 + µ)Ik,

dAs̃
dt

= ρ1Iã − (µ+ δ2)Aã,
dA

dt
= ρ2Ia − (µ+ δ2)A,

(2.5)

where λh = c(1 − θ)bh Iã+Ia

N .
The disease-free equilibrium state P 2

0 of model (2.5) is given by:

P 2
0 =

(
Λ1

k + µ
,
Λ2

µ
+

kΛ1

µ(k + µ)
, 0, 0, 0, 0

)

Using the notation of Ref. 22, matrices for the new infection terms, F , and the
other terms, V , are the following:

F =




c(1−θ)bh

(Λ1+Λ2)(µ+k) [(1 − p)(1 − ψ)(kΛ1 + Λ2(k + µ)) + Λ1µ]

p(1 − ψ)c(1 − θ)bh
kΛ1+Λ2(k+µ)
(Λ1+Λ2)(µ+k)

0
0

c(1−θ)bh

(Λ1+Λ2)(µ+k) [(1 − p)(1 − ψ)(kΛ1 + Λ2(k + µ)) + Λ1µ] 0 0

p(1 − ψ)c(1 − θ)bh
kΛ1+Λ2(k+µ)
(Λ1+Λ2)(µ+k) 0 0

0 0 0
0 0 0


,

V =



k + ρ1 + µ 0 0 0

−k ρ2 + µ 0 0
−ρ1 0 µ+ δ2 0
0 −ρ2 0 µ+ δ2


.
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The associative basic reproduction number is given by:

RHIV = ρ(FV −1)

=
c(1 − θ)bh

(k + µ+ ρ1)(ρ2 + µ)(Λ1 + Λ2)(µ+ k)
[(1 − ψ)(kΛ1 + Λ2(k + µ))

× (k + µ+ ρ2 + p(ρ1 − ρ2)) + Λ1µ(k + µ+ ρ2)], (2.6)

where ρ indicates the spectral radius of FV −1. By Theorem 2,22 we obtain the
following lemma.

Lemma 2.2. The disease-free equilibrium P 2
0 is locally asymptotically stable if

RHIV < 1 and unstable if RHIV > 1.

We now proceed with the calculation of the reproduction number, R0, of the
full model (2.1). The disease-free equilibrium state P0 of model (2.1) is given by:

P0 =
(

Λ1

k + µ
,
Λ2

µ
+

kΛ1

µ(k + µ)
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
.

Using the notation in Ref. 22 on system (2.1), we compute the matrices for the new
infection terms, F , and the other terms, V , and the marix FV −1. Then, the repro-
duction number is the spectral radius of FV −1. After some algebra manipulation
R0 is given by (please check the Appendix for a detailed proof):

R0 = ρ(FV −1) = max{RHIV, RHCV} (2.7)

By Theorem 2,22 we obtain the following lemma.

Lemma 2.3. The disease-free equilibrium P0 is locally asymptotically stable if
R0 < 1 and unstable if R0 > 1.

3. Bifurcation Analysis

In this section, we use XPPAUT23 to build bifurcation diagrams for distinct param-
eters of model (2.1).

Figure 2 shows the sketch of the bifurcation diagram for different values of βc,
the probability that a contact will result in an HCV infection. We start from a
disease-free equilibrium and increase βc. At βc = 0.2031, there is a bifurcation
point (1), at which the model bifurcates to the stable HCV endemic equilibrium.
This means that increasing the probability that a contact will result in an HCV
infection originates new cases of HCV infections. This is a realistic prediction.

Figure 3 depicts the bifurcation diagram for different values of βh, the proba-
bility that a contact will result in an HIV infection. We start from a disease-free
equilibrium and increase βh. At βh = 0.034, there is a bifurcation point (1), at
which the model bifurcates to the stable HIV endemic equilibrium. This means
that increasing the probability that a contact will result in an HIV infection pro-
motes the appearance of new cases of HIV infections, as biologically expected.
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Fig. 2. Sketch of the bifurcation diagram for different values of βc, the probability that a contact
will result in HCV transmission. Remaining parameter values are given in Table 3, except for
βh = 0.032. At the bifurcation point (1) βc � 0.2031. Orange dashed line — stable disease-free
equilibrium, green filled line — stable HCV endemic equilibrium. For more information, see text.

Fig. 3. Drawing of the bifurcation diagram for different values of βh, the probability that a
contact will result in HIV transmission. Remaining parameter values are given in Table 3. At the
bifurcation point (1) βh � 0.034. Orange dashed line — stable disease-free equilibrium, red filled
line — stable HIV endemic equilibrium. For more information, see text.

Figure 4 depicts the bifurcation diagram for different values of βc, the probability
that a contact will result in an HCV infection. We start from an HIV endemic
equilibrium and increase βc. At βc = 0.2503, there is a bifurcation point (1), at
which the model bifurcates to the stable two endemic equilibrium. This means
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Fig. 4. Sketch of the bifurcation diagram for different values of βc, the probability that a contact
will result in an HCV infection. Remaining parameter values are given in Table 3. At the bifurca-
tion point (1) βc = 0.2503. Red filled line — stable HIV endemic equilibrium, black filled line —
stable two-endemic equilibrium. For more information, see text.

Fig. 5. Sketch of the bifurcation diagram for different values of βh, the probability that a contact
will result in an HIV infection. Remaining parameter values are given in Table 3. At the bifurcation
point (1) βh = 0.0503. Green filled line — stable HCV endemic equilibrium, black filled line —
stable two-endemic equilibrium. For more information, see text.

that in a population already infected with HIV, with lowered defense mechanisms,
increasing the probability of a contact resulting in HCV infection will set off new
coinfection cases.

Figure 5 depicts the bifurcation diagram for different values of βh, the proba-
bility that a contact will result in an HIV infection. We start from a HCV endemic
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equilibrium and increase βh. At βh = 0.0503, there is a bifurcation point (1), at
which the model bifurcates to the stable two-endemic equilibrium. This means that
in a population with impaired immune system due to infection with HCV, increasing
the probability of a contact resulting in HIV infection will trigger new coinfection
cases.

4. Sensitivity Analysis

In this section, we perform the sensitivity indexes of the reproduction number, R0,
to relevant parameters of model (2.1). We follow the procedure developed in Ref. 24.
The sensitivity analysis is used to measure the relative change in a state variable
when a given parameter is varied. Measuring the R0 sensitivity indices is extremely
important since the value of R0 determines the spread or the eradication of the
disease.

The sensitivity index of R0 = max{RHIV, RHCV} with respect to parameter
βc = c(1 − θ)bc is given by:

∂R0

∂βc
× βc
R0

= 1.

The sensitivity index of R0 with respect to parameter βh = c(1−θ)bh is given by:

∂R0

∂βh
× βh
R0

= 1.

These values for this sensitivity index mean that the probability of HCV or HIV
transmission has strong influence in HCV and HIV control and management. Sim-
ilar expressions may be obtained for the other parameters of R0. Nevertheless,
most of the expressions for the sensitivity indices are complex with little obvious
structure. Therefore, we compute the corresponding values for the parameter values
given in Table 3. The signs of the sensitivity indices may be found in Table 2. A
positive sign implies that increases in the corresponding parameter values translate
in an increase in the value of R0. Inversely for a negative sign, a negative index

Table 2. Parameters used in the numerical simulations of model (2.1).

Parameter Sensitivity index sign

βc +
βh +
θ −
ν −
σ1 −
σ2 −
p +
k +
ρ2 −
ρ1 −
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Table 3. Parameters used in the numerical simulations of model (2.1), where the appropriate
units are yr−1.

Parameter Value Reference

Λ1 8 Assume
Λ2 4 Assume
c 8 Assume
θ 0.20 25

bh 0.036 26

bc 0.05 17

η1 1.0002 20

η2 1.0002 20

υ 0.25 17

υ1 0.27 Assume
υ2 0.25 Assume
µ 0.020 20

p 0.0367 27

ψ 0.0288 27

k 0.00388 27

ρ1 0.1908 27

ρ2 0.1511 27

δ1 0.2801 Assume
δ2 0.2801 27

δ 1.0001 20

σ 1.001 20

σ1 0.75 28

σ2 0.75 28

means than an increase in the parameter value implies a decrease in the value of
R0. For example, an increase of 5% in the values of βh or βc augments 5% the value
of R0. Similar inferences may be performed for the other indices.

5. Numerical Results

In this section, we present the numerical simulations of model (2.1). The parameter
values used in the simulations can be found in Table 3 and the following initial
conditions: Ss̃(0) = 500, Ss(t) = 0 (we assume that no individuals were screened
initially), Iã(0) = 80, Ia(0) = 0, Aa(t) = 0, Aã = 15, Ic(t) = 0, Ic̃ = 20, Cs(0) = 0,
Cs̃ = 5, IcIa(0) = IcIã = CI a = CI ã = IcA = CA = 0 are used.

In Fig. 6, we observe that the model approaches asymptotically the stable HIV
endemic equilibrium.

Figure 7 shows the stable HCV endemic equilibrium for system (2.1).
In Fig. 8, we plot the dynamics of the variables of system (2.1). We observe

that, for the given parameters values and initial conditions, the model approaches
asymptotically the stable two-disease endemic equilibrium.

In Fig. 9, we plot the dynamics of the relevant variables of system (2.1) for
different values of θ, the level of protection against HIV and HCV by the use of
condoms. We observe that as θ decreases, the system (2.1) bifurcates from the stable
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Fig. 6. Stable HIV endemic equilibrium of system (2.1) for given parameter values in Table 3, and
given initial conditions (RHIV = 1.0875, RHCV = 0.2461, R0 = 1.0875). The remaining variables
go asymptotically to 0. For more information, see text.

disease-free equilibrium to the stable HIV endemic equilibrium. This suggests that
individuals should, as expected, use condom, to prevent being infected with HIV.

In Fig. 10, we show the dynamics of the relevant variables of system (2.1) for
different values of βh, the probability that a contact will result in an HIV infection.
We observe that increasing the system (2.1) has a bifurcation point as βh increases
from 0.030 till 0.1. The system bifurcates from a stable disease-free equilibrium to
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Fig. 7. Stable HCV endemic equilibrium of system (2.1) for parameter values given in Table 3,
except βc = 0.25 and βh = 0.032, and given initial conditions (RHIV = 0.9667, RHCV = 1.2307,
R0 = 1.2307). The remaining variables go asymptotically to 0. For more information, see text.

a stable HIV endemic equilibrium. This was a predictable outcome and suggests
the measures that reduce this probability βh should be taken under consideration
in order to reduce HIV transmission.

In Fig. 11, we plot the dynamics of the relevant variables of system (2.1) for
different values of βc, the probability that a contact will result in an HCV infection.
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Fig. 8. Stable two-disease endemic equilibrium of system (2.1) for given parameter values in
Table 3, except for bh = 0.054, bc = 0.25, and given initial conditions (RHIV = 1.6313, RHCV =
1.2307, R0 = 1.6313) (relevant variables). For more information, see text.
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Fig. 9. Dynamics of the relevant variables of the system (2.1) for different values of θ, the level
of protection against HIV and HCV by condom use. Parameter values are given in Table 3 and
initial conditions are in the text. The remaining variables go asymptotically to zero. For more
information, see text.

We observe that as βc increases from 0.05 to 0.25 there is a bifurcation from a state
without disease to a state with HCV infection that persists with the continuous
increase of βc. The number of chronic carriers also increases. Biologically this is a
reasonable outcome, one would expect an augment in the number of new disease
cases as the probability of transmission increases.



May 23, 2015 8:8 WSPC/S0218-3390 129-JBS 1550009

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

450

500

Time

S
us

ce
pt

ib
le

 u
ns

cr
ee

ne
d 

in
di

vi
du

al
s

β
h
=0.030

β
h
=0.036

β
h
=0.1

0 200 400 600 800 1000
0

50

100

150

200

250

300

Time

su
sc

ep
tib

le
 s

cr
ee

ne
d 

in
di

vi
du

al
s

β
h
=0.030

β
h
=0.036

β
h
=0.1

0 200 400 600 800 1000
0

50

100

150

200

250

Time

H
IV

 in
fe

ct
ed

 u
na

w
ar

e 
in

di
vi

du
al

s

β
h
=0.030

β
h
=0.036

β
h
=0.1

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time

H
IV

 in
fe

ct
ed

 a
w

ar
e 

in
di

vi
du

al
s

β
h
=0.030

β
h
=0.036

β
h
=0.1

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

Time

U
na

w
ar

e 
in

di
vi

du
al

s 
w

ith
 A

ID
S

β
h
=0.030

β
h
=0.036

β
h
=0.1

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

Time

A
w

ar
e 

in
di

vi
du

al
s 

w
ith

 A
ID

S

β
h
=0.030

β
h
=0.036

β
h
=0.1

Fig. 10. Dynamics of the relevant variables of the system (2.1) for different values βh, the prob-
ability that a contact will result in an HIV infection. Parameter values are given in Table 3 and
initial conditions are in the text. The remaining variables go asymptotically to zero. For more
information see text.

In Fig. 12, we plot the dynamics of the relevant variables of system (2.1) for
different values of ψ, the parameter that measures the efficacy of screening in reduc-
ing HIV transmission. We observe that as ψ increases, the number of individuals
infected with HIV and suffering from AIDS decreases, in fact, the system (2.1) is
initially at a stable HIV endemic equilibrium and changes its qualitative behavior
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Fig. 11. Dynamics of the relevant variables of the system (2.1) for different values of βc, the
probability that a contact will result in an HCV infection. Parameter values are given in Table 3,
except bh = 0.032 and initial conditions are in the text. For more information, see text.

to a stable disease-free equilibrium. In real life, this means that individuals that
are screened should change their behavior in order to prevent transmission of the
disease. In fact, there are some studies that show that screened HIV infectives tend
to change their behavior and those whose test is negative do not.29 Nevertheless,
the tests are meant to promote behavior change and to access to health care for all
screened individuals.
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Fig. 12. Dynamics of the relevant variables of the system (2.1) for different values of ψ, the
parameter that measures the efficacy of screening in reducing HIV transmission. Parameter values
are given in Table 3 and initial conditions are in the text. Remaining variables go asymptotically
to zero. For more information, see text.

6. Conclusions

We proposed a coinfection model for HCV and HIV infections, that includes treat-
ment for both diseases, unawareness and awareness if HIV infection, and the use
of condom. We studied the local stability of the disease-free equilibria for the full
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model and for the two submodels (HCV only and HIV only submodels). Bifurcation
diagrams were sketched for relevant parameters, such as the probabilities that a
contact will result in a HIV or an HCV infection. Numerical examples are used to
illustrate the change of the dynamical behavior of certain relevant parameters. The
results obtained suggest that specific measures should be considered in order to
reduce HIV infection, such as: distributing more condoms to individuals and try to
forward the message that condoms should be used during anal intercourse (though
this might not be well accepted in MSM population due to unprotected sex nego-
tiation); develop campaign in order to warn individuals about the consequences
of having many sexual partners; continuing treatment for AIDS and pursuing the
investigation of new and better drugs to combat the virus and regular screening.
Considering HCV infection, treatment is also highly recommended as well as other
measures (e.g., more informational campaign about the disease) in order to decrease
the number of infectious and of chronic carriers. MSM population is at risk of HCV
reinfection following successful treatment and documented clearance of HCV, they
should be warned about this important risk. Future work will consider the effect of
needle sharing in the case of HIV and HCV transmission rates, and an application
of the model to real Portuguese data, with corresponding estimation of parameter
values.
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where A = c(1−θ)bh

(Λ1+Λ2)(µ+k) [(1− p)(1−ψ)(kΛ1 +Λ2(k+µ))+Λ1µ], B = p(1−ψ)c(1−
θ)bh

kΛ1+Λ2(k+µ)
(Λ1+Λ2)(µ+k) , C = c(1−θ)bc Λ1µ

(Λ1+Λ2)(µ+k) , and D = c(1−θ)bc kΛ1+Λ2(k+µ)
(Λ1+Λ2)(µ+k) . The

formulas represented by � are irrelevant to compute the eigenvalues, so, for the sake
of simplicity, we decided not to include those here.

In order to compute R0, the basic reproduction number for the whole
model (2.1), we need to compute the eigenvalues of the matrix FV −1, since R0

is the spectral radius of FV −1, i.e., it is the dominant eigenvalue of this matrix.
Let us now proceed with the computation of the eigenvalues by calculating the

determinant below:

FV −1 =




A
k+µ+ρ1

+ Ak
(k+µ+ρ1)(µ+ρ2) − λ A

µ+ρ2

B
k+µ+ρ1

+ Bk
(k+µ+ρ1)(µ+ρ2)

B
µ+ρ2

− λ

0 0
0 0

0 0
0 0

C
δ1+k+µ+σ1+υ + Ck

(δ1+µ+σ1+υ)(δ1+k+µ+σ1+υ) − λ C
(δ1+µ+σ1+υ)

D
δ1+k+µ+σ1+υ + Dk

(δ1+µ+σ1+υ)(δ1+k+µ+σ1+υ)
D

(δ1+µ+σ1+υ) − λ


.

As FV −1 is a matrix of the form: [U1 0
0 U2

], then its eigenvalues are the ones of
matrices U and V , where:

U1 =

( A
k+µ+ρ1

+ Ak
(k+µ+ρ1)(µ+ρ2) − λ A

µ+ρ2

B
k+µ+ρ1

+ Bk
(k+µ+ρ1)(µ+ρ2)

B
µ+ρ2

− λ

)
;

U2 =

( C
δ1+k+µ+σ1+υ + Ck

(δ1+µ+σ1+υ)(δ1+k+µ+σ1+υ) − λ C
(δ1+µ+σ1+υ)

D
δ1+k+µ+σ1+υ + Dk

(δ1+µ+σ1+υ)(δ1+k+µ+σ1+υ)
D

(δ1+µ+σ1+υ) − λ

)
.


