

1

A Methodology for Creating an Adapted

Command Language for Driving an Intelligent

Wheelchair

Brígida Mónica Faria
1,2,3

, Luís Paulo Reis
2,4

, and Nuno Lau
3,5

1
Escola Superior Tecnologia de Saúde do Porto / Instituto Politécnico do Porto

(ESTSP/IPP),
2
Laboratório de Inteligência Artificial e Ciência de Computadores

(LIACC),
3
Inst. Eng. Electrónica e Telemática de Aveiro (IEETA),

4
Dep. Sistemas

de Informação, Escola de Engenharia da Universidade do Minho (DSI/EEUM),
5
Dep. Electrónica, Telecomunicações e Informática da Universidade de Aveiro

(DETI/UA)

Emails: btf@estsp.ipp.pt, lpreis@dsi.uminho.pt, and nunolau@ua.pt

Abstract. Intelligent wheelchairs (IW) are technologies that can increase the autonomy and

independence of elderly people and patients suffering from some kind of disability. Nowadays the

intelligent wheelchairs and the human-machine studies are very active research areas. This paper

presents a methodology and a Data Analysis System (DAS) that provides an adapted command

language to an user of the IW. This command language is a set of input sequences that can be

created using inputs from an input device or a combination of the inputs available in a multimodal

interface. The results show that there are statistical evidences to affirm that the mean of the

evaluation of the DAS generated command language is higher than the mean of the evaluation of

the command language recommended by the health specialist (p value = 0.002) with a sample of

11 cerebral palsy users. This work demonstrates that it is possible to adapt an intelligent

wheelchair interface to the user even when the users present heterogeneous and severe physical

constraints.

Key Words: Intelligent Wheelchair; Command Language; User Modeling; Data

Analysis System.

1. Introduction

The analysis of the tasks for a human to perform, the information and

technological requirements, the machine ergonomics and design are among the

most interesting topics of study in the field of Human-Machine interaction.

Systems that make the bridge between users and the processes to be controlled are

another key point in this area. The challenges are even greater when studying the

adaptation of technology used by individuals with disabilities in order to perform

tasks that might otherwise be difficult or even impossible for them.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47141975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Scientific research allowed the evolution and development of many technologies

that are nowadays used in everyday life. In particular, innovations in the field of

assistive technologies enabled increased autonomy and independence for human

beings that, for some reason, have some kind of disability. Intelligent wheelchairs

are an obvious application of the scientific work developed in the last decades on

this area [1]. Moreover, these assistive technologies still are object of research and

the interaction between them and the user remains an open research problem. The

interaction between the Human and the IW is an important component to take into

consideration.

The methods implemented in this work allowed answering several questions on

the adaptation of an intelligent wheelchair that can be commanded via a

multimodal interface. Another issue is related with the creation of users’ profiles

in order to automatically adjust the best way of driving the intelligent wheelchair.

Users’ classification demands data of distinct sources such as voice, physical

movements like head or facial expressions or data taken from using the usual

joystick that is common in electric wheelchairs. However, gathering and

analyzing this type of data is still an open research problem. In order to face this

problem, new multimodal data gathering and analysis methodologies were

developed enabling to build a complete data gathering and data analysis system to

generated an adapted command language for driving an intelligent wheelchair.

The paper is organized as follows: Section 2 briefly describes our project, the

system architecture and the context of the multimodal data gathering system.

Section 3 presents the Data Analysis System (DAS) and the purposed solution to

give an adapted command language allowing an user to drive an intelligent

wheelchair. The used algorithms are also presented. The experiments and results

compose Section 4 and in Section 5 the conclusions and future work are

presented.

2. Intellwheels Project

The main objective of the IntellWheels Project is to develop an intelligent

wheelchair platform that may be easily adapted to any commercial wheelchair and

aid any person with special mobility needs [2] [3]. Several different modules have

been developed in order to allow different ways of carrying inputs (Ii) for driving

the IW. These include several input devices, such as, joystick control with USB,

3

microphone for voice inputs, wiimote control for head movements, and a brain

computer interface for facial expressions and thoughts recognition [4].

Within this work new ways of interaction between the wheelchair and the user

have been integrated, creating a system of multiple entries based on a multimodal

interface.

2.1 System Architecture

The IntellWheels system architecture that also enabled to conduct the experiments

of user profiling and the DAS is presented in Figure 1. The system is composed

by eight main modules and enables a therapist to have full control of all the IW

adaptation process.

The core of the system is the new IntellWheels multimodal interface that enables

the patient to fully control real and simulated Intelligent Wheelchairs, using

multimodal inputs, including pre-defined input sequences that may be freely

associated with any of the available outputs (wheelchair actions). The input

devices may be freely connected to this multimodal interface. The multimodal

interface is connected to a control module that is able to receive high-level or

medium level commands from the multimodal interface and control a real or

simulated wheelchair making it perform the actions corresponding to those

commands (such as “go front”, “turn right”, “follow right wall”, “stop”, among

others).

Figure 1. IntellWheels system architecture.

In order to be able to develop and conduct meaningful experiments, a serious

game for intelligent wheelchair teaching and testing was built. The game permits

4

the definition of circuits and the placement of markers that must be collected by

the user in order to gain points. It also enables gathering other performance

measures such as the time and the precision of the trajectory of the users

performing the circuit [4].

In order to be able to extract user profiles and adapt the user interface to the users’

profiles several other applications were developed. One of these applications

consists on a complete data gathering system that is able to gather the data

available on: the multimodal interface; control module; simulated wheelchair; real

wheelchair and serious game, and then synchronize all this data and freely select

the values to record in appropriate files in order to be further analyzed by the data

analysis applications. A user profiling application was also created in this context

in order to be able to conduct controlled experiments with each user in order to

analyze their capabilities of performing each type of possible input in each of the

available input devices [5][6][7].

Based on the user profiling and associated data gathering system, a DAS was

developed enabling the analysis of users’ capabilities when performing each type

of input and when driving the IW with different input combinations. Beyond data

analysis, this module is able to advise, in a simple manner, the best control mode

for each user and to specify a command language adequate for each user.

A manager module was also developed in order to be able to perform a large set

of experiments using the developed user profile extraction methodology and the

set of implemented applications. This manager allows to launch all the

applications, perform user profiling tests, define the scenario to be used, the

circuit to be performed, the control modes to be tested and the data to be gathered

and analyzed.

2.2 Multimodal Data Gathering and User Profiling

In order to be able to extract patient models and also environment models, a

complete multimodal data gathering system was implemented. Based on the

IntellWheels prototype and using the real and simulated environments, the work

was focused on planning appropriate data gathering and DAS that enable the

creation of an adapted interface and command language adjusted to the patient

and where information about the environment is also considered.

5

A user profiling module was designed and implemented. This module, along with

the IntellWheels DAS, helps in the process of giving the more adequate input

device for driving the wheelchair. Initially a set of tasks and actions was defined

to be executed by the user. A wizard, or more specifically the profiling component

of the multimodal interface (Figure 2), includes simple tasks that can be

performed with input devices and that permit an evaluation of the user ability to

use that device [8].

Figure 2. Starting user’s profile module.

The performance of each task was collected and the specialists (occupational

therapists) were integrated in the process to confirm the correct classification. The

data analysis system advises the user about the best suited input(s) device(s) and

command language. The system also records the information about each user and

if the user wants to update the information.

3. Data Analysis System Implementation

The IntellWheels DAS is the component that advises the user on the best input

device for driving the intelligent wheelchair. Moreover, the DAS, using

information from the pre-processing module of multimodal data fusion, is capable

of extracting the most relevant information from the patient data gathering system

application (profile module) which enables fast generation and configuration of

the interfaces. The system advises the best options for driving the intelligent

wheelchair including the best set of input sequences and their association with the

available commands. The best choice for the command language is going to

consider the best recognition combination, the best efficiency and the best

6

intuitiveness combination. The objective is to have the best association of inputs

and commands, considering the user characteristics, to drive the intelligent

wheelchair. This means that it is necessary to first define a set of commands. For

example using five commands, as in Table 1, associated to an input sequence set:

Table 1. Input sequences associated with commands

Inputs sequences Commands

Press button 1 “Go Forward”

Press button 1 – Press button 3 “Go Back”

Press button 1 – Tilt the head to the right side “Turning Right”

Say “Go” – Say “Left” “Turning Left”

Smile “Stop”

Next the DAS requirements, in order to provide the best interface for a specific

user, are going to be presented.

3.1 Requirements

The IntellWheels Data Analysis System has several requirements that should be

fulfilled:

 Enable multiple input devices – the command language should be able to

include inputs from different input devices so that it has a higher range of

facilities for driving the IW;

 Maximize user performance in driving the IW – the objective is to present

a solution where the performance, usability and safety is maximized;

 Be adapted to multiple users with distinct disabilities – the IW should be

available and adapted to different users and to different disabilities;

 Fast response to user commands – the time between starting an input

sequence and executing the corresponding command should be minimized;

 Associate several distinct input sequences with similar performance to the

same command – the fulfilment of this option allows a user which

degrades for example one of his abilities, to be able to drive the IW with

another set of options;

 Intuitiveness between the associations of the input sequences and the

commands – the user should use input sequences that are user friendly, for

example saying “Forward” should mean that the wheelchair should go

7

forward or “Blink the right eye” should mean that the wheelchair should

turn right instead of going left.

In order to explain the proposed solutions the definition and formalizations of

confusion matrix for each input device are presented in the next subsection.

3.1 Inputs’ Confusion Matrix and Measures

The data acquisition system in the Profile Module also provides the information

about what was asked and what was recognized by the system. For that reason it is

possible to obtain a confusion matrix for each input and for each input device.

The confusion matrix of each input device can be designated as in Equation 1:

Nj
NiijID nCM

,...,1
,...,1)(


 (1)

where i designates the lines, j the columns of the matrix, nij is the number of times

that Ij is recognized as Ii and ID is the input device.

For example Table 2 represents the confusion matrix with the inputs that can be

expressed saying “Go”, “Left”, “Right”, “Back” and “Stop”.

Table 2. Confusion matrix defined for the microphone

MicrophoneCM

True

I1

(“Go”)

I2

(“Left”)

I3

(“Right”)

I4

(“Back”)

I5

(“Stop”)

P
re

d
ic

te
d

I1 (“Go”) n11 n12 n13 n14 n15

I2 (“Left”) n21 n22 n23 n24 n25

I3 (“Right”) n31 n32 n33 n34 n35

I4 (“Back”) n41 n42 n43 n44 n45

I5 (“Stop”) n51 n52 n53 n54 n55

For each input device confusion matrix it is possible to calculate the recall and

precision of each input. The recall of each input is defined as the probability of a

true input being correctly classified and can be calculated as in Equation 2:





N

m

mi

ii

i

n

n
rec

1

 (2)

where nmi is the number of times that Ii is recognized as Im and N the number of

inputs. The precision of each input is defined as the probability of a predicted

input represents that true input and can be calculated as in Equation 3:

8





N

m

im

ii

i

n

n
prec

1

 (3)

where nim is the number of times that Im is recognized as Ii and N the number of

in-puts. It is important to refer that in the concrete problem of giving an adapted

command language, an extra case representing when other distinct input was

predicted, was added in the predicted categories.

It is possible to combine the recall and precision of each input using, for example,

the arithmetic mean or a more adequate measure that uses the harmonic mean

called the F-measure [9]. This measure gives high values only when both

precision and recall have high values. Equation 4 presents the general definition

of the Fβi-measure of each input:

ii

ii

i
recprec

recprec
F






2

2)1(






 (4)

where  0 is a parameter that controls the balance between the recall and

the precision. In the experiments recall and precision are evenly weighted

therefore it was used the value 1 for β.

3.2 Command Language

In order to generate a command language adapted to a given user several points

should be taken into account: the time efficiency, the recognition probability of an

input sequence and the intuitiveness of an input sequence to be associated to a

command. Figure 3 shows the quantifiable criteria used for the command

language definition.

Figure 3. Criteria used for the command language.

9

Next, these three points are going to be presented in more detail using the

formalization of the measurable criteria.

3.2.1. Time and Time Efficiency

Assuming that a sequence of inputs Si can be formalized as I
(i,1)

 I
(i,2)

 I
(i,3)

…I
(i,Ni)

,

where each  k

Ni
IIII i ,...,, 21

),(
 and a single command can be associated to a final

sequence that produces an action, the time to generate a command is composed by

a component of time to select the inputs and by the time taken by the command to

generate a visible action or time of output (ttimeout(i)). The total time for a particular

command to be used has the Equation 5:

)(

1
),(itimeout

N

k

ID ttt
i

kiIiS




 (5)

where k is the number of each of the inputs used in the sequence, Si the

identification of the sequence i and Ni the total number of the inputs of sequence i.

Therefore it is possible to determine the total time for all the commands necessary

to drive the intelligent wheelchair as in Equation 6:





j

jC

C

j

StT
1

 (6)

where Cj is the number of commands in the command language.

The time efficiency can be defined as a function of time, if more time is necessary

for a command to be used then that command is less efficient. It is possible to

formalize this function as in Equation 7:

   

1

1

1,0,0:





i

i

S

S
t

t

eff

 (7)

The total time efficiency (Equation 8) is the sum of all the efficiency values of the

commands that compose a command language:





j

jeff

C

j

SC teffT
1

)((8)

3.2.2. Sequence Recognition

It is also possible to define and calculate the sequence Si recognition value.

Assuming the independence of recognition of the different inputs in a sequence,

10

the sequence Si recognition value is the product of the F-measure values as in

Equation 9.





i

ki

N

k

ID

Ii FregS
1

),((9)

where ID

I kiF),(is the F-measure value in the position of the principal diagonal of the

input I
(i,k)

 be in use in the sequence and for a specific input device (ID). The total

recognition value of a set of commands can be determined by Equation 10:





jC

j

jreg regST
1

 (10)

where Cj is the number of commands in the command language.

3.2.3. Intuitiveness

Another concept that should be analyzed is the intuitiveness of a sequence of in-

puts. In order to have values similar to the efficiency and recognition, it was

defined that an input sequence, associated to a given action, can have a value of

intuitiveness between 0 and 1. The value of 1 means that the input is very typical

for performing that command and a value of 0 means that the input typically is

associated with an opposite command. For example, if a sequence is composed of

a single input such as saying “front” and the action of the wheelchair associated is

go forward then the intuitiveness value may be 1. If the same input is associated

with the command that makes the IW going back then the intuitiveness will be 0.

Table 3 presents an example of the intuitiveness of several voice inputs.

Table 3. Intuitiveness for the voice inputs

 I1

Go

I2

Left

I3

Right

I4

Back

I5

Stop

I6

Front

I7

Forward

C
o

m
m

an
d

s

Forward 1 0 0 0 0 1 1

Left 0 1 0 0 0 0 0

Right 0 0 1 0 0 0 0

Back 0 0 0 1 0 0 0

Stop 0 0 0 0 1 0 0

The intuitiveness of a sequence composed by two or more inputs can also be

obtained by the product of the intuitiveness of each input. In fact, an example is a

sequence composed of two inputs such as say “front” “front” then the

intuitiveness in this case it is also 1 when the objective is to drive the wheelchair

11

forward. In particular, the intuitively is chosen by the user and for example the

users of the system (Table 3) intuitively associated “Go” with the meaning “Go

forward”.

3.2.4. Command Language Implementation

In order to obtain the best performance, the command set that maximizes the se-

quence recognition, the intuitiveness and time efficiency should be obtained.

Basically, a command language adapted to the user should be found, that

maximizes the function composed by the total time efficiency, total recognition

and intuitiveness:

)(maxarg int
,, int

TTT regeff
TTT regeff

  (11)

where α, β and γ are parameters that could be adjusted. The optimization may be

performed by any type of optimization algorithm with emphasis on iterative meta-

heuristics such as basic hill-climbing [10], simulated annealing [11], tabu search

[12] or genetic algorithms [13]. For the implementation, in order to show the

concept, a modified hill-climbing algorithm was implemented, mainly due to its

simplicity. The pseudo-code and the details of the implementation are

subsequently explained. First the user abilities on using several inputs are

captured with the profile module and the recognition values are obtained for all

the available inputs. The time taken to execute each input sequence is also

captured and the efficiency of performing the inputs is calculated. The degree of

intuitiveness was indicated initially by the user or by a specialist. Figure 4 details

the algorithm implementation.

Figure 4. Command language advisor implementation.

12

The system starts by reading the selected user recognition and efficiency data and

the intuitiveness data for the set of available inputs and commands. After selecting

and configuring the optimization algorithm, the system solves the optimization

problem, as previously defined, using a given meta-heuristic and subsequently

recording the solution so that it can be used on the context of the multimodal

interface. Hill-climbing was selected for performing the experiments on this work.

However, it is easy to extend the system for using other optimization algorithms

such as simulated annealing or genetic algorithms.

The pseudo-code for the optimization process is next detailed. For this

implementation only voice, joystick and wiimote inputs were used. However, the

system may be easily extended with further input devices using them exactly as

the three included in this version.

Algorithm 1: Command_Language_Advisor(userName, NID, NM, NC, NS, algId), solution, best
1. inputs:

2. userName – User name (that enables to consult user characteristics and data)

3. NID – Number of input devices. 3 Input devices were used (joystick, voice and wii)

4. NM – Maximum number of inputs per input device. It includes (NV, NJ, NW)

5. as the maximum number of Voice Inputs, Joystick Inputs and WIImote Inputs

6. (NC, NS) – Number of available commands and maximum of Inputs in a sequence

7. algId- Algorithm identification enabling to get all algorithm parameters

8. outputs:

9. solution – Solution containing one input sequence for each command

10. best - Best solution evaluation

11. begin
12. id ← getID_usersFile(userName)

13. weights = (w_rec, w_time, w_intu) ← readfile_user_weights(id)

14. rec = (rec_voi[NV], rec_joy[NJ], rec_wii[NW] ← readfile_recognition(id)

15. time = (time_voi[NV], time_joy[NJ], time_wii[NW]) ← readfile_efficiency(id)

16. intu = (intu_voi[NC][NV], intu_joy[NC][NJ], intu_wii[NC][NW]) ← readfile_intuit(id)

17. alg = (algType, param, maxIter, maxNoImp, neighbourF) ← Readfile_alg(algId)

18. solution ← random_solution(alg, (NC, NS), (rec, time, intu))

19. best ← evaluate_solution(solution, weights, rec, time, intu)

20. currBest ← best

21. currSolution ← solution

22. it ← 0

23. noimp ← 0;

24. while it<maxIter ˄ noImp<maxNoImp do

25. solNew ← neighbour_solution(neighbourF, currSolution, (NC, NS, NID))

26. if repeated(solNew) then

27. val ← -

28. else
29. val ← evaluate_solution(solNew, weights, rec, time, intu)

30. endif
31. if solution_change_criteria(alg, val, best) then

32. currSolution ← solNew

33. currBest ← val

34. noImp ← 0

35. endif
36. if currBest > best then

37. best ← currBest

13

38. solution ← currSolution

39. else
40. noImp ← noImp + 1

41. endif
42. alg ← update_alg_parameters(alg, it, currSolution)

43. it ← it + 1

44. endwhile
45. return (solution, best)

46. end

The algorithm receives the user name, number of input devices (three on this

version: voice, joystick and wiimote inputs), number of available commands and

the maximum size for the input sequences. It also receives the algorithm id that

enables to consult the algorithm type and parameters. The algorithm outputs a

solution that associates to each command an input sequence trying to maximize

the evaluation function considered. It also outputs the evaluation value achieved

for the best solution found. The solution structure is depicted in Table 4. The

solution is basically a matrix of number of available commands (NC) (for

example: “Front”, “Left”, “Right”, “Back” and “Stop”) and NS inputs forming the

corresponding input sequence used to trigger that command. Each cell of the

solution matrix may be NULL (in case the sequence used is shorter than the

maximum number of inputs for a sequence NS) or composed by an input device

and an input.

Table 4. Command Language Advisor Solution Structure

 Number of Commands (NC=5)

 1 2 3 4 5

N
u

m
b

er
 o

f
m

ax
im

u
m

in
p

u
ts

 i
n

 a
 s

eq
u

en
ce

(N
S

=
4

)

1 wii

2

voice

1

wii

2

voice

1

voice

1

2
NULL

joy

1

wii

3

joy

3

joy

3

3
NULL NULL

wii

1
NULL

joy

3

4 NULL NULL NULL NULL NULL

 Ex:

Front

Ex:

Left

Ex:

Right

Ex:

Back

Ex:

Stop

The Command Language Advisor, starts by reading all the input files containing

the problem data. This includes consulting the user id, the weights to be used for

the recognition, efficiency and intuitiveness (to be used on the evaluation of a

given solution). The algorithm also reads the input files containing all the

available data concerning the user. This includes the recognition and efficiency

14

vectors for all possible inputs (voice, joystick and wii on this implementation) and

the intuitiveness matrix that relates the intuitiveness of using each of the inputs

available on the three input types for performing each of the avail-able commands.

Finally, the algorithm parameters are read from the algorithm database.

The solving process starts by generating an initial random solution for the

problem, composed by a valid input sequence (composed by 1 to NS inputs) for

each of the possible (NC) commands. It then evaluates the solution and saves the

solution and evaluation as the best ones of those already tested. The main

algorithm cycle is composed by maxiter iterations (or maxnoimp iterations

without improvement). In each iteration, a new solution is calculated, that is

neighbour (using the defined neighbouring function) from the present solution.

Algorithm 2 displays the simple neighbour algorithm that was used in most of the

experiments.

Algorithm 2: neighbour_solution(neighbourF, solution, (NC,NS,NID)), newSolution
1. inputs:

2. neighbourF – Neighbourhood function number (not used on this simple version)

3. solution – Solution containing input sequence for each command

4. NC, NS – Number of commands and maximum inputs in sequence

5. NID–Number of Input Devices (nInputs(i) gives the number of inputs of an Input Device

6. outputs:

7. newSolution – Neighbour solution considering the neighbourhood function. The solution

8. size is NCxNS. Each solution element is composed by two parts an input device

9. (between 1 and NID and an input between 1 and the number of inputs of that

10. input device)

11. begin

12. do
13. newSolution ← solution

14. neighbourType ← random(1, 2)

15. if neighbourType=1 then

16. ncom ← random(1, NC)

17. do
18. nseq ← random(1, NS)

19. while (nseq ≠ 1 ˄ inputDevice(newSolution[ncom][nseq-1]) = NULL)

20. clear← random(0, 1)

21. if clear=1 ˄ (nseq ≠ NS ˄ inputDevice(newSolution[ncom][nseq+1]) = NULL ˅

22. nseq=NS) ˄ nseq ≠ 1 then

23. inputDevice(newSolution[ncom][nseq]) ← NULL

24. input(newSolution[ncom][nseq]) ← NULL

25. else
26. nInpDev ← random(1, NID)

27. inputDevice(newSolution[ncom][nseq]) ← nInpDev

28. input(newSolution[ncom][nseq]) ← random(1, nInputs(nInpDev))

29. endif

30. else
31. ncom1 ← random(1, NC)

32. do
33. ncom2 ← random(1, NC)

34. while (ncom1 = ncom2)

35. for nseq=1 to NS do

15

36. swap(inputDevice(newSolution[ncom1][nseq]),

37. inputDevice(newSolution [ncom2][nseq]))

38. swap(input(newSolution[ncom1][nseq]),

39. input(newSolution[ncom2][nseq]))

40. endfor

41. endif
42. while (newSolution = solution ˅ repeated_sequence(newSolution))

43. return newSolution

44. end

Algorithm 2 considers two types of neighbours: (i) changing/adding/removing an

input sequence associated to a command; (ii) exchanging the input sequences used

for two distinct commands. The algorithm starts by copying the current solution to

the new neighbour solution. It then decides which of the neighbour functions will

be used (i) or (ii) with a probability of 50% each in the current simple

implementation.

For applying neighbourhood (i) a command and an input sequence step are

randomly selected until the step to change is a valid step (1 or a step without any

valid steps executed after it). If the step to change is the last step and it is not step

number 1 (that obviously may not be cleared), a probability of 50% is used to

decide on clearing it. If the step is cleared both its input device and input are set to

NULL. Otherwise a new valid value is randomly selected for the step input device

and input. Neighbourhood (ii) is applied by randomly selecting two distinct

commands and then swapping the commands input sequences, step by step.

Finally the algorithm returns the new neighbour solution.

The solution is evaluated using the evaluation function considered and if it is

better than the best solution found (given the solution change criteria used for the

algorithm in use) then it will become the new current solution and the current best

will be this solution evaluation. If the solution is better than the best solution

already found the best solution (and its corresponding evaluation) will be changed

for the best solution.

Algorithm 3: CL_Evaluator – evaluate_solution(solution, weights, rec, time, intu), evaluation

1. inputs:

2. solution – Solution containing the input device and inputs used for each input

3. sequence for each command

4. weights – Weights for recognition, efficiency and intuitiveness

5. rec[3][NM] – Recognition matrix containing for each input device and input the

6. recognition probabilities for a given user

7. time[3][NM] – Time matrix containing for each input device and input the t

8. times enabling to calculate efficiency information for a given user

9. intu[NC][3][NM] – Intuitiveness matrixes relating each input from each input device

10. to a given command for a given user

16

11. outputs:

12. evaluation – Solution evaluation considering the evaluation function

13. begin
14. (w_rec, w_time, w_intu) = weights

15. evaluation ← 0

16. for ncom = 1 to NC do

17. recVal ← 1

18. timeVal ← 0

19. intuVal ← 1

20. for nseq = 1 to NS do

21. inpDev ← inputDevice(solution[ncom][nseq])

22. inp ← input(newSolution[ncom][nseq])

23. if inpDev = NULL then break

24. else
25. recVal ← recVal * rec[inpDev][inp]

26. timeVal ← timeVal + time[inpDev][inp]

27. intuVal ← intuVal * intu[ncom][inpDev][inp]

28. endif

29. endfor
30. evalComm ← w_rec* recVal + w_time*1/(timeVal+1) + w_intu*intuVal

31. evaluation ← evaluation + evalComm

32. endfor
33. return evaluation

34. end

The command language evaluator algorithm (Algorithm 3) uses the pre-defined

weights and the recognition, efficiency and intuitiveness user information to

evaluate the current command language. It starts by initializing the evaluation to

0. Then, for each command in the solution it evaluates the input sequence used for

that command given its recognition, efficiency and intuitiveness and the

corresponding weights considered.

Each input sequence is evaluated until its end (and thus if a NULL value is

encountered meaning the end of the input sequence its evaluation will be

finished). For the recognition and intuitiveness, products of the corresponding

values of the inputs on the sequence are used. For the efficiency, first the total

time of the sequence is calculated and then Equation 8 is applied. On this

algorithm version only commands without the need for timeout are considered

and thus timeouts are not added.

The solving algorithm (Algorithm 1) final step consists on returning the solution

found and its evaluation. The solution may then be used by the multimodal

interface for enabling the user to drive the Intelligent Wheelchair.

17

4. Experiments and Results

The experiments were performed by a sample composed of 11 patients with

cerebral palsy with the level IV (27.3%) and V (72.7%) of the Gross Motor

Function Measure [14]. The mean of age was 27 years old with 64% males and

36% females. In terms of school level, 1 is illiterate, 1 has completed elementary

school, 4 have completed middle school, 3 have completed high school and 2

have a BSc. The dominant hand was divided as: 82% for left, 18% for right hand.

The frequency of use of information and communication technologies was also

characterized: 7 answered rarely; 2 sometimes; 1 lot of times and 1 always. The

aspects related to experience of using manual and electric wheelchair were also

questioned. Table 5 shows the distribution of answers about autonomy and

independency using the wheelchair and constraints presented by these individuals.

Table 5. Experience using the wheelchair, autonomy, independence and constraints of the cerebral

palsy users.

Experience using the Wheelchair, Autonomy, Independence and Constraints

Variables N Variables n

Use manual wheelchair Cognitive constraints

no 10 no 8

yes 1 yes 3

Use electric wheelchair Motor constraints

no 1 no 0

yes 10 yes 11

Autonomy using wheelchair Visual constraints

no 1 no 3

yes 10 yes 8

Independence using wheelchair Auditive constraints

no 1 no 11

yes 10 yes 0

The voice inputs were organized in order to give several choices for the command

language. The input options in this case were: “Go”, “Front”, “Forward”, “Back”,

“Right”, “Left”, “Turn”, “Spin” and “Stop”. The five positions of the Joystick and

Head Movements were set accordingly to the usual necessary positions for driving

a wheelchair “East”, “North”, “South”, “West” and “South-west” (Figure 5).

Figure 5. Joystick and head movements positions.

18

An extension of the profiling was also created in order to record all the

information available, such as facial expressions, thoughts and buttons pressed at

the joystick. The command language evaluation given by the system solution was

compared with the command language given by the occupational therapists. Table

6 shows the command language advised by the occupational therapists and by the

DAS. In Table 6, all the directions given by wiimote and joystick refer to the most

intuitive and natural directions. In order to compare the results obtained by the

specialist and by DAS, the paired sample t test was applied to the mean of the

solution evaluation after verifying the normality using the Kolmogorov-Smirnov

test (p value = 0.114).

Table 6. Command Language Advisor Results

Patient Ev
Command Language for Patients

Forward Left Right Back Stop

P1

Specialist 4.53 wiimote joystick joystick joystick joystick

DAS 4.57 joystick joystick joystick joystick joystick

P2

Specialist 4.18 joystick joystick joystick joystick voice “stop”

DAS 4.85 joystick joystick joystick joystick voice “go”

P3

Specialist 3.33 voice “forward” wiimote wiimote joystick voice “stop”

DAS 4.51 wiimote wiimote wiimote wiimote voice “go”

P4

Specialist 4.50 voice “forward” joystick joystick joystick voice “stop”

DAS 4.60 joystick joystick joystick joystick voice “stop”

P5

Specialist 4.14 voice “front” wiimote wiimote joystick voice “stop”

DAS 4.40 wiimote wiimote voice “turn” joystick voice “stop”

P6

Specialist 4.13 wiimote joystick joystick joystick joystick

DAS 4.38 wiimote wiimote wiimote wiimote wiimote

P7

Specialist 4.49 voice “front” joystick joystick joystick voice “stop”

DAS 4.60 joystick joystick joystick voice “back” voice “stop”

P8

Specialist 3.51 wiimote joystick joystick joystick joystick

DAS 4.20 wiimote wiimote wiimote wiimote wiimote

P9

Specialist 3.70 voice “forward” wiimote wiimote joystick voice “stop”

DAS 4.75 joystick joystick joystick joystick joystick

P10

Specialist 4.11 voice “forward” voice “left” voice “right” voice “turn” voice “stop”

19

DAS 4.80 joystick joystick voice “turn” joystick voice “go”

P11

Specialist 4.29 joystick wiimote wiimote joystick joystick

DAS 4.30 wiimote wiimote wiimote wiimote wiimote

The results show that there are statistical evidences to affirm that the mean of the

evaluation of the DAS is higher than the mean of the evaluation of the command

language recommend by the specialist (p value = 0.002). In particular, from the

total of 55 commands, from all the 11 patients, the data analysis system had

exactly the same recommendation as the specialists in 44% of the commands and

53% of the advised commands by the DAS use the same input device to produce

the command as the ones advised by the specialists.

5. Conclusions and Future Work

Many IW prototypes are being developed in several research projects, around the

world, however the adaptation of their user interface to the patient is a neglected

research topic. This research work aimed at tackling this problem developing a

methodology enabling to dynamically adapt the IW user interface to the user’s

characteristics. The DAS generates a command language adapted to the user. With

this command language a more high level way of driving the intelligent

wheelchair is possible the may even help users with the most severe cases of

deficiency to be able to drive a wheelchair. It was also possible to conclude that

the system results are very similar to the ones recommended by the occupational

therapist. Also, the automatic generated command language had even better

evaluation, combining intuitiveness, recognition and efficiency, than the

command language recommended by the specialists. The data gathering process

enables creating a data repository of user-wheelchair interaction that may be a

used for several types of future studies. The data analysis system definition and

development brings a new methodology for starting to use an intelligent

wheelchair. Nowadays, this methodology is already used by a health institution

for recognition of patients’ capabilities, and to test and train the users.

Acknowledgements: The authors would like to acknowledge APPC – Portuguese Association for

Cerebral Palsy for all the help on the experiments. This work was partially supported by project

QoLis - Quality of Life Platform, Nº2013/34034 QREN SI I&DT, (NUP, NORTE-07-0202-

FEDER-034Ú34) and project Cloud Thinking (CENTRO-07-ST24-FEDER-002031), co-funded

by QREN, “Mais Centro” program. The authors would like also to acknowledge to FCT –

20

Portuguese Science and Technology Foundation for the previous funding for the

INTELLWHEELS project (RIPD/ADA/109636/2009) and previous funding for the PhD

Scholarship FCT/SFRH/BD/44541/2008 and also for the funding for LIACC – Laboratório de

Inteligência Artificial e de Ciência de Computadores (PEst-OE/EEI/UI0027/2014), IEETA –

Instituto de Engenharia Eletrónica e Telemática de Aveiro (PEst-OE/EEI/UI0127/2014) and

ESTSP/IPP – Escola Superior de Tecnologia da Saúde Porto – IPP.

References

1. Faria, B. M., Reis, L. P., Lau, N.: A Survey On Intelligent Wheelchair Prototypes And

Simulators, WorldCist 2014, AISC 275, Vol. 1 Springer, Madeira, page 545-557, (2014).

2. Braga, R., Petry, M., Moreira, A. P., Reis, L. P.: Concept and design of the intellWheels

platform for developing intelligent wheelchairs. Informatics in Control, Automation and

Robotics, page 191–203 (2009).

3. Braga, R., Petry, M., P. Reis, Moreira, A. P.: A Modular Development Platform for

Intelligent Wheelchair, J. of Rehabilitation Research and Development, 48 (9): 1061-1076,

(2011).

4. Faria, B.M., Vasconcelos, S., Reis, L.P., Lau, N.: Evaluation of Distinct Input Methods of an

Intelligent Wheelchair in Simulated and Real Environments: A Performance and Usability

Study, Assist. Technology Journal, RESNA, Taylor and Francis, 25 (2): 88-98, June (2013).

5. Faria, B. M., Reis, L. P., Lau, N., Soares, J. C., Vasconcelos, S.: Patient Classification and

Automatic Configuration of an Intelligent Wheelchair, Communications in Computer and

Information Science 358, Springer-Verlag, page 268-282, (2013).

6. Faria, B. M., Reis, L. P., Lau, N.: Adapted Control Methods for Cerebral Palsy Users of an

Intelligent Wheelchair Manual, Special Issue on Autonomous Robot Systems, Journal of

Intelligent and Robotic Systems, Springer, ISSN: 1573-0409, (2014).

7. Faria, B. M., Reis, L. P., Lau, N.: Cerebral Palsy EEG signals Classification: Facial

Expressions and Thoughts for Driving an Intelligent Wheelchair, IEEE Int. Conf. Data

Mining 2012, Biological D.M. Appl. in Healthcare Works, Bruxelas, page 33-40, (2012).

8. Faria, B.M., Vasconcelos, S., Reis, L.P., Lau, N.: A Methodology for Creating Intelligent

Wheelchair Users’ Profiles, International Conference on Agents and Artificial Intelligence, 6

(8): 171-179, February, (2012).

9. Sasaki, Y., Fellow, R.: The truth of the F-measure, Manchester: MIB-School of Computer

Science, University of Manchester (2007).

10. Coppin, B.: Artificial Intelligence Illuminated, Canada: Jones & Bartlett Learning (2004).

11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M. P.: Optimization by simulated annealing, Science,

220 (4598): 671-680 (1983).

12. Glover, F.: Tabu search (Part I), ORSA Journal on Computing, 1: 190-206, (1989).

13. Holland, J. H.: Adaptation in natural and artificial systems, Univ. Michigan Press (1975).

21

14. Palisano, R. J., Rosenbaum, P., Bartlett, D., Livingston, M. H.: Content validity of the

expanded and revised Gross Motor Function Classification System, D. Medicine and Child

Neurology, 50 (10): 744-750 (2008).

