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Abstract. Intelligent wheelchairs (IW) are technologies that can increase the autonomy and 

independence of elderly people and patients suffering from some kind of disability. Nowadays the 

intelligent wheelchairs and the human-machine studies are very active research areas. This paper 

presents a methodology and a Data Analysis System (DAS) that provides an adapted command 

language to an user of the IW. This command language is a set of input sequences that can be 

created using inputs from an input device or a combination of the inputs available in a multimodal 

interface. The results show that there are statistical evidences to affirm that the mean of the 

evaluation of the DAS generated command language is higher than the mean of the evaluation of 

the command language recommended by the health specialist (p value = 0.002) with a sample of 

11 cerebral palsy users. This work demonstrates that it is possible to adapt an intelligent 

wheelchair interface to the user even when the users present heterogeneous and severe physical 

constraints. 

Key Words: Intelligent Wheelchair; Command Language; User Modeling; Data 

Analysis System. 

1. Introduction 

The analysis of the tasks for a human to perform, the information and 

technological requirements, the machine ergonomics and design are among the 

most interesting topics of study in the field of Human-Machine interaction.  

Systems that make the bridge between users and the processes to be controlled are 

another key point in this area. The challenges are even greater when studying the 

adaptation of technology used by individuals with disabilities in order to perform 

tasks that might otherwise be difficult or even impossible for them.  
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Scientific research allowed the evolution and development of many technologies 

that are nowadays used in everyday life. In particular, innovations in the field of 

assistive technologies enabled increased autonomy and independence for human 

beings that, for some reason, have some kind of disability. Intelligent wheelchairs 

are an obvious application of the scientific work developed in the last decades on 

this area [1]. Moreover, these assistive technologies still are object of research and 

the interaction between them and the user remains an open research problem. The 

interaction between the Human and the IW is an important component to take into 

consideration.  

The methods implemented in this work allowed answering several questions on 

the adaptation of an intelligent wheelchair that can be commanded via a 

multimodal interface. Another issue is related with the creation of users’ profiles 

in order to automatically adjust the best way of driving the intelligent wheelchair. 

Users’ classification demands data of distinct sources such as voice, physical 

movements like head or facial expressions or data taken from using the usual 

joystick that is common in electric wheelchairs. However, gathering and 

analyzing this type of data is still an open research problem. In order to face this 

problem, new multimodal data gathering and analysis methodologies were 

developed enabling to build a complete data gathering and data analysis system to 

generated an adapted command language for driving an intelligent wheelchair.  

The paper is organized as follows: Section 2 briefly describes our project, the 

system architecture and the context of the multimodal data gathering system. 

Section 3 presents the Data Analysis System (DAS) and the purposed solution to 

give an adapted command language allowing an user to drive an intelligent 

wheelchair. The used algorithms are also presented. The experiments and results 

compose Section 4 and in Section 5 the conclusions and future work are 

presented. 

2. Intellwheels Project 

The main objective of the IntellWheels Project is to develop an intelligent 

wheelchair platform that may be easily adapted to any commercial wheelchair and 

aid any person with special mobility needs [2] [3]. Several different modules have 

been developed in order to allow different ways of carrying inputs (Ii) for driving 

the IW. These include several input devices, such as, joystick control with USB, 



 

3 

microphone for voice inputs, wiimote control for head movements, and a brain 

computer interface for facial expressions and thoughts recognition [4].  

Within this work new ways of interaction between the wheelchair and the user 

have been integrated, creating a system of multiple entries based on a multimodal 

interface. 

2.1 System Architecture 

The IntellWheels system architecture that also enabled to conduct the experiments 

of user profiling and the DAS is presented in Figure 1. The system is composed 

by eight main modules and enables a therapist to have full control of all the IW 

adaptation process. 

The core of the system is the new IntellWheels multimodal interface that enables 

the patient to fully control real and simulated Intelligent Wheelchairs, using 

multimodal inputs, including pre-defined input sequences that may be freely 

associated with any of the available outputs (wheelchair actions). The input 

devices may be freely connected to this multimodal interface. The multimodal 

interface is connected to a control module that is able to receive high-level or 

medium level commands from the multimodal interface and control a real or 

simulated wheelchair making it perform the actions corresponding to those 

commands (such as “go front”, “turn right”, “follow right wall”, “stop”, among 

others). 

 

Figure 1. IntellWheels system architecture. 

In order to be able to develop and conduct meaningful experiments, a serious 

game for intelligent wheelchair teaching and testing was built. The game permits 
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the definition of circuits and the placement of markers that must be collected by 

the user in order to gain points. It also enables gathering other performance 

measures such as the time and the precision of the trajectory of the users 

performing the circuit [4]. 

In order to be able to extract user profiles and adapt the user interface to the users’ 

profiles several other applications were developed. One of these applications 

consists on a complete data gathering system that is able to gather the data 

available on: the multimodal interface; control module; simulated wheelchair; real 

wheelchair and serious game, and then synchronize all this data and freely select 

the values to record in appropriate files in order to be further analyzed by the data 

analysis applications. A user profiling application was also created in this context 

in order to be able to conduct controlled experiments with each user in order to 

analyze their capabilities of performing each type of possible input in each of the 

available input devices [5][6][7]. 

Based on the user profiling and associated data gathering system, a DAS was 

developed enabling the analysis of users’ capabilities when performing each type 

of input and when driving the IW with different input combinations. Beyond data 

analysis, this module is able to advise, in a simple manner, the best control mode 

for each user and to specify a command language adequate for each user. 

A manager module was also developed in order to be able to perform a large set 

of experiments using the developed user profile extraction methodology and the 

set of implemented applications. This manager allows to launch all the 

applications, perform user profiling tests, define the scenario to be used, the 

circuit to be performed, the control modes to be tested and the data to be gathered 

and analyzed. 

2.2 Multimodal Data Gathering and User Profiling 

In order to be able to extract patient models and also environment models, a 

complete multimodal data gathering system was implemented. Based on the 

IntellWheels prototype and using the real and simulated environments, the work 

was focused on planning appropriate data gathering and DAS that enable the 

creation of an adapted interface and command language adjusted to the patient 

and where information about the environment is also considered. 
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A user profiling module was designed and implemented. This module, along with 

the IntellWheels DAS, helps in the process of giving the more adequate input 

device for driving the wheelchair. Initially a set of tasks and actions was defined 

to be executed by the user. A wizard, or more specifically the profiling component 

of the multimodal interface (Figure 2), includes simple tasks that can be 

performed with input devices and that permit an evaluation of the user ability to 

use that device [8].  

 

Figure 2. Starting user’s profile module. 

The performance of each task was collected and the specialists (occupational 

therapists) were integrated in the process to confirm the correct classification. The 

data analysis system advises the user about the best suited input(s) device(s) and 

command language. The system also records the information about each user and 

if the user wants to update the information. 

3. Data Analysis System Implementation 

The IntellWheels DAS is the component that advises the user on the best input 

device for driving the intelligent wheelchair. Moreover, the DAS, using 

information from the pre-processing module of multimodal data fusion, is capable 

of extracting the most relevant information from the patient data gathering system 

application (profile module) which enables fast generation and configuration of 

the interfaces. The system advises the best options for driving the intelligent 

wheelchair including the best set of input sequences and their association with the 

available commands. The best choice for the command language is going to 

consider the best recognition combination, the best efficiency and the best 
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intuitiveness combination. The objective is to have the best association of inputs 

and commands, considering the user characteristics, to drive the intelligent 

wheelchair. This means that it is necessary to first define a set of commands. For 

example using five commands, as in Table 1, associated to an input sequence set: 

Table 1. Input sequences associated with commands 

Inputs sequences Commands 

Press button 1 “Go Forward” 

Press button 1 – Press button 3 “Go Back” 

Press button 1 – Tilt the head to the right side “Turning Right” 

Say “Go” – Say “Left” “Turning Left” 

Smile “Stop” 

 

Next the DAS requirements, in order to provide the best interface for a specific 

user, are going to be presented. 

3.1 Requirements 

The IntellWheels Data Analysis System has several requirements that should be 

fulfilled: 

 Enable multiple input devices – the command language should be able to 

include inputs from different input devices so that it has a higher range of 

facilities for driving the IW; 

 Maximize user performance in driving the IW – the objective is to present 

a solution where the performance, usability and safety is maximized; 

 Be adapted to multiple users with distinct disabilities – the IW should be 

available and adapted to different users and to different disabilities; 

 Fast response to user commands – the time between starting an input 

sequence and executing the corresponding command should be minimized; 

 Associate several distinct input sequences with similar performance to the 

same command – the fulfilment of this option allows a user which 

degrades for example one of his abilities, to be able to drive the IW with 

another set of options; 

 Intuitiveness between the associations of the input sequences and the 

commands – the user should use input sequences that are user friendly, for 

example saying “Forward” should mean that the wheelchair should go 
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forward or “Blink the right eye” should mean that the wheelchair should 

turn right instead of going left. 

In order to explain the proposed solutions the definition and formalizations of 

confusion matrix for each input device are presented in the next subsection. 

3.1 Inputs’ Confusion Matrix and Measures 

The data acquisition system in the Profile Module also provides the information 

about what was asked and what was recognized by the system. For that reason it is 

possible to obtain a confusion matrix for each input and for each input device. 

The confusion matrix of each input device can be designated as in Equation 1: 

Nj
NiijID nCM

,...,1
,...,1)(


      (1) 

where i designates the lines, j the columns of the matrix, nij is the number of times 

that Ij is recognized as Ii and ID is the input device. 

For example Table 2 represents the confusion matrix with the inputs that can be 

expressed saying “Go”, “Left”, “Right”, “Back” and “Stop”. 

Table 2. Confusion matrix defined for the microphone 

MicrophoneCM  

True 

I1 

(“Go”) 

I2 

(“Left”) 

I3 

(“Right”) 

I4 

(“Back”) 

I5 

(“Stop”) 

P
re

d
ic

te
d

 

I1 (“Go”) n11 n12 n13 n14 n15 

I2 (“Left”) n21 n22 n23 n24 n25 

I3 (“Right”) n31 n32 n33 n34 n35 

I4 (“Back”) n41 n42 n43 n44 n45 

I5 (“Stop”) n51 n52 n53 n54 n55 

 

For each input device confusion matrix it is possible to calculate the recall and 

precision of each input. The recall of each input is defined as the probability of a 

true input being correctly classified and can be calculated as in Equation 2: 





N

m

mi

ii

i

n

n
rec

1

     (2) 

where nmi is the number of times that Ii is recognized as Im and N the number of 

inputs. The precision of each input is defined as the probability of a predicted 

input represents that true input and can be calculated as in Equation 3: 
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
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n
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1

     (3) 

where nim is the number of times that Im is recognized as Ii and N the number of 

in-puts. It is important to refer that in the concrete problem of giving an adapted 

command language, an extra case representing when other distinct input was 

predicted, was added in the predicted categories.  

It is possible to combine the recall and precision of each input using, for example, 

the arithmetic mean or a more adequate measure that uses the harmonic mean 

called the F-measure [9]. This measure gives high values only when both 

precision and recall have high values. Equation 4 presents the general definition 

of the Fβi-measure of each input: 

ii

ii

i
recprec

recprec
F






2

2 )1(






    (4) 

where  0  is a parameter that controls the balance between the recall and 

the precision. In the experiments recall and precision are evenly weighted 

therefore it was used the value 1 for β. 

3.2 Command Language 

In order to generate a command language adapted to a given user several points 

should be taken into account: the time efficiency, the recognition probability of an 

input sequence and the intuitiveness of an input sequence to be associated to a 

command. Figure 3 shows the quantifiable criteria used for the command 

language definition. 

 

Figure 3. Criteria used for the command language. 
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Next, these three points are going to be presented in more detail using the 

formalization of the measurable criteria. 

3.2.1. Time and Time Efficiency 

Assuming that a sequence of inputs Si can be formalized as I
(i,1)

 I
(i,2)

 I
(i,3)

…I
(i,Ni)

, 

where each  k

Ni
IIII i ,...,, 21

),(
  and a single command can be associated to a final 

sequence that produces an action, the time to generate a command is composed by 

a component of time to select the inputs and by the time taken by the command to 

generate a visible action or time of output (ttimeout(i)). The total time for a particular 

command to be used has the Equation 5: 

)(

1
),( itimeout

N

k

ID ttt
i

kiIiS




    (5) 

where k is the number of each of the inputs used in the sequence, Si the 

identification of the sequence i and Ni the total number of the inputs of sequence i. 

Therefore it is possible to determine the total time for all the commands necessary 

to drive the intelligent wheelchair as in Equation 6: 





j

jC

C

j

StT
1

     (6) 

where Cj is the number of commands in the command language. 

The time efficiency can be defined as a function of time, if more time is necessary 

for a command to be used then that command is less efficient. It is possible to 

formalize this function as in Equation 7: 

   

1

1
               

1,0,0:





i

i

S

S
t

t

eff

     (7) 

The total time efficiency (Equation 8) is the sum of all the efficiency values of the 

commands that compose a command language: 





j

jeff

C

j

SC teffT
1

)(      (8) 

3.2.2. Sequence Recognition 

It is also possible to define and calculate the sequence Si recognition value. 

Assuming the independence of recognition of the different inputs in a sequence, 
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the sequence Si recognition value is the product of the F-measure values as in 

Equation 9. 





i

ki

N

k

ID

Ii FregS
1

),(     (9) 

where ID

I kiF ),(  is the F-measure value in the position of the principal diagonal of the 

input I
(i,k)

 be in use in the sequence and for a specific input device (ID). The total 

recognition value of a set of commands can be determined by Equation 10: 





jC

j

jreg regST
1

     (10) 

where Cj is the number of commands in the command language. 

3.2.3. Intuitiveness 

Another concept that should be analyzed is the intuitiveness of a sequence of in-

puts. In order to have values similar to the efficiency and recognition, it was 

defined that an input sequence, associated to a given action, can have a value of 

intuitiveness between 0 and 1. The value of 1 means that the input is very typical 

for performing that command and a value of 0 means that the input typically is 

associated with an opposite command. For example, if a sequence is composed of 

a single input such as saying “front” and the action of the wheelchair associated is 

go forward then the intuitiveness value may be 1. If the same input is associated 

with the command that makes the IW going back then the intuitiveness will be 0. 

Table 3 presents an example of the intuitiveness of several voice inputs. 

Table 3. Intuitiveness for the voice inputs 

 I1  

Go 

I2  

Left 

I3 

Right 

I4  

Back 

I5  

Stop 

I6 

Front 

I7 

Forward 

C
o

m
m

an
d

s 

Forward 1 0 0 0 0 1 1 

Left 0 1 0 0 0 0 0 

Right 0 0 1 0 0 0 0 

Back 0 0 0 1 0 0 0 

Stop 0 0 0 0 1 0 0 

 

The intuitiveness of a sequence composed by two or more inputs can also be 

obtained by the product of the intuitiveness of each input. In fact, an example is a 

sequence composed of two inputs such as say “front” “front” then the 

intuitiveness in this case it is also 1 when the objective is to drive the wheelchair 
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forward. In particular, the intuitively is chosen by the user and for example the 

users of the system (Table 3) intuitively associated “Go” with the meaning “Go 

forward”. 

3.2.4. Command Language Implementation 

In order to obtain the best performance, the command set that maximizes the se-

quence recognition, the intuitiveness and time efficiency should be obtained. 

Basically, a command language adapted to the user should be found, that 

maximizes the function composed by the total time efficiency, total recognition 

and intuitiveness: 

)(maxarg int
,, int

TTT regeff
TTT regeff

      (11) 

where α, β and γ are parameters that could be adjusted. The optimization may be 

performed by any type of optimization algorithm with emphasis on iterative meta-

heuristics such as basic hill-climbing [10], simulated annealing [11], tabu search 

[12] or genetic algorithms [13]. For the implementation, in order to show the 

concept, a modified hill-climbing algorithm was implemented, mainly due to its 

simplicity. The pseudo-code and the details of the implementation are 

subsequently explained. First the user abilities on using several inputs are 

captured with the profile module and the recognition values are obtained for all 

the available inputs. The time taken to execute each input sequence is also 

captured and the efficiency of performing the inputs is calculated. The degree of 

intuitiveness was indicated initially by the user or by a specialist. Figure 4 details 

the algorithm implementation. 

 

Figure 4. Command language advisor implementation. 
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The system starts by reading the selected user recognition and efficiency data and 

the intuitiveness data for the set of available inputs and commands. After selecting 

and configuring the optimization algorithm, the system solves the optimization 

problem, as previously defined, using a given meta-heuristic and subsequently 

recording the solution so that it can be used on the context of the multimodal 

interface. Hill-climbing was selected for performing the experiments on this work. 

However, it is easy to extend the system for using other optimization algorithms 

such as simulated annealing or genetic algorithms. 

The pseudo-code for the optimization process is next detailed. For this 

implementation only voice, joystick and wiimote inputs were used. However, the 

system may be easily extended with further input devices using them exactly as 

the three included in this version. 

 

Algorithm 1: Command_Language_Advisor(userName, NID, NM, NC, NS, algId), solution, best  
1. inputs: 

2.     userName – User name (that enables to consult user characteristics and data) 

3.     NID – Number of input devices. 3 Input devices were used (joystick, voice and wii) 

4.     NM – Maximum number of inputs per input device. It includes (NV, NJ, NW)  

5.            as the maximum number of Voice Inputs, Joystick Inputs and WIImote Inputs 

6.     (NC, NS) – Number of available commands and maximum of Inputs in a sequence 

7.     algId- Algorithm identification enabling to get all algorithm parameters 

8. outputs: 

9.     solution – Solution containing one input sequence for each command  

10.     best -  Best solution evaluation 

11. begin 
12.     id ← getID_usersFile(userName) 

13.     weights = (w_rec, w_time, w_intu) ← readfile_user_weights(id) 

14.     rec = (rec_voi[NV], rec_joy[NJ], rec_wii[NW] ← readfile_recognition(id) 

15.     time = (time_voi[NV], time_joy[NJ], time_wii[NW]) ← readfile_efficiency(id) 

16.     intu = (intu_voi[NC][NV], intu_joy[NC][NJ], intu_wii[NC][NW]) ← readfile_intuit(id) 

17.     alg = (algType, param, maxIter, maxNoImp, neighbourF) ← Readfile_alg(algId) 

18.     solution ← random_solution(alg, (NC, NS), (rec, time, intu)) 

19.     best ← evaluate_solution(solution, weights, rec, time, intu) 

20.     currBest ← best 

21.     currSolution ← solution 

22.     it ← 0 

23.     noimp ← 0; 

24.     while it<maxIter ˄ noImp<maxNoImp do 

25.         solNew ← neighbour_solution(neighbourF, currSolution, (NC, NS, NID)) 

26.         if repeated(solNew) then  

27.             val ← - 

28.        else  
29.             val ← evaluate_solution(solNew, weights, rec, time, intu) 

30.         endif 
31.         if solution_change_criteria(alg, val, best) then 

32.             currSolution ← solNew 

33.             currBest ← val 

34.             noImp ← 0 

35.         endif 
36.         if currBest > best then 

37.             best ← currBest 
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38.             solution ← currSolution 

39.         else  
40.             noImp ← noImp + 1 

41.         endif 
42.         alg ← update_alg_parameters(alg, it, currSolution) 

43.         it ← it + 1 

44.     endwhile 
45.     return (solution, best) 

46. end 
 

 

The algorithm receives the user name, number of input devices (three on this 

version: voice, joystick and wiimote inputs), number of available commands and 

the maximum size for the input sequences. It also receives the algorithm id that 

enables to consult the algorithm type and parameters. The algorithm outputs a 

solution that associates to each command an input sequence trying to maximize 

the evaluation function considered. It also outputs the evaluation value achieved 

for the best solution found. The solution structure is depicted in Table 4. The 

solution is basically a matrix of number of available commands (NC) (for 

example: “Front”, “Left”, “Right”, “Back” and “Stop”) and NS inputs forming the 

corresponding input sequence used to trigger that command. Each cell of the 

solution matrix may be NULL (in case the sequence used is shorter than the 

maximum number of inputs for a sequence NS) or composed by an input device 

and an input. 

Table 4. Command Language Advisor Solution Structure 

 Number of Commands (NC=5) 

 1 2 3 4 5 

N
u

m
b

er
 o

f 
m

ax
im

u
m

 

in
p

u
ts

 i
n

 a
 s

eq
u

en
ce

 

(N
S

=
4

) 

1 wii 

2 

voice 

1 

wii 

2 

voice 

1 

voice 

1 

2 
NULL 

joy 

1 

wii 

3 

joy 

3 

joy 

3 

3 
NULL NULL 

wii 

1 
NULL 

joy 

3 

4 NULL NULL NULL NULL NULL 

  Ex: 

Front 

Ex: 

Left 

Ex: 

Right  

Ex: 

Back 

Ex: 

Stop 

The Command Language Advisor, starts by reading all the input files containing 

the problem data. This includes consulting the user id, the weights to be used for 

the recognition, efficiency and intuitiveness (to be used on the evaluation of a 

given solution). The algorithm also reads the input files containing all the 

available data concerning the user. This includes the recognition and efficiency 
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vectors for all possible inputs (voice, joystick and wii on this implementation) and 

the intuitiveness matrix that relates the intuitiveness of using each of the inputs 

available on the three input types for performing each of the avail-able commands. 

Finally, the algorithm parameters are read from the algorithm database. 

The solving process starts by generating an initial random solution for the 

problem, composed by a valid input sequence (composed by 1 to NS inputs) for 

each of the possible (NC) commands. It then evaluates the solution and saves the 

solution and evaluation as the best ones of those already tested. The main 

algorithm cycle is composed by maxiter iterations (or maxnoimp iterations 

without improvement). In each iteration, a new solution is calculated, that is 

neighbour (using the defined neighbouring function) from the present solution. 

Algorithm 2 displays the simple neighbour algorithm that was used in most of the 

experiments. 

 

Algorithm 2: neighbour_solution(neighbourF, solution, (NC,NS,NID)), newSolution  
1. inputs: 

2.     neighbourF – Neighbourhood function number (not used on this simple version) 

3.     solution – Solution containing input sequence for each command 

4.     NC, NS – Number of commands and maximum inputs in sequence  

5.     NID–Number of Input Devices (nInputs(i) gives the number of inputs of an Input Device 

6. outputs: 

7.     newSolution – Neighbour solution considering the neighbourhood function. The solution  

8.                size is NCxNS. Each solution element is composed by two parts an input device 

9.                (between 1 and  NID and an input between 1 and the number of inputs of that 

10.               input device) 

11. begin 

12.     do 
13.         newSolution ← solution 

14.         neighbourType ← random(1, 2) 

15.         if neighbourType=1 then 

16.             ncom ← random(1, NC) 

17.             do  
18.                 nseq ← random(1, NS) 

19.             while (nseq ≠ 1 ˄ inputDevice(newSolution[ncom][nseq-1]) = NULL) 

20.             clear← random(0, 1) 

21.             if clear=1 ˄ (nseq ≠ NS ˄ inputDevice(newSolution[ncom][nseq+1]) = NULL ˅ 

22.                                  nseq=NS) ˄ nseq ≠ 1 then 

23.                 inputDevice(newSolution[ncom][nseq]) ← NULL 

24.                 input(newSolution[ncom][nseq]) ← NULL 

25.            else 
26.                 nInpDev ← random(1, NID) 

27.                 inputDevice(newSolution[ncom][nseq]) ← nInpDev 

28.                 input(newSolution[ncom][nseq]) ← random(1, nInputs(nInpDev)) 

29.             endif 

30.         else  
31.             ncom1 ← random(1, NC) 

32.             do 
33.                 ncom2 ← random(1, NC) 

34.             while (ncom1 = ncom2) 

35.             for nseq=1 to NS do 
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36.                 swap(inputDevice(newSolution[ncom1][nseq]),  

37.                          inputDevice(newSolution [ncom2][nseq])) 

38.                 swap(input(newSolution[ncom1][nseq]),  

39.                          input(newSolution[ncom2][nseq])) 

40.             endfor 

41.         endif 
42.     while (newSolution = solution ˅ repeated_sequence(newSolution)) 

43.     return newSolution 

44. end 
 

 

Algorithm 2 considers two types of neighbours: (i) changing/adding/removing an 

input sequence associated to a command; (ii) exchanging the input sequences used 

for two distinct commands. The algorithm starts by copying the current solution to 

the new neighbour solution. It then decides which of the neighbour functions will 

be used (i) or (ii) with a probability of 50% each in the current simple 

implementation.  

For applying neighbourhood (i) a command and an input sequence step are 

randomly selected until the step to change is a valid step (1 or a step without any 

valid steps executed after it). If the step to change is the last step and it is not step 

number 1 (that obviously may not be cleared), a probability of 50% is used to 

decide on clearing it. If the step is cleared both its input device and input are set to 

NULL. Otherwise a new valid value is randomly selected for the step input device 

and input. Neighbourhood (ii) is applied by randomly selecting two distinct 

commands and then swapping the commands input sequences, step by step. 

Finally the algorithm returns the new neighbour solution. 

The solution is evaluated using the evaluation function considered and if it is 

better than the best solution found (given the solution change criteria used for the 

algorithm in use) then it will become the new current solution and the current best 

will be this solution evaluation. If the solution is better than the best solution 

already found the best solution (and its corresponding evaluation) will be changed 

for the best solution. 

 
Algorithm 3: CL_Evaluator – evaluate_solution(solution, weights, rec, time, intu), evaluation 

1. inputs: 

2.     solution – Solution containing the input device and inputs used for each input  

3.              sequence for each command 

4.     weights – Weights for recognition, efficiency and intuitiveness 

5.     rec[3][NM] – Recognition matrix containing for each input device and input the  

6.              recognition probabilities for a given user 

7.     time[3][NM] – Time matrix containing for each input device and input the t 

8.              times enabling to calculate efficiency information for a given user 

9.     intu[NC][3][NM] – Intuitiveness matrixes relating each input from each input device  

10.              to a given command for a given user 
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11. outputs: 

12.     evaluation – Solution evaluation considering the evaluation function 

13. begin 
14.      (w_rec, w_time, w_intu) = weights 

15.     evaluation ← 0 

16.     for ncom = 1 to NC do 

17.         recVal ← 1 

18.         timeVal ← 0 

19.         intuVal ← 1 

20.         for nseq = 1 to NS do 

21.             inpDev ← inputDevice(solution[ncom][nseq]) 

22.             inp ← input(newSolution[ncom][nseq]) 

23.             if inpDev = NULL then break 

24.             else  
25.                 recVal ← recVal * rec[inpDev][inp] 

26.                 timeVal ← timeVal + time[inpDev][inp] 

27.                 intuVal ← intuVal * intu[ncom][inpDev][inp] 

28.             endif 

29.         endfor 
30.         evalComm ← w_rec* recVal + w_time*1/(timeVal+1) + w_intu*intuVal 

31.         evaluation ← evaluation  +  evalComm 

32.     endfor 
33.     return evaluation 

34. end 
 

 

The command language evaluator algorithm (Algorithm 3) uses the pre-defined 

weights and the recognition, efficiency and intuitiveness user information to 

evaluate the current command language. It starts by initializing the evaluation to 

0. Then, for each command in the solution it evaluates the input sequence used for 

that command given its recognition, efficiency and intuitiveness and the 

corresponding weights considered.  

Each input sequence is evaluated until its end (and thus if a NULL value is 

encountered meaning the end of the input sequence its evaluation will be 

finished). For the recognition and intuitiveness, products of the corresponding 

values of the inputs on the sequence are used. For the efficiency, first the total 

time of the sequence is calculated and then Equation 8 is applied. On this 

algorithm version only commands without the need for timeout are considered 

and thus timeouts are not added. 

The solving algorithm (Algorithm 1) final step consists on returning the solution 

found and its evaluation. The solution may then be used by the multimodal 

interface for enabling the user to drive the Intelligent Wheelchair. 
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4. Experiments and Results 

The experiments were performed by a sample composed of 11 patients with 

cerebral palsy with the level IV (27.3%) and V (72.7%) of the Gross Motor 

Function Measure [14]. The mean of age was 27 years old with 64% males and 

36% females. In terms of school level, 1 is illiterate, 1 has completed elementary 

school, 4 have completed middle school, 3 have completed high school and 2 

have a BSc. The dominant hand was divided as: 82% for left, 18% for right hand. 

The frequency of use of information and communication technologies was also 

characterized: 7 answered rarely; 2 sometimes; 1 lot of times and 1 always. The 

aspects related to experience of using manual and electric wheelchair were also 

questioned. Table 5 shows the distribution of answers about autonomy and 

independency using the wheelchair and constraints presented by these individuals. 

Table 5. Experience using the wheelchair, autonomy, independence and constraints of the cerebral 

palsy users. 

Experience using the Wheelchair, Autonomy, Independence and Constraints 

Variables N Variables n 

Use manual wheelchair  Cognitive constraints  

no 10 no 8 

yes 1 yes 3 

Use electric wheelchair  Motor constraints  

no 1 no 0 

yes 10 yes 11 

Autonomy using wheelchair  Visual constraints  

no 1 no 3 

yes 10 yes 8 

Independence using wheelchair  Auditive constraints  

no 1 no 11 

yes 10 yes 0 

 

The voice inputs were organized in order to give several choices for the command 

language. The input options in this case were: “Go”, “Front”, “Forward”, “Back”, 

“Right”, “Left”, “Turn”, “Spin” and “Stop”. The five positions of the Joystick and 

Head Movements were set accordingly to the usual necessary positions for driving 

a wheelchair “East”, “North”, “South”, “West” and “South-west” (Figure 5). 

     

Figure 5. Joystick and head movements positions. 
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An extension of the profiling was also created in order to record all the 

information available, such as facial expressions, thoughts and buttons pressed at 

the joystick. The command language evaluation given by the system solution was 

compared with the command language given by the occupational therapists. Table 

6 shows the command language advised by the occupational therapists and by the 

DAS. In Table 6, all the directions given by wiimote and joystick refer to the most 

intuitive and natural directions. In order to compare the results obtained by the 

specialist and by DAS, the paired sample t test was applied to the mean of the 

solution evaluation after verifying the normality using the Kolmogorov-Smirnov 

test (p value = 0.114). 

Table 6. Command Language Advisor Results 

Patient Ev 
Command Language for Patients 

Forward Left Right Back Stop 

P1       

Specialist 4.53 wiimote joystick joystick joystick joystick 

DAS 4.57 joystick joystick joystick joystick joystick 

P2       

Specialist 4.18 joystick joystick joystick joystick voice “stop” 

DAS 4.85 joystick joystick joystick joystick voice “go” 

P3       

Specialist 3.33 voice “forward” wiimote wiimote joystick voice “stop” 

DAS 4.51 wiimote wiimote wiimote wiimote voice “go” 

P4       

Specialist 4.50 voice “forward” joystick joystick joystick voice “stop” 

DAS 4.60 joystick joystick joystick joystick voice “stop” 

P5       

Specialist 4.14 voice “front” wiimote wiimote joystick voice “stop” 

DAS 4.40 wiimote wiimote voice “turn” joystick voice “stop” 

P6       

Specialist 4.13 wiimote joystick joystick joystick joystick 

DAS 4.38 wiimote wiimote wiimote wiimote wiimote 

P7       

Specialist 4.49 voice “front” joystick joystick joystick voice “stop” 

DAS 4.60 joystick joystick joystick voice “back” voice “stop” 

P8       

Specialist 3.51 wiimote joystick joystick joystick joystick 

DAS 4.20 wiimote wiimote wiimote wiimote wiimote 

P9       

Specialist 3.70 voice “forward” wiimote wiimote joystick voice “stop” 

DAS 4.75 joystick joystick joystick joystick joystick 

P10       

Specialist 4.11 voice “forward” voice “left” voice “right” voice “turn” voice “stop” 
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DAS 4.80 joystick joystick voice “turn” joystick voice “go” 

P11       

Specialist 4.29 joystick wiimote wiimote joystick joystick 

DAS 4.30 wiimote wiimote wiimote wiimote wiimote 

 

The results show that there are statistical evidences to affirm that the mean of the 

evaluation of the DAS is higher than the mean of the evaluation of the command 

language recommend by the specialist (p value = 0.002). In particular, from the 

total of 55 commands, from all the 11 patients, the data analysis system had 

exactly the same recommendation as the specialists in 44% of the commands and 

53% of the advised commands by the DAS use the same input device to produce 

the command as the ones advised by the specialists. 

5. Conclusions and Future Work 

Many IW prototypes are being developed in several research projects, around the 

world, however the adaptation of their user interface to the patient is a neglected 

research topic. This research work aimed at tackling this problem developing a 

methodology enabling to dynamically adapt the IW user interface to the user’s 

characteristics. The DAS generates a command language adapted to the user. With 

this command language a more high level way of driving the intelligent 

wheelchair is possible the may even help users with the most severe cases of 

deficiency to be able to drive a wheelchair. It was also possible to conclude that 

the system results are very similar to the ones recommended by the occupational 

therapist. Also, the automatic generated command language had even better 

evaluation, combining intuitiveness, recognition and efficiency, than the 

command language recommended by the specialists. The data gathering process 

enables creating a data repository of user-wheelchair interaction that may be a 

used for several types of future studies. The data analysis system definition and 

development brings a new methodology for starting to use an intelligent 

wheelchair. Nowadays, this methodology is already used by a health institution 

for recognition of patients’ capabilities, and to test and train the users. 
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