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Abstract — Fractional Calculus (FC) goes back to the beginning of the theory of dif-
ferential calculus. Nevertheless, the application of FC just emerged in the last two 
decades. In the field of dynamical systems theory some work has been carried out but 
the proposed models and algorithms are still in a preliminary stage of establishment. 
Having these ideas in mind, the paper discusses a FC perspective in the study of the 
dynamics and control of mechanical systems. 

1 Introduction 

The generalization of the concept of derivative Dαf(x) to non-integer values of α goes 

back to the beginning of the theory of differential calculus. In fact, Leibniz, in his corre-

spondence with Bernoulli, L’Hôpital and Wallis (1695), had several notes about the cal-

culation of D1/2f(x). Nevertheless, the development of the theory of Fractional Calculus 

(FC) is due to the contributions of many other mathematicians such as Euler, Liouville, 

Riemann and Letnikov [1−3]. In the fields of physics and chemistry [1], FC is presently 

associated with the modeling of electro-chemical reactions, irreversibility and electro-

magnetism. The adoption of the FC in control algorithms has been recently studied using 

the frequency and discrete-time domains [4−5]. Nevertheless, this research is still giving 

its first steps and further investigation is required. 

Bearing these ideas in mind, this paper is organized as follows. Section 2 outlines the 

fundamental aspects of the theory of FC. Section 3 introduces the main algorithms to ap-

proximate fractional-order derivatives. Section 4 presents several case studies on the im-

plementation of FC based models in the analysis and control of mechanical systems. Fi-

nally, section 5 draws the main conclusions. 
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2 Main Mathematical Aspects of the Theory of Fractional Calculus 

Since the foundation of the differential calculus the generalization of the concept of de-

rivative and integral to a non-integer order α has been the subject of several approaches. 

Due to this reason there are various definitions of fractional-order integrals (Table 1) 

which are proved to be equivalent [1−3]. 

Based on the proposed definitions it is possible to calculate the fractional-order inte-

grals/derivatives of several functions. For example, according with [3] we have the for-

mulae of Table 2. Nevertheless, the problem of devising and implementing fractional-

order algorithms is not trivial and will be the matter of the next sections. 
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Table 2: Fractional-order integrals of several functions 

3 Approximations to Fractional-Order Derivatives 

In this section we analyze two methods for implementing fractional-order derivatives, 

namely the frequency-based and the discrete-time approaches, and its implication in con-

trol algorithms. 

In order to analyze a frequency-based approach to Dα, with α ∈ R such that 0 < α < 1, 

let us consider the recursive circuit represented on Figure 1a: 
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where η and ε are scale factors, I is the current due to an applied voltage V and Ri and Ci
are the resistance and capacitance elements of the ith

 branch of the circuit. 

The admittance Y(jω) is given by: 
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Figure 1b shows the asymptotic Bode diagrams of amplitude and phase of Y(jω). The 

pole and zero frequencies ( iω  and iω′ ) obey the recursive relationships: 
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From the Bode diagram of amplitude or of phase, the average slope m′ can be calcu-

lated as: 

η+ε
ε=′
loglog

logm (4) 

Consequently, the circuit of Figure 1a represents an approach to Dα, 0 < α < 1, with 

m′ = α, based on a recursive pole/zero placement in the frequency domain. 

As mentioned in section 2, the Laplace definition for a derivative of order α ∈ C is a 

‘direct’ generalization of the classical integer-order scheme with the multiplication of the 
signal transform by the s operator. Therefore, in what concerns automatic control theory 

this means that frequency-based analysis methods have a straightforward adaptation to 

their fractional-order counterparts. Nevertheless, the implementation based on the 

Laplace definition (adopting the frequency domain) requires an infinite number of poles 

and zeros obeying a recursive relationship [4]. In a real approximation the finite number 

of poles and zeros yields a ripple in the frequency response and a limited bandwidth. 

C/ηn
C/ηC

− 

V

+ I1 InI0

I

R R/ε R/εn

′ =ω
εη

2

2

RC

ω
εη

2 =
RC

log ω

′ =ω
η

1 RC

ω1

1
=

RC

20m’ db/dec

20 db/dec

Δdb

log η    log ε
20 log10 |Y(jω)| 

a) b) 

Figure 1: a) Electrical circuit with a recursive association of resistances and capacitances; 

b) Bode diagram of amplitude of Y(jω)

Based on the Grünwald-Letnikov definition of a derivative of fractional order α of the 

signal x(t), Dαx(t), leads to the expression: 
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where Γ is the gamma function and h is the time increment. This formulation [5] inspired 

a discrete-time calculation algorithm, based on the approximation of the time increment h
through the sampling period T, yielding the equation in the z domain: 
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An implementation of (6) corresponds to a r-term truncated series given by: 
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Clearly, in order to have good approximations, we must have a large r and a small T.
An important aspect of fractional-order controllers can be illustrated through the ele-

mental control system represented in Figure 2, with open-loop transfer function 

G(s) = Ks−α
 (1 < α < 2) in the forward path. The open-loop Bode diagrams (Figure 3) of 

amplitude and phase have a slope of −20α dB/dec and a constant phase of −απ/2 rad,

respectively. Therefore, the closed-loop system has a constant phase margin of π(1 − α/2) 
rad, that is independent of the system gain K. Likewise, this important property is also 

revealed through the root-locus depicted in Figure 4. 
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Figure 2: Block diagram for an elemental feedback control system of fractional order 
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Figure 3: Open-loop Bode diagrams for a system of fractional order 1 <  < 2 
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Figure 4: Root-locus for a feedback control system of fractional order 1 <  < 2 

4 Control of Mechanical Systems 

In this section we study the adoption of fractional-order algorithms in the dynamics and 

control of mechanical systems. 

4.1 Describing Function of Systems with Backlash 

The standard approach to the backlash study is based on the adoption of a geometric 

model that neglects the dynamic phenomena involved during the impact process. Due to 

this reason often real results differ significantly from those predicted by that model. In 

this section, we use the describing function (DF) method to analyse systems with 

backlash and impact phenomena [6], usually called dynamic backlash.
The proposed mechanical model consists on two masses (M1 and M2) with backlash and 

impacts as shown in Figure 5. 

A collision between the masses M1 and M2 occurs when x1 = x2 or x2 = h + x1. In this 

case, we can compute the velocities of masses M1 and M2 after the impact ( 1x′  and 2x′ ) by 

relating them to the previous values ( 1x  and 2x ) through Newton’s rule: 

( ) ( ) 10,212´1´ ≤ε≤−ε−=′−′ xxxx (8) 

where ε is the coefficient of restitution. In the case of a fully plastic (inelastic) collision 

ε = 0, while in the ideal elastic case ε = 1. 

M
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h
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M
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Figure 5: System with two masses subjected to dynamic backlash 
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By application of the principle of conservation of momentum 

22112211 xMxMxMxM +=′+′  and of (8), we can find the sought velocities of both 

masses after an impact: 
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We can calculate numerically the Nyquist diagram of −1/N(F,ω) for an input force 

f(t) = F cos(ωt) applied to mass M2 and an output position x1(t) of mass M1.

Figure 6 shows the Nyquist plots for F = 50 N and ε = {0.1,…,0.9} and for F = {10, 20, 

30, 40, 50} N and ε = 0.5, respectively, considering M1 = M2 = 1 Kg and h = 10−1 m. The 

charts reveal the occurrence of a jumping phenomenon, which is a characteristic of 

nonlinear systems. This phenomenon is more visible around ε ≈ 0.5, while for the limiting 

cases (ε → 0 and ε → 1) the singularity disappears. Moreover, Figure 6b shows also that 

for a fixed value of ε the charts are proportional to the input amplitude F.

The validity of the model is restricted to an input force f(t) with frequency higher than a 

lower-limit ωC ≈ [(2F/M2h)
2
(1−ε)

5
]

1/4
 and lower than an upper-limit ωL = 2(F/M2h)

1/2
,

corresponding to an amplitude of x1(t) within the clearance h/2. In the middle-range oc-

curs a jumping phenomena at frequency ωJ ~ (F/M2h)
1/2

.

Figure 7 shows the log-log plots of Re{−1/N} and Im{−1/N} versus ω with F = 50 N 

and ε = {0.1, 0.3, 0.5, 0.7, 0.9}, for the cases of the static and dynamic backlash. 

The classical static backlash model corresponds to the DF of a linear system of a single 

mass M1+M2 followed by the geometric backlash having as input and as output the posi-

tion variables. Comparing the results for the static and the dynamic backlash models we 

conclude that: 

− The charts of Re{−1/N} are similar for low frequencies (where they reveal a slope of 

+40 dB/dec) but differ significantly for high frequencies. 

− The charts of Im{−1/N} are different in all range of frequencies. Moreover, for low 

frequencies, the dynamic backlash has a fractional slope inferior to +80 dB/dec of the 

static model. 
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Figure 6: Nyquist plot of −1/N(F,ω) for a system with dynamic backlash, for: a) F = 50 N 

and ε = {0.1, …, 0.9}; b) F = {10, 20, 30, 40, 50} N and ε = 0.5 
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Figure 7: Plots of Re{−1/N(F,ω) } and Im{−1/N(F,ω) } for a system with dynamic 

backlash versus the exciting frequency ω, for F = 50 N and ε = {0.1, 0.3, 0.5, 0.7, 0.9} 

A careful analysis must be taken because it was not demonstrated that a DF fractional 

slope would imply a fractional-order model. In fact, in this study we adopt integer-order 

models for the system description but the fractional-order slope is due to continu-

ous/discrete dynamic variation that results due to the mass collisions [6]. 

4.2 Trajectory Control of Redundant Manipulators 

A redundant manipulator possess more degrees-of-freedom (dof) than those required to 

establish an arbitrary position and orientation of the gripper. We consider a manipulator 

with n dof whose joint variables are denoted by q = [q1,q2,...,qn]
T
 and a class of 

operational tasks described by m variables x = [x1,x2,...,xm]
T
, m < n. The relation between 

the joint vector q and the manipulation vector x corresponds to the direct kinematics: 

( )qx f= (10) 

Differentiating (10) with respect to time yields: 

( )qqJx = (11) 

Hence, from (11) it is possible to calculate a q(t) path in terms of a prescribed trajectory 

x(t). A solution is: 

( )xqJq
#= (12) 

where J
#
 is one of the generalized inverses of the J. The joint positions can be computed 

through the time integration of the velocities (12) according with the block diagram de-

picted in Figure 8. 

J#(q) Delay

Direct

Kinematics

x
ref

ΔqΔx q

+
− ++

x

Figure 8: Diagram of the closed-loop inverse kinematics algorithm J
#
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An important aspect is that repetitive trajectories in the operational space do not lead to 

periodic trajectories in the joint space. This is an obstacle for the solution of many tasks 

because the resultant robot configurations have similarities with those of a chaotic sys-

tem. 

We consider a 3R planar manipulator and during the experiments it is adopted 

Δt = 10−3 s and l1 = l2 = l3 = 1 m. 

Figure 9 depicts the 3R-robot phase-plane joint trajectories, when repeating a circular 

motion with frequency ω0 = 3 rad/s, center at r = [x2
+y2

]
½

 =1 m and radius ρ = 0.1 m. 

Besides the position and velocity drifts, leading to different trajectory loops, we have 

points that are ‘avoided’. Such points correspond to arm configurations where several 

links are aligned. 

In order to capture information about the system during all the dynamic evolution we 

devised an experiment that addresses the frequency response for two alternative exciting 

signals: a doublet-like and a white noise distributed throughout the 500-cycle trajectories. 

Figure 10 depicts the resulting amplitude Bode diagrams of the type: 

)(

)(

)(

)(1

ps
zsK

sX
sQ

ref +
+= α

α
(13) 

where K is the gain, z and p are the zero and pole, respectively, and α is the zero/pole 
fractional-order. 

For the doublet excitation it results α ≈ 1.0 in contrast with the case of white noise exci-

tation where we get a fractional value α ≈ 1.3. This is due to the memory-time property of 
fractional-order dynamics because they capture the dynamic phenomena involved during 

all the time-history of the experiment, in contrast with integer-order derivative that just 

capture a “local” dynamics [7]. 
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Figure 9: Phase plane trajectory for the 3R- robot joint 1 at r = 1 m, ρ = 0.1 m, 

ω0 = 3 rad/s 
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Figure 10: Frequency response of the 3R robot ω0 = 3 rad/s, r = 2 m, ρ ∈ {0.10, 0.30, 

0.50} m for: a) A doublet-like; b) A white noise perturbation during 500-cycle trajectories 

4.3 Position/Force Control of Manipulators 

This section studies the position/force robot control, involving contact between the grip-

per and the environment, using fractional-order controllers in the hybrid algorithm pro-

posed by Raibert and Craig [8].

The dynamical equation of an n dof robot interacting with the environment is given by: 

(q)FJG(q))qC(q,qH(q)
T−++= (14) 

where τ and q are the n × 1 vectors of joint torques and positions, H(q) is the n × n inertia 

matrix, )qC(q,  and G(q) are the n × 1 vectors of centrifugal/Coriolis and gravitational 

terms and F is the m × 1 vector of the force that the environment exerts in the gripper. 

In this study we adopt the 2R robot (Fig. 11a) and we consider the schematic structure 

of the position/force hybrid control algorithm depicted in Fig. 11b. 
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Figure 11: a) 2R robot and constraint surface; b) Position/force hybrid controller 
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The numerical values adopted for the 2R robot are m1 = 0.5 kg, m2 = 6.25 kg, r1 = 1.0 

m, r2 = 0.8 m, J1m = J2m = 1.0 kgm
2
 and J1g = J2g = 4.0 kgm

2
. In this paper we consider 

the yC (xC) Cartesian coordinates to be position (force) controlled. 

The constraint plane is determined by the angle θ  (Figure 11a) and the contact dis-
placement xc of the robot gripper with the constraint surface is modelled through a linear 
system with a mass M, a damping B and a stiffness K with dynamics: 

cccc KxxBxMF ++= (15) 

For comparison purposes we adopt fractional-order (FO) and PID algorithms for the 

position/force controllers. In our case, for implementing FO algorithms of the type 

C(s) = K sα
, we adopt a 4

th
-order discrete-time Padé approximation 

(ai, bi, ci, di ∈ R, n = 4): 
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where Kp/KF are the position/force loop gains. 

We analyze the system performance both for ideal transmissions and robots with back-

lash at the joints according with model (9). Moreover, we compare the response of FO
and the PD: CP(s) = Kp + Kd s and PI: CF(s) = Kp + Ki s−1

 controllers, in the position and 

force loops [9]. 

Both algorithms were tuned by trial and error having in mind getting a similar perform-

ance in the two cases. The resulting parameters were FO: {KP,αP}≡{10
5
, 1/2}, 

{KF ,αF}≡{103,−1/5} and PD/PI: {Kp,Kd}≡{104,103}, {Kp,Ki}≡{103,102} for the position 

and force loops, respectively. Moreover, it is adopted the operating point {x,y}≡{1,1}, a 

constraint surface with parameters {θ,M,B,K}≡{π/2,10
3
,1.0,10

2
} and a controller sam-

pling frequency fc = 1 kHz.

In order to study the system dynamics we apply, separately, rectangular pulses, at the 

position and force references, that is, we perturb the references with 

{δycd,δFcd} = {10−1,0} and {δycd,δFcd} = {0,10−1}. 

The time responses (Figures 12 and 13) reveal that, although tuned for similar perform-

ances in the first case, the FO is superior to the PD/PI in the cases with dynamical phe-

nomena at the robot joints [9]. 

5 Conclusions 

This paper presented the fundamental aspects of the FC calculus, the main approximation 

methods for the fractional-order derivatives calculation and the implication of the FC 

concepts on the extension of the classical automatic control theory. Bearing these ideas in 

mind, several motion control systems were described and their dynamics was analyzed in 

the perspective of fractional calculus. It was shown that fractional-order models capture 

phenomena and properties that classical integer-order simply neglect. In this line of 

thought, this article is a step towards the development of motion control systems based on 

the theory of FC. 
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Figure 12: Time response for the 2R ideal robot with FO and PD/PI controllers 
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