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Abstract — This paper analyses the dynamical properties of systems with backlash 
and impact phenomena based on the describing function method. The dynamics is il-
lustrated using the Nyquist and Bode plots and the results are compared with those 
of standard models. 

1 Introduction 

The area of Fractional Calculus (FC) deals with the operators of integration and 
differentiation to an arbitrary (including noninteger) order and is as old as the theory of 
classical differential calculus. The theory of FC is a well-adapted tool to the modelling of 
many physical phenomena, allowing the description to take into account some 
peculiarities that classical integer-order models simply neglect. For this reason, the first 
studies and applications involving FC had been developed in the domain of fundamental 
sciences, namely in physics [5] and chemistry [23]. Besides the intensive research carried 
out in the area of pure and applied mathematics [1−5], FC has found applications in 
various fields such as viscoelasticity/damping [6−12], chaos/fractals [13−16], biology 
[17], signal processing [18], system identification [19], diffusion and wave propagation 
[20−21], electromagnetism [22] and automatic control [24−29]. Nevertheless, in spite of 
the work that has been done in the area, the application of these concepts has been scarce 
until recently. In the last years, the advances in the theory of fractals and chaos revealed 
subtle relationships with FC, motivating a renewed interest in this field. 

The phenomenon of vibration with impacts occurs in many branches of technology 
where it plays a very useful role. On the other hand, its occurrence is often undesirable, 
because it causes additional dynamic loads, as well as faulty operation of machines and 
devices. Despite many investigations that have been carried out so far, this phenomenon 
is not yet fully understood, mainly due to the considerable randomness and diversity of 
reasons underlying the energy dissipation involving the dynamic effects [32−38]. 

In this paper we investigate the dynamics of systems that contain backlash and impacts. 
Bearing these ideas in mind, the article is organized as follows. Section 2 introduces the 

fundamental aspects of the describing function method. Section 3 studies the describing 
function of systems with backlash and impact phenomena. Finally, section 4 draws the 
main conclusions and addresses perspectives towards future developments. 
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2 Describing Function Analysis 

The describing function (DF) is one of the possible methods that can be adopted for the 
analysis of nonlinear systems [31]. The basic idea is to apply a sinusoidal signal in the 
input of the nonlinear element and to consider only the fundamental component of the 
signal appearing at the output of the nonlinear system. Then, the ratio of the 
corresponding phasors (output/input) of the two sinusoidal signals represents the DF of 
the nonlinear element. The use of this concept allows the adaptation of the Nyquist 
stability test to a nonlinear system detection of a limit cycle, namely the prediction of its 
approximate amplitude and frequency. In this line of thought, we consider the control-
loop with one nonlinear element N and a linear system G(s) depicted in Fig. 1. 

We start by applying a sinusoid x(t) = X sin(ωt) to the nonlinearity input. At steady-
state the output of the nonlinear characteristic, y(t), is periodic and, in general, it is nonsi-
nusoidal. If we assume that the nonlinearity is symmetric with respect to the variation 
around zero, the Fourier series becomes: 
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where Yk and φk are the amplidude and the phase shift of the kth-harmonic component of 
the output y(t), respectively. 

In the DF analysis, we assume that only the fundamental harmonic component of y(t),
Y1, is significant. Such assumption is often valid since the higher-harmonics in y(t), Yk for 
k = 2, 3, …, are usually of smaller amplitude than the amplitude of the fundamental com-
ponent Y1. Moreover, most systems are “low-pass filters” with the result that the higher-
harmonics are further attenuated. Thus the DF of a nonlinear element, N(X,ω), is defined 
as the complex ratio of the fundamental harmonic component of output y(t) with the input 
x(t):

11),( φ=ω je
X
YXN (2)

where X is the amplitude of the input sinusoid x(t) and Y1 and φ1 are the amplitude and the 
phase shift of the fundamental harmonic component of the output y(t), respectively. In 
general, N(X,ω) is a function of both the amplitude X and the frequency ω of the input 
sinusoid. For nonlinear systems that do not involve energy storage, the DF is merely am-
plitude-dependent, that is N = N(X). If it is not the case, we may have to adopt a numeri-
cal approach because, usually, it is impossible to find a closed-form solution. 

r(t) = 0
N G(s)

z(t)+

−

y(t)

Nonlinearity

x(t)

Linear system

Figure 1: Basic nonlinear feedback system for describing function analysis 
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For the nonlinear control system of Figure 1, we have a limit cycle if the sinusoid at the 
nonlinearity input regenerates itself in the loop, that is: 

),(

1
)(

ω
−=ω

XN
jG (3)

Note that (3) can be viewed as the characteristic equation of the nonlinear feedback sys-
tem of Figure 1. If (3) can be satisfied for some value of X and ω, a limit cycle is pre-
dicted for the nonlinear system. Moreover, since (3) applies only if the nonlinear system 
is in a steady-state limit cycle, the DF analysis predicts only the presence or the absence 
of a limit cycle and cannot be applied to analysis for other types of time responses. 

3 Analysis of Systems with Backlash and Impacts 

In this section, we use the DF method to analyse systems with backlash and impacts. We 
start by considering the standard static model and afterwards we study the case with the 
impact phenomena. Finally, we compare the results of the two types of approximations. 

3.1 Static Backlash 

Here we consider the phenomena of clearance without the effect of the impacts, which is 
usually called static backlash. The describing function for X > h/2 is given by [30]: 
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The classical backlash model corresponds to the DF of a linear system of a single mass 
M1+M2 followed by the geometric backlash having as input and as output the position 
variables x(t) and y(t), respectively, as depicted in Figure 2. For a sinusoidal input force 
f(t) = F cos(ωt) the condition X = h/2 leads to the limit frequency ωL applicable to this 
system: 

( )
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+
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MM
F

hL (5) 

Figure 3 shows the Nyquist plot of –1/N(F,ω) = –1/[G(jω)N(X)] for several values of 
the input force F.

( ) 2
21

1

sMM +

f(t) x(t) y(t)

BacklashLinear system

G(s) N(X)

-h/2

y

slope k

h/2 x

Figure 2: Classical backlash model 
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Figure 3: Nyquist plot of −1/N(F,ω) for the system of Figure 2, F = {10, 20, 30, 40, 50} 
N, 0 < ω < ωL, M1 = M2 = 1 kg and h = 10−1 m 

This approach to the backlash study is based on the adoption of a geometric model that 
neglects the dynamic phenomena involved during the impact process. Due to this reason 
often real results differ significantly from those predicted by that model. 

3.1 Dynamic Backlash 

In this section we use the DF method to analyse systems with backlash and impact 
phenomena, usually called dynamic backlash [33−34].  
The proposed mechanical model consists on two masses (M1 and M2) subjected to 
backlash and impact phenomenon as shown in Figure 4. A collision between the masses 
M1 and M2 occurs when x1 = x2 or x2 = h+x1. In this case, we can compute the velocities of 
masses M1 and M2 after the impact ( 1x′  and 2x′ ) by relating them to the previous values 

( 1x  and 2x ) through Newton’s rule: 

( ) ( ) 10,212´1´ ≤ε≤−ε−=′−′ xxxx (6)

where ε is the coefficient of restitution. In the case of a fully plastic (inelastic) collision 
ε = 0, while in the ideal elastic case ε = 1. 

M2

h

f(t)

M1

22 , xx

11, xx

Side
A

Side
B

Figure 4: System with two masses subjected to dynamic backlash 
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By application of the principle of conservation of momentum 

22112211 xMxMxMxM +=′+′  and of expression (6) we can find the sought velocities ( 1x′
and 2x′ ) of both masses after an impact, given by: 
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For the system of Figure 4 we calculate numerically the Nyquist diagram of −1/N(F,ω)
for an input force f(t) = F cos(ωt) applied to mass M2 and considering the output position 
x1(t) of mass M1.

The values of the parameters adopted in the subsequent simulations are M1 = M2 = 1 kg 
and h = 10−1 m. Figures 5 and 6 show the Nyquist plots for F = 50 N and ε = {0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and for F = {10, 20, 30, 40, 50} N and ε = {0.2, 0.5, 0.8}. 

The Nyquist charts of Figures 5−6 reveal the occurrence of a jumping phenomenon, 
which is a characteristic of nonlinear systems. This phenomenon is more visible around 
ε ≈ 0.5, while for the limiting cases (ε → 0 and ε → 1) the singularity disappears. More-
over, shows also that for a fixed value of ε the charts are proportional to the input ampli-
tude F.
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Figure 5: Nyquist plot of −1/N(F,ω) for a system with dynamic backlash, for F = 50 N 
and ε = {0.1, .., 0.9} and F = {10, 20, 30, 40, 50} N and ε = 0.2 
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Figure 6: Nyquist plot of −1/N(F,ω) for a system with dynamic backlash, for F = {10, 20, 
30, 40, 50} N and ε = {0.5,0.8} 
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The validity of the proposed model is restricted to frequencies of the exciting input 
force f(t) higher than a lower-limit frequency ωC. On the other hand, there is also an up-
per-limit frequency ωL determined by application of Newton’s law to mass M2 and con-
sidering that the amplitude of the displacement is within the clearance h/2. In the middle-
range frequency, ωC < ω < ωL, the jumping phenomena occurs at frequency ωJ. These 
frequencies are given by the following expressions: 
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Figures 7 and 8 illustrate the variation of the Nyquist plots of −1/N(F,ω) for the cases 
of the static and dynamic backlash and shows the log-log plots of Re{−1/N} and 
Im{−1/N} versus ω for a coefficient of restitution ε = 0.5 and F = {10, 20, 30, 40, 50} N 
and for an input force F = 50 N and ε = {0.1, 0.3, 0.5, 0.7, 0.9}, respectively. 
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Figure 7: Log-log plots of Re{−1/N} and Im{−1/N} versus the exciting frequency ω, for 
ε = 0.5 and F = {10, 20, 30, 40, 50} N 
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Figure 8: Log-log plots of Re{−1/N} and Im{−1/N} versus the exciting frequency ω, for 
F = 50 N and ε = {0.1, 0.3, 0.5, 0.7, 0.9} 
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Comparing the results for the static and the dynamic backlash models we conclude that: 

− The charts of Re{−1/N} are similar for low frequencies (where they reveal a slope of 
+40 dB/dec) but differ significantly for high frequencies. 

− The charts of Im{−1/N} are different in all range of frequencies. Moreover, for low 
frequencies, the dynamic backlash has a fractional slope inferior to +80 dB/dec of the 
static model. 

A careful analysis must be taken because it was not demonstrated that a DF fractional 
slope would imply a fractional-order model. In fact, in this study we adopt integer-order 
models for the system description but the fractional-order slope is due to continu-
ous/discrete dynamic variation that results due to the mass collisions. 

Figure 9 presents the Fourier transform of the output displacement of mass M1,
F{x1(t)}, namely the amplitude of the harmonic content of x1(t) for an input force 
f(t) = 50 cos(ωt), ωC < ω < ωL, and ε = {0.2, 0.8}. The charts reveal that the fundamental 
harmonic of the output has a much higher magnitude than the other higher-harmonic 
components. This fact enables the application of the describing function in the prediction 
of limit cycles for this system. Nevertheless, for high values of ε, there is a significant 
high-order harmonic content, and by consequence, a lower precision of the limit cycle 
prediction. 

Figures 10−14 show the time response of the output velocity )(1 tx  of a system with dy-

namic backlash for ω = {15, 20, 25, 35, 40} rad/s and ε = {0.2, 0.5, 0.8}. The charts re-
veal that we can have chaotic or periodic responses according with the values of ω and ε.

A complementary perspective is revealed by Figure 15 that depicts the number of con-
secutive collisions on side A (or B), nA (or nB), versus the exciting frequency ω and the 
coefficient of restitution ε for an input force f(t) = 50 cos(ωt).

From Figure 15 we can distinguish two kinds of regions. The first, for ωC < ω < ωJ,
where the system is characterized by an irregular number of impacts and a chaotic dy-
namics. The second, for ωJ < ω < ωL, where the motion is characterized by a regular be-
haviour corresponding to one alternate collision on each side of M1. The conclusions are 
similar to those obtained from Figures 10−14. 
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Model not applicable. 
For ε = 0.2 it results a 
lower-limit frequency 

ωC = 23.9 rad/s.
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Figure 10: Plot of the output velocity )(1 tx  for ω = 15 rad/s and ε = {0.2, 0.5, 0.8} 
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Figure 11: Plot of the output velocity )(1 tx  for ω = 20 rad/s and ε = {0.2, 0.5, 0.8} 
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Figure 12: Plot of the output velocity )(1 tx  for ω = 25 rad/s and ε = {0.2, 0.5, 0.8} 
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Figure 13: Plot of the output velocity )(1 tx  for ω = 35 rad/s and ε = {0.2, 0.5, 0.8} 
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Figure 14: Plot of the output velocity )(1 tx  for ω = 40 rad/s and ε = {0.2, 0.5, 0.8} 
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Figure 15: Number of consecutive collisions on side A (nA ) versus the exciting frequency 
ω and the coefficient of restitution ε, for an input force f(t) = 50 cos(ωt). For the side B 

(nB ) the chart is of the same type 

4 Conclusions 

This paper addressed several aspects of the phenomena involved in systems with backlash 
and impacts. The dynamics of a two mass system was analysed through the describing 
function method and compared with standard models. The results revealed that these 
systems might lead to chaos and to fractional order dynamics. These conclusions 
encourage further studies of nonlinear systems in the perspective of the fractional 
calculus since integer order dynamical models are not capable to take into account many 
phenomena that occur. 
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