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Abstract — A novel control technique is investigated in the adaptive control of a
typical paradigm, an approximately and partially modeled cart plus double pendu-
lum system. In contrast to the traditional approaches that try to build up ”complete”
and ”permanent” system models it develops ”temporal” and ”partial” ones that are
valid only in the actual dynamic environment of the system, that is only within some
”spatio-temporal vicinity” of the actual observations. This technique was investi-
gated for various physical systems via ”preliminary” simulations integrating by the
simplest 1st order finite element approach for the time domain. In 2004 INRIA issued
its SCILAB 3.0 and its improved numerical simulation tool ”Scicos” making it pos-
sible to generate ”professional”, ”convenient”, and accurate simulations. The basic
principles of the adaptive control, the typical tools available in Scicos, and others
developed by the authors, as well as the improved simulation results and conclusions
are presented in the contribution.

1 Introduction
A new approach for the adaptive control of imprecisely known dynamic systems under

unmodeled dynamic interaction with their environment was initiated in [1]. In the family

of the adaptive control methods this new one is situated between the linear PID/ST and

the parameter identification approaches. Instead of the supposed analytical model’s pa-

rameters the controller is tuned as in the PID/ST control, but it uses several parameters

of some abstract Lie groups fit to the needs of the ”non-linear control”. In the same time

these parameters may be considered as that of the system-model, though they do not be-

long to a detailed, analytical system-description. This ”non-analytical modeling” is akin

to the Soft Computing philosophy, too. In this approach adaptivity means that instead of

283



TAR, RUDAS, BITÓ, MACHADO

simultaneous tuning of numerous parameters, a fast algorithm finding some linear trans-

formation to map a very primitive initial model based expected system-behavior to the

observed one is used. The so obtained ”amended model” is step by step updated to trace

changes by repeating this corrective mapping in each control cycle. Since no any effort

is exerted to identify the possible reasons of the difference between the expected and the

observed system response it is referred to as the idea of ”Partial and Temporal System

Identification”. This anticipates the possibility for real-time applications. Regarding the

appropriate linear transformations several possibilities were investigated and successfully

applied. For instance, the ”Generalized Lorentz Group” [2], the ”Stretched Orthogonal

Group”, the ”Partially Stretched Orthogonal Transformations” [3], and a special family

of the ”Symplectic Transformations” [4] can be mentioned.

The key element of the new approach is the formal use of the ”Modified Renormaliza-

tion Transformation”. The ”original” version of this transformation was widely used in

the seventies to investigate the properties of chaos. This (originally scalar) transformation

modifies the solution of an x = f(x) fixed-point problem. Since the adaptive control can

be formulated as a fixed-point problem, too [5], this transformation was considered to

be a possible candidate for the solution of the task of the adaptive control. The modi-

fication of the original transformation was necessary due to phenomenological reasons.

Satisfactory conditions of the complete stability of the so obtained control for Multiple

Input-Multiple Output (MIMO) systems were also highlighted in [5] by the means of per-

turbation calculation. This means the most rigorous limitation of the circle of the possible

applications of the new method. To release this restriction to some extent ”ancillary” but

simple interpolation techniques and the use of ”dummy parameters” were also introduced

in [5]. The applicability of the method was investigated for electro-mechanical and hy-

drodynamic systems via simulation [6, 7]. In this paper a quite simple but lucid typical

paradigm, a cart conveying a double pendulum is chosen to be the subject of the adaptive

controller.

2 The Control Problem in General
From purely mathematical point of view the control problem can be formulated as fol-

lows: there is given some imperfect model of the system on the basis of which some

excitation is calculated for a desired reaction of the system used as the input of the con-

troller id as e = ϕ(id). The system has its inverse dynamics described by the unknown

function resulting in a realized ir instead of the desired one, id : ir = ψ(ϕ(id)) = f(id)).
(In Classical Mechanics these values are the desired and the realized joint accelerations,

while the external free forces and the joint velocities serve as the parameters of this tem-

porarily valid and changing function.)

Normally any information on the behavior of the system can be obtained only via ob-

serving the actual value of the function f(). In general it can considerably vary in time.

Furthermore, no any possibility exists to ”directly manipulate” the nature of this function

with the exception of the direct manipulation of its actual input from id to certain id
∗
, that

is a ”deformed” input. The controller’s aim is to achieve and maintain the id = f(id
∗
)

state. [Only the nature of the model function ϕ(id) can directly be determined.]

The Modified Renormalization Algorithm consists in seeking a series of linear transfor-

mations as:
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i0;S1f(i0) = i0; i1 = S1i0; . . . ;Snf(in−1) = i0; in+1 = Sn+1in; Sn −−→n→∞ I (1)

in which the Sn matrices denote some linear transformations to be specified later. As it can

be seen these matrices map the observed response to the desired one, and the construction

of each matrix corresponds to a step in the adaptive control. It is evident that if this series

converges to the identity operator just the proper deformation is approached, therefore

the controller ”learns” the behavior of the observed system by step-by-step amendment

and maintenance of the initial model. Since (1) does not unambiguously determine the

possible applicable quadratic matrices we have additional freedom in finding appropriate

ones. The most important points of view are fast and efficient computation and the ability

for remaining as close to the identity transformation as possible. For making the problem

mathematically unambiguous (1) can be transformed into a matrix equation by putting the

values of f and i into well-defined blocks of bigger matrices. Via computing the inverse

of the matrix containing f in (1) the problem can be made mathematically well-defined.

Since the calculation of the inverse of one of the matrices is needed in each control cycle

it is expedient to choose special matrices of fast and easy invariability. Within the block

matrices the response arrays may be extended by adding to them a ”dummy”, that is

physically not interpreted dimension of constant value, in order to evade the occurrence

of the mathematically dubious 0 → 0, 0 → finite, finite → 0 transformations. In the

present investigations the special symplectic matrices announced in [4] were applied for

this purpose. In general, the Lie group of the Symplectic Matrices is defined by the

equations

ST�S ≡
[

0 I
−I 0

]
, detS = 1. (2)

The inverse of such matrices can be calculated in a computationally very cost-efficient

manner as S−1 = �TST�. In our particular case the symplectic matrices are constructed

from the desired and the observed joint coordinate accelerations corresponding to the

response of the mechanical system to the excitation of torque and force by the use of the

columns of the matrix

[m1,m2,m3,m4,m5] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q̈1 −q̈1 e
(3)
1 e

(4)
1 e

(5)
1

q̈2 −q̈2 e
(3)
2 e

(4)
2 e

(5)
2

q̈3 −q̈3 e
(3)
3 e

(4)
3 e

(5)
3

d −d e
(3)
4 e

(4)
4 e

(5)
4

D q̈2+d2

D
e
(3)
5 e

(4)
5 e

(5)
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

in the block of a more complex one defined as

S =

[
0 −1

s
m(1) −1

s
m(2) −e(3) . . .−e(5)

m(1) m(2) e(3) . . . e(5) 0

]
(4)

in which the e(3) . . . e(5) symbols denote unit vectors in the orthogonal sub-space of the

first two columns, d is the ”dummy” parameter used for avoiding singular transformations,

and
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D2 ≡ q̈T q̈ + d2, s = 2D2 (5)

The unit vectors can be created e.g. by using El Hini’s algorithm [3], which, while rotates

vector b into the direction of vector a , leaves the orthogonal sub-space of these vectors

invariant. So if the operation starts with an orthonormal set {e(1) . . . e(5)} and at first it is

rigidly rotated until e(1) becomes parallel with the 1st column of M, its 2nd column will

be in the orthogonal sub-space of the 1st one spanned by the transformed {e∗(2) . . . e∗(5)}
set. In the next step this whole set can rigidly be rotated until the new e∗∗(2) becomes

parallel with the 2nd column of M. (This operation leaves the previously set e∗(1) invari-

ant because it is orthogonal to the two vectors determining this special rotation.) With

the above completion the appropriate operation in (1) evidently equals to the identity op-

erator if the desired response just is equal to the observed one, and remains in the close

vicinity of the unit matrix if the non-zero desired and realized responses are very close to

each other. Since amongst the conditions for which the convergence of the method was

proven near-identity transformations were supposed in the perturbation theory, a parame-

ter ξ measuring the ”extent of the necessary transformation”, a ”shape factor” σ, and a

”regulation factor” λ can be introduced in a linear interpolation with small positive ε1, ε2
values as

ξ :=
|f − id|

max(|f |, |id|) + 1
, λ = 1 + ε1 + (ε2 − 1 − ε1)

σξ

1 + σξ
, îd = f + λ(id − f) (6)

This interpolation reduces the task of the adaptive control in the more critical sessions and

helps to keep the necessary linear transformations in the vicinity of the identity operator.

In the forthcoming simulations the following numerical data were used: d = 100, σ = 22,

ε1 = 0.2, ε2 = 0.1. They were selected ”experimentally”.

3 The Dynamic Model of the Cart - Double Pendulum System
Let the cart consist of a body and wheels of negligible momentum and inertia having the

overall mass of M [kg]. Let the pendulums be assembled on the cart by parallel shafts

and arms of negligible masses and lengths L1 and L2 [m], respectively. At the end of the

arms balls of negligible sizes and considerable masses of m1 and m2 [kg] are attached,

respectively. The appropriate rotational angles are q1 and q2 [rad], and the linear degree

of freedom describing the translation of the cart pus pendulums system is denoted by

q3 [m]. The Euler-Lagrange equations of motion of this system, in which g denotes the

gravitational acceleration [m/s2],Q1 andQ2 [Nm] denote the driving torque at shaft 1 and

2, respectively, andQ3 [N] stands for the force moving the cart in the horizontal direction,

are given as follows:

⎡
⎢⎣
Q1

Q2

Q3

⎤
⎥⎦ =

⎡
⎢⎣

m1L
2
1 0 −m1L1 sin q1

0 m2L
2
2 −m2L2 sin q2

−m1L1 sin q1 −m2L2 sin q2 (M +m1 +m2)

⎤
⎥⎦
⎡
⎢⎣
q̈1
q̈2
q̈3

⎤
⎥⎦ + (7)

⎡
⎢⎣
−m1L1 cos q1q̇1q̇3 −m1gL1 cos q1
−m2L2 cos q2q̇2q̇3 −m2gL2 cos q2
−m1L1 cos q1q̇

2
1 −m2L2 cos q1q̇

2
2

⎤
⎥⎦
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On the basis of (7) it is easy to express the inverse dynamical equations of motion in

closed analytical form used for simulation purposes.

4 The Fractional Order Derivatives
In the case of a normal PID-type controller the desired trajectory reproduction can be

prescribed in a purely kinematics based manner. For the second time-derivative of the

actual coordinate errors vector e the desired relation can be formulated as:

ëd = −Pe −Dė − I
∫ t

0
e(t′)dt′ (8)

A possible modification of (8) consists in replacing the local 1st order derivative by a

”global” term also having some ”memory” as

q̈D = q̈N + P
(
qN − qR

)
+DA

dβ

dtβ

(
qN − qR

)
− I

∫ t

0

(
qN − qR

)
dt′ (9)

in which A is a constant depending on β, and the symbol dβ/dtβdenotes the fractional

order derivative constructed on the basis by Caputo’s definition as

dβ

dtβ
u(t) :=

1

Γ(1 − β)

∫ t

0

[
du(τ)

dτ

]
(t− τ)−βdτ, β ∈ (0, 1) (10)

For t > 0 (10) physically has the following simple meaning: the full 1st order derivative

in the integrand removes the constant component from the signal, and this derivative is

”causally reintegrated” by the use of a Green function like expression that has slowly

forgetting nature (the contribution of the far past becomes more and more negligible in

it), while its singularity in τ = t enhances the relative weight of the contribution of the

τ ∼=< t instants. Furthermore, the relatively slowly decreasing ”tail” of this function also

acts as a frequency filter that rejects the high-frequency components of the traditional 1st

derivative. Due to the singularity of the Green function in (10) common finite-element

numerical integration cannot accurately be done. Instead of that we can suppose that at

least u′(τ) is relatively slowly varying in time, therefore it can approximately be treated

as a constant during the integration over a small time-interval, while the variation of the

Green function can be taken into account accurately. Furthermore, to introduce symmetry

against the translation of the signal in time we can omit the very long tail of the Green-

function and we can go back in time only to some time t-T instead of 0. The proposed

approximation of (10) in this paper was taken as

dβ+1

dtβ+1
u(t) ∼= u′′(t)δ−β+1

Γ(2 − β)
+

∑
0<s while sδ<T

δ−β+1[(s+ 1)−β+1 − s−β+1]

Γ(2 − β)
u′′(t− sδ) (11)

The original form of (10) is inconvenient from the point of view that the ”maximum”

of the Green function always occurs in the ”present” moment. For numerical simulations

its components can be stored in an array variable as well as the u′ values can be stored in

a shift-register in the case of a discrete time approximation. It is interesting to highlight
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the connection between the ”fractional” and the ”integer” order derivatives on the basis

of (11) that can trivially be written in the form as

dβ

dtβ
uk

∼=
−N∑
l=0

alu
′
k+1 (12)

implying that if the conventional 1st derivative is constant then the appropriate fractional

order derivative also is constant, and their ratio is set by the sum of the coefficients. The

so obtained factor A := (
∑−N

s=0 as)
−1is taken into account in (9). It is also evident that

by prescribing constant fractional order derivative in a discrete time-resolution a causal

series of the 1st order derivatives can be obtained as

(
dβ

dtβ
u

)
k+1

= a0u
′
k+1 +

−N∑
l=−1

alu
′
k+1+l =

−N∑
s=0

asu
′
k+s =

(
dβ

dtβ
u

)
k

(13)

leading to

(
u′k+1 − u′k

)
= −

−N∑
s=−1

as

a0

(
u′k+1+s − u′k+s

)
(14)

In a discrete-time approach this seems to prescribe the 2nd conventional derivative of the

signal in each discrete time instant. It is interesting to see if the ”initial condition problem”

dβ

dtβ
uk+s =

−N∑
l=0

alu
′
k+s+l ≡ const. s = 0, 1, . . . (15)

converges to constant 1st derivatives or results in some divergent series. (In this case the

term ”initial condition” refers to an N + 1 elements long series belonging to s = 0.)

According to (14) the following estimation can be done

|u′k+1 − u′k| ≤
−N∑

s=−1

as

a0

|u′k+1+s − u′k+s| ≤ K ×N× Max
s=−1,...,−N

|u′k+1+s − u′k+s| = (16)

= KN |u′k+1+s1
− u′k+s1

|, whereK := Max
s=−1,...,−N

as

a0

, −N ≤ s1 ≤ −1

that is the appropriate maximum is taken at s1. If KN < 1 (16) can recursively applied

as

|u′k+1 − u′k| ≤ KN |u′k+1+s1
− u′k+s1

| (17)

≤ (KN)m|u′k+1+s1+s2+...+sm
− u′k+s1+s2+...+sm

|, where

∀
z=1,2,...,m

−N ≤ sz ≤ −1

The maximal difference determined by the initial conditions sooner or later will be achieved

in (17). If KN < 1 then for k → ∞m→ ∞, (13) corresponds to a Cauchy series that is

convergent in a full metric space. Therefore the differences between the elements in the

initial condition slowly relax, and the series converges to a constant 1st order derivative.
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That is the presence of the factor A in (9) is substantiated from this point of view, too.

This means that some ”memory” or ”inertia” can be present in the system that may result

in modifying its response to abrupt, noisy influences. We also note, that in contrast to

Caputo’s original definition the numerical approximation (11) can be extended for β > 1,

too. In the sequel we do not wish to analyze the effect and the proper place of the frac-

tional order derivatives. The main point is the design of a simulator that gives room for

the application of such derivatives.

5 Simulations by the Use of ”Scicos”
The new version of INRIA’s SCILAB 3.0 was issued about the end of the summer of

2004. This software package is freely usable for scientific research. In its basic form

it corresponds to a programming language and a development system that makes it pos-

sible to develop and use user-defined functions in similar way as its own built-in func-

tions. Scicos an application developed in SCILAB to support programming via defining

block diagrams and symbolic ”wires”. Besides this graphical possibility its main virtue

is the use of sophisticated program packages for solving Ordinary Differential Equations
(ODEs) either in explicit form [ẏ = f(t, x), y(t0) = y0 by the ”lsodar” package], or

in implicit form [ g(t, y, ẏ) = 0, y(0) = y0, ẏ(0) = ẏ0 by the ”dasrt” package that

calculates the time instants in which the surface defined by g is achieved]. The program

defined ?graphically? at first is compiled to bring about an ODE system that is solved by

the use of one of these packages automatically.

At the time being Scicos has not very extended documentation. However it has been

found ”experimentally” that it is the ”run SCILAB” → ”call Scicos” → ”load diagram”

→ ”run the simulation defined by the diagram” sequence of steps that always leads to the

same results. Most probably the ODE solver is loaded according to its default settings

when it is called at the first time. Since the package has to adapt itself to solve various

problems it probably adapts itself to the last task solved by it within this SCILAB session,

and this modified settings remains valid when the simulation is ended or restarted, or a

new diagram is loaded for simulation. Even quitting Scicos seems to leave the last settings

valid.

For a beginner this behavior may seem to be troublesome because it may generate

the semblance that the simulation results are not well ”reproducible”. However, it can

be observed that running the simulation for a while, stopping and restarting it several

times without quitting Scicos eventually results in well reproduced behavior. During this

process the package well adapts itself to the particular task to be solved.

In Figure 1 the Scicos model of the simulation scheme based on the simple, kinemat-

ically designed, non-adaptive PID controller, the ”rough” model consisting of constant

1×I (I = unit matrix) inertia matrix, and the constant Coriolis and inertial terms [1, 1, 1]T .

and the ”exact” system models is presented. The typical ”built in” elements as the inte-

grator, the ”source elements” as the constants, the clock, the ”periodic event generators”,

and the only ”sink”, that is the multiple oscilloscope simulator called ”Mscope” can well

be identified in the figure. The other blocks contain ”user-developed functions” as the

trajectory generator ”Trajgen”, the model of the PID controller, the rough and the ex-

act system models and the ”Vector Subtractors”. These user-developed functions can be

given as common SCILAB instructions that are ”interpreted” by Scicos.
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Figure 1: The Scicos model of the simulation scheme based on the simple, kinematically

designed, non-adaptive PID controller, the ”rough” and the ”exact” system models

To speed up the operation of the simulator an alternative method is loading and com-

piling the user functions instead of directly writing them in the user blocks. (In this case

the user block contains only simple calls for the compiled functions.) The compilation of

the necessary user functions at the beginning can be prescribed in the so-called ”Context”
box of the simulator. The here defined variables behave as ”global” ones from the point
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of view of the user-defined functions. They can be referred to as ”global” variables in

the heading (beginning lines) of the user’s functions. The ”wires” correspond to the tra-

ditional function calls via the stack making the use of the simulator similar to data flow

programming. (The global variables can directly be modified by the functions without the

use of any ”wire”.) The ”chequered” blocks in Fig. 1 correspond to the program block

making and applying the symplectic identification by the use of global matrices.

In Figure 2 typical operation of the adaptive controller without simulated measurement

noise in measuring the joint coordinate accelerations is described. It can well be seen that

Figure 2: The operation of the adaptive controller without simulated measurement noise

in measuring the joint coordinate accelerations: 1st box: the norm of the (Snn−I) matrix

(characteristic to the adaptive signal); 2nd box: the generalized forces [in Nm for Q1 and

Q2, N for Q3]; 3rd box: the joint coordinate errors [in rad for q1 and q2, m for q3]; 4th

box: the nominal trajectory [in rad for q1 and q2, m for q3] vs. time [s]. The cycle time of

the external controller is 2 ms, β = 1.6.

the controller accurately tracks the nominal trajectory apart from a short initial learning

phase. In Figure 3 the noisy counterpart of Figure 2 with evenly distributed 3 rad/s2 or

m/s2 (quite comparable with that of the nominal motion) simulated measurement noise in

measuring the joint coordinate accelerations is given. Though the tracking error increased,

the control remained stable and the precision did not decline drastically. It can be seen,

too, that a damped action of the measurement noise also appears in the actual motion of

the system due to the coupling brought about by the controller.
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Figure 3: The operation of the adaptive controller with simulated measurement noise in

measuring the joint coordinate accelerations: boxes 1 to 4 are the counterparts of the

appropriate boxes in Figure 2; 5th box: the actual and the ”measured” (6th box) joint

coordinate accelerations [in rad/s2 for q1 and q2, m/s2 for q3] vs. time [s]. The cycle

time of the external controller is 2 ms, β = 1.6.

6 Conclusions

At the end of the summer of 2004 INRIA issued its SCILAB 3.0 containing an advanced

numerical simulation tool called ”Scicos”. Due to it new prospects were opened for mak-

ing ”professional” and in the same time ”convenient” simulations for studying the sensi-

tivity of the novel adaptive control developed at the Budapest Tech in connection with the

joint coordinate measurement noises. A quite simple but lucid typical paradigm, a cart

conveying an asymmetric double pendulum system was chosen to be the subject of the

adaptive controller. It was found that the method, though it uses joint coordinate acceler-

ation measurements, is not very much sensitive to these noises. It can be stated that the
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sophisticated modeling tool of Scicos resulted in more rigorous values than the formerly

applied, more primitive estimations. It became clear that in the future it is expedient to

use the services of Scicos in similar modeling and simulation investigations.

Acknowledgments
The support by the Hungarian National Research Fund OTKA (T 34651), and that of the Hungar-

ian Scientific and Technology Co-operation Fund and by the -Portuguese Instituto de Cooperacao
Cientifica e Tecnológica for the bilateral project Port-6/03 is gratefully acknowledged.

References
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