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Abstract — This paper reports investigation on the estimation of the short cir-
cuit impedance of power transformers, using fractional order calculus to analytically
study the influence of the diffusion phenomena in the windings. The aim is to better
characterize the medium frequency range behavior of leakage inductances of power
transformer models, which include terms to represent the magnetic field diffusion
process in the windings. Comparisons between calculated and measured values are
shown and discussed.

1 Introduction
Neglecting displacement currents, an electromagnetic field in conductive media is de-

scribed by a diffusion type equation. In power transformers, a non-linear diffusion is

considered to occur within their core, whereas a linear diffusion is supposed to occur in

the windings and usually modelled by leakage impedances. The precise estimation of
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Applications - FDA’04. The work is supported by FCT POSI/FEDER contract no. POCTI / 1999 / ESE /

38963/2001. W. Malpica Albert thanks “Consejo de Desarrollo Cientı́fico y Humanı́stico” of “Universidad

Central de Venezuela” for financial support.
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these leakage impedances, prior to transformer building, is very important to tune the

transformer de-rating K factor and to calculate or optimize several power supply network

characteristics, such as short-circuit currents, network protection sub-systems, and assess

power quality.

Conductors, like copper or aluminum, standing diffusion process of magnetic fields at

frequency ω (ω > 0), such as skin and proximity effects, are supposed to typically show

an impedance Zcond proportional to the square root of ω, Zcond ∝ ω1/2 eiπ/4, (i = (−1)1/2).

This behavior can be obtained solving the magnetic field diffusion equations within the

conductor. If measured impedances, including terms from diffusion phenomena, show ar-

guments different from π/4 and magnitudes not proportional to ω1/2, the diffusion process

they represent might be described by a differential equation with non-integer derivatives,

usually called a fractional order differential equation.

This paper extends the magnetic field diffusion equations to situations where α, the

order of the time partial derivative in the diffusion equation, assumes fractional values

[1], leading to conductor impedances taking the form Zcond ∝ ωα/2eiαπ/4. The fractional

approach, will be shown to provide a better description of the transformer short-circuit

impedance behavior with frequency.

The magnetic field diffusion at the power transformer windings is studied, with Maxwell

equations extended with a fractional order Faraday law. Solving the fractional order

differential diffusion equation obtained, the voltage drops in the frequency domain and

equivalent leakage impedance components, due to diffusion, are found.

From the relevant Maxwell equations, extended with a fractional order Faraday law,

section 2 proposes a magnetic field fractional order diffusion model. Section 3 applies the

fractional order diffusion model to power transformers, to calculate the winding fractional

dispersion impedance and section 4 give suitable high and low frequency approximations.

Section 5 shows some results concerning short-circuit impedances of power transformers.

2 Magnetic Field Fractional Order Diffusion
Motionless magnetic field systems, consisting primarily of magnetizable and conducting

materials with conductivity 1/ρ, permittivity ε, permeability μ and characteristic length

l, operated at frequencies ω << [l (εμ)1/2]−1 (quasi-steady regime), experience mainly

magnetic field diffusion. Assuming all materials to be electrically linear, homogeneous,

isotropic, negligible charges [2] and neglecting displacement currents (1/ρ >> εω), when

compared to conduction currents, the relevant Maxwell and material equations [3, 4], are

∇ · �B = 0, ∇ × �H ≈ �J , �B = μ �H , �E = ρ �J , where ∇ is the nabla operator,
⇀

B is the

magnetic flux density vector, �H is the magnetic field vector and �J is the electrical current

density vector.

2.1 Fractional Order Faraday’s Law

Fractional order Faraday’s law [1] is expressed as a differential equation with fractional

order α, being an extension of the classical Electrical field �E Faraday’s law:

∇× �E = −mDα
t

�B, (1)

where mDα
t represents the time t partial derivative of fractional order α [5, 6, 7], defined
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for t > m (here m = 0), or:

mDα
t

�B =
∂α

∂tα
�B for 0 < α < 2 and t > m (2)

The Riemann-Liouville partial derivative of fractional order α, applied to function

f(x, y), regarding variable x, for x > m, is calculated as:

mDα
xf (x, y) =

1

Γ (n − α)

∂n

∂xn

x∫
m

f (τ, y)

(x − τ)α−n+1 dτ (3)

where n is an integer satisfying n−1 < α < n; and Γ represents the gamma function [8].

2.2 Fractional Order Diffusion Vector Equation for �H Field Inside Conductors

Applying the curl operator to ∇× �H ≈ �J , ∇×
(
∇× �H

)
= ∇× �J , substituting �J from

�E = ρ �J , ∇×
(
∇× �H

)
= 1

ρ

(
∇× �E

)
, and �E from (1), it follows that ∇×

(
∇× �H

)
=

−1
ρ

[
0D

α
t

�B
]
. As, from ∇· �B = 0 and �B = μ · �H , �B and �H present zero divergence, using

the vector identity ∇×
(
∇× �H

)
= ∇

(
∇ · �H

)
−∇2 �H , (4) is obtained.

∇2 �H − μ

ρ

[
0D

α
t

�H
]

= 0 (4)

The above differential equation describes a magnetic field ”diffusion phenomenon” [4].

The equation (4) is an ordinary integer order differential equation if α = 1, or a fractional

order differential equation if α �= 1. Therefore, (4) is the fractional extension of the

classical diffusion equation ∇2 �H − (μ/ρ)
[
∂ �H

/
∂t

]
= 0.

In the following section, (4) will be applied to power transformers, to obtain a better

model for the transformer short-circuit impedance behavior with frequency, specially in

the medium to high frequency range (300-6000 Hz) which includes most current harmon-

ics when the transformer supplies non-linear loads.

3 Fractional Order Diffusion Equation Applied to Transformers

3.1 Fractional Order Diffusion Vector Equation for Leakage Field �H in One Turn

This work applies to single-phase transformers, with coaxial or concentric cylindrical

windings, as shown in Figure 1a). The transformer has a ferromagnetic core and two

windings. The main induced magnetic flux path (shown in dashed line) is assumed to

be all inside the core, and links all the turns of all windings (unity magnetic coupling).

The leakage flux (shown in solid lines) through the air or insulators, only partially links

the windings turns. Since, compared to the core, air or insulating material present much

higher reluctance, leakage inductances are assumed to be linear.

Figure 1b) depicts the magnetic flux lines at the winding 1 head. Line A represents flux

linking all the turns of winding 1, but only partly the turns of winding 2. Therefore, there

is magnetic coupling between windings due to leakage flux (mutual inductance). Flux

represented by line B links only all the turns of winding 1, meaning a magnetic coupling

between all turns of winding 1. Flux in line C means magnetic coupling between some

turns of winding 1.
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1 12 2
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1 12 2

C B ACBA
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Figure 1: Main (dashed line) and leakage (solid line) fluxes: (a) in the transformer; (b) in

the winding head.

Figure 2a) shows the winding q layers, with m turns in each layer, together with a leak-

age flux path. To calculate the magnetic field �H in one turn of layer k, assume the turn

with internal radius rk and the magnetic field direction shown in Figure 2b). To obtain a

closed solution, consider the magnetic field with cylindrical geometry, with vector compo-

nents only in the z-axis direction. Then, in cylindrical coordinates, �H is �H = H (r, t) ·�az.

Its Laplacian, in cylindrical coordinates, is ∇2 �H = �az∇2H (r, t), giving (5), which is

substituted into (4), to derive (6).

∇2 �H = �az

[
∂2

∂r2
H (r, t) +

1

r

∂

∂r
H (r, t)

]
(5)

∂2

∂r2
H (r, t) +

1

r

∂

∂r
H (r, t) − μ

ρ
0D

α
t H (r, t) = 0 (6)

Equation (6) describes, in cylindrical coordinates, the fractional diffusion phenomenon

of the magnetic field strength H (r, t) in one winding turn.

3.2 Leakage Magnetic Field �H

Assuming zero initial conditions and applying Laplace transform (t is the independent

variable) to (6), (7) is obtained, where H (r) is the magnetic field strength in the Laplace

transform domain.

d2

dr2
H (r) +

1

r

d

dr
H (r) − μ

ρ
sαH (r) = 0 (7)

Multiplying (7) by r2, using a new variable x, defined in (8), where i = (−1)1/2 and δ
is the fractional skin depth, for n = 0, (9) is derived.

x =
i

δ
r, δ =

√
ρ/(sαμ) (8)
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x2 d2

dx2
H (x) + x

d

dx
H (x) +

(
x2 − n2

)
H (x) = 0 (9)

(a)

rk

d

J
�

Vesp
B
�

Integration
path

a

rk       d

H
�

Axis z

(b)

Iron 

Φa

ΦkΦj

j            k
     
Two turns 
winding   

(c)

Figure 2: (a) Winding with q layers, and m turns per layer; (b) Cross-sections of turn k in

layer k of Figure 2a) winding; (c) winding with two turns.

The identity (9) is a classical Bessel differential equation [8] of order n (n = 0). For

xk + d′ > x > xk, (9) has a family of solutions H (x) = A J0 (x) + B Y0 (x), where

J0(x) and Y0(x) are respectively the zero order first and second kind Bessel functions.

The A and B parameters are calculated using boundary conditions. The domain of the x
variable, in terms of rk and d (Figure 2b) is:

xk =
i

δ
rk, xk + d′ =

i

δ
(rk + d) (10)

Boundary conditions can be obtained using the integral form of Ampère’s law [2] and

considering Figures 2a) and 2b). The magnetic field, at the surface inside the turn with

radius r = rk, with the current is (in the Laplace domain), and considering l as the length

of the leakage flux path out of the core (Figure 1b), is
∮ �H · d�l =

∫
S

�J · d�s = Fmm, where

Fmm is the ”magnetomotive force” due to the currents crossing the surface limited by the

integration contour. Therefore H (rk) = Fmm (rk)/l = m k is/l. Similarly, the magnetic

field in the outside surface of the turn, H(rk + d), is H (rk + d) = Fmm (rk + d)/l =
m (k − 1) is/l. Using these relations together with (8) and (10), the values A and B of

the family of solutions for (9) are determined to obtain the leakage magnetic field strength:

H (x) =
1

l

[
Fmm (rk + d) Y0 (xk) − Fmm (rk) Y0 (xk + d′)

J0 (xk + d′) Y0 (xk) − J0 (xk) Y0 (xk + d′)

]
J0 (x) +

+
1

l

[
Fmm (rk) J0 (xk + d′) − Fmm (rr + d) J0 (xk)

J0 (xk + d′) Y0 (xk) − J0 (xk) Y0 (xk + d′)

]
Y0 (x) (11)

This equation is difficult to use, since Bessel functions J0(x) and Y0(x) are given by

infinite series. A possible simplification, suitable for high-frequency modelling of leak-

age inductances, is to use an asymptotic approximation Jn(x) and Yn(x) [8] of Bessel
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functions for high values of x, since, from (8), the argument x of the Bessel functions

increases with increasing frequency.

Jn (x) =

√
2

π x
cos

(
x − nπ

2
− π

4

)
for n = 0, 1, 2, 3, ... (12)

Yn (x) =

√
2

π x
sin

(
x − nπ

2
− π

4

)
for n = 0, 1, 2, 3, ... (13)

Using (8), (10), (11), (12), (13), the fractional equation of the leakage magnetic field

(in the Laplace domain) �H = H (r) · �az is obtained for rk < r < rk+d, being H(r) given

by (14), where sinh is the hyperbolic sinus:

H (r) =

√
rk (rk + d)

l sinh (d/δ)

[
Fmm(rk + d)√

rk r
sinh

(
r − rk

δ

)
−

− Fmm (rk)√
r (rk + d)

sinh

(
r − rk − d

δ

)⎤
⎦ (14)

Next, the current density vector �J in the winding turns is determined.

3.3 Current Density Vector �J at the Winding Turns

The current density vector �J is given from ∇ × �H ≈ �J and the mentioned general so-

lution of H (x), giving ∇ × �H = ∇ × [A J0 (x) + B Y0 (x)] · �az ≈ �J , which can be

solved, in cylindrical coordinates, to write �J =
[
− d

dx
[A J0 (x) + B Y0 (x)] · d

dr
x

]
· �aφ.

Differentiating the Bessel equations [8], �J =
√−1

δ
[A J1 (x) + B Y1 (x)] · �aφ, using (8),

(10), (12), (13), the values A, B of the general solution of H (x) in the Laplace domain,

it is obtained �J = J (r) ·�aφ for rk < r < rk + d, being J(r) given by (15), where cosh is

the hyperbolic co-sinus.

J (r) =

√
rk (rk + d)

l δ sinh (d/δ)

⎡
⎣ Fmm (rk)√

r (rk + d)
cosh

(
r − rk − d

δ

)
−

−Fmm (rk + d)√
r rk

cosh
(

r − rk

δ

)]
(15)

Equations (14) and (15) are useful to calculate the voltage in each winding turn.

3.4 Voltage per Winding Turn, Considering the Resistivity and Leakage Flux

The transformer is first considered to have a two turn winding (Figure 2c). Vector Φj

represents the leakage flux linked by the conductor of turn j, Φk represents the leakage

flux linked by the conductor of turn k, and Φa is the leakage flux across the insulating

layers.

Voltage at k turn due to i) the conductor resistance; ii) the self-leakage flux Φk.The

winding voltage of turn k depends on i) the conductor resistance; ii) the self-leakage
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flux Φk, iii) the leakage fluxes Φj and Φa. The voltage of turn j depends also on i) the

conductor resistance; ii) the selfleakage flux Φj , but leakage fluxes Φk and Φa do not

induce a voltage since they do not link the turn j.

The magnetic flux density �B has zero divergence. Therefore, using vectorial calculus it

follows that:

∮
l

�E · d�l +0 Dα
t

∫
S

�B · d�s = −
∮
l

∇V · d�l = 0 (16)

From the electromagnetism viewpoint, this equation is the fractional Kirchhoff voltage

law along a closed path. It will be used to calculate the winding voltage Vkk of turn k in

layer k (Figure 2c) of the winding (Figure 2a).

The calculation uses Ohm’s law �E = ρ �J and (16). Considering the integration path

l embracing the surface S, (Figure 2b), the voltage Vkk at turn k, in Laplace domain, is

Vk,k =
∫
l
ρ �J · d�l + sα

∫
S

μ �H · d�s. Then, for rk < r < rk + d, Vk,k =
2π∫
0

ρ r �J · �aφdφ +

sα
r∫

rk

2π∫
0

μ r �H · �azdφdr. Substituting �J from (15), �H from (14), Fmm (rk) = m k is,

and Fmm (rk + d) = m (k − 1) is, the voltage per turn due to resistance and self-flux

Φk, (17) is obtained, where coth is the hyperbolic co-tangent, and csch is the hyperbolic

co-secant.

Vk,k =
2πρ

aδ

[
rkk coth

(
d

δ

)
−

[
(k − 1)

√
rk (rk + d)

]
csch

(
d

δ

)]
is (17)

Next, the voltage per turn due to the leakage flux of the remaining turns is determined.

Voltage at turn k due to iii) the leakage fluxes Φj . To calculate the voltage Vkj of turn

k (Figure 2c) due to the flux Φj across turn j, we use (16), without the term for the

resistive voltage drop, since it is already included in (17), and write Vk,j = sα
∫
Sj

μ �H · d�s
for k �= j. The magnetic flux is evaluated at the surface Sj of turn j to give Vk,j =

sα
rj+d∫
rj

2π∫
0

μ r �H �az dφdr for k �= j. Using �H = H (r) · �az and the Fmm values in the

previous equation, for k �= j, Vkj is:

Vk,j =
2πρ

aδ

[
[rj (2j − 1) + d (j − 1)] coth

(
d

δ

)
−

−
[
(2j − 1)

√
rj (rj + d)

]
csch

(
d

δ

)]
is for k �= j (18)

3.5 Winding Fractional Dispersion Impedance

The total voltage Vb at the winding of Figure 2a), is obtained adding the voltages Vkk and

Vkj of all the winding turns, Vb = m
q∑

k=1

[
Vk,k +

q∑
j=k+1

Vk,j

]
, giving, from (17) and (18),

Vb as:
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Vb =
2πρm

aδ

q∑
k=1

[
rkk coth

(
d

δ

)
−

[
(k − 1)

√
rk (rk + d)

]
csch

(
d

δ

)
+

+
q∑

j=k+1

[rj (2j − 1) + d (j − 1)] coth

(
d

δ

)
−

q∑
j=k+1

[
(2j − 1)

√
rj (rj + d)

]
csch

(
d

δ

)⎤
⎦ is

(19)

Since (17) and (18) do not include the induced voltage due the main flux (core flux,

Figure 1), then, the ratio Vb/is is the winding fractional dispersion impedance Zσ, in the

Laplace domain:

Zσ = P1
d

δ

[
P2 coth

(
d

δ

)
+ P4 csch

(
d

δ

)]
(20)

where δ is given by (8), and P1, P2, P4 are real terms, only dependent on the turn dimen-

sions and conductivity:

P1 =
2πρm

ad
, P2 =

q∑
k=1

[
(k − 1)2 (rk + d) + k2rk

]
(21a)

P4 =
q∑

k=1

[
2k (1 − k)

√
rk (rk + d)

]
(21b)

4 Asymptotic Behavior of the Winding Dispersion Impedance

4.1 High Frequency Asymptotic Behavior

Considering the fractional skin depth δ of (8) in the frequency domain, δ =
√

ρ/[(iω)α μ],
and frequencies ω high enough to satisfy d >> |δ|, since coth(d/δ) ≈ 1 for d >> |δ|
and cosh(d/δ) ≈ 0 for d >> |δ|, the use in (20) of (21) will give the high-frequency

asymptotic behavior (valid for d >> |δ|) of the fractional dispersion impedance Zσ:

Zσ =

√
d2μ

/
ρ

[
ωα/2eiπα/4

]
P1P2 (22)

Observe that Zσ is proportional to ωα/2eiπα/4, or, in the Laplace domain, to sα/2.

Therefore, even in the classical diffusion phenomenon (α = 1) the high frequency dis-

persion impedance Zσ shows a fractional derivative behavior of order 1/2 [2], being

Zσ ∝ ω1/2eiπ/4. Moreover, if a given impedance, related to diffusion phenomena, de-

parts from the behavior expressed in Zσ ∝ sα/2, one can say it might obey a fractional

order differential diffusion equation (4), in which α �= 1.

However, this approximation is only valid for high frequencies. For dc and low fre-

quencies, (22) is no longer valid, as can be seen in the next section.
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4.2 Winding dc Resistance

To obtain the dc resistance, consider the differential conductance of the dashed path shown

in Figure 2b), dG = a d r
ρ 2π r

, and integrate to obtain the conductance Gk of one turn, Gk =
rk+d∫
rk

a dr
ρ 2π r

= a
ρ 2π

ln
(

rk+d
rk

)
. Then, as Rk = 1/Gk = ρ2π

a d
d
/

ln
(

rk+d
rk

)
, where ln is the

natural logarithm, the winding resistance Rdc considers the resistances of all turns:

Rdc =
ρ 2π m

a d

q∑
k=1

[
d

/
ln

(
rk + d

rk

)]
= P1P3 (23)

where P1 is given in (21) and P3 is:

P3 =
q∑

k=1

[
d

/
ln

(
rk + d

rk

)]
(24)

Equation (23) is useful to show that Bessel asymptotic approximations (12) and (13)

lead to low frequency errors in (19) and (20), since Rdc should be the limit of (20) as

ω → 0, or Rdc = lim
ω→0

Zσ, giving Rdc = P1(P2 + P4).

This result does not equal (23), since (20) is not valid for low frequencies. However,

studying (20) we can observe that the P2 coth component defines the high frequency be-

havior, as the P2 csch term is negligible for those frequencies, being only meaningful for

low frequencies. Therefore, we propose an approximation for (20), which tries to enhance

the behavior at low frequencies, without disturbing the validity for high frequencies [9]:

Zσ = P1

[
d

δ

] [
P2 coth

[
d

δ

]
+ (P3 − P2) csch

[
d

δ

]]
(25)

where the values of P1, P2 and P3, are given by (21), (24) and δ by (8) (frequency domain).

4.3 Fractional Transfer Function High and Low Frequency Approximation

As seen, the fractional dispersion impedance Zσ, obtained in (20) or (22), is valid only

for high frequencies [10]. However, an approximation to (20), able to describe both the

high frequency and low frequency behavior must contain the contribution of the self Ldc

and mutual inductance of the windings [9]:

Ldc =
m2πμ

2l

q∑
j=1

⎡
⎣ 1

ln
(

rj+d

rj

)
{[

1 + 2 (j − 1) ln

(
rj + d

rj

)]
(rj + d)2−

−
[
1 + 2j ln

(
rj + d

rj

)]
r2
j

}]
+

m2πμ

2l

q∑
k=1

⎡
⎢⎣ k − 1[

ln
(

rk+d
rk

)]2 [[1 + (k − 1) ·

· ln
(

rk + d

rk

)]
(rk + d)2 +

{
1 +

[
2k ln

(
rk + d

rk

)
+ (k + 1)

]
ln

(
rk + d

rk

)}
r2
k

]]

(26)
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The approximation must also give the low frequency term Rdc = P1 P3 when ω → 0, and

the high frequency factor ωα/2eiπα/4 of (22) when ω →∞. A candidate transfer function,

proposed from (25), contains one zero and one pole, both fractional:

Zσ = Rdc
(1 + sτ1)

α

(1 + sτ2)
α/2

= P1P3
(1 + sτ1)

α

(1 + sτ2)
α/2

(27)

where τ1 = (Ldc/Rdc)
1/α

, and the constant τ2 is calculated for high frequencies, consid-

ering iωτ1 >> 1 and iωτ2 >> 1 in (27), giving (28).

Zσ = P1P3
(1 + iωτ1)

α

(1 + iωτ2)
α/2

≈ P1P3
(iωτ1)

α

(iωτ2)
α/2

(28)

This equation must equal (22). Thus:

Zσ ≈ P1P3
(iωτ1)

α

(iωτ2)
α/2

=

√
d2μ

ρ
(iω)α/2 P1P2 (29)

τ2 =

[
P3 τα

1

/(
P2

√
d2μ

ρ

)] 2
α

(30)

Using τ1 and (30), the fractional model (27) tries to reproduce the low frequency be-

havior, without disturbing the high frequency validity.

5 Results: Evaluation of Short-Circuit Impedance of Transformers
Data from a single-phase toroidal power transformer of 25 kVA, 7200 V in the high volt-

age side and 240 V/120 V in the low voltage secondary was used [11]. The proposed

model for the transformer short-circuit impedance (Figure 3) includes an equivalent ca-

pacitor C, associated with the high frequency displacement currents, not considered in

the previous analysis, L, the frequency independent inductance, and Zσ, the fractional

dispersion impedance associated with (27).

The values of L = 45 mH and C = 890 pF were calculated in a previous work

[10, 11]. From the dimensions and short-circuit experimental data of the transformer

[10, 12], Rdc, τ 1 and τ 2 were calculated and a non-linear regression was used to obtain

the fractional order α that characterizes the Zσ impedance in (27). Table 1 shows the

obtained results for fractional α (fractional order diffusion) and for α = 1 (integer order

diffusion). The best fit for short-circuit experimental data was obtained with α = 0.949.

Skin and proximity 
effect i mpedance

L
Frequency 

independent 
inductance

C
Capacitor 

associated with 
displacement 

currents
Z

Figure 3: Frequency dependent short-circuit impedance model for the power transformer.
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Parameter α = 0.949 α = 1
Rdc 20.02 [Ω] 20.02 [Ω]

τ 1 1.59 [ms] 1.44 [ms]

τ 2 5.27 [μs] 9.73 [μs]

Table 1: Parameters of Zσ (α obtained by non-linear regression).

The magnitude, angle and real part values of the fractional impedance Zσ, obtained

using (27) and Table 1 values, are shown in Figure 4.

It can be seen (Figure 4a) that the Zσ magnitude does not show significant variations for

the two values of α (α = 1 and α = 0.949), both integer and fractional approximations

giving good results. The Zσ angle is slightly better approximated with α = 0.949 (Figure

4b, solid curve), mainly in the medium frequency range (300 Hz to 6000 Hz), the classical

approach (α = 1) giving nearly 2% errors in that region. The classical approach (α = 1)

for the Zσ real part gives nearly 15% errors in the frequency range 300 Hz to 6000 Hz.

The Zσ real part is clearly better approximated taking α = 0.949 (Figure 4c, solid curve),

also in the medium frequency range (300 Hz to 6000 Hz), a range of interest for power

quality studies.

(a) (b) (c)

Figure 4: (a) Measured (Zmed) and calculated magnitude of the dispersion impedance

Zσ versus frequency, showing integer (Zcc Nor) and fractional (Zcc Frac) approaches;

(b) Measured (AngMed) and calculated angle of the fractional dispersion impedance

Zσ versus frequency, showing integer (Ang Zcc Nor) and fractional (Ang Zcc Frac)

approaches; (c) Measured (Rcc Med) and calculated real part value of the fractional

dispersion impedance Zσ versus frequency, showing integer (Rcc Nor) and fractional

(Rcc Frac) approaches.

6 Conclusion
The assumption that electromagnetic fields diffusion phenomena in conducting media

obey differential equations of fractional order, can be worked out with the same mathe-

matics used to solve the problem using integer derivatives. The analytical results obtained
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extend the existing studies, offer an extra degree of freedom, and enable better diffusion

modelling, when compared to models with integer differential equations.

In the measured power transformer, the obtained fractional order is very close to unity

(α = 0.949), suggesting that the classical integer approximation is good enough for most

purposes. However, the fractional zero-pole model, here parameterized, enables a better

approximation, suggesting that this approach can be used to optimize the design and es-

timation of short-circuit transformer resistance, specially in the medium frequency range

(300 Hz to 6000 Hz) where harmonics, transformer heating and power quality related

problems can be significant.
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