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Abstract — In this paper we develop a method for obtaining digital rational ap-
proximations (IIR filters) to fractional-order operators of type sα, where α ∈ �.
The proposed method is based on the least-squares (LS) minimization between the
impulse responses of the digital fractional-order integrator/differentiator and of the
rational-fraction approximation. The results reveal that the LS approach gives simi-
lar or superior approximations in comparison with other methods. The effectiveness
of the method is demonstrated both in the time and frequency domains through an
illustrative example.

1 Introduction
In the literature we find several different definitions for the fractional-order operator

Dαf(t), where the order α can be an arbitrary non-integer value [1, 2]. In this study

we admit only values of α ∈ �. From a control and signal processing perspective, the

Grünwald-Letnikov definition [2] seems to be the most appropriate, particularly for a

digital realization [3]. Furthermore, the definition poses fewer restrictions upon on the

functions to which it is applied [1]. It is given by the expression:

Dαf(t) = lim
h→0

{
1

hα

∞∑
k=0

(−1)k

(
α
k

)
f (t − kh)

}
(1)

(
α
k

)
=

Γ(α + 1)

Γ(k + 1)Γ(α − k + 1)
(2)

where f(t) is the applied function, Γ(x) is the Gamma function and h the time increment.

Note that (1) is defined by an infinite series revealing that the fractional-order operators

are global operators and that have, implicitly, a memory of all past function values.

One of the mathematical tools commonly used for the analysis and synthesis of auto-

matic control systems is the Laplace transform (LT). Fortunately, the generalization of
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the LT to a fractional-order is straightforward. For instance, the LT of a fractional deriva-

tive/integral of order α of the function f(t), Dα[f(t)], under null initial conditions, is

given by the simple expression:

L {Dα [f(t)]} = sαF (s), α ∈ � (3)

where F (s) = L{f(t)}. Note that (3) is a direct generalization of the classical integer-

order scheme with the multiplication of the signal transform by the Laplace operator s.

This means that frequency-based analysis methods have a straightforward adaptation to

the fractional-order case.

The usual approach for obtaining discrete equivalents of the fractional-order operator

sα, α ∈ �, adopts a generating function [4, 5]. By other words, given a continuous

transfer function, G(s), a discrete equivalent, G(z), can be found by the substitution:

G(z) = G(s)
∣∣∣sα=Hα(z) (4)

where Hα(z) denotes the fractional discrete equivalent of order α of the fractional-order

operator sα, expressed as a function of the complex variable z or the shift operator z−1. In

these s → z conversion schemes (also called analog to digital open-loop design methods)

we usually adopt either the Euler (or first backward difference) or the Tustin (or bilinear)

generating functions [3]. Table 1 lists the two mentioned conversion methods that will be

used in this study.

In general, the irrational functions Hα(z−1) (Table 1) are approximated either through

polynomials or through rational functions (i.e., the ratio of two polynomials). It is well

known that rational approximations frequently converge faster than polynomial approx-

imations and have a wider domain of convergence in the complex domain. In the work

that follows, we develop rational approximations of the z variable to fractional-order op-

erators of type sα, α ∈ �, which make them suited for Z−transform analysis and digital

implementation.

Rational approximations Hm,n(z−1) of m and n order to irrational transfer functions of

type Hα(z−1) can be formally expressed as:

Hα(z−1) ≈
[
Pm(z−1)

Qn(z−1)

]
m,n

= Hm,n(z−1) (5)

where P and Q are the polynomials of degree m and n, respectively.

Method Hα(z−1)
Euler

Grünwald-Letnikov

(
1 − z−1

T

)α

Tustin

(
2
T

1 − z−1

1 + z−1

)α

Table 1: s → z conversion schemes
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In this paper we consider digital rational approximations of type (5) to fractional-order

operators. In a first phase, we discretize the fractional-order operator sα using one of

the generating functions, yielding the irrational functions Hα(z−1), listed in Table 1, and

we determine their impulse responses hα(k). Then, in a second phase, we apply the

least-squares (LS) minimization method to the impulse responses, hα(k) and h(k), of the

digital fractional operator Hα(z−1) and of the digital rational approximation Hm,n(z−1),
respectively. We show that these new rational transfer functions of the z variable give

better approximations, both in the time and frequency domains, than other approaches,

namely the Padé or the continued fraction expansion (CFE) methods.

Bearing these ideas in mind, the paper is organized as follows. Section 2 derives the

impulse responses of the fractional Euler/Tustin operators and section 3 gives an introduc-

tion to the signal modeling. Based on the previous results, sections 4 and 5 develop the

Padé and the least-squares (LS) approximation methods, respectively. Section 6 presents

an illustrative example showing the effectiveness of the proposed methods, both in the

time and frequency domains. Finally, section 7 draws the main conclusions.

2 Impulse Response of Digital Fractional-Order Operators
In this section we derive the impulse responses hα(k) of the fractional-order operators

listed in Table 1. It is assumed that hα(k) = 0 for k < 0, i.e., a causal system.

Expanding the Euler generating function Hα
E(z−1) into a power series in z−1, we have:

Hα
E(z−1) =

[
1

T

(
1 − z−1

)]α

=
(

1

T

)α ∞∑
k=0

(−1)k

(
α
k

)
z−k =

∞∑
k=0

hα
E(k)z−k (6)

where the impulse sequence hα
E(k) is given by:

hα
E(k) =

(
1

T

)α

(−1)k

(
α
k

)
, k ≥ 0 (7)

Developing a power series expansion (PSE), over the Tustin generating function Hα
T (z−1),

we get:

Hα
T (z−1) =

(
2

T

1 − z−1

1 + z−1

)α

=
(

2

T

)α ∞∑
k=0

⎡
⎣ k∑

j=0

(−1)j

(
α
j

)( −α
k − j

)⎤
⎦ z−k =

∞∑
k=0

hα
T (k)z−k (8)

where the impulse sequence hα
T (k) is given by:

hα
T (k) =

(
2

T

)α k∑
j=0

(−1)j

(
α
j

)( −α
k − j

)
, k ≥ 0 (9)

Notice that the PSE method leads to impulse sequences of infinite duration. For a

practically realizable form we need to truncate these sequences yielding approximations

in the form of finite impulse sequences (FIR filters).
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3 Signal Modeling

Consider that the impulsional response hα(k) of the fractional-order operator is specified

for k ≥ 0. The desired rational function Hm,n(z−1) that approximates the irrational

transfer function Hα(z−1) has the form:

Hm,n

(
z−1

)
=

B (z−1)

A (z−1)
=

m∑
k=0

bkz
−k

1 +
n∑

k=1
akz−k

=
∞∑

k=0

h (k) z−k (10)

where h(k) is its impulse response. The rational approximation (10) has m + n + 1
parameters, namely the coefficients ak (k = 1, 2, . . . , n) and bk (k = 0, 1, . . . , m), which

can be selected to minimize the sum of the squared errors:

J =
N−1∑
k=0

[hα (k) − h (k)]2 (11)

where N is the number of impulse values used in the summation. However, this approach

leads to a nonlinear problem for the model parameters (ak, bk) and, consequently, the

minimization of J involves the solution of a set of nonlinear equations.

If we rewrite (10) as Hm,n(z−1)A(z−1) = B(z−1), and assuming that hα(k) is given

approximately by the impulse response of Hm,n(z−1), one can write the time domain

equation of (10) as:

hα(k) +
n∑

l=1

alh
α(k − l) =

{
bk, 0 ≤ k ≤ m
0, k > m

(12)

This gives a set of linear equations, which can be used in different ways to solve for

the coefficients (ak, bk) [6, 7, 8]. Next, we consider the application of the Padé and

the so-called least-squares approximation methods for the design of rational functions of

type (10) to fractional-order integrators and differentiators. In our work [8] this study is

extended to three linear suboptimal solutions to the problem, namely the herein presented

Padé method, and the Prony and the Shanks methods.

4 Padé Approximation Method

The Padé approximation method yields an approximation that have an exactly match to

hα(k) for the first m + n + 1 values of k. Then, equation (12) becomes:

hα(k) +
n∑

l=1

alh
α(k − l) =

{
bk, 0 ≤ k ≤ m
0, m + 1 ≤ k ≤ m + n

(13)

where hα(k) = 0 for k < 0. All m + n + 1 equations (13) can be written simultaneously

in the matrix form:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hα (0) 0 · · · 0
hα (1) hα (0) · · · 0
hα (2) hα (1) · · · 0

...
...

. . .
...

hα (m) hα (m − 1) · · · hα (m − n)
hα (m + 1) hα (m) · · · hα (m − n + 1)

...
...

. . .
...

hα (m + n) hα (m + n − 1) · · · hα (m)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
a1

a2
...

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0

b1

b2
...

bm

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

In the Padé approximation method, two steps are used to solve for the coefficients ak

and bk, first solving for the denominator coefficients ak and then solving for the numerator

coefficients bk.

In the first step, solving for coefficients ak, we use the last n equations of system (14),

as indicated by the partitioning, which after simple manipulations, yields:

⎡
⎢⎢⎢⎢⎣

hα (m) hα (m − 1) · · · hα (m − n + 1)
hα (m + 1) hα (m) · · · hα (m − n + 2)

...
...

. . .
...

hα (m + n − 1) hα (m + n − 2) · · · hα (m)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a1

a2
...

an

⎤
⎥⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎢⎣

hα (m + 1)
hα (m + 2)

...

hα (m + n)

⎤
⎥⎥⎥⎥⎦

(15)

H2a = −h21 (16)

where a and h21 are n × 1 vectors and H2 is an n × n nonsymmetric Toeplitz matrix. If

H2 is nonsingular (i.e., is invertible) then H−1
2 exists and the coefficients ak are uniquely

determined by:

a = −H−1
2 h21 (17)

After obtaining the coefficients ak, the second step is to solve for the numerator coeffi-

cients bk using the first m + 1 equations in system (14), i.e.:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

hα (0) 0 0 · · · 0
hα (1) hα (0) 0 · · · 0
hα (2) hα (1) hα (0) · · · 0

...
...

...
. . .

...

hα (m) hα (m − 1) hα (m − 2) · · · hα (m − n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
a1

a2
...

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b0

b1

b2
...

bm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(18)

b = H1ā (19)

where b is an (m+1) ×1 vector, ā = [1; a] is an (n+1) ×1 vector and H1 is an (m+1)×
(n + 1) matrix. Therefore, b may be found by simply multiplying ā by the matrix H1.

Equivalently, the coefficients bk may be evaluated using equation (13) as follows:
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bk = hα (k) +
n∑

l=1

alh
α (k − l) , k = 0, 1, . . . , m (20)

In this way, we obtain a perfect match between h(k) and the desired impulse response

hα(k) for the first m + n + 1 values of the impulse sequence. The success of this method

depends strongly on the number of selected model coefficients. Since the design method

matches hα(k) only up to the number of model parameters, the more complex the model,

the better the approximation to hα(k) for 0 ≤ k ≤ m + n. However, in practical ap-

plications, this introduces a major limitation of the Padé method because the resulting

approximation must contain a large number of poles and zeros.

It can be shown that rational approximations obtained by the CFE method are the same

as those resulting by application of the Padé approximation to power series expansion

(m = n) [9]. Nevertheless, the CFE approach is computationally less expensive than the

Padé technique.

5 Least-Squares Approximation Method
In this section we develop a new approach to the problem, which is based on the standard

least-squares identification algorithm [10].

The impulse response h(k) of Hm,n(z−1) to a unit sample input δ(k) corresponds to the

expression:

h(k) +
n∑

l=1

alh(k − l) =
m∑

l=0

blδ(k − l) (21)

where δ(k − l) = 1 (for k = l) and δ(k − l) = 0 (for k �= l) and k = 0, 1, . . . , N − 1
corresponding to a collect of N values from the input and output sequences.

Setting h(k) = hα(k), expression (21) can be written in matrix form as:

hα (k) = θTx (k) , k ≥ 0 (22)

where x(k) is the (m + n + 1) × 1 state vector and θ the (m + n + 1) × 1 parameter
vector defined as:

x(k) = [−hα(k − 1), ...,−hα(k − n), δ(k), ..., δ(k − m)]T (23)

θ = [a1, a2, . . . , an,b0, b1, . . . , bm]T (24)

Let us introduce the matrix variables:

X =

⎡
⎢⎢⎢⎢⎣

xT (0)
xT (1)

...

xT (N − 1)

⎤
⎥⎥⎥⎥⎦ , h =

⎡
⎢⎢⎢⎢⎣

hα (0)
hα (1)

...

hα (N − 1)

⎤
⎥⎥⎥⎥⎦ (25)

If the system can be represented by equation (22) for some θ = θ∗, then the vector of

systems outputs becomes:
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h = Xθ∗ (26)

where X is an N × (m+n+1) matrix and h is an N ×1 vector. For the construction of X
we assume that the initial conditions of the system are zero, that is, hα(k) = 0 for k < 0.

Usually, N >> m + n + 1 and we define the error vector e(θ) = h − Xθ, where θ is a

general parameter vector. Hence, the objective is to find an estimate θ that minimizes:

J (θ) =
N−1∑
k=0

[e (k)]2 = e (θ)T e (θ) = (h − Xθ)T (h − Xθ) (27)

Solving ∂J /∂θ = 0 we obtain the following system of normal equations:

XTXθ = XTh (28)

If the matrix XT X is nonsingular, a unique solution of (28) exists and the optimum θ is

given by:

θ = X+h = (XTX)−1XTh (29)

where X+ = (XTX)−1XT is the pseudoinverse of X.

It is clear from (29) that if N = m + n + 1, the system reduces to an N × N square

matrix and, consequently, the parameter vector θ can be calculated simply by θ = X−1h.

We verify that, in this case, we get the same rational approximation as those obtained by

the application of the Padé or the CFE methods.

6 Ilustrative Example
In this section we obtain rational approximation models Hm,n(z−1) for the fractional-

order operator sα, with α = −1/2, using the LS method described in the previous section.

We consider the fractional Euler/Tustin operators, sampled at T = 0.01 s, m = n = {1, 3,

5, 7}, and N = 1000. The approximations are given in Tables 2 and 3.

For comparison purposes, we also plot the rational approximation obtained by the Padé

method for m = n = 5, G5,5(z
−1), for the Euler and Tustin operators, which are given in

Table 4. We note that the sum of the coefficients of the numerator and denominator of the

rational approximations Hm,n(z−1) and G5,5(z
−1) are approximately zero, that is:

m∑
k=0

bk =
n∑

k=0

ak ≈ 0 (30)

Figures 1 and 2 depict the Bode diagrams and the step responses of the approximations

Hm,n(z−1), with m = n = {1, 3, 5, 7} and N = 1000, for the Euler and the Tustin op-

erators, respectively. Figures 3 and 4 show the results when we vary the length of the

impulsional sequence N = {11, 100, 200, 500, 1000} for a fixed order of the approxima-

tions, namely for m = n = 5.

It is clear that the higher the order m = n (or the impulse sequence N ) of the approxi-

mations the better the fitting (in a least-squares sense) both in the frequency and the step

responses, of the fractional-order integrator s−0.5. Furthermore, with the LS method we

can tune the approximations for achieving better accuracy on a prescribed range of time t
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(m, n) Rational function, Hm,n
(
z−1

)
(1, 1)

0.1 − 0.04397z−1

1 − 0.9397z−1

(3, 3)
0.1 − 0.161z−1 + 0.06789z−2 − 0.004722z−3

1 − 2.11z−1 + 1.359z−2 − 0.2479z−3

(5, 5)
0.1 − 0.2789z−1 + 0.2792z−2 − 0.1184z−3 + 0.01861z−4 − 0.0005166z−5

1 − 3.289z−1 + 4.062z−2 − 2.294z−3 + 0.5644z−4 − 0.04312z−5

(7, 7)

0.1 − 0.3966z−1 + 0.6293z−2 − 0.5065z−3 + 0.2155z−4 − 0.04542z−5

+0.003798z−6 − 0.000056456z−7

1 − 4.466z−1 + 8.151z−2 − 7.778z−3 + 4.109z−4 − 1.164z−5

+0.1544z−6 − 0.006461z−7

Table 2: Approximations with LS method for the Euler operator

(m, n) Rational function, Hm,n
(
z−1

)
(1, 1)

0.07071 + 0.008843z−1

1 − 0.8749z−1

(3, 3)
0.07071 + 0.005302z−1 − 0.05281z−2 − 0.001747z−3

1 − 0.925z−1 − 0.3218z−2 + 0.2596z−3

(5, 5)

0.07071 + 0.004728z−1 − 0.09396z−2 − 0.004356z−3 + 0.02656z−4

+0.0005193z−5

1 − 0.933z−1 − 0.8957z−2 + 0.8007z−3 + 0.1144z−4

−0.08461z−5

(7, 7)

0.07071 + 0.004737z−1 − 0.1355z−2 − 0.007165z−3 + 0.0771z−4

+0.00279z−5 − 0.0118z−6 − 0.0001729z−7

1 − 0.933z−1 − 1.483z−2 + 1.348z−3 + 0.5753z−4 − 0.4936z−5

−0.04154z−6 + 0.02785z−7

Table 3: Approximations with LS method for the Tustin operator
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Method Rational function, G5,5
(
z−1

)

Euler

0.1 − 0.225z−1 + 0.175z−2 − 0.05469z−3 + 0.005859z−4

−0.00009766z−5

1 − 2.75z−1 + 2.75z−2 − 1.203z−3 + 0.2148z−4

−0.01074z−5

Tustin

0.07071 + 0.03536z−1 − 0.07071z−2 − 0.02652z−3 + 0.01326z−4

+0.00221z−5

1 − 0.5z−1 − z−2 + 0.375z−3 + 0.1875z−4

−0.03125z−5

Table 4: Approximations with Padé method for m = n = 5

(or frequency ω) in contrast with other approximations that matches only the initial-time

transient corresponding to the high frequency range.

Figure 5 shows the pole-zero map of the approximations Hm,n(z−1), with m = n = {1, 3,

5, 7}, for the Euler and Tustin operators. We observe that the distribution of the zeros and

poles satisfies two desired properties: (i) all the poles and zeros lie inside the unit circle

and (ii) they are interlaced along the segment of the real axis, corresponding to z ∈ ]0, 1[
and z ∈ ] − 1, 1[ for the Euler and Tustin operators, respectively.

In conclusion, the proposed LS method provides causal, stable and minimum-phase

rational approximations as imposed for a digital realization. Its superior nature, in com-

parison with the Padé and the CFE approximation methods, is illustrated in the case of

typical paradigms. The results presented here seem to indicate that the LS approach is a

suitable technique for obtaining discrete approximations of the fractional-order operators.
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Figure 1: Bode diagrams (left) and step responses (right) of the LS approximation

Hm,n(z−1), m = n = {1, 3, 5, 7}, vs. the Padé approximation G5,5(z
−1) for the Euler

operator with α = −1/2 and N = 1000
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Figure 2: Bode diagrams (left) and step responses (right) of the LS approximation

Hm,n(z−1), m = n = {1, 3, 5, 7}, vs. the Padé approximation G5,5(z
−1) for the Tustin

operator with α = −1/2 and N = 1000
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Figure 3: Bode diagrams (left) and step responses (right) of the LS approximation

H5,5(z
−1), vs. the Padé approximation G5,5(z

−1) for the Euler operator with α = −1/2
and N = {11, 100, 200, 500, 1000}
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Figure 4: Bode diagrams (left) and step responses (right) of the LS approximation

H5,5(z
−1), vs. the Padé approximation G5,5(z

−1) for the Tustin operator with α = −1/2
and N = {11, 100, 200, 500, 1000}

7 Conclusions
We have described the adoption of the LS approach in the design of digital rational transfer

functions that approximates fractional-order operators of type sα, α ∈ �. The method

was illustrated for a fractional-order integrator (α = −1/2), but it can be generalized

to other real non-integer values. It was shown that the new discrete rational functions

give better results, both in the time and frequency domains, than other approaches used

for the same purpose, namely the Padé or the CFE approximations. Furthemore, the LS

method yields causal, stable and minimum-phase rational transfer functions suitable for

real-time implementation. In this line of thought, this paper represents a step towards the

implementation of practical digital fractional-order differentiators and integrators.
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