

How realistic is the mixed-criticality real-time
system model?

Conference Paper

CISTER-TR-151004

2015/11/04

Alexandre Esper

Geoffrey Nelissen

Vincent Nélis

Eduardo Tovar

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47141659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Conference Paper CISTER-TR-151004 How realistic is the mixed-criticality real-time system ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

How realistic is the mixed-criticality real-time system model?

Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, Eduardo Tovar

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: aresper@criticalsoftware.com, grrpn@isep.ipp.pt, nelis@isep.ipp.pt, emt@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

With the rapid evolution of commercial hardware platforms, in most application domains, the industry has shown
a growing interest in integrating and running independently-developed applications of different “criticalities” in the
same multicore platform. Such integrated systems are commonly referred to as mixed-criticality systems (MCS).
Most of the MCS-related research published in the state-of-the-art cite the safety-related standards associated to
each application domain (e.g. aeronautics, space, railway, automotive) to justify their methods and results.
However, those standards are not, in most cases, freely available, and do not always clearly and explicitly specify
the requirements for mixed-criticality systems. This paper addresses the important challenge of unveiling the
relevant information available in some of the safety-related standards, such that the mixed-criticality concept is
understood from an industrialist’s perspective. Moreover, the paper evaluates the state-of-the-art mixed-criticality
real-time scheduling models and algorithms against the safety-related standards and clarifies some
misconceptions that are commonly encountered.

How realistic is the mixed-criticality real-time system
model?

Alexandre Esper†‡, Geoffrey Nelissen‡, Vincent Nélis‡, Eduardo Tovar‡
†Critical Software S.A. ‡CISTER/INESC-TEC, ISEP

Porto, Portugal Porto, Portugal
aresper@criticalsoftware.com {grrpn, nelis, emt}@isep.ipp.pt

ABSTRACT

With the rapid evolution of commercial hardware platforms,
in most application domains, the industry has shown a grow-
ing interest in integrating and running independently-developed
applications of different “criticalities” in the same multi-
core platform. Such integrated systems are commonly re-
ferred to as mixed-criticality systems (MCS). Most of the
MCS-related research published in the state-of-the-art cite
the safety-related standards associated to each application
domain (e.g. aeronautics, space, railway, automotive) to
justify their methods and results. However, those stan-
dards are not, in most cases, freely available, and do not
always clearly and explicitly specify the requirements for
mixed-criticality systems. This paper addresses the impor-
tant challenge of unveiling the relevant information avail-
able in some of the safety-related standards, such that the
mixed-criticality concept is understood from an industrial-
ist’s perspective. Moreover, the paper evaluates the state-
of-the-art mixed-criticality real-time scheduling models and
algorithms against the safety-related standards and clarifies
some misconceptions that are commonly encountered.

1. INTRODUCTION
In the last decade and in most application domains, the

industry has shown a growing interest in developing meth-
ods and tools to implement, deploy, validate, and certify
independently-developed applications of different “criticali-
ties” in the same multicore platform, with the evident objec-
tive of improving the performance/cost ratio of the system.
Such integrated systems are commonly referred to as mixed-
criticality systems (MCS). All over the world, the industrial
interest in MCS has manifested itself in the form of impor-
tant investments placed into R&D projects and academics
since long time started to manifest their interest as well. The
research community that focuses on the real-time schedul-
ing theory has actively taken part in these efforts regarding
MCS. Their base application model has quickly developed
into a mixed-criticality (MC) task model that is today well-
accepted and used in most research works on the subject.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RTNS ’15 November 4-6, 2015, Lille, France
Copyright 2015 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

This new MC task model is in essence the result of combin-
ing the standard hard real-time requirements (studied by
the real-time research community since the 70’s) with the
notion of “criticality” of execution. When transposed into
the industrial world, the applications that correspond the
best to that MC model and its combined requirements are
those in which a part of the core functionality is delivered
by safety-critical components.
The introduction of new constraints and requirements into

the theoretical models has unexpectedly unveiled a brand
new research landscape. Into this virgin research field some
of the seminal results in scheduling theory had to be restated
and revalidated, and an entire body of knowledge was to be
rebuilt. The popularity of MCS immediately soared up in
the real-time research community, which has been evidenced
by the sudden emergence of tracks, sessions, and workshops
that are now entirely dedicated to MCS in most of the flag-
ship conferences on real-time systems.

Since its conception, the MC model has been gradually
gaining sophistication by incorporating multiple levels of
criticality or probabilistic WCET estimates to mention a
couple of examples. Each transformation of the model has
been motivated and justified as a mean to better cope with
the requirements of MCS. However, due to the price of safety-
related standards that provide and formally state those re-
quirements (as well as design guidelines and recommenda-
tions) for various application domains, many researchers
have been constrained to work on models and arguments
that build on top of previously published (academic) models
and (academic) claims. One of the risks and major weak-
ness in such an approach is that it facilitates the propa-
gations of misconceptions and the drift from the intended
meaning reflected in the standards. In this paper, we there-
fore argue that in recent academic papers, many claims and
arguments supposedly taken from the standards have been
progressively tweaked, misinterpreted, or simply taken out
of their initial context. Throughout this paper we will to
elaborate on these various misinterpretations and will iden-
tify and discuss the motivating arguments that should prob-
ably be reconsidered in future work on MCS. In our discus-
sions we only refer to recommendations and requirements
for the design of safety-critical applications using the three
following standards: the IEC61508 (generic electrical and/or
electronic and/or programmable electronic (E/E/PE)) [16],
the ISO26262 (automotive domain) [17] and the DO-178C
(aeronautics domain) [7]; those three standards being the
most commonly cited in the real-time research literature on
MCS.
Organisation of the paper: First, we present in Section 2

an overview of the safety assessment process as required by
the standards for the development of safety-critical systems.
We explain how in practice the development assurance levels
(DALs) are assigned to the system safety functions. With
this background, in Section 3 we introduce the concept of a
MCS. In Section 4 we present several architectural consid-
erations and requirements from the three above mentioned
safety-related industrial standards that are applicable to the
development of MCS. In Section 5 we discuss the theoreti-
cal MCS model and some misconceptions that are commonly
encountered in the academic literature. The paper is con-
cluded in Section 6.

2. SYSTEM DESIGN AND DEVELOPMENT

ASSURANCE PROCESS
During a typical development life cycle of a safety-critical

system, the behavior and characteristics that are expected
from the system are expressed in the form of a list of require-
ments. Those are developed based not only on the system
operational requirements (what the system is expected to
do), but also considering non-functional properties related
to safety, security and performance, including timing and
energy constraints. In order to ensure the safety proper-
ties of a safety-critical system, a system safety assessment
process must be carried out as part of the development life
cycle to determine and categorize the failure conditions of
the system (e.g. through a hazard analysis). As a result of
the system safety assessment process, safety-related require-
ments are derived, which may include functional, integrity,
dependability requirements and design constraints. These
requirements are then allocated to hardware and software
components, thereby specifying the mechanisms required to
prevent the faults or to mitigate their effects and avoid the
propagation of failures.

To help understand the safety-critical system development
lifecycle, we provide below an overview of the safety assess-
ment process as defined by the standards. We hence explain
how, in practice, the development assurance levels (DALs)
are assigned to the system safety functions.

2.1 Safety Assessment Process
The safety assessment process starts at the system level

with a hazard analysis. This technique identifies and evalu-
ates hazards that are produced by the system by taking into
account its environment. The software hazard analysis is a
top-down technique that makes recommendations to elimi-
nate or control software hazards and relates the hazards to
the interfaces between the software and the system. Soft-
ware hazard analysis should ensure that the software does
not interfere with the objectives and correct operation of the
system and if interference cannot be totally avoided then it
must also evaluate and make recommendations to mitigate
how the software can hinder the objective or operation of
the system.

After the software hazards have been identified and cate-
gorized according to the severity of their consequences, a
fault analysis is typically performed to support the haz-
ard analysis in the evaluation of the effects of failures (see
Tables A.10, B.4 of IEC61508-3 [14]). Several techniques
exist for that purpose, including, e.g., fault tree analysis
(FTA) [15][9], failure modes and effects analysis (FMEA) [14][8],
common cause failure analysis (CCA) [11], etc. These tech-
niques are widely applied across all application domains, and
even though they are applied with slightly different termi-

Input documentation

(System, Software, Operations)
Functional analysis

Step 1: Define generic

and function specific

failure modes

Step 2: Analyse failure

causes and effects

Step 3: Assign

severities according to

the established criteria

Step 4: Identify

existing compensating

provisions

Step 5: Criticality

categories assignment

and recommendations

Functions and

failure modes

Failure causes and

effects identified

Severities per

failure mode and

failure effects

Compensating

provisions

Criticality

classification and

recommendations

F
M

E
A

Figure 1: Generic FMECA process.

nologies, the concepts involved are basically the same. Note
also that a fault analysis such as FMEA may also help iden-
tify hazards that were not yet identified by the hazard anal-
ysis.

We briefly describe the fault analysis process using FMEA
as an example, which is a powerful bottom-up technique for
identifying potential software failures. Fig. 1 summarises
the generic software FMEA process. The first step con-
sists in performing a functional analysis, i.e. a listing and
description of the software functions (rather than the items
used in their implementation), and to define the generic fail-
ure modes to be applied to each function of each software
component. The generic failure modes typically include in-
correct execution, non-execution or late execution of a func-
tion. Therefore, based on the input documentation and on
the previously identified software functions derived from the
software requirements, the generic failure modes are mapped
to the functions of each software component and the com-
ponent’s specific failure modes are then derived. Step 2 con-
sists in analysing the component possible failure causes that
can trigger the identified failure modes and on identifying
the end effects of the failure mode to the system (possible
failure propagation). During Step 3 severity categories (i.e.,
how bad is the consequence for the system) are assigned
to every single failure mode. The severity assignment is
based on the failure mode end effects and is performed in
accordance with the severity assignment criteria used for the
project. Step 4 is the identification of existing compensating
provisions that can circumvent or mitigate the effect of the
failure, control or deactivate product items to halt the gen-
eration/propagation of failure effects, or activate backup or
standby components to (at least partially) recover from the
failure. Generally speaking, design compensating provisions
include:

• Redundant components or alternative modes of oper-
ation that allow continued and safe operation;

• Safety or relief feature (hardware or software) that al-
low effective operation or limit the failure effects.

Once the severity categories have been assigned to the fail-
ure modes and consequently to the respective software com-
ponents, the software FMEA can be extended to a soft-
ware FMECA (failure modes, effects and criticality anal-
ysis). Through the software FMECA, a classification of the
analysed software can be performed based on the severity
of the consequence of the potential failure modes (Step 5 in
Fig. 1). For each failure mode identified, the existing com-
pensating provisions that can mitigate the failure effects are
then analysed and a development assurance level (DAL)1[7]
is further assigned to the software component, based on the
failure modes with highest severity and on the effectiveness
of the identified compensating provisions. In the end of the
process, recommendations can be provided with the objec-
tive of reducing the risk associated with the potential critical
faults identified (e.g. by increasing the amount and rigour
of verification and validation activities).

2.2 Development Assurance Level
The software DAL establishes the necessary rigour of the

development and of the verification and validation (V&V)
activities that need to be performed on the software, in ac-
cordance with the adopted standard. The higher the DAL of
a software, the higher the number of assurance activities that
need to be performed, thus also increasing considerably the
costs of its development. The process for the development
of safety-critical software, which assures the software safety
and dependability properties at a certain DAL is defined in
several standards across several application domains. Typi-
cally, the DALs are divided into 4 or 5 levels, related to the
categories of severity of a failure adopted by the standard.
Under the DO-178C [7] standard (in the avionic domain),
five severity categories are defined. These five categories
are: (i) catastrophic: failures that result in multiple fatal-
ities or the loss of the airplane; (ii) hazardous: failures that
result in serious or fatal injury to a relatively small number
of occupants; (iii) major: failures that reduce the capability
of the airplane or the ability of the crew to cope with ad-
verse operating conditions; (iv) minor: failures that would
not significantly reduce the airplane safety; (v) no safety

effect: failures that would have no effect on safety.
The software DALs are then assigned depending on the

severity category assigned to the failure(s) that may be caused
by the analysed software component. Specifically, there are
five levels defined as level A/B/C/D/E which are respec-
tively assigned to software components (or modules) whose
anomalous behaviour would lead to a system failure of catas-
trophic, hazardous, major, minor or negligible consequences.
That is, a software that can potentially contribute to a catas-
trophic system failure shall be developed according to DAL-
A requirements.

So far we have used DO-178C as reference for explaining
the concept of development assurance level (DAL). How-
ever, IEC61508 and ISO26262 use different terminologies
for describing the development process of a safety-critical
or safety-related system, although the fundamental concepts
are in essence the same.

IEC61508 defines the concept of safety function. Safety
functions are implemented by a safety-related system whose
purpose is to achieve or maintain a safe state for the equip-

1Terminology commonly used in the aeronautic domain. In
the European space standards (ECSS), for instance, the
term software criticality category is used instead [12]. Other
terminologies are used in other domains as described later.

ment under control (e.g. car engine) when a specific haz-
ardous event occur. Associated to the safety functions, the
concept of safety integrity is defined, which refers to the
probability of a safety-related system to satisfactorily per-
form the required safety functions under all the state con-
ditions within a specified period. There are four safety in-
tegrity levels (SIL). The higher the safety integrity level of
the safety function, the lower the probability that the safety-
related system that executes that function will fail. Software
SILs are used as the basis for specifying the safety integrity
requirements of the safety functions implemented by safety-
related software. Although the SIL is composed of four
levels, the IEC61508 does not explicitly define the failure
severity categories and their association with the SIL. Only
examples are provided that are not fully detailed. For in-
stance, in Table C.1 of IEC61508-5 [16], the following failure
severity category levels are provided: catastrophic, critical,
marginal and negligible. It is up to the project to define and
detail those categories but it is important to note that the
definition of those is based only on qualitative rather than
quantitative measures. This note will be further discussed
in Section 5.6.

ISO26262 derives from the generic IEC61508 and addresses
the specificities of the automotive sector. ISO26262 defines
the automotive safety integrity level (ASIL). Similarly to the
SIL defined in IEC61508, the ASIL are composed of four lev-
els, where D represents the most stringent and A represents
the least stringent level in terms of requirements and safety
measures (note that this is the exact opposite to the scale
used by DO-178C). The higher the ASIL, the greater the
needs to reduce the risk. Fig. 2 presents the risk matrix for
the ASIL determination of hazardous events of automotive
systems. It uses three parameters: “severity”, “probability
of exposure” and “controllability”2,3. The severity defines
the estimation of the extent of harm to one or more individ-
uals that can occur in a potentially hazardous situation, the
associated probability is the likelihood of the occurrence of
harm, and the controllability is the ability to avoid a spec-
ified harm or damage through the timely reactions of the
agents involved (e.g. the driver of the vehicle) possibly with
support from external measures. Therefore, the ASILs ex-
plicitly consider one more parameter in comparison to the
SILs, which is the ability to control failure effects. Note
that, as it can be seen in Fig. 2, a high controllability (class
C1) can often help reduce the ASIL of the components by 2
levels in comparison to the case where the controllability is
almost inexistent (class C3).

3. THE NOTION OF MIXED-CRITICALITY

SYSTEMS
Considering the process presented above for assigning the

DALs, the concept of mixed-criticality becomes straightfor-
ward to understand. A mixed-criticality system basically
consists of applications of different DALs coexisting in the
same system, sharing the same resources (potentially includ-
ing the CPUs) but still preserving the safety characteristics
of each individual application as required by the domain-
specific safety-related standards.

2A detailed description of these 3 parameters are outside the
scope of this work. Please refer to [17] for further details.
3In addition to the four ASILs, the class QM (quality man-
agement) denotes no requirement to comply with ISO26262
other than the project quality assurance requirements.

Figure 2: ASIL determination for hazardous events.

In order to successfully develop a mixed-criticality system,
all safety-related standards in every application domain ad-
vocate the use of design techniques that assure simplicity
and modularity in the design. These guidelines can be jus-
tified in a thousand ways, but in short, a simpler design
guarantees a simpler conception phase and a simpler and
thus less costly V&V, while modularity allows for better
maintainability and easier upgradability.

The high-level process explained above for assessing the
criticality of software systems is an important activity in the
design of safety-critical systems, and consequently of mixed-
critical systems. Based on the understanding of this process,
one can conclude that there are two main solutions to reduce
the criticality of a system component (i.e., to reduce the risk
of severe failures):

1. Avoiding the propagation of faults between different
components and in particular from low criticality com-
ponents to higher criticality components;

2. Providing compensating provisions by adding effective
mechanisms that could either prevent or mitigate the
effects of a failure.

It also becomes clear that improving the reliability of the
software, by reducing the risk of failures, is an essential step
in the design of MCS.

4. REQUIREMENTS OF SAFETY-RELATED

INDUSTRIAL STANDARDS
Now that Sections 2 and 3 introduced the required con-

cepts, methodologies and terminology for understanding and
discussing MCS, this section briefly summarizes some key ar-
chitectural considerations and requirements extracted from
three safety-related industrial standards (IEC61508, DO-
178C and ISO26262) that are applicable to the development
of MCS.

4.1 The IEC61508
The IEC61508 [16] is a generic safety standard widely used

throughout the industry. It serves as a common base for
domain specific standards such as the ISO26262 [17] (au-
tomotive), or EN50128 [13] (railway). IEC61508 is com-
posed of a series of eight volumes addressing the complete
safety lifecycle activities for systems comprised of electri-
cal/electronic/programmable electronic (E/E/PE) elements
(including software) that are used to perform safety func-
tions. This standard define strict rules regarding the isola-
tion and independence between safety related and non-safety
related functions. For instance:
“Where the software is to implement both safety and non-

safety functions, then all of the software shall be treated as

safety-related, unless adequate design measures ensure that
the failures of non-safety functions cannot adversely affect
safety functions.” [section 7.4.2.8 of IEC61508-3]
“Where the software is to implement safety functions of

different safety integrity levels, then all of the software shall
be treated as belonging to the highest safety integrity level,
unless adequate independence between the safety functions
of the different safety integrity levels can be shown in the
design. It shall be demonstrated either (1) that independence
is achieved by both in the spatial and temporal domains, or
(2) that any violation of independence is controlled. The
justification for independence shall be documented.” [section
7.4.2.9 of IEC61508-3].

Under IEC61508, several safety-related software design
techniques and measures are presented as detailed below.

4.1.1 Partitioning

Partitioning is a technique that allows isolating software
components from each other. This isolation is essential for
critical systems as it allows the containment of faults, as well
as the reduction of the software V&V effort. Typically, there
are two approaches to achieve partitioning between software
components. The first approach is to physically segregate
the components by allocating unique hardware resources to
each component (i.e., only one software component is exe-
cuted on each hardware component composing the system).
The second approach is to virtually separate the components
by establishing partitioned hardware provisions that allow
multiple software components to run on the same hardware
platform.

Annex F of IEC61508-3 provides further recommendations
on techniques for achieving non-interference between soft-
ware elements on a single computer. In this context, the
term “independence of execution” is used, meaning that ap-
plications should not interfere with each other’s behaviour.
This independence shall be achieved and demonstrated in
both spatial and temporal domains. Spatial isolation means
that one application shall not change data used by another
application. Note that spatial isolation is even more impor-
tant considering the fact that the highest severity software
failure modes are typically associated to data corruption
(e.g., due to buffer overflows or memory violation). Tempo-
ral isolation on the other hand shall ensure that one appli-
cation will not cause malfunction of another application by
consuming too high processor execution time or by blocking
a shared resource used by other applications, thus affecting
its timing properties. In order to demonstrate the indepen-
dence of execution, an analysis of the proposed design is
performed to determine the causes of execution interference
in both spatial and temporal domain through the applica-
tion of the methodologies described in Section 2.

The standard explicitly recommends the following tech-
niques for achieving and demonstrating spatial independence
(section F.4 of IEC61508-3): (1) hardware memory protec-
tion; (2) virtual memory space; (3) rigorous design, source
code and possibly object code analysis; and (4) software
protection of higher integrity applications.

Ideally, data should not be passed between applications
of different criticalities. However, in practice, especially in
MCS, there may be a need to exchange data between appli-
cations of different criticalities. Considering this, the system
should ensure that higher SIL applications are able to verify
the integrity of any data received from lower SIL applica-
tions. This can be achieved, for instance, through the use

of unidirectional interfaces such as messages or pipes, rather
than through shared memory.

With respect to temporal independence, the following tech-
niques (intrinsically related to the choice of scheduling pol-
icy) are mentioned by the standard (section F.5 of IEC61508-
3):

1. Deterministic scheduling methods such as cyclic schedul-
ing and time triggered architectures;

2. Strict priority based scheduling by real-time executive
(with mechanism to avoid priority inversion);

3. Time fences that terminate the execution of an appli-
cation in case it exceeds its time budget;

4. Time slicing, which ensures that no process can be
starved of CPU time.

However, the resource sharing protocol is also important
when sharing resources between applications, because the
design shall ensure that the applications will not malfunc-
tion due to a locked resource. Therefore, it is essential that
the time required to access a shared resource is taken into
consideration when performing the schedulability analysis of
the system.

Note that the software functions used to provide spa-
tial and/or temporal independence (e.g operating system,
real-time executive) shall be allocated the highest critical-
ity of the applications running on top of them (section F.6
of IEC61508-3), since such software represents a potential
common cause of failure of the independent elements.

4.1.2 Diverse monitor

The diverse monitor (section C.3.4 of IEC61508-7) is an
architectural design technique that allows the protection
against faults in software, preventing the system from en-
tering an unsafe state. It is an external monitor, running in
an independent hardware, which continuously monitors the
main application. In the occurrence of a fault, the monitor
will trigger an event (e.g., fire an alarm) so that a correc-
tive measure can be activated, e.g., through a restart of the
monitored application or through a human operator action.
Typically, the utilization of a monitor allows to reduce the
criticality of the monitored application. Indeed, following
the FMEA analysis of the main application (see Section 2),
the monitor would appear as a compensating provision that
would prevent the failure from propagating throughout the
system, thus reducing the criticality of the monitored appli-
cation. However, in this case it can be considered that the
monitor “inherits” the criticality of the monitored applica-
tion, because if the monitor fails, there is typically no com-
pensating provision to compensate for that failure. There-
fore, the monitor is assigned a criticality derived from the
highest severity failure modes of the monitored applications.
In short, if the monitor can be certified at the highest criti-
cality level, then the criticality level of the monitored com-
ponent can be reduced under the condition that an effective
corrective measure is available.

4.1.3 Dynamic reconfiguration

Another architectural design technique is the dynamic re-
configuration of the system (section C.3.10 of IEC61508-7),
whose objective is to maintain the system functions opera-
tional despite an internal fault. This concept is more com-
monly applied to the recovery from hardware faults, but it
can also be applied to software, if the logical architecture
of the system can be mapped onto a subset of the available
resources, e.g., through “run-time redundancy” to allow a

software re-try or through redundant data, which can re-
duce the severity of the consequence of an isolated failure.

4.1.4 Graceful degradation

Graceful degradation is a technique aimed at maintaining
the more important system functions available, despite fail-
ures, by dropping the less important functions. According
to the IEC61508-7, section C.3.8:
“This technique gives priorities to the various functions to

be carried out by the system. The design ensures that if there
is insufficient resources to carry out all the system functions,
the higher priority functions are carried out in preference to
the lower ones. For example, error and event logging func-
tions may be lower priority than system control functions, in
which case system control would continue if the hardware as-
sociated with error logging were to fail. Further, should the
system control hardware fail, but not the error logging hard-
ware, then the error logging hardware would take over the
control function.This is predominantly applied to hardware
but is applicable to the total system including software. It
must be taken into account from the topmost design phase.”

As it will be further discussed in Section 5, most of the
academic works on mixed-criticality scheduling claim to im-
plement a graceful degradation strategy. To help understand
the discussion of Section 5, note the three following prop-
erties of the quoted example: (1) the illustrative example
involves a high priority function and a low priority function
(i.e., it does not refer to criticality but priority); (2) the
high priority task continues to run if the low priority task
fails (i.e., a failure of a low priority task does not impact
on the execution of a high priority task); (3) the hardware
dedicated to the low priority function is used to execute the
high priority task if the hardware of the high priority task
comes to fail, thus stopping the execution of the low prior-
ity task. Note also that the example assumes a hardware
failure, which leaves the system with not enough hardware
resource to serve all the software functions.

4.1.5 Performance modelling

Performance modelling (section C.5.20 of IEC61508-7) en-
sures that the system operational capacity is sufficient to
meet the specified throughput and response time require-
ments, considering any constraint on the use of system re-
sources. The system processes and their interactions are
modelled, including their demanded resources (e.g. CPU
time) under average and worst-case conditions. Performance
properties such as worst-case throughput and response times
of the individual system functions are then calculated. To
avoid the risk of resource starvation, the systems are often
designed to use only some fraction of the total available re-
sources. It is not uncommon that engineers apply a 50%
margin on the use of such resources.

4.1.6 Response timing and memory constraints

It consists in determining the temporal and memory de-
mands under average and worst-case conditions to ensure
that the system requirements will be met (section C.5.22
of IEC61508-7). One of the methods to obtain these es-
timates is through prototyping and benchmarking of time
critical systems. In terms of schedulability analysis, this is
the usual analysis that needs to be performed on MCS to
ensure that all safety-critical functions will successfully meet
their deadlines under the given system constraints.

4.2 The DO-178C
The DO-178C standard describes a set of important tech-

niques that can be applied during the design of avionics sys-
tems, which may prevent software failures and/or limit or
circumvent their effects on the system functions. To achieve
that goal, the system safety assessment process needs to
demonstrate that the software components will execute with
sufficient independence. This independence must be ensured
at the functional level, i.e., during the specification of the
high-level software requirements, and at the design level,
e.g., definition of common design elements, languages and
tools.

If sufficient independence between software components
cannot be demonstrated (e.g., through partitioning), then
those components will be viewed as a single software com-
ponent when assigning the software DAL. This implies that
the DAL assigned to the components will be the DAL asso-
ciated with the highest failure severity category that those
components can contribute to.

Under DO-178C, the following safety-related software de-
sign methods are discussed: partitioning; dissimilarity (or
redundancy) and safety monitoring. Dissimilarity is a design
technique also referred to as multi-version software, where
two or more different software components that perform the
same functions are developed independently (section 2.4.2 of
DO-178C). It intends to avoid common sources of errors to
contaminate the different versions of the same component.
However, in the industry this technique is rarely applied due
to cost issues and is thus not further discussed in this paper.
Partitioning and safety monitoring as described in DO-178C
are discussed in details below.

4.2.1 Partitioning

Similarly to IEC61508, DO-178C presents partitioning as
one of the most important design instruments to safety-
critical systems. The decision regarding the partitioning ap-
proach to be applied to a project must be taken during early
phases of the software development life cycle (section 2.4.1
of DO-178C) and must address the following aspects: (i) the
extent and scope of interactions that will be allowed between
the partitioned components, (ii) how to isolate the compo-
nents from each other, i.e., which protection strategy will be
adopted (e.g through hardware functions or a combination
of hardware and software).

Regardless of the adopted approach, DO-178C establishes
five requirements for ensuring partitioning between the par-
titioned software components. The first requirement states
that the code, input/output (I/O) or data storage areas of
a software component cannot be contaminated by another
software component that belongs to a different partition.
The second requirement refers to the consumption of shared
CPU time. A partitioned software component is only al-
lowed to consume CPU time during its scheduled period of
execution. Requirement three is related to hardware fail-
ures within a partition. Each partition should be able to
contain the fault, i.e., it should not propagate to the other
partitions and hence cause failure of software components in
those other partitions. Requirement four discusses the DAL
level of the software application that provides the partition-
ing functionality to the system. This requirement states that
the software that implements the partitioning functionality
should have the same or higher DAL than the highest DAL
of the software components assigned to any of the provided
partitions. If the partitioning functionality is provided via

hardware, the fifth requirement requires that a safety assess-
ment must be performed on that hardware to ensure that
in case of failure it will not cause failures on the software
partitions and consequently affect the system safety.

4.2.2 Safety Monitoring

As already mentioned in Section 4.1.2, safety monitor-
ing (section 2.4.3 of DO-178C) is a technique that allows
the protection against specific failures through the gener-
ation of events (e.g., alarms) and activation of protective
mechanisms when the monitored function enters a faulty
state. The safety monitoring functions can be implemented
by hardware, software, or a combination of both. From the
safety point of view, the safety monitor implements a safety
barrier that will inhibit the failure of a software component
from propagating throughout the system and adversely af-
fecting its safety. Therefore, through the safety monitoring
technique, the DAL level assigned to a software component
will be derived from the severity of the consequence of the
loss of the system function associated to that component.
From the schedulability point of view, monitors are com-
monly used in safety-critical operating systems for the mon-
itoring of the time budgets assigned to each application (or
task). In case an application exceeds its time budget, an
event is raised which is dealt with at the application level,
i.e., each system may take different measures to compensate
for those violations. In DAL-B systems for instance, the sys-
tem could simply provide an indication for the user (a hu-
man or another system) that the integrity of the system has
been compromised. This can be the case of aeronautic nav-
igation systems, where several redundant instruments are
available to aid performing the same navigation functions.
This means that in case the integrity of a certain system has
been compromised, it is still possible to use the readings of
another instrument that performs identical functions.

DO-178C describes three important attributes that should
be considered when designing the safety monitor. The first
attribute is related to the monitor DAL assignment. The
safety monitoring software inherits the DAL of the high-
est failure severity category associated with the monitored
function. The second attribute is aimed at ensuring that the
monitors are designed and implemented in such a way that it
will detect the intended faults under all necessary conditions
(otherwise it cannot be trusted and thus becomes useless).
In order to ensure that all fault conditions are identified, an
assessment of the system faults needs to be performed to en-
sure that the monitor will cover all cases. The last attribute
refers to the independence between the monitoring and the
monitored functions. The monitor and the protective mech-
anisms triggered by the events generated by the monitoring
function should not be affected by the same failure causing
the failure condition it is supposed to monitor. For instance,
a monitor that is supposed to detect non-respected timing
properties of software components (e.g., due to starvation),
cannot be subject to the same source of blocking as the
monitored tasks. In this case, the monitor and the mon-
itored tasks should for example be associated to different
partitions.

4.3 The ISO26262
ISO26262 is an adaptation of IEC61508 addressing the

specific needs of the automotive sector. Therefore, every-
thing discussed in the two previous subsections is also appli-
cable to this standard. For instance, software partitioning

aspects are addressed in section 7.4.11 and in Annex D of
ISO26262-6. Mechanisms for error detection at the soft-
ware architectural level (including monitoring techniques)
are listed in Table 4 of ISO26262-6. Several techniques for
temporal and logical program sequence monitoring at the
hardware level are also presented in Table D.10 of ISO26262-
5.

From a shared resource viewpoint, if software partitioning
techniques are to be applied, the resources shared between
the partitions must be used in such a way that the soft-
ware components running on the different partitions do not
interfere with each other.

At the software architectural design level, the standard
establishes that an upper estimation of required resources
for the embedded software shall be made, which includes
the execution time, the storage space (e.g. RAM for stacks
and heaps) and the communication resources.

Annex D of ISO26262-6 [17] also provides some common
examples of timing and execution faults that can cause in-
terference between software elements of different partitions
and must therefore be assessed before certifying the system:
blocking of execution, deadlocks, livelocks, incorrect allo-
cation of execution time and/or incorrect synchronization
between software elements. To prevent or mitigate these
faults, some mechanisms are also referred such as: cyclic exe-
cution scheduling; fixed priority based scheduling; time trig-
gered scheduling; monitoring of processor execution time;
program sequence monitoring and arrival rate monitoring.
These important aspects must be considered when designing
a real-time scheduling algorithm and/or a resource sharing
protocol for MCS.

4.4 MCS and the challenge of compliance to
safety-related standards

In the previous subsections, we have presented a sum-
mary of several requirements from industrial standards that
must be considered in the design of MCS. Those can be
transversally applied to several domains of application (e.g.
aerospace, automotive, railway). Although the presented
safety-related industrial standards do not explicitly specify
requirements for MCS, they do specify stringent require-
ments that must be met to ensure the safety of the sys-
tem, especially in terms of isolation and independence be-
tween applications running on the same platform. Notwith-
standing, the irreversible and inevitable appearance of mul-
ticore hardware platforms in the industry introduces several
additional challenges in terms of scheduling and resources
sharing that make the isolation and independence of the
mixed-criticality applications even more complex. The re-
quirements presented are clear in what concerns the isola-
tion and independence of applications, even when they share
common resources. Therefore, when designing a scheduling
algorithm and/or resource sharing protocol that is intended
to be compliant with such standards, it is necessary to pro-
vide evidences that the isolation between components is suffi-
cient to avoid failure propagation between them. To address
these challenges, several techniques have also been described
that can be applied to the design of such systems, which can
support the generation of the evidences required by the cer-
tification authorities.

Industry already defined solutions easing the design and
certification of safety-critical systems according to the stan-
dards. An example of such solution that meets the isolation
and independence requirements commonly established by

the previously presented industrial standards is the ARINC-
653 [2] specification. ARINC-653 specifies the baseline op-
erating environment for application software running on an
Integrated Modular Avionics (IMA)[21, 6] platform or in
traditional federated architectures developed according to
the ARINC-700 avionics standards [3].

The purpose of an IMA system is to support the execution
of one or more avionics applications independently. Each
application may have completely different requirements and
thus be associated to different DALs. The separation is
achieved through partitioning, providing the functional sep-
aration of the applications (mainly to inhibit failure prop-
agation), as well as the facilitation of the V&V activities.
An ARINC partition is basically an environment running
a program, comprising its own data, context, configuration
attributes, etc. The primary objective of ARINC-653 is to
define a general-purpose interface between the avionics ap-
plication software and the operating system running on an
avionics computer.

The partitioning concept is central to the ARINC-653 phi-
losophy, whereby the programs resident on the partitions
are partitioned with respect to space (memory partitioning)
and time (temporal partitioning). The partitioned system
has to be robust enough to support applications of different
criticality levels to execute in the same core platform, with-
out affecting each other, both spatially and temporally. For
that reason, the scheduling is hierarchical. Partitions are ac-
tivated on a fixed cyclic basis (cyclic-executive scheduling)
and whenever a partition has access to the processor, the
tasks assigned to that partition are scheduled according to
preemptive fixed priorities.

Although industrial solutions such as ARINC-653 exist,
most of them were initially intended for single core platforms
and must now be extended to multicore.

5. THE THEORETICAL MC MODEL AND

ITS COMMON MISCONCEPTIONS
In the previous sections we have presented the main design

principles and requirements that drive the development of
industrial MCS. We now move the focus of the paper to
the academic work. We will discuss the state-of-the-art and
some common misconceptions.

5.1 The state-of-the-art in academy
These last years, the real-time research community has

been extremely active in the domain of MCS. Almost 200
papers treating of the scheduling of MCS have been refer-
enced in [4], and tens of related papers are still published
every year. It would therefore be unrealistic to review and
analyse here the whole state-of-the-art on real-time schedul-
ing of MCS. Instead, this section evaluates the key concepts
and approaches commonly encountered in real-time schedul-
ing models and algorithms against the recommendations and
requirements found in the safety-related industrial standards
that were presented in the previous sections.

Most of the works about MCS published by the real-time
scheduling research community are based on a model pro-
posed by Vestal in [20]. This model assumes that the system
has several modes of execution, say modes 1, 2, . . . , L. The
application system is a set of real-time tasks, where each
task τi is characterized by a period and a deadline (as in the
usual real-time task model), an assurance level ℓi and a set
of worst-case computational estimates {Ci,1, Ci,2, . . . , Ci,ℓi},
under the assumption that Ci,1 ≤ Ci,2 ≤ . . . ≤ Ci,ℓi . The

different WCET estimates are meant to model estimations of
the WCET at different assurance levels. The worst time ob-
served during tests of normal operational scenarios might be
used as Ci,1 whereas at each higher assurance level the sub-
sequent estimates Ci,2, . . . , Ci,ℓi are assumed to be obtained
by more conservative WCET analysis techniques. The sys-
tem starts its execution in mode 1 and all the tasks are
scheduled to execute on the core[s]. Then at runtime, if the
system is running in mode k then each time the execution
budget Ci,k of a task τi is overshot, the system switches to
mode k + 1. It results from this transition from mode k

to mode k + 1 that all the tasks of criticality not greater
than k (i.e., ℓi ≥ k) are suspended. Mechanisms have also
been proposed to eventually re-activate the dropped tasks
at some later points in time [19].

It must be noted that one of the derivates/simplifications
of this model is the Vestal’s model with only two modes,
usually referred to as LO and Hi modes (which stand for
Low- and High-criticality modes). Multiple variations of
that scheduling scheme exist (please refer to [4] for a com-
prehensive survey); some for single-core, others for multicore
architectures. In the case of multicore, both global and par-
titioned scheduling techniques have been studied. Solutions
for fixed priority scheduling, earliest deadline first and time-
triggered scheduling have been proposed. Note that some
works also propose to change the priorities or the periods of
the tasks during a mode change rather than simply stopping
the less critical ones.

5.2 The misalignment of terminology
There is a clear mismatch of interpretation of the concept

of “system criticality” between the industrial standards and
the academic papers based on the Vestal model [20]. Those
academic papers use the terminology “system criticality” to
refer to modes of execution of software tasks (e.g., high or
low criticality). That is, switching from a mode k to a mode
k + 1 is usually referred to as an “increase of the system
criticality level”. Although this concept is not fundamen-
tally wrong, it creates confusion in the context of industrial
MCS, where the term “system criticality” is used to refer
to the level of assurance (DAL or SIL or ASIL) applied in
the development of a software application that implements
critical system functions, i.e., safety functions.

As a second point, in the standards the word “function”
is used at the system level, in reference to a system func-
tionality, or in other words, an action that the system must
be able to perform (accelerate, break, etc.). A “function” as
defined in the standard may thus involve the whole chain
of software and hardware components that play a role in
the execution of that action. It may include sensors, pro-
cessing elements, and actuators. Thus, the word “function”
cannot be interpreted as a pure software function, like a C
function for instance (or a real-time task). This implies the
assignment of a SIL to the whole functionality and not only
the individual software functions that are part of it. This
is explicitly written in the following note associated to item
3.5.10 of IEC61508-4 [16]:
“SIL characterises the overall safety function, but not any

of the distinct subsystems or elements that support that safety
function. In common with any element, software therefore
has no SIL in its own right. However, it is convenient to
talk about “SIL N software”meaning “software in which con-
fidence is justified (expressed on a scale of 1 to 4) that the
(software) element safety function will not fail due to rele-

vant systematic failure mechanisms when the (software) ele-
ment is applied in accordance with the instructions specified
in the compliant item safety manual for the element”.”

This misunderstanding in the definition of a SIL in the
MCS model has no major consequences but somehow it has
misguided researchers to think that a real-time task of higher
SIL is “more important” than a task of lower SIL (we fur-
ther discuss that point in the next section). In real-life these
tasks are part of one or several system functionalities and
those functionalities are the entities which are assigned a
SIL. Therefore, a real-time task must be implemented in ac-
cordance with the development rules defined for the SIL of
the functionality to which it belongs. If the task belongs to
more than one functionality then it must naturally be im-
plemented in accordance with the development rules defined
for the highest SIL among the SILs of all the functionality
to which it belongs. Once implemented, the SIL of the func-
tionality to which the function belongs will also impact the
way the function will be deployed on the hardware architec-
ture and it will define or restrict its interaction with other
functions.
Conclusion: Some misalignments exist in the interpreta-
tion of some key concepts used in the MCS scientific litera-
ture and the safety-related industrial standards. We believe
that over the years this discrepancy has generated some sort
of confusion, which caused the two communities to misun-
derstand each others’ work. In an effort to reconcile the
two communities, we warmly invite the academic reader to
consult the part 1 of the ISO26262 that clearly defines funda-
mental concepts that pertain to safety-critical systems, such
as “safety functions”, “safety-related systems”, and “safety
integrity level”.

5.3 Software task assurance level and the no-
tion of importance

The misalignment between terminologies may lead to mis-
interpretation of the concepts discussed in the standards.
In fact, it caused a major confusion between the notions of
criticality and importance of a task (or its “priority” as it
sometimes called in the standards). For example, the imple-
mentation of a function A that has to be conform to SIL 4
is more costly than the development of the same function in
accordance to SIL 3. But by no means this implies that a
function A implemented at SIL 4 is more important than any
other function B implemented in accordance to SIL 3. Ir-
respective of their SIL, all these functions are safety-critical
and may cause severe damage in case of failure. Therefore,
a function that is part of a high-SIL functionality cannot be
considered as more important than a software function that
is part of a functionality of lower SIL. For example, con-
sider the process for ASIL determination described in Fig. 2
and consider two tasks with failure conditions FC1 and FC2,
both with severity class S3 and controllability class C3, but
with different probabilities of occurrence. FC1 may be as-
signed an ASIL A and FC2 an ASIL D. In this case it be-
comes straightforward to understand that one task is not
more important than the other as they both lead to failure
conditions with the same severity class. Hence, the criti-
cality of each task is not assigned just as a function of its
importance for the system, the severity of its failure or the
capacity of the system to recover from its loss. It is instead
the result of an analysis combining all those different fac-
tors (e.g. using a FMECA) that defines clear rules to be
respected during the development process.

Conclusion: Different SILs do not mean different impor-
tance. Tasks of different SILs are simply subject to different
development requirements but the isolation and indepen-
dence between them still has to be preserved and guaranteed
to ensure safety.

5.4 Assigning different WCET estimates
Different SIL imposes different development rules, includ-

ing coding rules. Although the consequences of timing viola-
tions could potentially be less severe for tasks of applications
of lower SIL (yet, not always as discussed in Section 5.3),
there is no recommendations in the safety-related standards
that advocate the use of specific WCET estimation tech-
niques. The standards simply recommends more rigorous
testing methods for higher SILs to demonstrate the timing
performance of the safety mechanisms at the system level
(see Table 11 of ISO26262-4). In contrast, the paper from
Vestal [20] and its derivatives assume that the higher the
degree of assurance of a task, the more pessimistic the esti-
mation of its WCET4.

Although this strategy for determining the WCET is valid
in the conjecture of Vestal’s paper, the most important as-
pect from the safety point of view that needs to be consid-
ered is that the accurate determination of the WCET upper-
bound is a necessary but not sufficient condition to ensure
the safety of the overall system. In addition to that, mech-
anisms must be implemented to handle a task overshooting
its execution budget without impacting on the system safety.

Exceeding the allocated budget is an obvious failure con-
dition identified during the FMECA. This failure condition
can lead to a system failure that can potentially trigger a
system hazard. Therefore, more important than accurate
estimations of the WCET is the design of mechanisms to
ensure that the system safety is not compromised in case of
an excessive use of processor resources. In the next section
we discuss some of the techniques proposed in the literature
for handling those budget violations.
Conclusion: A timing violation is a potential fault which is
always there in a RT system. Therefore, during the design of
MCS, not only the timing behavior of the tasks must be de-
termined but also reliable mechanisms must be designed to
avoid failure propagation caused by timing violations. To do
so, standards usually recommend to enforce timing isolation
by using partitions.

5.5 Graceful degradation
The plethora of work based on Vestal’s model could be

understood by its resemblance with the graceful degrada-
tion technique described in the IEC61508 (see Section 4.1.4).
However, there is a major issue that makes this scheduling
model difficult to justify in the context of MCS. The low
and high criticality tasks are clearly not isolated in the time
domain since the timing properties (e.g., the response time)
of the high criticality tasks depend on the scheduling deci-
sions of low criticality tasks (and not only on their actual
execution time). According to the safety and criticality as-
sessment methodology described in Section 2 and to the in-
dependence requirement discussed in Section 4.1, it would be

4Although this assumption is perfectly relevant (since a
more pessimistic estimate may be understood as more re-
liable), it does not equate to the recommendations of the
standards. More rigorous testing could also be understood
as less pessimistic estimates (according to the usual trade-off
between accuracy and runtime complexity of most of com-
putation techniques).

very difficult to demonstrate to the safety authority that un-
der all foreseen operational conditions the safety properties
(greatly influenced by the timing properties) of the higher
and lower criticality systems would not be compromised at
some point in time.
Conclusion: Graceful degradation is a technique that lends
itself very nicely for the scheduling of MCS. However, sus-
pending a lower criticality task in benefit of a higher critical-
ity task raises several questions in terms of isolation between
applications, i.e. there is a high risk that the certification
authority will deem that not enough isolation between the
safety functions has been achieved. Therefore, in the con-
text of MCS it is recommended that only non-critical tasks
be actually suspended in the event of a critical fault (e.g.,
budget overshooting).

5.6 Assignment of a software failure rate
Recent research on the mixed-criticality scheduling the-

ory have introduced the concept of probabilistic WCET [5],
which can be understood as the “probability of violating a
timing requirement”. In this model, from a mathematical
point of view the WCET of a task is no longer a single
rigid value. Rather, the model provides a threshold, i.e., an
upper-bound on the execution time, that has a given proba-
bility of being exceeded at runtime. Informally, the rational
behind the introduction of probabilities in the model is the
assumption that if the probability of exceeding that thresh-
old is shown to be smaller than the probability of experi-
encing an irreversible failure (like an irreversible hardware
failure for instance), then that threshold can be used as a
“safe” estimate of the WCET. Recent papers present various
techniques to derive such probabilistic WCET [1]. In those
papers the target probabilities are either taken directly from
the probabilities of failure of a safety function allocated to
the E/E/PE safety-related system (like in [5]), e.g., prob-
ability of failure of 10−9 per hour for a SIL 4 function as
defined in Table 3 of IEC61508-1 (or in the FAA Advisory
Circular AC-25-1309), or for the same reasons they are set
to even lower values [1].

These probabilistic techniques aim at building a reliability
model of the software, according to which confidence can be
placed in the expected timing behavior of the application
and in particular in its worst-case responsiveness. In broad
terms, software reliability is the property of the software
being “free from faults”. Failures caused by software can
degrade the system performance, up to the complete loss of
the system or potential loss of life or major damage to the
environment. According to this definition, exceeding a pre-
allocated execution budget can indeed be seen as a software
fault as it may bring about the same consequences. There
are, however, three important points that we would like to
discuss in this paper.

First, although the rationale behind this probabilistic model
is well motivated and fully justified (from the community
point of view), in most of recent research on probabilistic
timing estimates the community has shown a particularly
high confidence in the applicability of their model to real
systems. In some of those papers, sometimes it seems as
granted that this probabilistic model will soon be used in
MC system V&V processes. However, it must be highlighted
that at the time of writing this paper, although numerous
consolidated reliability models have been developed to quan-
titatively assess the compliance of the hardware components
to the reliability requirements [18], software reliability mod-

els are still under debate within industry, academia and in-
ternational standards community. Those models rely on a
number of assumptions that have proven not to be fully jus-
tified in the vast majority of bespoke software and currently
in the industry, confidence cannot be placed in such models
to assess the reliability of the software parts. This is clearly
and explicitly stated, for instance, in subsection 4.1.2 of [10]
or section 12.3.3 of the DO-178C:
“Many methods for predicting software reliability based on

developmental metrics have been published, for example, soft-
ware structure, defect detection rate, etc. This document
does not provide guidance for those types of methods, because
at the time of writing [2011], currently available methods did
not provide results in which confidence can be placed.” – sec-
tion 12.3.3, page 89 of DO-178C [7].

Second, these numbers (e.g. 10−5, 10−9, etc.) have been
defined at the system level as function of failure rates and to
the best of our knowledge, there is no paper discussing why
those specific numbers could be applied to the software parts
of the system. Furthermore, last but not least, until now the
safety and dependability assessment of safety-critical soft-
ware has always been performed through a set of qualitative
processes that are applied during all phases of the software
development life cycle. To the best of our knowledge, there
is currently no evidence indicating that the process of as-
sessing software safety is about to change from a qualitative
process to a quantitative process. Unlike the typical pro-
cess applied to develop the hardware, the development of a
software to a certain assurance level does not imply the as-
signment of a failure rate for that software. In other words,
there is no evidence that those specific numbers applied to
function failure rates will ever apply in the assessment of
software safety.
Conclusion: At this date, even though the computation
of probabilistic estimates to MCS constitutes an important
research direction that aims at improving the WCET es-
timation of real-time tasks, it cannot be taken as granted
that those estimates will ever be used in industrial systems
to prove the safety of a software function.

6. CONCLUSION
In this paper, we summarised and presented relevant in-

formation and basic concepts available in some of the most-
cited safety-related standards in the real-time system re-
search community, for the understanding of the mixed-criticality
(MC) concept from an industrial perspective. Then, we
(briefly) evaluated some aspects of the currently-accepted
state-of-the-art MCS model against the safety requirements
established by those standards, namely, IEC61508, ISO26262,
and DO-178C. Our evaluation led to the conclusion that
there is today a clear gap between some of the guidelines
provided in those standards and their interpretation by the
academic community. We believe that researchers should
further focus on building evidences that (1) the MCS model
itself is motivated, justified, and in accordance with the re-
quirements and (2) the current MC scheduling techniques
comply with those safety requirements, in particular regard-
ing the notions of isolation and independence of execution.

Acknowledgements. This work was partially supported by Na-
tional Funds through FCT/MEC (Portuguese Foundation for Sci-
ence and Technology) and when applicable, co-financed by ERDF
(European Regional Development Fund) under the PT2020 Partner-
ship, within project UID/CEC/04234/2013 (CISTER Research Cen-
tre); also by, FCT/MEC and the EU ARTEMIS JU within projects
ARTEMIS/0003/2012 - JU grant nr. 333053 (CONCERTO) and

ARTEMIS/0001/2013 - JU grant nr. 621429(EMC2); and also by
the Portuguese National Innovation Agency (ANI) under the ERDF
(European Regional Development Fund) through COMPETE (Oper-
ational Programme ’Thematic Factors of Competitiveness’), within
project V-SIS, QREN - SI I&DT nr. 38923.

7. REFERENCES
[1] J. Abella, D. Hardy, I. Puaut, E. Quinones, and F. Cazorla.

On the comparison of deterministic and probabilistic wcet
estimation techniques. In ECRTS 2014, pages 266–275,
July 2014.

[2] ARINC-653. Avionics Application Software Standard
Interface. ARINC, Inc., 2003.

[3] ARINC 700 series. Arinc.
http://store.aviation-ia.com/cf/store/catalog.cfm?
prod_group_id=1&category_group_id=4, June 2015.

[4] A. Burns and R. Davis. Mixed criticality systems-a review.
Department of Computer Science, University of York,
Tech. Rep, 2013.

[5] R. Davis, T. Vardanega, J. Alexanderson, V. Francis,
P. Mark, B. Ian, A.-A. Mikel, F. Wartel, L. Cucu-Grosjean,
P. Mathieu, F. Glenn, and F. J. Cazorla. PROXIMA: A
Probabilistic Approach to the Timing Behaviour of
Mixed-Criticality Systems. Ada User Journal, (2):118–122,
2014.

[6] N. Diniz and J. Rufino. Arinc 653 in space dasia 2005,
eurospace, edinburgh, scotland. 2005.

[7] DO-178C. Software Considerations in Airborne Systems
and Equipment Certification. RTCA, Inc., 2011.

[8] ECSS-Q-30-02A. Failure modes, effects (and criticality)
analysis (FMEA/FMECA). European Cooperation for
Space Standardization, 2009.

[9] ECSS-Q-40-12A. Fault tree analysis - Adoption notice
ECSS/IEC 61025. European Cooperation for Space
Standardization, 2008.

[10] ECSS-Q-HB-80-03A. Space Product Assurance - Software
Dependability and Safety. European Cooperation for Space
Standardization, 2009.

[11] ECSS-Q-ST-30C. Space product assurance - Dependability.
European Cooperation for Space Standardization, 2009.

[12] ECSS-Q-ST-80C. Software Product Assurance. European
Cooperation for Space Standardization, 2009.

[13] EN 50128. Railway Applications Communication,
Signalling and Processing Systems Software for Railway
Control and Protection Systems. CENELEC, 2009.

[14] IEC60812. Analysis techniques for system reliability –
Procedure for failure mode and effects analysis (FMEA).
IEC, 2006.

[15] IEC61025. Fault tree analysis (FTA). IEC, 2006.
[16] IEC61508. Functional safety of

electrical/electronic/programmable electronic safety-related
systems. IEC, 2010.

[17] ISO26262. Road vehicles - Functional safety. ISO, 2011.
[18] RIAC-HDBK-217Plus. Handbook of 217Plus Reliability

Prediction Models. RIAC, 2006.
[19] F. Santy, G. Raravi, G. Nelissen, V. Nelis, P. Kumar,

J. Goossens, and E. Tovar. Two protocols to reduce the
criticality level of multiprocessor mixed-criticality systems.
In RTNS 2013, RTNS ’13, pages 183–192. ACM, 2013.

[20] S. Vestal. Preemptive scheduling of multi-criticality systems
with varying degrees of execution time assurance. In RTSS
2007, pages 239–243. IEEE, 2007.

[21] C. B. Watkins and R. Walter. Transitioning from federated
avionics architectures to integrated modular avionics. In
DASC’07, pages 2–A. IEEE, 2007.

