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ABSTRACT

The shifted Legendre orthogonal polynomials are used for the numerical solution of a new formulation for the
multi-dimensional fractional optimal control problem (M-DFOCP) with a quadratic performance index. The fractional
derivatives are described in the Caputo sense. The Lagrange multiplier method for the constrained extremum and the
operational matrix of fractional integrals are used together with the help of the properties of the shifted Legendre
orthonormal polynomials. The method reduces the M-DFOCP to a simpler problem that consists of solving a system
of algebraic equations. For confirming the efficiency and accuracy of the proposed scheme, some test problems are
implemented with their approximate solutions.
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I. INTRODUCTION

In recent years, fractional calculus (theory of deriva-
tives and integrals with any non-integer arbitrary order)
gained considerable due to the considerable number of
importance applications in different fields of physics and
engineering such as solid mechanics [1], robotic bird
[2], structure control [3], anomalous transport [4], con-
tinuum and statistical mechanics [5], fluid-dynamics [6],
economics [7] and many other fields [8,9].

The operational matrix of fractional derivatives was
derived for some types of orthogonal polynomials such
as, the Legendre [10], Chebyshev [11] and Jacobi [12]
polynomials and used to solve several types of fractional
differential equations, (see [13–15]). On the other hand,
the operational matrix of fractional integrals have been
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derived for many types of orthogonal polynomials such
as, the Legendre [16], Chebyshev [17], Jacobi [18,19] and
Laguerre [20] polynomials.

The optimal control problem refers to the min-
imization of a performance index subject to dynamic
constraints on the state and control variables. If the frac-
tional differential equations are used as the dynamic
constraints, this leads to the fractional optimal control
problems (FOCPs). Optimal control problems appear in
engineering, science, economics, and many other fields.
An extensive body of work exists in the area of optimal
control of integer order dynamic systems, see [21–23],
but limited work has been done in the area of FOCP.
FOCPs have gained much attention for their many appli-
cations in engineering and physics. For example, it has
been illustrated that materials with memory and heredi-
tary effects, and dynamical processes, including gas dif-
fusion and heat conduction in fractal porous media, can
be more adequately modeled by fractional-order mod-
els than integer-order models [24]. Other applications
of FOCPs are shown in [25–27]. For that reason, find-
ing robust and accurate numerical methods for solving
FOCPs has become an active research undertaking. In
recent years, many researchers studied obtaining numer-
ical solutions of FOCPs, (for instance see [28–33]). In
most papers in this field, one-dimensional FOCPs were
considered, where the problem contains one state vari-
able, one control variable and one fractional differen-
tial equation as the dynamic constraint, (see [34,35]).
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Recently, Defterli [36] applied a numerical scheme to
solve the two-dimensional FOCP with a quadratic per-
formance index.

In this paper, we propose and develop a direct
numerical technique for solving the multi-dimensional
FOCP with a quadratic performance index

Min. J = 1
2 ∫

t1

t0

(
b1(t)x21(t) + b2(t)x22(t) + · · ·

+ bn(t)x2n(t) + a0(t)u2(t)
)
dt,

(I.1)

subject to the dynamic constraints,

D𝜈x1(t) = bn+1(t)x1(t) + bn+2(t)x2(t) + · · ·
+ b2n(t)xn(t) + a1(t)u(t),

D𝜈x2(t) = b2n+1(t)x1(t) + b2n+2(t)x2(t) + · · ·
+ b3n(t)xn(t) + a2(t)u(t),

⋮ = ⋮ ⋮ ⋮ ⋮ ⋮

D𝜈xn(t) = bn2+1(t)x1(t) + bn2+2(t)x2(t) + · · ·
+ bn2+n(t)xn(t) + an(t)u(t),

x1(0) = x1, x2(0) = x2, · · · , xn(0) = xn,

(I.2)

where t0 ≤ t ≤ t1 and 0 ≤ 𝜈 ≤ 1.
The proposed numerical scheme consists of expand-

ing the control variable u(t) and the fractional derivatives
of the state variables D𝜈xj(t), j = 1, 2, · · · , n, by means
of theLegendre orthonormal polynomialswith unknown
coefficients using the operational matrix of fractional
integrals. Then, the system of equations, derived from the
system of dynamic constraints (I.2), is adjoined to the
performance index (I.1), using the Lagrange multiplier
method. Finally, the M-DFOCP (I.1)-(I.2) is reduced to
a system of algebraic equations that can be solved by an
iterative method.

This article is organized as follows. In Section
II, we introduce some definitions and notations of
fractional calculus and we derive the operational
matrix of fractional integrals for the shifted orthonor-
mal Legendre polynomials. In Section III, the oper-
ational matrix of fractional integrals and the prop-
erties of the shifted Legendre orthonormal polyno-
mials are adopted, together with the help of the
Lagrange multiplier method in order to introduce an
approximate solution for the M-DFOCP (I.1)-(I.2).

In Section IV, three numerical examples are developed.
The new results and those obtained by other methods are
compared and discussed. Finally, Section V presents the
main conclusion.

II. PRELIMINARIES AND NOTATIONS

2.1 Fractional calculus definitions

The Riemann–Liouville and Caputo fractional
definitions are two often used definitions of fractional
derivatives.

Definition 1.1. The integral of order 𝛾 ≥ 0 (fractional)
according to Riemann-Liouville is given by

I𝛾 f (t) = 1
Γ(𝛾)∫

t

0
(t − y)𝛾−1f (y)dy, 𝛾 > 0, t > 0,

I0f (t) = f (t),
(2.1)

where

Γ(𝛾) = ∫
∞

0
t𝛾−1e−tdt

is gamma function.

The operator I𝜈 satisfies the following properties

I𝛾I𝛿f (t) = I𝛾+𝛿f (t),
I𝛾I𝛿f (t) = I𝛿I𝛾 f (t),

I𝛾 t𝛽 = Γ(𝛽 + 1)
Γ(𝛽 + 1 + 𝛾)

t𝛽+𝛾 .

(2.2)

Definition 1.2. The Caputo fractional derivative of order
𝛾 is defined by

D𝛾 f (t) = 1
Γ(m − 𝛾)∫

t

0
(t − y)m−𝛾−1 d

m

dym
f (y)dy,

m − 1 < 𝛾 ≤ m, t > 0,
(2.3)

where m is the ceiling function of 𝛾 .



The operator D𝛾 satisfies the following properties

D𝛾C = 0, (C is constant),

I𝛾D𝛾 f (t) = f (t) −
m−1∑
i=0

f (i)(0+) t
i

i!
,

D𝛾 t𝛽 = Γ(𝛽 + 1)
Γ(𝛽 + 1 − 𝛾)

t𝛽−𝛾 ,

D𝛾 (𝜆f (t) + 𝜇g(t)) = 𝜆D𝛾 f (t) + 𝜇D𝛾g(t).

(2.4)

2.2 Shifted legendre polynomials

Assuming that the Legendre polynomial of degree
k is denoted by Pk(z) (defined on the interval (−1, 1) ).
Then Pk(z)may be generated by the recurrence formulae

Pk+1(z) =
2k + 1
k + 1

zPk(z) −
k

k + 1
Pk−1(z), 1 ≤ k,

P0(z) = 1, P1(z) = z.

Introducing z = 2t − 1, Legendre polynomials are
defined on the interval (0, 1) that may be called shifted
Legendre polynomials P∗

k
(t) and generated using the fol-

lowing recurrence formulae

P∗
k+1(t) =

2k + 1
k + 1

(2t − 1)P∗
k(t)−

k
k + 1

P∗
k−1(t), 1 ≤ k,

P∗
0(t) = 1, P∗

1(t) = 2t − 1.

The orthogonality relation is

∫
1

0
P∗
j (t)P

∗
k(t)dt =

{ 1
2k + 1

, for j = k,

0, for j ≠ k.
(2.5)

The explicit analytical form of shifted Legendre
polynomial P∗

k(t) of degree k may be written as

P∗
k(t) =

k∑
i=0

(−1)k+i (k + i)!
(k − i)! (i!)2

ti. (2.6)

Introducing the shifted Legendre orthonormal
polynomials P⋆

k (t); P
⋆

k (t) ≡
√
2k + 1P∗

k(t), we have

∫
1

0
P⋆
j (t)P

⋆

k (t)dt =
{

1, for j = k,
0, for j ≠ k,

(2.7)

and

P⋆

k (t) =
√
2k + 1

k∑
i=0

(−1)k+i (k + i)!
(k − i)! (i!)2

ti. (2.8)

Any square integrable function y(t) defined on the
interval (0, 1), may be expressed in terms of shifted Leg-
endre polynomials P⋆

k
(t) as

y(t) =
∞∑
k=0

ykP
⋆

k (t),

from which the coefficients yk are given by

yk = ∫
1

0
y(t)P⋆

k (t)dt, 0 ≤ k. (2.9)

If we approximate y(t)by the first (N+1)-terms, then
we can write

yN(t) =
N∑
k=0

ykP
⋆

k (t), (2.10)

which alternatively may be written in the matrix form:

yN(t) ≃ YTΔN(t), (2.11)

with

Y =
⎛⎜⎜⎜⎝
y0
y1
⋮
yN

⎞⎟⎟⎟⎠ , ΔN(t) =
⎛⎜⎜⎜⎝
P⋆

0 (t)
P⋆

1 (t)
⋮

P⋆
N(t)

⎞⎟⎟⎟⎠ . (2.12)

2.3 Operational matrix for fractional integrals

Theorem 2.1. The fractional integral of order 𝜈 (in the
sense of Riemann–Liouville) of the shifted Legendre
polynomial vector ΔN(t) is given by

I𝜈ΔN(t) = I(𝜈)ΔN(t), (2.13)



where I(𝜈) is the (N + 1) × (N + 1) operational matrix of
fractional integral of order 𝜈 and is defined by

I(𝜈) =

⎛⎜⎜⎜⎜⎜⎜⎝

Θ𝜈(0, 0) Θ𝜈(0, 1) · · · Θ𝜈(0, j) · · · Θ𝜈(0,N)
Θ𝜈(1, 0) Θ𝜈(1, 1) · · · Θ𝜈(1, j) · · · Θ𝜈(1,N)

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
Θ𝜈(i, 0) Θ𝜈(i, 1) · · · Θ𝜈(i, j) · · · Θ𝜈(i,N)

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
Θ𝜈(N, 0) Θ𝜈(N, 1) · · · Θ𝜈(N, j) · · · Θ𝜈(N,N)

⎞⎟⎟⎟⎟⎟⎟⎠
,

where

Θ𝜈(i, j) =
i∑

k=0
𝛿𝜈(i, j, k) (2.14)

and

𝛿𝜈(i.j, k) =
√
(2j + 1)(2i + 1)

j∑
l=0

(−1)i+j+k+l(i + k)!(l + j)!
(i−k)!k!Γ(k+𝜈+1)(j−l)!(l!)2(k+l+𝜈+1)

.

Proof. Using (2.4) and (2.8), the fractional integral of
order 𝜈 for the shifted Legendre polynomials P⋆

i (t) is
given by

I𝜈P⋆

i (t) =
√
2i + 1

i∑
k=0

(−1)i+k (i + k)!
(i − k)! (k!)2

I𝜈tk,

=
√
2i + 1

i∑
k=0

(−1)i+k (i + k)!
(i − k)! k! Γ(k+𝜈+1)

tk+𝜈.

(2.15)

Now we can approximate tk+𝜈 by N + 1 terms of
shifted Legendre polynomials P⋆

j (t) as:

tk+𝜈 =
N∑
j=0

𝜇kjP
⋆

j (t), (2.16)

where 𝜇kj is given as in (2.9) with y(t) = tk+𝜈, then

𝜇kj = ∫
1

0
tk+𝜈P⋆

j (t)dt

=
√
2j + 1

j∑
l=0

(−1)j+l
(j + l)!

(j − l)! (l!)2∫
1

0
tl+k+𝜈dt

=
√
2j + 1

j∑
l=0

(−1)j+l
(j + l)!

(j − l)! (l!)2 (k + 𝜈 + l + 1)
.

(2.17)

Employing (2.15)–(2.17), we have

I𝜈P⋆
i (t)=

√
2i+1

i∑
k=0

N∑
j=0

(−1)i+k (i + k)!
(i−k)! k!Γ(k+𝜈+1)

× 𝜇kjP
⋆

j (t)

=
N∑
j=0

Θ𝜈(i, j)P⋆

j (t),

(2.18)

where Θ(i, j) is given in (2.14).
Finally, we can rewrite (2.18) in a vector form as

I𝜈P⋆

i (t) ≃
[
Θ𝜈(i, 0), Θ𝜈(i, 1), · · · ,
Θ𝜈(i, j), · · · , Θ𝜈(i,N)

]
ΔN(t).

(2.19)

Eq. 2.19 completes the proof.

III. THE NUMERICAL SCHEME

In this section, we discuss our numerical scheme
to approximate the solution of the M-DFOCP in the
following form:

Min. J = 1
2 ∫

t1

t0

( n∑
i=1

[
bi(t)x2i (t)

]
+ a0(t)u2(t)

)
dt,

(3.1)

subjected to the dynamic constraints,

D𝜈xj(t) =
n∑
i=1

[
bjn+i(t)xi(t)

]
+ aj(t)u(t),

xj(0) = xj,

j = 1, 2, · · · , n.

(3.2)



First, we can approximate D𝜈xj(t), (j = 1, 2, · · · , n)
and u(t) by the shifted Legendre orthonormal polynomi-
als P⋆

k
(t) as

D𝜈xj(t) ≃ CT
j ΔN(t), j = 1, 2, · · · , n,

u(t) ≃ UTΔN(t),
(3.3)

where Cj, (j = 1, 2, · · · , n) and U are unknown coeffi-
cients matrices that can be written as

U =
⎛⎜⎜⎜⎝
u0
u1
⋮
uN

⎞⎟⎟⎟⎠ , Cj =
⎛⎜⎜⎜⎝
cj,0
cj,1
⋮
cj,N

⎞⎟⎟⎟⎠ , j = 1, 2, · · · , n.

(3.4)

Using (2.4), we have

I𝜈D𝜈xj(t) = xj(t) − xj(0), j = 1, 2, · · · , n, (3.5)

also adopting (2.13) together with (3.3), we get

I𝜈D𝜈xj(t) ≃ CT
j I

(𝜈)ΔN(t), j = 1, 2, · · · , n. (3.6)

Using (3.5) and (3.6), we can write

xj(t) ≃ CT
j I

(𝜈)ΔN(t)+xj(0), j = 1, 2, · · · , n. (3.7)

By approximating xj(0) by the shifted Legendre
orthonormal polynomials P⋆

k
(t) as

xj(0) ≃ FTj ΔN(t), j = 1, 2, · · · , n, (3.8)

where

Fj =
⎛⎜⎜⎜⎝
xj
0
⋮
0

⎞⎟⎟⎟⎠ , j = 1, 2, · · · , n, (3.9)

we can approximate xj(t) as

xj(t) ≃
(
CT
j I

(𝜈) + FTj
)
ΔN(t), j = 1, 2, · · · , n.

(3.10)

Also, we approximate bi(t) (i = 1, 2, · · · , n(n + 1))
and aj(t) (j = 0, 1, · · · , n) by the the shifted Legendre
orthonormal polynomials P⋆

k
(t) as

bi(t) ≃ BT
i ΔN(t), i = 1, 2, · · · , n(n + 1),

aj(t) ≃ AT
j ΔN(t), j = 0, 1, · · · , n,

(3.11)

where

Bi =
⎛⎜⎜⎜⎝
bi,0
bi,1
⋮
bi,N

⎞⎟⎟⎟⎠ , Aj =
⎛⎜⎜⎜⎝
aj,0
aj,1
⋮
aj,N

⎞⎟⎟⎟⎠ ,
i = 1, 2, · · · , n(n + 1), j = 0, 1, · · · , n.

(3.12)

and

bi,k = ∫
1

0
bi(t)P⋆

k (t)dt,

k = 0, 1, · · · ,N, i = 1, 2, · · · , n(n + 1),

aj,k = ∫
1

0
aj(t)P⋆

k (t)dt,

k = 0, 1, · · · ,N, j = 0, 1, · · · , n.

(3.13)

For general functions bi(t) (i = 1, 2, · · · , n(n + 1))
and aj(t) (j = 0, 1, · · · , n), it is more difficult to compute
the previous integrals exactly. Using the Legendre-Gauss
quadrature formula, we can approximate the coefficients
bi,k and aj,k as

bi,k =
N∑
𝜖=0

bi(tN,𝜖)P⋆

k (tN,𝜖)𝜛N,𝜖,

k = 0, 1, · · · ,N, i = 1, 2, · · · , n(n + 1),

aj,k =
N∑
𝜖=0

aj(tN,𝜖)P⋆

k (tN,𝜖)𝜛N,𝜖,

k = 0, 1, · · · ,N, j = 0, 1, · · · , n,

where tN,𝜖, 0 ≤ 𝜖 ≤ N are the zeros of Legendre–Gauss
quadrature in the interval (0, 1), with 𝜛N,𝜖, 0 ≤ 𝜖 ≤ N
are corresponding Christoffel numbers.



Using (3.3), (3.10) and (3.11), we can approximate
J ≡ J[C1,C2, · · · ,Cn,U] as

JN≃ 1
2∫

t1

t0

( n∑
i=1

[(
BT
i ΔN(t)

)(
CT
i I

(𝜈) + dTi
)
ΔN(t)ΔT

N(t)(
CT
i I

(𝜈) + dTi
)T]+(AT

0 ΔN(t)
)

×
(
UTΔN(t)ΔT

N(t)U
))
dt.

(3.14)

Employing (3.3), (3.10) and (3.11), the dynamic
constraints (3.2) can be approximated as

CT
j ΔN(t) −

n∑
i=1

[
BT
jn+iΔN(t)ΔT

N(t)
(
CT
i I

(𝜈) + dTi
)T]

− AT
j ΔN(t)ΔT

N(t)U = 0,

j = 1, 2, · · · , n.
(3.15)

Let

BT
jn+iΔN(t)ΔT

N(t) ≃ ΔT
N(t)G

T
jn+i, i, j = 1, 2, · · · , n,

(3.16)

AT
j ΔN(t)ΔT

N(t) ≃ ΔT
N(t)H

T
j , j = 1, 2, · · · , n,

(3.17)

where Gjn+i andHj are N ×N matrices.
In order to compute Gjn+i (i, j = 1, 2, · · · , n) and

Hj (j = 1, 2, · · · , n), we may write (3.16) and (3.17) as

N∑
k=0

bjn+i,kP
⋆

k (t)P
⋆

l (t) =
N∑
k=0

Gjn+i(lk)P
⋆

k (t), i,

j = 1, 2, · · · , n, l = 0, 1, · · · ,N,

(3.18)

N∑
k=0

aj,kP
⋆

k (t)P
⋆

l (t) =
N∑
k=0

Hj(lk)P
⋆

k (t),

j = 1, 2, · · · , n, l = 0, 1, · · · ,N.

(3.19)

Multiplying both sides of (3.18) and (3.19) by
P⋆
m(t), m = 0, 1, · · · ,N and integrating from 0 to 1, we

have

N∑
k=0

bjn+i,k∫
1

0
P⋆

k (t)P
⋆

l (t)P
⋆

m(t)dt =
N∑
k=0

Gjn+i(lm)

×∫
1

0
P⋆

k (t)P
⋆
m(t)dt,

(3.20)

N∑
k=0

aj,k∫
1

0
P⋆

k (t)P
⋆

l (t)P
⋆

m(t)dt
N∑
k=0

Hj(lm)∫
1

0
P⋆

k (t)P
⋆

m(t)dt,

(3.21)

i, j = 1, 2, · · · , n, l,m = 0, 1, · · · ,N.

Bymeans of the orthogonality relation (2.7), we get

Gjn+i(lm) =
N∑
k=0

bjn+i,k∫
1

0
P⋆

k (t)P
⋆

l (t)P
⋆

m(t)dt,

Hj(lm) =
N∑
k=0

aj,k∫
1

0
P⋆

k (t)P
⋆

l (t)P
⋆
m(t)dt,

i, j = 1, 2, · · · , n, l,m = 0, 1, · · · ,N.

(3.22)

Using (3.16) and (3.17), Eq. 3.15 may be written as

CT
j ΔN(t) −

n∑
i=1

[
ΔT
N(t)G

T
jn+i

(
CT
i I

(𝜈) + dTi
)T]

− ΔT
N(t)H

T
j U = 0, j = 1, 2, · · · , n,

(3.23)

or

(
CT
j −

n∑
i=1

[
GT
jn+i

(
CT
i I

(𝜈)+dTi
)T ]−HT

j U
)
ΔN(t)=0,

j=1, 2, · · · , n.
(3.24)



Thus, the dynamic constraints (3.2) are converted
into the following linear system of algebraic equations:

CT
j −

n∑
i=1

[
GT
jn+i

(
CT
i I

(𝜈)+dTi
)T]−HT

j U=0, j=1, 2, · · · , n.

(3.25)

Let

J⋆[C1,C2, · · · ,Cn,U, 𝜆] = J[C1,C2, · · · ,Cn,U]

+
n∑
j=1

(
CT
j −

n∑
i=1

[
GT
jn+i

(
CT
i I

(𝜈) + dTi
)T] −HT

j U
)
𝜆j,

(3.26)

where

𝜆j =
⎛⎜⎜⎜⎝
𝜆j,0
𝜆j,1
⋮

𝜆j,N

⎞⎟⎟⎟⎠ , j = 1, 2, · · · , n, (3.27)

is the unknown Lagrange multiplier.
The necessary conditions for the optimality of the

performance index (3.1) subjected to the dynamic con-
straints (3.2) are

𝜕J⋆

𝜕cj,k
= 0, j = 1, 2, · · · , n,

𝜕J⋆

𝜕uk
= 0,

𝜕J⋆

𝜕𝜆j,k
= 0, j = 1, 2, · · · , n,

k = 0, 1, · · · ,N.

(3.28)

The system of algebraic equations introduced
above can be solved by using any standard itera-
tion method for the unknown coefficients cj,k, uk
and 𝜆j,k, j = 1, 2, · · · , n, k = 0, 1, · · · ,N. Conse-
quently, Cj, U and 𝜆j given in (3.4) and (3.27) can
be obtained.

IV. NUMERICAL EXPERIMENTS

In order to demonstrate the validity and accu-
racy of the proposed numerical scheme, we solve
three problems and we compare the results obtained

using the novel algorithm and those obtained using
other methods.

4.1 One-dimensional FOCP

As the first example, we consider the following
one-dimensional FOCP studied in [34,37]

Min. J = 1
2∫

1

0

(
x2(t) + u2(t)

)
dt, (4.1)

subjected to the dynamic constraints,

D𝜈x(t) = −x(t) + u(t),
x(0) = 1.

(4.2)

The exact solution of this problem for 𝜈 = 1 is

x(t) = cosh(
√
2t) + 𝛽 sinh(

√
2t),

u(t) = (1 +
√
2𝛽) cosh(

√
2t) + (

√
2 + 𝛽) sinh(

√
2t),
(4.3)

where

𝛽 = −cosh(
√
2t) +

√
2 sinh(

√
2t)√

2 cosh(
√
2t) + sinh(

√
2t)

.

Fig. 1. Absolute error of x(t) at N = 8 with 𝜈 = 1 for problem
(4.1).



In [34], the Lagrangemultipliermethod and the cal-
culus of variations were used together with the formula
for fractional integration by parts to obtain approximate
solutions of the control variable u(t) and the state variable
x(t). The authors used N = 10, 20, 40, 80, 160, 230, but
achieved reasonable results for the approximate values of
u(t) and x(t) only when adopting a large fN (see Figs 1–4
in [34]). Also, Jafari and Tajadodi [37] used the opera-
tional matrices of Bernstein polynomials to approximate
the solution of this problem.

Figs 1 and 2 depict the absolute errors of the state
variable x(t) and the control variable u(t) at N = 8 and
𝜈 = 1. Figs 3 and 4 present the approximate values of x(t)
and u(t) as functions of time when N = 6 and various
values of 𝜈 namely, 𝜈 = 0.80, 0.90, 0.99, and 1. In Table I,

Fig. 2. Absolute error of u(t) at N = 8 with 𝜈 = 1 for problem
(4.1).
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Fig. 3. Approximate solutions of x(t) at N = 6 and
𝜈 = 1, 0.99, 0.90 and 0.80 for problem (4.1).
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Fig. 4. Approximate solutions of u(t) at N = 6 and
𝜈 = 1, 0.99, 0.90 and 0.80 for problem (4.1).

we compare the absolute errors of x(t) using our method
with those achieved using this in [37]. Tables II and III list
the absolute errors of x(t) and u(t) for 𝜈 = 1 and various
values of N.

From Figs 1 and 2 and Tables I–III, it is clear
that adding few terms of shifted Legendre orthonormal
polynomials, leads to good approximations of the exact
state and control variables. Figs 3 and 4 reveal that as 𝜈
approaches to 1, the solution for the integer order system
is recovered.

4.2 Two-dimensional FOCP

As a two-dimensional FOCP, we consider the fol-
lowing problem [33,36]

Min. J = 1
2∫

1

0

(
x21(t) + x22(t) + u2(t)

)
dt, (4.4)

subjected to the dynamic constraints,

D𝜈x1(t) = −x1(t) + x2(t) + u(t),
D𝜈x2(t) = −2x2(t),
x1(0) = x2(0) = 1.

(4.5)

The exact solution of this problem for 𝜈 = 1 is

x1(t) = −3
2
e−2t + 2.48164e−

√
2t + 0.018352e

√
2t,

x2(t) = e−2t,

u(t) = 1
2
e−2t − 1.02793e−

√
2t + 0.0443056e

√
2t.



Table I. Comparing of the new method with the one proposed in [37] for x(t) at
𝜈 = 1 for problem (4.1).

t
Method in [37] Our method

N = 3 N = 4 N = 5 N = 3 N = 4 N = 5
0.1 3.41.10−4 4.77.10−5 1.34.10−5 3.30.10−4 3.66.10−5 2.39.10−6

0.2 5.08.10−4 3.25.10−5 2.12.10−5 4.86.10−4 1.00.10−5 1.21.10−6

0.3 1.12.10−4 7.74.10−6 3.24.10−5 7.78.10−5 2.64.10−5 1.72.10−6

0.4 2.87.10−4 2.13.10−5 4.73.10−5 3.34.10−4 2.53.10−5 6.82.10−7

0.5 3.97.10−4 6.43.10−5 6.20.10−5 4.57.10−4 4.23.10−6 1.93.10−6

0.6 1.50.10−4 1.03.10−4 7.49.10−5 2.30.10−4 2.91.10−5 3.10.10−7

0.7 2.93.10−4 1.12.10−4 8.88.10−5 2.02.10−4 2.14.10−5 1.90.10−6

0.8 6.29.10−4 9.14.10−5 1.07.10−5 5.21.10−3 1.72.10−5 9.16.10−7

0.9 3.71.10−4 9.41.10−5 1.31.10−4 2.42.10−4 3.46.10−5 2.49.10−6

Table II. Absolute errors of x(t) at 𝜈 = 1 and various
values of N for problem (4.1).

t N = 6 N = 8 N = 10

0.1 6.86398.10−8 1.21608.10−10 5.77379.10−12

0.2 1.00670.10−7 3.87690.10−11 8.27005.10−13

0.3 1.33050.10−8 1.05482.10−10 9.84246.10−12

0.4 9.00998.10−8 1.52765.10−10 8.83471.10−12

0.5 9.27207.10−9 1.27758.10−11 3.52051.10−12

0.6 9.13792.10−8 1.44500.10−10 1.11767.10−11

0.7 4.44009.10−9 1.23409.10−10 4.95581.10−12

0.8 9.93486.10−8 1.63731.10−11 5.44142.10−12

0.9 8.05744.10−8 1.06073.10−10 1.02076.10−11

Defterli [36] used the Grünwald–Letnikov defini-
tion to approximate the Riemann–Liouville fractional
derivatives for approximating its solution. Defterli con-
sidered N = 8, 16, 32, 64, 128 and achieved reasonable
results for the approximate values of the control vari-
able, u(t), and the two state variables, x1(t) and x2(t),
only for a large number of N. Also, Yousefi et al. [33]
introduced this problem and applied the Legendre mul-
tiwavelet collocation method (LMWCM) for solving it
numerically.

In Figs 5–7, we plot the approximate values of
the state variables, x1(t) and x2(t), and the control

variable u(t) for N = 8 and various choices of 𝜈, 𝜈 =
0.80, 0.90, 0.99 and 1. In Figs 8–10, we present the
absolute errors of x1(t), x2(t) and u(t) at N = 10
and 𝜈 = 1. Table IV shows the maximum abso-
lute errors (MAEs) of x1(t), x2(t) and u(t) using our
scheme at 𝜈 = 1 and various choices of N. Table V
lists the absolute errors of x2(t) at 𝜈 = 1 and
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Fig. 5. Approximate solutions of x1(t) at N = 8 and
𝜈 = 1, 0.99, 0.90 and 0.80 for problem (4.4).

Table III. Absolute errors of u(t) at 𝜈 = 1 and various values of N for
problem (4.1).

t N = 3 N = 5 N = 7 N = 9

0.1 1.09654.10−4 7.08189.10−7 5.79289.10−11 5.44732.10−12

0.2 1.42091.10−4 3.99869.10−7 8.95548.10−10 7.88896.10−13

0.3 8.61549.10−6 4.98380.10−7 1.32975.10−9 9.50503.10−12

0.4 1.13021.10−4 2.49280.10−7 1.39678.10−11 9.25248.10−12

0.5 1.37870.10−4 5.81011.10−7 1.30231.10−9 2.24265.10−12

0.6 5.73271.10−5 4.96686.10−8 3.64046.10−10 1.12853.10−11

0.7 7.57957.10−5 5.92683.10−7 1.21586.10−9 7.22766.10−12

0.8 1.60967.10−4 2.40909.10−7 1.13464.10−9 3.48032.10−12

0.9 6.26788.10−5 7.61099.10−7 2.20743.10−10 9.91018.10−12
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Fig. 6. Approximate solutions of x2(t) at N = 8 and
𝜈 = 1, 0.99, 0.90 and 0.80 for problem (4.4).
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Fig. 7. Approximate solutions of u(t) at N = 8 and
𝜈 = 1, 0.99, 0.90 and 0.80 for problem (4.4).

Fig. 8. Absolute error of x1(t) at N = 10 with 𝜈 = 1 for
problem (4.4).

Fig. 9. Absolute error of x2(t) at N = 10 with 𝜈 = 1 for
problem (4.4).

Fig. 10. Absolute error of u(t) at N = 10 with 𝜈 = 1 for
problem (4.4).

Table IV. MAEs of x1(t), x2(t) and u(t) at 𝜈 = 1 and
various values of N for problem (4.4).

N x1(t) x2(t) u(t)

3 2.528709.10−3 3.759398.10−3 8.536543.10−4

4 3.888715.10−4 4.113533.10−4 9.095703.10−5

5 4.003185.10−5 3.702743.10−5 1.351619.10−5

6 3.502786.10−6 2.828678.10−6 1.053620.10−6

7 2.419059.10−7 1.876229.10−7 2.124256.10−7

8 6.575392.10−8 1.099375.10−8 1.286924.10−7

9 5.000459.10−8 5.768396.10−10 1.319097.10−7

various values of N. In order to demonstrate that our
scheme ismore accurate than the LMWCM [33], we com-
pare in Tables VI–VIII the absolute errors of x1(t), x2(t)



Table V. Absolute errors of x2(t) at 𝜈 = 1 and various values of
N for problem (4.4).

t N = 5 N = 7 N = 9 N = 11

0.1 1.395.10−5 1.482.10−9 1.755.10−10 1.833.10−13

0.2 7.572.10−6 3.552.10−8 1.449.10−10 3.969.10−14

0.3 9.842.10−6 5.139.10−8 6.718.10−11 9.892.10−14

0.4 5.458.10−6 1.486.10−9 6.240.10−11 2.063.10−13

0.5 1.129.10−5 5.058.10−8 1.406.10−10 2.664.10−13

0.6 1.229.10−6 1.322.10−8 8.527.10−11 2.313.10−13

0.7 1.141.10−5 4.756.10−8 4.350.10−11 1.362.10−13

0.8 4.895.10−6 4.356.10−8 1.344.10−10 7.757.10−14

0.9 1.483.10−5 7.911.10−9 1.699.10−10 2.117.10−13

and u(t), at 𝜈 = 1 and N = 6, with those obtained using
the LMWCM [33].

4.3 Three-dimensional FOCP

In order to obtain that the proposed method can be
applied for high dimensions problems, we consider the

following problem as a three-dimensional FOCP

Min. J = 1
2∫

1

0

(
x21(t)+x

2
2(t)−x

2
3(t)+u

2(t)
)
dt, (4.7)

subjected to the dynamic constraints,

D𝜈x1(t) = −2x1(t) − tx2(t) + u(t),
D𝜈x2(t) = 3x1(t) + x3(t) − u(t),
D𝜈x3(t) = tx1(t) + x2(t),
x1(0) = x2(0) = x3(0) = 1.

(4.8)

This problem is solved by the numerical method
introduced above. In Figs 11–14, we plot the approximate
values of the state variables x1(t), x2(t), x3(t) and the con-
trol variable u(t) at N = 3 with various choices of 𝜈, 𝜈 =
0.60, 0.80, 0.90, 0.99 and 1. As shown in Figs 11–14, by
using the presented method we achieve satisfactory result
with at most three elements of the shifted Legendre
orthonormal basis, which demonstrates the efficiency of
the presented method for high dimensions problems.

Table VI. Comparing the new method with the LMWCM [33] for x1(t) at 𝜈 = 1 for
problem (4.4).

t
LMWCM [33] Our method

N = 3 N = 4 N = 6 N = 3 N = 4 N = 6

0.1 4.496.10−4 6.283.10−5 6.947.10−6 7.444.10−4 1.590.10−4 7.373.10−7

0.2 1.152.10−3 3.861.10−4 5.662.10−6 9.097.10−4 3.592.10−5 1.101.10−6

0.3 2.906.10−3 4.751.10−4 1.420.10−6 1.418.10−5 1.169.10−4 1.928.10−7

0.4 3.764.10−3 2.562.10−4 5.483.10−7 7.544.10−4 1.027.10−4 9.998.10−7

0.5 3.342.10−3 1.135.10−4 3.537.10−6 8.713.10−4 2.658.10−5 1.193.10−7

0.6 1.763.10−3 4.026.10−4 5.847.10−6 3.189.10−4 1.266.10−4 9.780.10−7

0.7 4.660.10−4 4.290.10−4 3.908.10−6 5.379.10−4 8.487.10−5 1.166.10−7

0.8 2.556.10−3 1.591.10−4 1.154.10−7 1.050.10−3 8.129.10−5 1.124.10−6

0.9 3.512.10−3 2.141.10−4 1.843.10−6 3.622.10−4 1.456.10−4 8.710.10−7

Table VII. Comparing the new method with the LMWCM [33] for x2(t) at 𝜈 = 1 for
problem (4.4).

t
LMWCM [33] Our method

N = 3 N = 4 N = 6 N = 3 N = 4 N = 6

0.1 7.175.10−4 5.965.10−5 1.802.10−6 1.043.10−3 1.680.10−4 6.053.10−7

0.2 1.630.10−3 4.057.10−4 1.281.10−6 1.409.10−3 4.112.10−5 9.096.10−7

0.3 4.397.10−3 5.105.10−4 1.754.10−6 1.357.10−4 1.226.10−4 1.430.10−7

0.4 6.018.10−3 2.878.10−4 2.109.10−6 1.058.10−3 1.113.10−4 8.084.10−7

0.5 5.810.10−3 1.039.10−4 6.633.10−7 1.338.10−3 2.471.10−5 1.083.10−7

0.6 3.814.10−3 4.207.10−4 2.867.10−6 5.927.10−4 1.336.10−4 8.232.10−7

0.7 6.659.10−4 4.649.10−4 1.555.10−6 6.962.10−4 9.287.10−5 6.466.10−8

0.8 2.517.10−3 1.924.10−4 1.528.10−6 1.562.10−3 8.327.10−5 8.936.10−7

0.9 4.218.10−3 1.995.10−4 1.285.10−6 6.409.10−4 1.557.10−4 7.454.10−7



Table VIII. Comparing the new method with the LMWCM [33] for u(t) at 𝜈 = 1 for
problem (4.4).

t
LMWCM [33] Our method

N = 3 N = 4 N = 6 N = 3 N = 4 N = 6

0.1 1.883.10−4 1.046.10−5 2.597.10−6 2.287.10−4 3.568.10−5 1.711.10−7

0.2 3.498.10−4 8.057.10−5 2.121.10−6 3.118.10−4 4.319.10−6 3.728.10−7

0.3 9.956.10−4 8.937.10−5 8.640.10−7 3.045.10−5 3.022.10−5 6.595.10−9

0.4 1.399.10−4 2.583.10−5 5.089.10−7 2.329.10−4 2.387.10−5 2.301.10−7

0.5 1.411.10−3 6.734.10−5 1.346.10−6 2.953.10−4 7.706.10−6 1.135.10−7

0.6 1.039.10−3 1.341.10−5 1.960.10−6 1.323.10−4 2.948.10−5 3.717.10−7

0.7 4.216.10−4 1.350.10−4 1.319.10−6 1.514.10−4 1.704.10−5 5.660.10−8

0.8 1.969.10−4 6.878.10−5 9.161.10−6 3.437.10−4 2.207.10−5 2.197.10−7

0.9 4.782.10−4 1.375.10−5 1.003.10−7 1.393.10−4 3.393.10−5 3.873.10−7
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Fig. 11. Approximate solutions of x1(t) at N = 3 and
𝜈 = 1, 0.99, 0.90, 0.80 and 0.60 for problem (4.7).

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

3.0

3.5

t

x 2
(t

)

0.60

0.80

0.90

0.99

1

Fig. 12. Approximate solutions of x2(t) at N = 3 and
𝜈 = 1, 0.99, 0.90, 0.80 and 0.60 for problem (4.7).
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Fig. 13. Approximate solutions of x3(t) at N = 3 and
𝜈 = 1, 0.99, 0.90, 0.80 and 0.60 for problem (4.7).
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Fig. 14. Approximate solutions of u(t) at N = 3 and
𝜈 = 1, 0.99, 0.90, 0.80 and 0.60 for problem (4.7).



V. CONCLUSION

In this paper, a new formulation of the M-DFOCP
was considered. The Lagrange multiplier method for
the constrained extremum and the operational matrix of
fractional integrals are used, together with the help of
the properties of the shifted Legendre orthonormal poly-
nomials, to solve the M-DFOCP numerically, by reduc-
ing it to a solution of a system of algebraic equations.
The fractional derivatives are described in the Caputo
sense, while the fractional integrals are described in the
Riemann–Liouville sense. In order to clarify the validity
and accuracy of the proposed scheme, three numerical
examples were presented with their exact and approxi-
mate solutions.
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