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Abstract Inspired in dynamic systems theory and
Brewer’s contributions to apply it to economics, this
paper establishes a bond graph model. Two main vari-
ables, a set of inter-connectivities based on nodes and
links (bonds) and a fractional order dynamical perspec-
tive, prove to be a goodmacro-economic representation
of countries’ potential performance in nowadays glob-
alization. The estimations based on time series for 50
countries throughout the last 50 decades confirm the
accuracy of the model and the importance of scale for
economic performance.
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1 Introduction

In 1695 Gottfried Leibniz conceived the derivative of
order 1/2. This idea leads to the area usually known as
‘Fractional Calculus’ (FC) and represents the general-

ization of the operations of integration and differentia-
tion up to real or complex orders [34,46,49,52,55,57]. 
During the last decades researchers verified that frac-
tional models capture memory effects of natural and 
artificial phenomena, while classical integer models 
reveal limitations when describing those properties 
[6,29,44,65,71]. This state of affairs has motivated an 
intensive research towards new areas of application of 
the novel concepts, and we verify a sustained growth in 
the number of publications involving this mathematical 
tool [42,43].

Bond graphs (BG) were created by Henry Payn-
ter at MIT during the fifties [53]. Paynter noted that 
distinct ‘domains’, such as electrical, mechanical and 
fluid systems, were modelled by equations of the same 
form. These systems are nowadays commonly called 
‘analogous’. The BG method is a graphical modelling 
tool based on the energy transfer rate within the sys-
tem. The constitutive elements are interconnected by 
‘bonds’ that specify the power transfer between them. 
Therefore, ‘power’ (the time rate of energy transfer) 
between the distinct components is the main con-
cept supporting the description of physical systems. 
Since then, the BG theory has been developed by 
many researchers [7,8,21,23,24,33,48,67,68,74] that 
extended the technique to power hydraulics, mecha-
tronics, thermo-dynamics and, more recently, to non-
physical systems like micro-economy [10–12,76] and 
architecture [36,69,70]. The BG graphical representa-
tion and the derivation of system equations is system-
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atic and can be algorithmized by existing software (e.g.
20-sim, Camp-G, ENPORT and others).

2 Bond graphs: fundamentals

The fundamental idea of a BG is that power P is trans-
mitted between connected components by a combina-
tion of ‘effort’ and ‘flow’ so that P(t) = e(t) f (t),
where t is time. In general the two variables are
called ‘generalized effort’ and ‘generalized flow’. The
power interconnection between elements is denoted
by ‘bonds’. Table 1 presents examples of different
domains and the corresponding effort and flow vari-
ables. We should note that the assignment for variables
e and f can be rotated. For example, some authors
switch the Force and Velocity pair in mechanical sys-
tems. The resulting changes do not preclude neither
the model validity nor its generality. In some domains
the product of effort and flow does not lead to power,
because extending the BG method to new applications
requires the generalization of the concept of power.

The effort and flow signals are carried by the sin-
gle power bond and represented in Fig. 1. The direc-
tion of the half-arrow indicates the positive direction of
power transport between elements A and B. Therefore,
in Fig. 1, power transfer from left to right is considered
positive and negative otherwise.

The fundamental variables are effort e and flow f ,
but we need to keep in mind the time integral of effort,
p, and the time integral of flow, q. Often, the electri-
cal domain is adopted for illustrating the BG concepts;
thus, we have voltage v, current i , flux linkage λ and
charge q as the analogous variables.

Four groups of symbols are used in BGs, namely
two active elements, three one-port elements, two two-
port elements and two junctions. The active ports are
denoted by ‘effort source’ (SE) and ‘flow source’ (SF)
represented in Table 2. In the electrical domain they are
the voltage and current sources, respectively. In what
concerns the one-port elements we have two energy
stores and one energy dissipator, that is, f = ϕ−1 (p),
e = ψ−1 (q) and e = γ ( f ) (or, f = γ −1 (e)),
respectively. In the electrical domain we have corre-
spondingly the inductor L , capacitor C and resistor R
with constitutive linear relations i = 1

L λ, v = 1
C q

and v = Ri , respectively. Figure 2 shows the so-
called tetrahedron of states, illustrating the relation-
ships between the state variables.

Besides the three classical one-port elements, it was
recognized to be possible a fourth element denoted
memristor M interconnecting p and q [16–18,30,64,
75]. In fact, besides these elements it is possible to

Well-succeeded countries have been studied as cases 
of exceptionalism in economic history. The UK dom-
inance over the world in the nineteenth century was 
exceptional because of pioneering the steam-engine 
industrialization [20]. The American hegemony in the 
twentieth century was a case of exceptionalism because 
of exceptional resource endowments [3,54]. Other suc-
cessful countries were interpreted as cases of excep-
tional replication opportunities [1].

According to these views, technological develop-
ment did not command growth, because its adoption 
may be explained by the opportunity cost of labour 
force wages [4]. Large literature on the causes for 
growth and stagnation elects industrial productivity 
and wages as the secret for new-technology adoption 
[51,60]: most regions ‘could not have industrialized by 
following American policies since their wages were so 
low and their energy costs so high that the modern tech-
nology that was cost effective in Britain and the USA 
would not have paid in their circumstances’ [4]. At the 
same time contradictory interpretations are available on 
large territories. On the one side, economic policy is a 
relevant driver to growth, it is said [50]. (For exam-
ple, ‘The development of Egypt and India required 
more draconian state intervention than a protective tar-
iff, mass education, and infrastructure investment’ [4]). 
On the other side, they were victims of mother-country 
economies and could not develop appropriate institu-
tional environments for economic growth, according to 
other views [2].

Among so large and diversified literature, scale has 
not deserved enough attention, although the general-
equilibrium models perspective is also available [66]. 
This paper prefers to approach economic growth 
according to bond graphs modelling theories to elect a 
few number of variables expressing scale and observe 
the economic growth of 50 nations throughout the last 
50 years, the period for which reliable data are avail-
able (http://data.worldbank.org/). Exceptionalism may 
become interpreted as a much less exceptional view.

Having these ideas in mind this paper is organized 
as follows. Section 2 presents the fundamental aspects 
of bond graph theory. Section 3 is a literature review of 
BG application to economic systems and a general pre-
sentation of this paper model. The discussion of results 
is presented in Sect. 4, and Conclusions follow up in 
Sect. 5.

http://data.worldbank.org/


Table 1 Bond graph domains and variables

Domain Effort e Flow f Momentum p Displacement q Power P Energy E

Electric Voltage Current Flux linkage Charge Power Energy

v i λ = ∫
v dt q = ∫

i dt P = e · i E = ∫
P dt

Units [V] [A] [Vs] [C] [V A = W] [V As = J]

Magnetic Magnetomotive Magnetic Charge Magnetic Power Energy

force flux rate linkage flux

em φ̇ Γ = ∫
em dt φ = ∫

φ̇ dt P = em φ̇ E

[A] [Wbs−1] [C = As] [Wb] [A Wbs−1 = W] [A Wb = J]

Mechanics
(translation)

Force Velocity Momentum Displacement Power Energy

f ẋ p = ∫
f dt x = ∫

ẋ dt P = f · ẋ E

[N] [ms−1] [Ns] [m] [Nms−1 = W] [V As = J]

Mechanics
(rotation)

Torque Angular Angular Angle Power Energy

velocity momentum

τ ω h = ∫
τ dt θ = ∫

ω dt P = τ · ω E

[Nm] [rad s−1] [N ms] [rad] [W] [J]

Hydraulic Pressure Volume Pressure Volume Power Energy

momentum flow rate

p q Γ = ∫
p dt V = ∫

q dt P = p · q E

[N m−2] [m3 s−1] [Nsm−2] [m3] [W] [J]

Chemical Chemical Molar – Number Power Energy

potential flow of moles

μ Ṅ N = ∫
Ṅ dt P E

[J mole−1] [mole s−1] [mole] [W] [J]

Thermo-dynamics Temperature Entropy flow – Entropy Power Energy

T Ṡ S = ∫
Ṡ dt P E

[K] [JK−1 s−1] [JK−1] [W] [J]

Architecture Energy for a Number of changes Momentum Displacement Power Energy

unit of change in a unit of time

e f pa q P E

[energy/change] [change/time] [energy time/change] [change] [energy/time] [energy]

Micro-economy Unit price of Commodity Economic Accumulation Money flow Money

commodity flow rate impulse of orders

e f λ = ∫
e dt q = ∫

f dt Ṁ = e f M = ∫
Ṁ dt

Units [$ unit−1] [unit period−1] [$ unit−1 period] [unit] [$ period−1] [$]

Macro-economy GDP per Population Economic Population Money flow Money

capita flow impulse

Y ṅ I n Ṁ = Y ṅ M = ∫
Ṁ dt

[$ capita−1] [capita period−1] [$ capita−1 period] [capita] [$ period−1] [$]

generalize the concepts, not only to higher order ele-
ments [31,72], but also to fractional order inductors and
capacitors [19,26,39,45,47], often called in the elec-
trical domain as ‘fractductors’ and ‘fractances’, with

constitutive relations v = LDβ
t i (t), 0 < β < 1, and

i = CDα
t v (t), 0 < α < 1, respectively [32,40], where

symbolDα
t denotes the fractional derivative of order α

with respect to time t [34,46,49,55,57].



Fig. 1 Bond between elements A and B

The BG elements are connected by means of two-
port devices and junctions (see Table 2). The trans-
former T F and gyrator GY are two-port elements that
modify the input {e1, f1} into the output {e2, f2} (or
the primary into the secondary) variables, being power
conservative, that is, with e1 f1 = e2, f2. The constitu-
tive relations are given by {e1 = me2, f2 = m f1} and
{e1 = r f2, e2 = r f1}, where m ∈ R

+ and r ∈ R
+ are

the transformer and gyrator modulus, respectively. On
the other hand, the 1- (or effort) and 0- (or flow) junc-
tions implement continuity constraints on the effort and
flow variables, respectively. The constitutive relations
correspond to {e1 + · · · + en = 0 , f1 = · · · = fn} for
the 1-junction and {e1 = · · · = en , f1 + · · · + fn = 0}

for the 0-junction. In the electrical domain the 1- and 0-
junctions correspond to the first (or voltage) and second
(or current) Kirchoff laws, respectively.

The notion of ‘causality’ is not usually discussed
during system equation derivation. However, in BG
causality is an important concept and allows the
input/output roles of effort and flow to be included
into the graph. This is represented using the causal
stroke convention. In BG notation, a causal stroke
added to one end of the bond indicates that the opposite
side is establishing the effort. Symmetrically, the bond
side with the causal stroke defines the flow. Assigning

Fig. 2 Tetrahedron of states {e, f, p, q}

Table 2 Bond graph
elements and ports:
symbols, causality and
relations

Element Symbol Constitutive relations Type

Effort source Se
e−⇀| e(t) given, f (t) arbitrary One-port

Flow source S f |−⇀
f

f (t) given, e(t) arbitrary One-port

Effort store
e−⇀
f
|L f = 1

L p One-port

Flow store | e−⇀
f

C e = 1
C q One-port

Dissipator | e−⇀
f

R e = R f One-port

e−⇀
f
|R f = 1

R e

Transformer |e1−⇀
f1

T F
m

|e2−⇀
f2

e1 = me2 Two-port

e1−⇀
f1

| T F
m

e2−⇀
f2

| f2 = m f1

Gyrator |e1−⇀
f1

GY
r

e2−⇀
f2

| e1 = r f2 Two-port

e1−⇀
f1

| GY
r

|e2−⇀
f2

e2 = r f1

Effort or 1-junction

f2 � e2 . .
.

|e1−⇀
f1

1 |en−⇀
fn

e1 + e2 + · · · + en = 0

f1 = f2 = · · · = fn
Junction

Flow or 0-junction
f2 � e2 . .

.

e1−⇀
f1

| 0
en−⇀
fn

|
e1 = e2 = · · · = en

f1 + f2 + · · · + fn = 0
Junction



Table 3 Effort store, flow store and dissipator elements

Domain Element Name Symbol Dynamic Linear Units
type relation relation relation

Electric Effort store Inductor L i = ϕ−1 (λ) i = 1
L λ [H = m2 kg s−2 A−2]

Flow store Capacitor C v = ψ−1 (q) v = 1
C q [F = s4 A2 m−2 kg−1]

Dissipator Resistor R v = γ (i) v = Ri [Ω = kg m2 s−3 A−2]

Micro Effort store Inertia Ie f = ϕ−1 (λ) f = 1
Ie

λ [$ unit−2 period2]

economy Flow store Compliance Ce e = ψ−1 (q) e = 1
Ce

q [$ −1 unit2]

Dissipator Resistor Re e = γ ( f ) e = Re f [$ unit−2 period]

Macro Effort store Inertia Ie ṅ = ϕ−1 (I ) ṅ = 1
Le

I [$ capita−2 period2]

economy Flow store Compliance Ce Y = ψ−1 (n) Y = 1
Ce

n [$ −1 capita2]

Dissipator Resistor Re Y = γ (ṅ) Y = Reṅ [$ capita−2 period]

causality in a BG allows the detection of degeneracies
in the system modelling. This problem occurs in situa-
tions where one or more algebraic loops exist, and the
one or more state variables are linearly dependent on
the rest. Causality strokes are represented in Table 2.

3 Bond graph modelling of economic systems

In 1975 Brewer [9] extended the BG concepts tomicro-
economy. Later the work was continued in [10–12].
Brewer considered effort and flow state variables to be
the ‘unit price of commodity’ and ‘commodity flow
rate’, respectively. Power and energy have for analo-
gous variables ‘money flow’ and ‘money’, represent-
ing a generalization of the standard physical variables.
The related dynamical concepts are shown in Tables 1
and 3.

In what concerns the effort and flow junctions
Brewer mentions that a ‘proper cash accounting’,
known as Walras’ law to economists, leads to the
requirement e1 f1+· · ·+en fn = 0. This principle is not
totally clear in macro-economy, although, at least for a
given time instant, a healthy environment would lead
us to such supposition. This ‘power-conservative prin-
ciple’ comes from considering that different sectors of
any economy are related to each other and lead to con-
sider a system of n equations describing those relation-
ships, using n variables. To reach a general equilibrium,
a successive iteration of price adjustments is required,
in order that all excess demand over supply would
become zero [73]. Such a ‘power-conservative prin-
ciple’ had also been established much earlier among

economists, such as Adam Smith, James Mill and Jean
Baptiste Say, who considered that the production of
final goods gives origin to a distribution of revenues to
pay for the use of input factors during the productive
process, and such revenues are available to buy those
final goods, at last [58]. Say’s law currently, is coined as
saying ‘Supply generates Demand’. It is only not clear
for macro-economic equilibrium in monetized soci-
eties, if hoarding will occur because sub-consumption
means crisis (as scarce consumption for production is
equivalent to an over-production situation). However,
in a dynamic perspective crises can be overcome and a
new general equilibrium may be reached. In the sequel
we overcome using junctions by considering a gener-
alized one-port element.

In this work we intend to extend the concepts intro-
duced by Brewer to macro-economy. In our formula-
tion the effort and flow variables are represented by
the ‘GDP per capita’, Y (t) and ‘Population flow’ ṅ (t).
Therefore, power and energy are similar to Brewer pro-
posal, namely ‘money flow’ Ṁ (t) and ‘money’ M (t).
The associated dynamic variables and elements are
shown in Tables 1 and 3.

Figure 3 shows, for example, the state space portrait
{Y, ṅ} of BRA, CHN, DEU and USA during 1960–
2010.

We observe a complex dynamical relationship bet-
ween the two variables that poses problems for an accu-
rate modelling. Brewer discussed analytically some
possible non-linear relations between effort and flow
in micro-economy, but in our case we follow a distinct
approach for macro-economy. First we make use of
real data, and we shall verify how the BGmodel fits in.



Fig. 3 State space portrait {Y, ṅ} of BRA, CHN, DEU and USA during 1960–2010

Second, we consider a linear relation between effort
and flow by means of a generalized fractional-order
element:

ṅ (t) = CDα
t Y (t) , C, α ∈ �, (1)

tive/negative values of α represent capacitive/inductive
elements (in the electrical domain). It should be high-
lighted that in classical terms we have |α| ≤ 1, but
as pointed by [31,72], values outside this range are
possible. For example, the frequency-dependent nega-
tive resistor (FDNR) [14,59,62] implements easily the
second-order constitutive equation i = DD2

t v, where
D is a parameter, used in electronic filters.

The database for 50 countries includes GDP and
population for a five decades time span, sampled with
one year period (Table 4). Data were collected from the
World Bank national development indicators to cover
the period coming from 1960 to 2010:

(1) GDP per capita comes from NY.GNP.PCAP.KD. It
is theGNI per capita (constant 2,000US$).GNI per

Third, we allow parameters {C, α} to be variable in 
time and to have both positive and negative values, so 
that they can adapt to the changing conditions in data. 

Several issues need to be clarified before continu-
ing. We note that the generalized one-port element (1) 
allows us to avoid using the interconnection of several 
integer order one-port elements while using only two 
parameters. We observe also that negative/positive val-
ues of C mean an active/passive element, while posi-



capita is gross national income divided by midyear
population. GNI (formerly GNP) is the sum of
value addedbyall resident producers plus anyprod-
uct taxes (less subsidies) not included in the valua-
tion of output plus net receipts of primary income
(compensation of employees and property income)
from abroad. Data are in constant 2,000 U.S. dol-
lars (http://data.worldbank.org/indicator/NY.GNP.
PCAP.KD).

(2) Population density comes from EN.POP.DNST. It
is the people per sq. km of land area. Population
density is midyear population divided by land area
in square kilometres. Population is based on the
de facto definition of population, which counts all
residents regardless of legal status or citizenship—
except for refugees not permanently settled in the
country of asylum, who are generally considered
part of the population of their country of origin.
Land area is a country’s total area, excluding area
under inlandwater bodies, national claims to conti-
nental shelf, and exclusive economic zones. Inmost
cases the definition of inland water bodies includes
major rivers and lakes (http://data.worldbank.org/
indicator/EN.POP.DNST).

For implementing the fractional-order relation (1) it
is adopted the Grünwald-Letnikov formulation of def-
inition of fractional derivative:

GL
a Dα

t f (t)= lim
h→0

1

hα

[ t−a
h

]

∑

j=0

(−1) j
(

α

j

)

f (t− jh) , t>a,

(2)

where Γ (·) is Euler’s gamma function, [x] means the
integer part of x , and h is the step time increment.

In the numerical algorithm for calculating Dα
t the

time increment h is approximated by the sampling
period Ts , and the series is truncated at the r -th term
yielding:

Dα [ f (t)]≈ 1

T α
s

r∑

k=0

(−1) j
Γ (α+1)

j !Γ (α− j+1)
f (t− jTs).

(3)

Other techniques adopt the Laplace or the Z transforms
and lead to rational fractions [15,38,41,56]. In our case,
since time series have one single sample per year, it is
adopted the series truncation method with Ts = 1.

For estimating the values of the parameters {C, α} it
was used a genetic algorithm (GA) due to its simplic-
ity and robustness. In brief, the GAs are a computa-
tional technique to find exact or approximate solutions
in optimization problems [25,28,37]. A GA consists
in a population representing candidate solutions of an
optimization problem that evolves (computationally)
towards better solutions. The GA starts by initializ-
ing the population of solutions randomly, and improves
thembymeans of the repetitive application ofmutation,
crossover and selection operators. In each iteration the
fitness of every individual in the population is evalu-
ated, and the best individuals are selected to form part
of the new population. The GA terminates when either
the maximum number of generations is produced, or a
satisfactory fitness level has been reached.

We adopt a GA population of 400 elements, 400
iterations and a fitness function J given by

ṅa (k) = C
r∑

j=0

(−1) j
Γ (α + 1)

j !Γ (α− j+1)
Y (k− j) (4a)

J =
r∑

k=0

{ṅ (k) − ṅa (k)}2 , (4b)

where k is the discrete time index, ṅa denotes the
approximation to the flux ṅ based on the effort Y .
The upper limit r represents the total number of points
involved in the fitting procedure and thememory length
in (3). We decided to adopt a sliding window of one
point for each calculation. This means that there is an
overlap of r −1 years between 2 consecutive time win-
dows.

Several experiments demonstrated that the fitting
between ṅ and ṅa was very good (see Fig. 4) at the cost
of a strong variability of the parameters. For example,
Fig. 5 shows the variation of {C, α} versus time for
USA, with r = 12, during 1960–2010. It was observed
that the effect of r upon this variability was minor. Fig-
ure 6 depicts the contour plots of {C, α} versus r and
time for USA, where is visible the propagation of the
economical variations horizontally, apparently with a
minor influence of r .

Plotting the variation of the parameters in the locus
{C, α} leads to the emergence of a distinct pattern for
each country. For example, Fig. 7 shows the patterns of
BRA, CHN, DEU and USA in the locus {C, α}, with
r = 12, during 1960-2010.

In order to capture the signature of each country
and to describe the world dynamics it was decided

http://data.worldbank.org/indicator/NY.GNP.PCAP.KD
http://data.worldbank.org/indicator/NY.GNP.PCAP.KD
http://data.worldbank.org/indicator/EN.POP.DNST
http://data.worldbank.org/indicator/EN.POP.DNST


Table 4 Countries and
labels

No. Label Country No. Label Country

1 ARG Argentina 26 IRL Ireland

2 AUS Australia 27 IRN Iran

3 AUT Austria 28 ITA Italy

4 BEL Belgium 29 JPN Japan

5 BRA Brazil 30 KOR Korea

6 CAN Canada 31 LUX Luxembourg

7 CHE Switzerland 32 MEX Mexico

8 CHL Chile 33 MYS Malaysia

9 CHN China 34 NGA Nigeria

10 COG Congo 35 NLD Netherlands

11 COL Colombia 36 NOR Norway

12 DEU Germany 37 NZL New Zealand

13 DNK Denmark 38 PAK Pakistan

14 DZA Algeria 39 PHL Philippines

15 EGY Egypt 40 PRT Portugal

16 ESP Spain 41 SAU Saudi Arabia

17 FIN Finland 42 SGP Singapore

18 FRA France 43 SWE Sweden

19 GBR United Kingdom 44 THA Thailand

20 GRC Greece 45 TUR Turkey

21 HUN Hungary 46 URY Uruguay

22 ICE Iceland 47 USA United States

23 IDN Indonesia 48 VEN Venezuela

24 IND India 49 ZAF South Africa

25 ISR Israel 50 ZWE Zimbabwe

the 50 countries represented in the locus {C, α}. Given
the high concentration of points (countries) near the
origin in Fig. 9 is represented a magnification of that
area. The surface of each circle is proportional to the
variability of α, namely to the interquartile range of its
variation along the period 1960–2010.

In fact, the locus {C, α} was drawn for r = 2 up
to r = 15. For example, Figs. 10 and 11 depict the
locus {C, α} for r = 9 and r = 15, respectively. It
was observed that changing between two consecutive
values of r had the effect of rotating the chart, while
maintaining the general layout approximately. There-
fore, points were moved from the 4th up to the 1st
quadrant, being the limit value r = 12. Larger values
of r had minor effect upon the chart, and it was con-
cluded that 12 years were the adequate value for r to
capture adequately the memory of the phenomenon.

We verify the emergence of a pattern, and we start
by a simple analytical discussion. The elements are of
the ‘capacitive type’ (α > 0) as one should expect

Fig. 4 Variation of ṅ (t) and ṅa (t), with r = 12, versus time 
for USA during 1960–2010

to calculate the median of the parameters {C, α}. The  
median is more robust than the arithmetic average since
it has a smaller sensitivity to outliers. Figure 8 shows



Fig. 5 Variation of the parameters {C, α}, with r = 12 versus time for USA during 1960–2010

Fig. 6 Contour plots of {C, α} versus r and time for USA during 1960–2010

since effort Y (t) has a smooth variation, while the flux
ṅ (t) reveals a very volatile behaviour. A central part,
constituted manly by the European countries, JPN and
USA, remained invariant, but the new economies, such
as BRA, CHN and IND, rotated anticlockwise while
increasing r . As mentioned previously the effect stabi-
lized for r = 12. Amore detailed analysis of the results
from an economical point of view is developed in the
next section.

4 Discussion

State space portraits are very different, as the four
extreme cases depicted in Fig. 3 can show. Figure 8

is an accurate view of the last half-century economic
trends in a global perspective. Its main message says
that scale matters: the human creative powers matter
as well as the departing GDP per capita levels. Eco-
nomic development follows the traced eigen-vector.
The world economic system is very sensitive to the
selected vital variables representing scale, indeed.

The developed countries form a large node of high-
standard patterns of life andwelfare in the locus {C, α},
with r = 12. They were the large-scale economies at
the departing moment. Independently from their ter-
ritory dimension they were the large-scale national
economies in the global scene. Several other coun-
tries are following this pattern. The promising new



Fig. 7 Patterns of BRA, CHN, DEU and USA in the locus
{C, α}, with r = 12, during 1960–2010

performers include the large far-Asian partners (China,
India, Indonesia, Thailand, Pakistan and Philippines),
and the large South-American Brazil. Independently
from their lateness in industrializing and modernizing
they are huge at the departing moment, and this fact
commands their performance in globalization.

The European-neighbouring countries (Iran, Egypt,
Turkey) andSouth–Central-American partners (such as
Argentina, Colombia andMexico) present large poten-
tial similarities for growth among them and with the
Western partners, too. However, similarities among the
partners belonging to theWestern wealthy world are so
much stronger that they all overlap. A magnified rep-
resentation of the central part of the locus is required
(Fig. 9). The node includes the European continent,
Japan, Canada and the USA. Germany is a bit dissimi-
lar from the other European states and is commanding
them.

A remarkable feature in the universe of the coun-
tries belonging to this node has been the flourish-
ing of democracy, while rapid economic growth pro-
vided superior competitive advantages, higher wages
and mobility [13,35].

It is out of the scope of this paper to discuss if eco-
nomic growth spread will bring a global democracy
system or will move to the future Asian great power
political regimes, as the Nobel Prize Robert Fogel sug-
gests [22].

As the high departing levels do matter in spite of the
individual space portrait differences demonstrated in
Fig. 3, territory scalematters in a historical perspective,

Fig. 8 Representation of
the 50 countries in the locus
{C, α}, with r = 12, for the
period 1960–2010



Fig. 9 Magnified
representation of the central
part of the locus {C, α}, with
r = 12, for the 50 countries
and the period 1960–2010

Fig. 10 Representation of
the 50 countries in the locus
{C, α}, with r = 9, for the
period 1960–2010



Fig. 11 Representation of
the 50 countries in the locus
{C, α}, with r = 15, for the
period 1960–2010

In this perspective, the paper presented a BG
approach to themodelling of economies. Concepts pro-
posed for micro-economy were generalized having in
mind themacro-economyproblem. In this context com-
plex aspects such as the generalization of the princi-
ple of conservation of power and the assignment of
causalities were circumvented by means of a variable
fractional-order element. Several experiments analysed
the influence of the memory effects and characterized
the dynamical behaviour in the light of the fractional
approach.
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