
RESEARCH ARTICLE

Dynamical Analysis and Visualization of
Tornadoes Time Series
António M. Lopes1☯*, J.A. Tenreiro Machado2☯

1 Institute of Mechanical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal, 2 Institute
of Engineering, Polytechnic of Porto, Porto, Portugal

☯ These authors contributed equally to this work.
* aml@fe.up.pt

Abstract
In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective

of dynamical systems. A tornado is a violently rotating column of air extending from a cumu-

lonimbus cloud down to the ground. Such phenomena reveal features that are well de-

scribed by power law functions and unveil characteristics found in systems with long range

memory effects. Tornado time series are viewed as the output of a complex system and are

interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of

Dirac impulses with amplitude proportional to the events size. First, a collection of time se-

ries involving 64 years is analyzed in the frequency domain by means of the Fourier trans-

form. The amplitude spectra are approximated by power law functions and their parameters

are read as an underlying signature of the system dynamics. Second, it is adopted the con-

cept of circular time and the collective behavior of tornadoes analyzed. Clustering tech-

niques are then adopted to identify and visualize the emerging patterns.

Introduction
A tornado is a violently rotating column of air extending from a cumulonimbus cloud to the
ground. Tornadoes may assume different shapes and sizes and, typically, appear as a funnel
with the narrower end touching the ground. Tornadoes’ damaging paths can surpass 1.5 km
wide and 80 km long and the most violent events can cause huge destruction and fatalities [1].
Tornadoes are classified according to their intensity and damaging effects [2–3]. Earlier events
use the Fujita scale [4–6], while most recent tornadoes are often classified using the enhanced
Fujita scale, which was adopted in the United States on February 1, 2007 [7]. In both classifica-
tion systems, the least damaging tornadoes are rated as F0, while the most damaging ones are
rated as F5.

Often, Fujita scale relates the damage caused by a tornado to wind speed classes, according
to the empirical equation [8]:

vðFÞ ¼ 6:3ðF þ 2Þ3=2 ð1Þ
where v represents wind velocity and F is the Fujita scale value.
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Pursuing a clear physical meaning, other indices have been used to quantify tornadoes in-
tensity, namely the maximum horizontal wind speed, the maximum kinetic energy and the
maximum energy flux density [8–10]. Schielicke and Névir [11] introduced the concept of at-
mospheric moment,Ma, analogous to the seismic moment that describes the strength of earth-
quakes. The value ofMa may be estimated by:

Ma � AL�re ð2Þ

where, A = πW2/4 is the circular area of the tornado on the ground,W and L denote the torna-
do width and path length, respectively, �r represents the average air density (which is assumed
to be equal to 1 kg/m3) and e is the mass-specific kinetic energy, given by:

e ¼ hvðFÞi2
2

ð3aÞ

hvðFÞi ¼ 6:3ðF þ 2:5Þ3=2 ð3bÞ

Where hv(F)i denotes the average value of each wind velocity class, obtained by adding the
constant 0.5 to each value of F.

Expression (2) implicitly assumes a constant tornado intensity and width, whereas those
properties often change considerably during the tornado lifecycle. Despite this drawback, the
atmospheric moment,Ma, has the advantage of being analogous to the seismic moment that
describes the strength of earthquakes [11]. Such analogy allows comparing tornadoes and
earthquakes, which have been widely studied in terms of their space-time statistical distribu-
tions [12].

Tornadoes reveal high variability in terms of intensity, geometric properties (e.g., width and
path length) and temporal behavior [12], which is an indicator of the existence of fat tail distri-
butions. In fact, tornadoes have features that are well described by power law (PL) functions
[11–14] and unveil characteristics that are also found in complex systems [15–17]. This is the
case of Earth’s atmosphere, which is a typical example of an open complex dissipative system,
with external forcing caused by the differential heating of the solar radiation [11]. While there
are no definitive conclusions about the physical significance of PL, some mechanisms generat-
ing such distributions are consistent with self-organized criticality (SOC) [18] and highly opti-
mized tolerance (HOT) [19]. SOC is a process in which a system, by itself, converges to an
ordered state, characterized by the emergence of a coherent global pattern created by interac-
tions between low-level entities. The HOT conceptual framework explains the formation of
scale-invariant patterns in complex systems. It emphasizes that PL behavior results from opti-
mization of tradeoffs between system yield and tolerance to risk, which drives the system to a
specific configuration. Other PL generative mechanisms are addressed by Newman [20].

Tornadoes have been investigated from complementary perspectives and using several sta-
tistical tools [8, 10, 21–22]. In the last years relevant studies have been published about this
topic. In reference [22] it is shown that tornadoes intensities, expressed in terms of wind speed
or in Fujita scale, can be described by Weibull distributions, for which the exponential distribu-
tions remain as special cases. Dotzek et al. [8] propose that tornado intensities, expressed in
terms of the squared maximum horizontal wind speed, can be described by exponential distri-
butions. Brooks [23] studies the statistical relationship between tornado path lengths and Fujita
scale intensities. Schielicke and Névir [11] show that tornadoes exhibit PL behavior when in-
tensities are measured by the atmospheric moment,Ma, given by expressions (2)–(4). In refer-
ence [16] severe tornadoes and tornado outbreaks are analyzed for the period 1982–2011. The
touchdown path length, L, is used to measure tornadoes intensity. The authors demonstrate
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that there is a strong linear scaling between the number of severe tornadoes and their total path
length in that same year. Moreover, the noncumulative frequency-length statistics of severe
tornado path lengths (i.e., 20< L< 200 km) is well approximated by an inverse PL function
with exponent approximately equal to 3. Schielicke and Névir [12] compare the statistics of
earthquakes and tornadoes, both in terms of intensity and temporal behavior. The results dem-
onstrate that the statistics of tornadoes reveal PL behavior when the temporal resolution is
high (i.e., between 10 and 60 min). Furthermore, it is shown that the distributions support the
observation that tornadoes form clusters in time. Doswell et al. [24] show that tornado out-
breaks are characterized by spatio-temporal clustering, meaning that long memory is present
as an underlying feature. Moreover, the authors claim that the total path length of severe torna-
does in a convective day, LD, is the preferred index to quantify the strength of a tornado out-
break. Verbout et al. [25] discuss the number of tornadoes above a given threshold in a
convective day as a measure of the strength of a tornado outbreak.

In this paper we study the collective behavior of tornadoes from the perspective of dynam-
ical systems. A public domain database containing the events occurred in the U.S. during the
period 1950 up to 2013 is tackled. We model the occurrences as time series of Dirac impulses
with amplitude proportional to the index quantifying the size of the events. In this perspective,
we are considering the long term dynamics instead of modelling each individual event. The
time series are viewed as the output of a dynamical system and, consequently, the data is inter-
preted as a manifestation of the system dynamics. First, we analyze the annual time series in
the frequency domain, by means of the Fourier transform (FT). The amplitude spectra are ap-
proximated by PL functions and the parameters are viewed as a signature of the system charac-
teristics. Second, we adopt the concept of circular time and we compute the circular correlation
between the annual time series. Based on the maximum correlation and the corresponding
time delay, we use clustering and visualization techniques to unveil patterns.

Bearing these ideas in mind, the paper is organized as follows. In section 2 we describe the
data tackled in this work. In section 3 we process the tornadoes annual time series in the fre-
quency domain, by means of the FT, and we interpreted the results according to the character-
istics of the spectra. In section 4 we correlate the annual time series and we propose clustering
and visualization tools to capture hidden patterns. Finally, in section 5, we outline the
main conclusions.

Dataset
We use the U.S. tornado database compiled by the National Oceanic and Atmospheric admin-
istration (NOAA), National Weather Service, Storm Prediction Center. Data is available online
at http://www.spc.noaa.gov/, containing all reported U.S. tornadoes from year 1950 up to 2013.
There are more than 58,000 tornadoes currently in the database. Each event includes, among
other features, information about date and time (with one-minute time resolution), Fujita
scale, total number of fatalities and injuries, geographic location (i.e., touchdown and liftoff lat-
itude and longitude coordinates), tornado width and path length.

Fig. 1 depicts the geographic location of the events occurred in the U.S., during the time pe-
riod covered by the database. It can be seen that the East of the Rocky Mountains is particularly
prone to tornadoes. This region includes the “Tornado Alley” (i.e., an area centered on Oklaho-
ma, Kansas and northern Texas, and extending from Texas to Canada) and the “Dixie Alley”
(i.e., the southern region of the U.S., namely the northern and central parts of Alabama and
Mississippi).

Fig. 2 represents the evolution of the number of occurrences versus year, where we can see
an increasing trend. However, the statement that we should expect an increasing number of
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events in the next years is not justified by this simple statistic, as we cannot ignore the fact that
there has been a change in the detection capabilities and reporting of the events over time. In
fact, in the last decades there has been a more systematic reporting of weak tornadoes over
time [21, 23].

The severity of tornadoes, quantified by the total number of affected people (fatalities plus
injuries) is represented in Fig. 3, in terms of the complementary cumulative distribution.

Fig. 4 depicts the complementary cumulative distributions of tornadoes path length, L, and
width,W, revealing similar behavior in both cases. It should be noted that the use of fatalities

Fig 1. Geographic location of all reported tornadoes that occurred in the U.S., during the time period
1950–2013.

doi:10.1371/journal.pone.0120260.g001

Fig 2. Evolution of the number of reported tornadoes that occurred in the U.S. versus year, during the time period 1950–2013.

doi:10.1371/journal.pone.0120260.g002
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and injuries as a measure of tornado intensity is questionable since it is highly influenced by
many factors, namely population density, building codes, safety infrastructure, warning sys-
tems and awareness.

These direct statistics reveal limitations for characterizing tornadoes global behavior. In the
next sections we adopt several complementary mathematical tools for a deeper understanding
of the phenomena. The main tools used, namely FT, hierarchical clustering (HC) and

Fig 3. Complementary cumulative distribution of fatalities plus injuries. All reported tornadoes that occurred in the U.S., during the time period 1950–
2013 are considered.

doi:10.1371/journal.pone.0120260.g003

Fig 4. Complementary cumulative distribution of tornadoes path length, L, and width,W. All reported
tornadoes that occurred in the U.S., during the time period 1950–2013 are considered.

doi:10.1371/journal.pone.0120260.g004
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multidimensional scaling (MDS) rely on long time series that are processed in frequency or
time domains. FT is a powerful and robust signal processing tool widely adopted in the area of
dynamical systems. FT can “dilute” occasional signal artifacts into the final result. HC and
MDS have relevant properties for the analysis of complex phenomena since they do not require
a priori assumptions on the system nature. Furthermore, since HC and MDS maps do not need
data in a uniform grid in time and space, they constitute valuable tools for studying the non-
homogeneous data included in tornado catalogues.

Analysis of Tornado Time Series in the Frequency Domain
In this section we study tornadoes in the perspective of dynamical systems using the Fourier
domain. The data is analyzed in an annual basis. For the ith case, i = 0, . . ., 63 (cases i = 0 and
i = 63 correspond to years 1950 and 2013, respectively), tornadoes are represented by:

xiðtÞ ¼
XT

k¼1

Ai;kdðt � ti;kÞ ð4Þ

resulting in a total of 64 time series. This means that tornadoes are modelled as Dirac impulses,
where Ai,k represents the size of the events, measured by an appropriate index, ti,k is the time
instant of each occurrence (with one-minute resolution, referred to the beginning of year i),
t represents time, T is the period of one year and δ(�) corresponds to the Dirac delta function.
With this approach, we are not modelling the dynamics of each particular event. Otherwise, we
are describing the tornado global dynamics along several decades.

The signal xi(t), representative of the collective dynamics of tornadoes, is processed by
means of the Fourier transform and the amplitudes of the frequency spectra are approximated
by PL functions.

In analytical terms, for the time series signal xi(t), we have:

FfxiðtÞg ¼ XiðjoÞ ¼
Zþ1

�1

xiðtÞ � e�jot � dt ð5Þ

where F represents the Fourier operator, ω denotes the angular frequency and j ¼ ffiffiffiffiffiffiffi�1
p

.
The PL approximation is given by:

jFfxiðtÞgj ¼ jXiðjoÞj � ai � o�bi ; ai 2 <þ; bi 2 < ð6Þ

The values obtained for bi reveal underlying characteristics of the systems dynamics.
For fitting the model (6) to the experimental data we tried the least squares algorithm,

which is known for generating systematic errors under certain conditions [26], the maximum
likelihood estimator (MLE) and related statistical tests [26–27] and a genetic algorithm (GA).
We obtained identical values for the PL exponents in the three methods. However, as our ex-
perimental data is highly “noisy”, the MLE method yields poor statistical significance p-values.
Therefore, no definitive significance tests are made and no absolute conclusions about PL be-
havior can be drawn.

We present the results obtained with a standard GA, with elitism, crossover within all popu-
lation and 5% mutation probability. A population of 5,000 individuals and 1,000 iterations are
adopted [28]. For the fitness function we use the Canberra distance between the N = 1000
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experimental data points, P = p1, p2,. . ., pN, and the model, Q = q1, q2,. . ., qN:

JðP; qÞ ¼ 1

N

XN
i¼1

jpi � qij
jpij þ jqij

ð7Þ

Expression (7) leads to good results since, by calculating the ratio between the difference and
the sum of two values, it is possible to capture the relative error of the adjustment, avoiding the
undesirable effects that occur when using the standard Euclidean norm due to the simulta-
neous presence of large and small values.

Two indices are used to measure tornadoes intensity: tornado path length, L, and tornado
width,W. For example, Fig. 5 depicts the time series of year 2005, x55(t), where amplitude A55

represents the corresponding tornadoes path length, L55. Fig. 6 shows the magnitude of the
Fourier transform, |F{x55(t)}|, and the PL approximation. The resulting parameters are (a55,
b55) = (3179.7, 0.330), revealing a fractional value of b55. Alternatively, for A55 representing tor-
nadoes width,W55, the results are qualitatively similar, yielding parameters (a55, b55) =
(149759, 0.280). PL behavior is a characteristic exhibited by long memory systems. Further-
more, Eq. (6) establishes a direct relationship between PL behavior and fractional Brownian
motion [29–30], which is a signature of complexity.

Adopting the procedure described above, the PL parameters are calculated for all years i = 0, . . .,
63. Furthermore, the PL and the exponential approximations are compared. Fig. 7 depicts the
fitness function (7) obtained for the PL and the exponential models, both for tornado path

Fig 5. Time series, x55(t), representation of tornadoes path length, L (km), in year 2005.

doi:10.1371/journal.pone.0120260.g005
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length, L, and tornado width,W, indices. It can be seen that, for all years, the PL model fits well
into the experimental data.

Fig. 8 depicts the (ai, bi) loci when considering the tornado path length, L, and the tornado
width,W. A larger (smaller) diameter of the bubbles means a larger (smaller) value of the fit-
ness function of the PL fit. We can observe some kind of “line alignment” regularity in the pa-
rameters. The mention to such behavior emerged recently in the scientific literature in
phenomena with memory and fractal features, but a definitive justification is still to be found
[31–34].

The results show that tornadoes collective behavior exhibit correlations and characteristic
patterns. However, complementary analysis is needed to reveal deeper characteristics of
the phenomena.

Analysis of Tornado Time Series in the Time Domain
In this section we analyze the tornado time series, xi(t), i = 0, . . ., 63, in the time domain. In
subsection 4.1 we introduce de concept of circular time. In subsection 4.2 we compute the cir-
cular correlation [35] between the time series and we analyze the temporal behavior exhibited
by tornadoes. In subsection 4.3, based on the maximum circular correlation values and the cor-
responding time delays, we use clustering and visualization tools to unveil patterns.

Fig 6. Magnitude of the Fourier transform, |F{x55(t)}|, and PL approximation for the time series representation of tornadoes path length, L, in year
2005.

doi:10.1371/journal.pone.0120260.g006
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Fig 7. Fitness function values obtained for the PL and the exponential models: (a) tornado path length index, L; (b) tornado width index,W.

doi:10.1371/journal.pone.0120260.g007
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The flow of time
The adoption of a non-Cartesian time scale is motivated by the “one-year periodicity” observed
in tornado time series, where December is close to January, and not the opposite, as a Cartesian
scale implicitly assumes. On the other hand, a given month within one year is expected to be
similar (i.e., close in some sense) to the same month in most of other years, or, at least, to the
same months in the closest years.

Bearing these ideas in mind, we consider that time evolves along an Archimedean spiral, de-
fined by:

y ¼ 2p � t
T
þ i

� �
; r ¼ pþ q � y ð8Þ

where (r, θ) denotes the radius and angle coordinates, respectively, and i = 0, . . ., 63, represents
the year. For simplicity, we consider p = q = 1. We represent the tornadoes by points, where co-
ordinates (r, θ) correspond to the circular (spiral) time of the event. We interpolate the points,
associating a color to the intensity, measured by L (in log units), and we depict the events on a
contour plot. With this representation we preserve the proximities of seasons both within each
year and between distinct years. This means, for example, that January of year 2006 is close to
December of year 2005, and that January 2005 is close to January 2004 and January 2006.

On the other hand, the major drawback is that initial years (in the center) have a small
graphical representation, while recent years (in the outside region) have a larger area.

Fig. 9 illustrates the temporal evolution and intensity of the events occurred in the U.S. dur-
ing the time period 1950–2013. On the left half circle (i.e., for the months from April up to Sep-
tember) we can see many small (in time) events, while, on the right half circle, the events are
larger. Higher intensity events are observed in the fourth and first trimester, in that order.

Since the results shown in Fig. 9 close resemble those of chaotic systems, we first analyze the
chart by means of the fractal dimension. The fractal dimension is a signature of complex sys-
tems, composed by many parts that interact with each other at different scales in time and
space, which is the case of the atmospheric phenomena that trigger tornadoes.

We calculate the fractal dimension of sets of points (in a black and white picture) according
with a variable threshold level. First, we divide the whole set of events into l = 16 groups, as a
function of their intensity level, measured by L (in log units). Second, we generate the respec-
tive monochrome images corresponding to the temporal evolution of the events (i.e., black and

Fig 8. Loci of the PL parameters (ai, bi) for all years, i = 0, . . ., 63, considering the tornadoes path
length, L, and width,W, to quantify intensity. A larger (smaller) diameter of the bubbles means a larger
(smaller) value of the fitness function of the PL fit.

doi:10.1371/journal.pone.0120260.g008
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white images, similar to Fig. 9). Third, we adopt the box-counting method for estimating the
fractal dimension of the plots [36–37]. The value for l establishes a compromise between good
resolution and a descriptive number of events in each group.

Given a set S in a n-dimensional space and considering that N� (S) is the minimum number
of n-dimensional cubes of side-length � > 0 needed to cover S, if there is a number d so that
N�(S)* 1/�d as �! 0, then the box counting dimension of S is:

d ¼ � lim
�!0

ln½N�ðSÞ�
lnð�Þ ; � > 0 ð9Þ

Fig 9. Temporal evolution and intensity (in log units) of the events occurred in the U.S. during the time period 1950–2013. The coordinates (r, θ)
represent the circular (spiral) time of the events and the colors represent the intensity, measured by L (in log units).

doi:10.1371/journal.pone.0120260.g009
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In our case S consists of monochrome images and small values of � are reached by accessing
the images at the pixel level.

In Fig. 10 we depict d for the 16 groups of data. It can be seen that for the first three groups
the fractal dimension is small, probably due to missing data corresponding to unreported weak
events. For mid-range intensity values d is almost constant. The fractal dimension decays for
stronger events, since those are less common.

In conclusion, this graphical technique leads to an intuitive representation of data, but does
not reveal clear patterns and relationships between sets of data. This means that more advanced
processing techniques must be developed.

Time series correlation
Inspired on the previous sub-section and in the quasi-periodicity of time for the phenomena
under study, here we propose analytical techniques based on the concept of “circular time”.

The circular correlation function, cij(τ), compares xi(t) with the time delayed signal xj(t–τ),
where time, t, is measured with respect to the beginning of the corresponding year. In analytical
terms we have:

cijðtÞ ¼

XT

k¼1

xiðtkÞ � xjðtk � tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

k¼1

xiðtkÞ2 �
XT

k¼1

xjðtk � tÞ2
s ; i; j ¼ 0; � � � ; 63 ð10Þ

For each case, the delayed signal xj(t–τ) is treated as a circular buffer. The time delays, denoted as
t�ij, correspond to the time at which the circular correlation has its maximum value, c�ij ¼ cijðt�ijÞ.

Fig 10. Evolution of the fractal dimension, d, for the 16 groups of data obtained according to the intensity level of the events, measured by L (in log
units). The box counting method is used.

doi:10.1371/journal.pone.0120260.g010
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For example, Fig. 11 (on the left part) depicts the time series x61(t) and x62(t) (i.e., years
2011 and 2012), respectively. In both graphs the coordinated (r,θ) represent intensity (i.e., tor-
nadoes path length, L, in logarithmic units) and circular time, respectively. For each time series,
time t is referred to the beginning of the corresponding year, yielding θ = 2π�t�T−1. Fig. 11 (on
the right part) shows the correlation function, c61,62(τ). Points (r, θ) correspond to correlation
value, c61,62(τ), and (circular) time delay, τ, respectively. For this case, we obtain the maximum
correlation c�61;62 ¼ 0:145 and time delay t�61;62 ¼ 79500minutes (i.e., 55.2 days, in the time se-

ries, or 54.3°, in the polar plot).
We compute the parameters (c�ij, t

�
ij) for all pairs of years (i, j) = 0, . . ., 63, using the proce-

dure described above. The results are illustrated in Fig. 12A-B for, c�ij and t
�
ij, respectively. The

values for i = j (i.e., those cases representing autocorrelation) are removed from Fig. 12A in
order to avoid saturating the chart.

These maps compare all annual time series in a global perspective. However, the results are
difficult to interpret and are most suitable for pairwise comparisons.

Fig 11. Tornado time series x61(t) and x62(t) (on the left) and correlation function, cij(τ), (on the right) between years 2011 and 2012.

doi:10.1371/journal.pone.0120260.g011
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Clustering and pattern visualization
In this subsection, we adopt HC andMDS techniques to reveal and to visualize tornado patterns.

Hierarchical clustering. HC is a statistical technique for data analysis [38]. HC aims to
build a hierarchy of clusters, in such a way that objects in the same cluster are similar to each
other. In agglomerative clustering each object starts in its own singleton cluster and, at each
step, the algorithm merges the two most similar (in some sense) clusters. In divisive clustering,
all objects start in one single cluster and, at each step, the algorithm removes the “outsiders”
from the least cohesive cluster. The results of HC are presented in a dendrogram. Clusters are
combined (for agglomerative) or split (for divisive) based on a measure of their dissimilarity.
The algorithm uses a metric, to quantify the distance between pairs of objects, and a linkage cri-
terion, to quantify the dissimilarity between clusters. The metric will influence the composition
of the clusters and must be chosen carefully. The Euclidean and Manhattan distances and the
maximum, minimum and average linkages are often used.

To assess the clustering we use the cophenetic correlation coefficient [39], which is a mea-
sure of how well the cluster tree generated by the linkage function preserves the pairwise dis-
tances between the original unmodeled data points. If the clustering is valid, the linking of
objects in the cluster tree has a strong correlation with the distances between objects in the
original data set. The closer the value of the cophenetic correlation coefficient is to 1, the more
accurately the clustering reflects the original data. The result is often plotted in a Shepard
graph comparing the original and the cophenetic distances. The better the clustering the closer
to the 45 degree line the points will lie.

We feed the HC algorithm with the 64×64 matrixC ¼ ½jt�ijj� and we adopt the successive
(agglomerative) clustering and average-linkage methods.

Fig. 13A and 13B depict the corresponding dendrogram and visualization tree, respectively.
As can be seen, two main patterns emerge forming a “dipole”, where each part is composed by

Fig 12. Matrix plots: (a) maximum circular correlation, c�
ij ; (b) time delay, τ�

ij , between all pairs of years (i, j) = 0, . . ., 63.

doi:10.1371/journal.pone.0120260.g012
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Fig 13. HC graphs: (a) dendrogram; (b) visualization tree. The matrix C ¼ ½jt�ij j� is used.
doi:10.1371/journal.pone.0120260.g013
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the smaller clusters {A, B, C, D} and {E, F}, respectively. Fig. 14 represents the Shepard plot for
the HC, reflecting an accurate clustering of the original data, where the cophenetic correlation
coefficient is equal to 0.93.

Multidimensional scaling. MDS is a statistical technique for visualizing data [40]. MDS
generates maps, where objects perceived to be similar to each other are placed in clusters. The
algorithm requires a p × p symmetric matrix, C, of item to item similarities (or, alternatively, of
similarities), where p is the number of objects. MDS assigns a point to each item in am-dimen-
sional space and arranges the objects in order to reproduce the observed similarities (or, alter-
natively, dissimilarities). This is achieved by evaluating different configurations, while
maximizing the goodness-of-fit. The raw stress, S, is often used to evaluate how well a particu-
lar configuration reproduces matrix C:

S ¼ ½dij � f ðdijÞ�2 ð11Þ

where, dij and δij correspond to the reproduced and to the observed distances, respectively. The
function f(.) represents a transformation applied to the input data. The smaller the stress, S, the
better is the fit between the observed and the reproduced data.

Form = 2 orm = 3 the generated map can be easily interpreted. The actual orientation of
axes in the final solution is arbitrary. MDS maps are insensitive to rotations and translations.
In fact, MDS maps interpretation is based on the emerging clusters and relative distances, rath-
er than on the absolute coordinates or shapes. The measure for constructing matrix C depends
of the researcher’s choice.

For accessing the quality of the MDS map there are adopted the stress and Shepard plots.
The stress plot, representing S versus the number of dimensionsm of the MDS, leads to a
monotonic decreasing chart. Therefore, we choose the “best” dimensionm as a compromise
between stress reduction and number of dimensions for the MDS. The Shepard diagram de-
picts the reproduced distances, for a particular valuem of the MDS dimension, versus the ob-
served input data (distances). Therefore, in the Shepard diagram, a narrow scatter around a 45

Fig 14. Shepard plot of the HC. The cophenetic correlation coefficient is equal to 0.93.

doi:10.1371/journal.pone.0120260.g014
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Fig 15. MDSmaps: (a) 2-dimensional; (b) 3-dimensional. The matrix C ¼ ½jt�ij j� is used.
doi:10.1371/journal.pone.0120260.g015
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degree line indicates a good fit of the distances to the dissimilarities, while a large scatter indi-
cates a lack of fit, for that valuem.

As before we feed the MDS with the 64×64 matrixC ¼ ½jt�ijj� and generate the 2- and 3-di-
mensional maps (Fig. 15A and 15B, respectively), where we can identify the “dipole”men-
tioned previously. To assess the quality of the MDS maps we plot the Shepard and the stress
diagrams. The Shepard graph (Fig. 16A) shows the points distributed around the 45 degree
line, which means a good fit of the distances to the dissimilarities. The stress plot (Fig. 16B) re-
veals that a 3-dimensional space describes well the data.

The results obtained for the distinct visualization techniques (Figs. 13 and 15) reveal clusters
and, consequently, patterns in time. Nevertheless, the results are far from a simple type of peri-
odicity. This means that either the time series length is insufficient to grab some period, or that
some complex long run behavior is present and needs to be further analyzed with complemen-
tary techniques. Embedding other variables, namely trajectories, pressures, temperatures and
humidity may help getting a clear picture of the global pattern.

Conclusion
This paper analyzed the collective behavior of tornadoes from the perspective of dynamical sys-
tems, due to the fact that such phenomena reveal characteristics found in complex systems. A
public domain database of U.S. tornadoes occurred in the time period 1950–2013 was adopted.
The events were modeled as time series of Dirac impulses proportional to their intensity. In a
first approach, we proposed the Fourier transform was applied to characterize tornadoes be-
havior. A second approach adopted the concept of circular time and correlation. Hierarchical
clustering and multidimensional techniques were used to identify and visualize patterns. It is
clear the emergence of clusters corresponding to complex dynamical effects. In fact, the emerg-
ing patterns have resemblances with those of chaotic systems that lead to a poor predictability.
Furthermore, measuring a richer set of variables and recording of longer time series might be
necessary to establish a solid basis of computer data analysis. These approaches confirm that
tornado dynamics is complex and exhibits long memory characteristics. The results may

Fig 16. MDS assessment graphs: (a) Shepard map for the 3-dimensional MSDmap; (b) stressmap.

doi:10.1371/journal.pone.0120260.g016
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inspire still other approaches that, perhaps in combination with those presented, may yield im-
portant insights to better understand the phenomenon.
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