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Abstract This study describes the change of the ultravi- olet spectral bands starting from 0.1 to 5.0 nm slit width in the 

spectral range of 200–400 nm. The analysis of the spectral bands is carried out by using the multidimensional scaling 

(MDS) approach to reach the latent spectral back- ground. This approach indicates that 0.1 nm slit width gives higher-order 

noise together with better spectral details. Thus, 

5.0 nm slit width possesses the higher peak amplitude and lower-order noise together with poor spectral details. In the 

above-mentioned conditions, the main problem is to find the relationship between the spectral band properties and the slit 

width. For this aim, the MDS tool is to used recognize the hidden information of the ultraviolet spectra of sildenafil cit- rate 

by using a Shimadzu UV–VIS 2550, which is in theworld the best double monochromator instrument. In this study, the 

proposed mathematical approach gives the rich findings for the efficient use of the spectrophotometer in the qualitative 

and quantitative studies. 
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1 Introduction 

 
Ultraviolet–visible spectroscopy (UV–VIS) region for the 

electromagnetic radiation includes the range of 100–800 

nm corresponding to the electronic transition after the 

radiation of a molecule. 

Ultraviolet–visible spectroscopy (UV–VIS) 

spectrometer is a very important tool for the analysis 

of the chemical compounds having chromophore groups 

providing the elec- tronic transition from background 

energy state to an excited energy state. In addition, UV–

VIS spectrophotometry has been widely used in 

qualitative and quantitative evaluation of the content 

of the samples due to the providing rapid and 

repeatable spectral registration. In this domain, various 

spectrophotometers have been manufactured at the 

different marks, e.g., Shimadzu UV–VIS 2550. 

A specified spectrometer possesses a spectral 

bandwidth that characterizes how monochromatic the 

light is. As a result, if this bandwidth is comparable to 

the width of the absorption features, then the measured 

extinction coefficient will be altered. In practical 

measurements, the instrument bandwidth is kept below 

the width of the spectral lines. When a new material is 

about to be measured, we have to test and verify 

whether the bandwidth is sufficiently narrow. On the 

other hand, it is known that the effects of the changes of 

the slit width on the spectral bands are very important. 
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Fig. 1 The absorption spectra of sildenafil citrate (25 µg/ml) at slit 
widths {0.1, 0.2, 0.5, 1.0, 2.0, 5.0} nm 

 
In our case, the UV absorption spectra of the sildenafil 

citrate (SC) at the constant concentration level (25 

µg/ml) were recorded between 200 and 400 nm at the 

different slit width set {0.1, 0.2, 0.5, 1.0, 2.0, 5.0} nm. 

SC represents a drug for the treatment of the erectile 

dys- function and pulmonary arterial hypertension 

[5,8,11]. SC is a white to off-white crystalline powder 

possessing a solu- bility of 3.5 mg/ml in water as well as a 

molecular weight of 666.7. 

Multidimensional scaling (MDS) is a technique for visu- 

alization information in the perspective of exploring 

similar- ities in data [1,3,7,9,10,13,17,18]. MDS arranges 

points in a space with a given number of dimensions, so as 

to repro- duce the similarities observed in the 

measurements. Often, instead of similarities are 

considered dissimilarities, or dis- tances, between the 

objects. For two or three dimensions, the resulting 

locations may be displayed in a “map”. If we rotate or 

translate the chart, the similarities between items remain 

the same. Therefore, the center of the portrait and the final 

orientation of axes in space are mostly the result of a 

subjective decision by the researcher, and the analysis of 

the “map” must be in the perspective of comparing which 

points are close and which are distant. 

For the evaluation of the spectrophotometer 

performance, we obtained six different UV for each slit 

width. In this appli- cation, the main aim is to find the higher 

spectral signal/noise ratio for the registrations of the 

spectral bands. In other words, slit width gives us better 

spectral resolution. 

The manuscript is organized as follows. Section 2 

describes the experimental setup. Section 3 deals with the 

theoretical aspects of MDS. Section 4 is devoted to the 

def- inition of the comparison measures. Section 5 presents 

the results of several visualization tools, namely dendograms 

and MDS maps. Finally, Sect. 6 outlines the main the 

conclusions. 



 

 

 

 

 

 

 

 

 

Fig. 2 Details of the absorption spectra of sildenafil citrate (25 
µg/ml) versus λ and slit width at the lower and upper limits of the 
domain 

 

2 Experimental setup 

 
A Shimadzu UV-2550 UV–VIS spectrophotometer con- 

nected to computer having Shimadzu UVProbe 2.32 

soft- ware and a HP Laser Jet P1102 printer were used 

for the registration of the absorption spectra. 

In our experiment, we keep the concentration of SC 

constant at 25 µg/ml, we consider six slit 

widths{0.1,0.2,0.5, 1.0, 2.0, and5.0} nm, and, for each slit 

width, we repeat the experiment five times. In each case, 

the Shimadzu UV-2550 UV–VIS spectrophotometer 

provides 2,000 points with a step size of /j,λ = 0.1 nm. 



 

 

 
 

 

Fig. 3 Dendogram of the 30 
measurements based on the 
angular distance between 
spectra (2)–(3) 
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Fig. 4 Dendogram of the 30 
measurements based on the 
Lorentzian distance and the 
Fourier transform (5)–(6) 
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For the purpose of the analysis with the MDS method, 

we organize the set of measurable data in a 6 × 5 matrix A: 

 
⎢ 

W05a    W05b    W05c    W05d    W05e 

⎥
 

the middle range of λ revealing only differences at the low 

and high values, where some noise occurs. Figure 2 shows 

details of the absorption spectra versus λ and slit width 

for those two cases. Due to the presence of noise, it is 

consid- ered the median of the absorption spectra of the 

five distinct 
A = 

⎢
 

⎥ 
(1) measurements. ⎢ 

W10a    W10b   W10c   W10d    W10e  

⎥
 ⎢ ⎥ 

⎢ ⎥ 
⎣ W20a    W20b   W20c   W20d    W20e  

⎦ 
W50a     W50b     W50c     W50d   W50e 

where the subscripts {01,02,05,10,20,50} and {a, b, c, d, e} 

denote the six widths and the five measurements, 

respec- tively. In other words, A denotes the absorbance 

measure- ments at different slit widths in the spectral 

region. 

The graph of the collected spectra is depicted in Fig. 1. 

We observe that the spectra superimposed considerably 

over 
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⎡ 
W01a W01b W01c W01d W01e 

⎤
 

⎢ W02a W02b W02c W02d W02e ⎢ 

 



 

 

 

3 Multidimensional scaling 

 
An MDS algorithm starts by defining a measure of 

similar- ity (or, alternatively, of distance), for 

constructing a square matrix of item-to-item similarities. 

In classical MDS, the matrix is symmetric and its main 

diagonal is composed of “1” for similarities (or “0” for 

distances). MDS tries to rearrange 



 

 

 

Fig. 5 Three-dimensional MDS 
map of the 30 measurements 
based on the angular distance 
between spectra (2)–(3) at slit 
widths 
{0.1, 0.2, 0.5, 1.0, 2.0, 5.0} nm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6 Three-dimensional MDS 
map of the 30 measurements 
based on the Lorentzian 
distance with the Fourier 
transform (5)–(6) and slit 
widths {0.1, 0.2, 0.5, 1.0, 
2.0, 5.0} nm 



 

 

 

 

 

 

 

 

  
 

Fig. 7 Stress versus number of dimensions of the MDS map for the 
angular distance between spectra (2)–(3) 

 
 

the points in the map so as to arrive at a configuration 

that best approximates the observed similarities (or 

observed dis- tances). For this purpose, MDS uses a 

function minimiza- tion algorithm that evaluates different 

configurations  with 

Fig. 8 Stress versus number of dimensions of the MDS map for the 
Lorentzian distance and the Fourier transform (5)–(6) 

 

 

normalized wavelength correlation and one based on the 

nor- malized Fourier transform of the wavelength 

measurements [12,14,15]. 

The cosine correlation α jk is defined as [2]: 

the goal of maximizing the goodness-of-fit. The most com-    
 

mon measure that is used to evaluate how well a  
particular configuration reproduces the observed distance matrix is the 

 

 
   

raw stress measure defined by S = [d jk  −  f (δ jk)]2, where 

d jk and δ jk represent the reproduced distances (for a 

given number of map dimension) and the input data, 

respectively. The expression f (δ jk) corresponds to a 

monotone transfor- mation of the input data. One measure 

commonly used is the sum of squared deviations of 

observed from the reproduced 

  

where λ denotes wavelength, x j (λ) represents the j th 

signal, and λmin ≤ λ ≤ λmax is the interval of variation of λ 

under analysis. Therefore, the angular distance between 
spectra c jk is defined as: 

distances. Consequently, the smaller the stress value S, 

the better the fit. 

 
Plotting S versus the number of map dimensions 

usually leads to a monotonic decreasing curve. The “best 

dimension” is a compromise between stress reduction 

and number of required dimension for the representation. 

In practical terms, 

The distances between spectra inspires a second measure, 

namely the normalized Fourier transform index c jk defined 

as: 
λmax

we chose a low dimension at the point where there is 
no 
significant further reduction of S. Alternatively, plotting 

the reproduced distances (for a given  number of   

dimensions) 

 



 

 

versus the input data leads to another type of plot denoted 
as 

 
ωmax 

  
 
 

Shepard diagram. Therefore, a narrow scatter of the 

points around a 45◦ line indicates a good fit of the 
distances to the 

 

dissimilarities. 
 

 

This expression can feed the Lorentzian distance [4]: 

 

4 Data analysis 

  

In this section, we define two indices for comparing the 
where ı = 

√
 1, Re{·} and Im{·} denote the real and imag- 

experimental data. For that purpose, we start by 

establish- ing two measures of comparison, namely one 

based on the 

− 
inary components, and ω can be loosely defined as the “fre- 

quency”, but having units inverse of the wavelength.    The 



 

 

Fig. 9 Three-dimensional MDS 
map of the 25 measurements 
based on the Lorentzian 
distance with the Fourier 
transform (5)–(6) and slit 
widths {0.1, 0.2, 0.5, 1.0, 
2.0, 5.0} nm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

objective is to distinguish the different slit widths using 

the information at the spectra, particularly at the low and 

high values of λ, while overcoming the problems 

associated with the presence of noise. 

With these measures, we can now implement two 

alterna- tive matrices C = [c jk ], of dimension 30 × 30, that 

feed the MDS algorithm for constructing the “maps”. 

 

 
5 Data visualization 

 
In this section, we apply several visualization methods for 

constructing data “maps”. Section 5.1 analyses the perfor- 

mance of dendograms, and Sect. 5.2 addresses the MDS 

method. 

 

5.1 Dendograms 

 
In this section, we construct dendogram “maps” [6,16]. 

Our starting point will be the set of experimental SC 

measures handled by indices (2)–(3) and (5)–(6). The 

resulting matrix C = [c jk ] is treated by the package 

MultiDendograms hierar- 



 

 

chical clustering package [16], and the results are 

visualized in Figs. 3 and 4, respectively, for the two 

alternative indices. 

We observe a clear separation of W01 but some 

overlap particularly for the cases with larger widths. 
 
 
 

5.2 Multidimensional scaling 

 
In this subsection, we construct MDS “maps” using the 

MDS package GGobi-Interactive and dynamic graphics 

[7]. As described previously, the starting point will be 

the matrix C = [c jk ] based on indices (2)–(3) and (5)–

(6). Figures 5 and 6 depict the MDS maps for two 

alternative indices. Figures 7 and 8 represent the 

corresponding plots of stress versus number of 

dimensions of the MDS visualization map. 

For both indices, the three-dimensional 

representation establishes a good compromise between 

feasibility and accu- racy. The stress plots confirm this 

observation. Another observation is that the MDS maps 

(Figs. 5, 6) are more intu- itive than the dendograms (Figs. 

3, 4) for visualizing the infor- mation since they use more 

efficiently the graphical portrait. 



 

 

Fig. 10 Three-dimensional 
MDS map of the 20 
measurements based on the 
Lorentzian distance with the 
Fourier transform (5)–(6) and 
slit widths {0.1, 0.2, 0.5, 1.0, 
2.0, 5.0} nm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It should be noted that for the two indices, we obtain 

dis- tinct maps, since measures (2)–(3) and (5)–(6) capture 

dis- tinct dynamical characteristics. However, in both 

cases, we get a representation that makes sense when we 

compare the position of the points representing the 

distinct systems. 

In what concerns the data clustering the second index 

is superior to the first one. For both cases, we verify the 

for- mation of groups in the direction W01 → W02 → W05 

→ W10 → W20 → W50, but some difficulties in separating 

the five experiments in cases W20 and W50. This effect is 

due to the relatively smaller difference between W20 and 

W50 as can be seen in the spectra represented in Figs. 1 

and 2. Another aspect is the scattering and the larger 

distance toward the five points of W01. The spectra of Figs. 1 

and 2 reveal W01 to have the higher level of noise and to be 

the most apart for small values of λ, where most of the 

energy of the signal is located. This reasoning can be 

tested in Figs. 9 and 10 that depict the MDS plots for the 

slit widths {0.1, 0.2, 0.5, 1.0, 2.0} nm 

and {0.1, 0.2, 0.5, 1.0} nm making 25 and 20 measurements. 

These cases do not correspond to a simple zoom of the initial 



 

 

 

plot, since the MDS algorithm calculates independently 

the points. In these visualization maps, we observe a 

much clear separation of the clusters. 

 

6 Conclusion 

 
As it can be seen from Fig. 1, to understand visually the 

dif- ferentiation of the UV spectra of SC in accordance 

with the change of slit width from 0.1 to 2.0 nm is a 

difficult problem with respect to the 5.0 nm case. For 

these reasons, we apply the MDS method to the 

absorbance data matrix having dif- ferent slit widths with 

experimental repetition to uncover the spectral changes 

between 0.1 and 2.0 nm slit widths. Also, we verify that 

MDS constitutes a mathematical tool capable of 

representing and discriminating the spectral band 

analysis of SC. Moreover, further measuring indices can 

be explored and different signals can be investigated with 

this technique. 
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