
a~ 

a-1 

 

Double  power  laws,  fractals  and self-similarity 
 

Carla M.A. Pinto, A. Mendes Lopes, J.A. Tenreiro Machado  
 

 

 
 
 

ABS T RA CT   

 
 

 

Power law (PL) distributions have been largely reported in the modeling of distinct real phenomena and have been associated with 

fractal structures and self-similar systems. In this paper, we analyze real data  that  follows  a  PL  and  a  double  PL  behavior  and  verify the 

relation between the PL coefficient and the capacity dimension of known fractals. It is to be proved a method that translates PLs 

coefficients into capacity dimension of fractals of  any  real data. 
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1. Introduction 

 
Power law (PL) distributions, also known as heavy tail distributions, firstly appeared in the literature in the 19th century. 

In 1896 [1], Vilfredo Pareto applied a PL to model the distribution of individuals’ incomes (this PL was later called Pareto 

law). He found that the relative number of individuals with an annual income larger than a certain value x was proportional 

to a power of x. From then on, studies of applications of PLs to real world phenomena have largely increased. 

The most well known examples of PL distributions are the Pareto [1] and the Zipf [2,3] laws. The later is also known as 
rank-size rule. Let X be a non-negative discrete random variable following a PL distribution. Then, its complementary cumu- 

lative  distribution  function  is  of  the  form  FðxÞ ¼ PðX P xÞ ¼    C    x-ða-1Þ ,  where  a > 0;  C > 0.  In  the  text,  we  will  consider 

a~ ¼ a - 1  and  Ce ¼ C.  The probability function of a  discrete random variable  following Pareto  distribution  is  given by: 

  

 

Zipf law is a special case of the Pareto law with exponent a~ ¼ 1. 

Application of PL behavior in natural or human-made phenomena usually comes with a log–log plot, where the axes 

represent the size of an event and its frequency. The log–log plot is asymptotically a straight line with negative slope. We 

can consider, for example, a country, such as United States  (US)  or  Portugal (PT),  and order  the  cities  by population. In 

the case of US, New York appears first, Los Angeles, second, and so on. Analogously for PT, Lisbon is the first, Oporto the 

second. Then, we can plot the logarithm of the rank on the y-axis and the logarithm of the city size on the x-axis. New York 

and Lisbon both have log rank ln 1, and Los Angeles and Oporto have log rank ln 2. The graphs are straight lines with negative 

slopes. The same thing happens for popularity. We all know that popularity is an extreme imbalanced phenomenon. Only a 
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few people have access to the glare of the spotlight and fewer still manage that his/her name be recorded in history. Most of 

us go through life being known just to the people in our social circle. How is popularity related to city sizes? They have in 

common the power law behavior, that is, exhibiting, in a log–log scale plot, a straight line. In fact, power laws seem to reign 

in the study of phenomena where popularity of some kind is present. Another such example is popularity of web sites. It is 

found that the number of web pages that have k in-links follows a PL distribution [4]. The usefulness of PLs can be at the level 

of controlling the outcome of some phenomena. For example, in computer networks. Some typical behavior in these net- 

works is individual agents acting in their own best interest, giving rise to a global power law. This can be changed by giving 

agents incentives to modify their conduct. Of course this type of strategy would not apply to earthquakes. Nevertheless, it 

could be used in an extremly important event, such as stock markets. Gopikrishnan et al. [5] described a PL behavior of stock 

market returns. Thus, comprehending PLs may be key to the understanding of stock market crashes [6], and many other 

important real life events. More examples are in wealth distribution and expenditure [7,8], city size distribution [9,3,10], 

number of articles’ citations and scientific production [11,12], number of hits in webpages [4], number of victims in wars, 

terrorist attacks, and earthquakes [13–18], words’ frequency [19,3] and occurence of personal names [20]. Interesting re- 

views on PL behavior and applications can be found in   [21–23]. 

Most of the PLs application seen in the literature use a single PL to model the studied events. Nevertheless other PLs, such 

as double PLs also appear and are said to be a better fit in some cases [24–27]. 

Detecting or proving the existence of a PL behavior in natural or human-made systems can be a very difficult task. The 

modeling of PLs has been primarily theoretical. A different approach to find a more complete model should consider contri- 

butions from statistics, control theory, and economics   [28]. 

Self-similar systems are characterized by being scale-free. This translates, in day-to-day English, in looking exactly the same, 

despite a closer or a more distant look. Fractals are ubiquitous in nature, appearing everywhere, from plant structures, body 

parts, such lungs, coastlines, mountain ranges, condensed-matter systems including polymers, composite materials, porous 

media, and other natural phenomena [29–32]. Self-similarity, self-invariance and fractal dimension are properties of fractals. 

Mandelbrot [33], in 1982, wrote  that. 

Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning 

travel in a straight  line. 

Mandelbrot turned mathematicians, physicists, biologists, and other scientists’, attentions to fractal patterns. The term 

‘‘fractal dimension’’ [34] is frequently defined as the exponent D of the expression (2) given by: 
  

 

where n is the minimum number of open sets of diameter E needed to cover the set and k is a constant that depends on the 

fractal size. This is also known as the capacity dimension of the fractal. There are other dimensions used to characterize frac- 

tals, being the Hausdorff’s and Kolmogorov’s dimensions, the ones that are more accurate, but also harder to use. Computing 

the fractal dimension of the length of a country’s coastline is an extremely difficult task, that depends on the length of the 

ruler used in the measurements. The shorter the ruler the bigger the length, since a shorter ruler measures more accurately 

the sinuosity of bays and inlets. Doing a log–log plot of the length of the ruler s versus the measured length L of the coastline, 

a straight line, with slope between 1 and 2, is obtained. Mandelbrot computed this slope to be 1 - D, so the analytical expres- 
sion of the straight line is log L ¼ ð1 - DÞ log s þ b. Last expression can be rewritten as L ¼ b~s1-D , that is a PL, and b ¼ log b~ 2 R. 

This feature suggests an analogy between any phenomenon characterized by a PL distribution  and  the  fractal  dimension, 

having for the variables in the x-  and  y-axes  the  same  role  as  E and  nðEÞ,  and  for  the  PL  slope  the  fractal  dimension  D. 

One can say that a~ is analogous to  D and,  therefore,  we  can  interpret  the  phenomenon  in  the  perspective  of  geometric  frac- 

tals.  For  example,  if  for  a  real  case  the  PL  reveals  a~ ’ 0:63,  one  may  say  that  the  phenomenon  has,  in  some  way,  similarities 

with the ternary Cantor fractal, whose fractal dimension is D ¼ log 2= log 3 and that each object, or entity, in the phenome- 

non, is related with two smaller objects having 1=3 the size each. Nevertheless, during the flow of recursion situations, the 

recursion scheme may vary. In that case the log–log plot changes and the different slopes reflect the distinct recursive laws. 

We will return to this subject with an example in Section 4. 

PLs are extremely important in the study of systems that are self-similar or fractal-like over many orders of magnitude. PL 

behavior allows extrapolation and prediction over a wide range of scales. The study of scaling reveals itself as a powerful tool 

of simplifying systems complexity and of understanding the basic principles ruling those systems. Moreover, experimental 

data from self-similar systems cannot be described by any other statistical distributions, as Normal or exponential, since or- 

der in complex systems relies heavily on correlations between different levels of scale. For the sake of completeness, we re- 

mark that recently, work by Sornette [35] has driven attention to a new type of extreme events, labeled dragon-kings, that 

could not be predicted by the extrapolation of power law distributions. The detection of these wild events or outliers depends 

on the phenomena that is under observation, there is not a unique methodology to find them. Nevertheless, this is not the 

focus here in this  work. 

 
2. Fatal events 

 
Understanding victimology patterns arising in fatal events, such as wars, terrorists attacks and tornadoes, is extremely 

important due to political, cultural, historical and geographical issues. Many researchers have attempted explanations in 

the last decades [13,14,36,15–17,37,18]. Nevertheless, understanding these patterns is still far from    complete. 



 

 

War is probably the most fatal event, concerning the number of victims. Everyone remembers the millions of victims in 

big conflicts such as the two World Wars (WWI and WWII). Nevertheless, the nature of war has been slowly changing in the 

last 50 or 60 years. Guerilla forces, insurgent groups, and terrorists opposing incumbent governments, are nowadays events 

that cause fewer victims in each episode/event, (but sum up to millions too). These events seem to be random attacks to 

vulnerable targets of opportunity, and give little insight in predicting future events. Nevertheless, one can observe a common 

underneath behavior considering the number of casualties and frequency of these natural and human-made disasters. Large 

casualties are associated with low frequency phenomena, WWI and WWII are two examples, and are lesser frequent than 

other wars, not so harmful in terms of preserving human lives [14,36]. Analogously, the frequency of occurrence of terrific 

earthquakes, that cause a large number of victims, is much lower than that of smaller earthquakes with few casualties [13]. 

Other fatal events are domestic and international cases of violence, studied by Richardson [14]. He divided those into five 

logarithmic categories, from 3 up to 7, that corresponded to casualties measured in powers of 10. Later, in 1960 [36], the 

same author showed that as events increased by powers of 10 in severity, their frequency decreased by a factor close to 

three. 

Johnson et al. [37] studied war and global terrorism patterns, and developed a theory that tried to explain their similar 

dynamical evolution, invariant to underlying ideologies, motivations and the terrain in which they operated. They consid- 

ered each insurgent force as a generic, self-organizing system, which evolved dynamically through the continual coalescence 

and fragmentation of its constituent groups. Researchers have used wars in Iraq and Afghanistan, and long-term guerrilla 

war in Colombia, as examples. On global terrorism, attacks to London, Madrid, and New York (September 11) were main 

choices.  Results  obtained  showed  a  PL  behavior  for  Iraq,  Colombia  and  Afghanistan,  with  coefficient  value  (close   to) 

a~ ¼ 2:5. This value of the coefficient equalized the coefficient value characterizing non-G7 terrorism. This result suggested 

that PL patterns would emerge within any modern asymmetric war, fought by loosely-organized insurgent groups. In 2007, 

Clauset et al. [38] plotted a log–log chart for the frequency versus the severity of terrorist attacks, since 1968, and found a 

straight line, denoting PL behavior. Economic development, the type of weapon used in the attack, or short time scales, did 

not affect the results. The same authors presented a toy model of the frequency of severe terrorist attacks, that reproduced 

the heavy-tail behavior observed in the log–log plot of real data. 

Bohorquez et al. [18] were interested in the quantitative relation between human insurgency, global terrorism and ecol- 

ogy. Universal patterns occurring across wars (distribution of the number of victims and the timing of within-conflict events) 

were explained by a unified model of human insurgency. The insurgent populations were considered self-organized groups 

that dynamically evolved through decision-making processes. Authors computed the Pareto coefficient to a value close to 

a~ ¼ 2:5, agreeing with previous work on Iraq and Colombia wars, and with the other insurgent wars studied in this paper 

(Peru, Sierra Leone, Afghanistan, amongst others). Data of the Spanish and American Civil Wars was best fitted by PL distri- 

bution with coefficient value a~ ¼ 1:7. Moreover, for the later, a lognormal distribution might be applied to fit the data. As a 
consequence of these findings, researchers claimed that insurgent wars were qualitatively distinct from traditional wars. A 

coefficient value of a~ ¼ 2:5 was in concordance with the coefficient value of a~ ¼ 2:48 ± 0:07 obtained by Clauset et al. [38] on 

global terrorism. 
 

 
3. Other events 

 
Self-similarity or self-criticality has also been observed in other phenomena, such as forest or city fires, language, 

amongst others. 

The study of city and forest-fire distributions may allow to take measures beforehand in view of possible hazards, thus 

saving natural resources and animal and human lives. Considering as a measure of the size of a fire, either a city or a forest 

fire, its burned area, then the frequency-size distribution of fires follows a PL behavior. Drossel et al. [39] proposed a stochas- 

tic cellular automaton to model this PL behavior. The authors have improved a model introduced by Bak et al. [40], in which 

the forest was denoted by a d-dimensional lattice, with size L, and Ld sites. Tree growth and ignition and spread of fires were 

simulated in a random way in the model. The model steady state was defined by frequency-size distribution of fires follow- 

ing a PL. In 1998, Malamud et al. [41] computed the log–log plot of the frequency of occurrence vs the burned area in USA 

and Australian fires. They observed a straight line, denoting a PL behavior, over distinct orders of magnitude, and invariant 

with time. Analogously behavior was found by Ricotta et al. [42], for 9164 wildfire records of a northern region of Italy 

(Liguria), from 1986 to 1993. The PL coefficient was computed to be a~ ¼ 0:723. Song et al. [43], improved the model of 

Drossel et al. [39], by including the effects of rain and human fire fighting efforts, such as firebreaks. Application of the model 

to data from Chinese fires, supported the claim that small effects could preserve trees and prevent large, hazardous forest 

fires. In 2006, Weiguo et al. [44] explored three distinct PL behaviors seen in frequency-size, frequency-interval, and 

frequency-density-of-population distributions of forest fires. They considered the environmental differences (weather, tree 

species, etc.) between different countries (China, USA, Japan) and human-related variables the main factors contributing to 

the distinct exponent  values. 

City fires are more intricate systems to study, due to a large variety of structures in the cities, from industrial facilities, to 

buildings and parks, and to the greater human interactions. In 2003, Song et al. [45] studied fire distribution in Chinese and 

Swiss cities. The authors computed the frequency loss plot and the rank-size plot and verified validity of a PL to these plots. 

The frequency loss was the frequency of fires with loss L, that is, fire loss L converted into Chinese YUAN. The rank was 



 

 

computed by sorting city fires from large to small, and considering the largest with rank 1. The PL distribution was invariant 

for scale and time, meaning that fire distribution is common for different places and times. 

Brown et al. [31] studied one restricted class of emergent ecological phenomena characterized by scaling relationships, 

that were self-similar over a wide range of spatial or temporal scales. Some features appeared to be universal, occurring 

in virtually all taxa of organisms and types of environments. Mathematically, they translated that behavior by PLs. Authors 

contributed to the understanding of the mechanisms that generated those PLs, and for explaining the diversity of species and 

complexity of ecosystems in terms of physical and biological    factors. 

Ma et al. [46] proposed a self-similar packing of atomic clusters for medium-range order in metallic glasses. They showed 

that this medium-range order had fractal properties exhibiting fractal dimension of 2:31. At medium-range length-scale, the 

patterns were described by a PL correlation  function. 

 
4. Analysis of real world cases 

 
PLs are present in many natural and man-made systems and, for  certain  cases,  a  single  PL  distribution  holds  over  the 

entire  data   range.  As   an  example,  Fig.   1  represents   the  normalized  rank/frequency  log–log   plot   of  the   largest     private 

 
 

 

 

 

 
 

Fig. 1. Rank/frequency log–log plot of the size of the largest American companies in 1997 (max size  = 56; max rank  = 324). 

 
 

 

 

 

 
 

Fig. 2. Rank/frequency log–log plot of a variable associated to man-made systems following a dual PL: number of words in the Homer’s epic poem Odyssey, 

English version (max size  = 6561; max rank  =  9077). 



 

 

American companies, with respect to their annual revenue, in the year 1997, according to Forbes (http://www.forbes.com/). 

To construct the plot, we first sorted the companies in descending order, according to their size, and numbered them, 

consecutively, starting from one [47]. Then a normalization of the values was carried out, meaning that, the companies’ sizes 

(x-axis) were divided by the corresponding highest value, and the ranks (y-axis) were divided by the rank of the smallest 

company. Finally, a PL was adjusted to the data using a least squares algorithm. All the log–log plots presented in this paper 

were  made  using  a  similar procedure. 

As can be seen in Fig. 1, a PL behavior distribution with parameters ðCe ; a~Þ  ¼ ð0:0031; 1:3004Þ holds over the entire range of 

the companies’ annual  revenue. 

In other real applications, different PLs, characterized by distinct PL parameters, might also be observed. In the sequel, 

several cases of such behavior are illustrated. In Fig. 2 the cumulative distribution of the number of words in the Homer’s 

epic  poem Odyssey  (in an  English  version) is  represented. The  words were  counted  using the  free software     TextSTAT 

(http://neon.niederlandistik.fu-berlin.de/en/textstat/).     The     PL     parameters     are     ðCe1 ; a~1 Þ ¼ ð0:0010; 0:7581Þ; ðCe 2 ; a~2 Þ ¼  

ð0:0002; 1:1903Þ. 

We use Fig. 2 to interpret the phenomenon of the number of words in a text in the perspective of geometric fractals. Fig. 2 

presents two PL behaviors, that switch at x ¼ 0:024, namely with a~1 ’ 0:76 and a~2 ’ 1:19. 

 
 

 

 

 
 

 

 
 

 
 

 

 
    

 
 

 

 
     

 
 

 

Fig. 3. Joining of two generalized fractals, the Cantor set and the Kosh curve, at iteration k ¼ k1 . 

 
 

 

 

 

 
 

Fig. 4.  Rank/frequency log–log plot of a system presenting dual PL behavior: size of forest fires in Portugal, year 2001 (max size  = 3272.5;  max rank  = 185). 

http://www.forbes.com/
http://neon.niederlandistik.fu-berlin.de/en/textstat/


 

 

Let us now consider joining two fractals at iteration k ¼ k1 , namely the generalized Cantor set and the generalized Kosh 

Curve, as represented in Fig. 3. 

In the Cantor recursion is considered a division in N1  ¼ 13 pieces, while in the Kosh fractal is considered a division in 
N2  ¼ 7 objects. Therefore, we get D1  ¼ log N2  ¼ 0:75 and D2  ¼ log 10  ¼ 1:18, which are values close to those observed in the real 

log N1 log 7 

case. We should highlight that we have chosen N1 and N2 to these particular values only to match the case under analysis. A 

second observation is that the ‘switching’ between distinct fractal structures is easier to design for k ¼ k1 and a straight line, 

but other cases seem possible to be constructed. Nevertheless, it is not required to have a switching between dimensions 

smaller/higher than one. For example, adopting two different Cantor fractals leads to a switching between two dimensions 

smaller than 1:0. Therefore, preserving the rest of the analogy, we can say that large/small words have a recursion similar to 

generalized Kosh/Cantor fractals, being the switching at k1  in correspondence to value x ¼  0:024. 

Fig. 4 shows the cumulative distribution function of the size of forest fires in Portugal, over the year 2001. The adopted 

measure for size is the total burned area. Only fires greater than 100 ha in total burned area are considered. The data is 

available on the Portuguese National Forest Authority (AFN) website (http://www.afn.min-agricultura.pt/). For this case, 

 
 
 

 

 

 

 
 

Fig. 5. Rank/frequency log–log plot of a system presenting dual PL behavior: severity of worldwide terrorist attacks in 2003 (max size  = 126; max rank 

= 648). 

 
 

 

 

 

 
 

Fig. 6. Rank/frequency log–log plot of a system presenting dual PL behavior: severity of tornadoes in the USA in 2003 (max size  = 206; max rank  = 105). 

http://www.afn.min-agricultura.pt/


 

 

 

 

 

 
 

Fig. 7. Rank/frequency log–log plot of a variable associated to man-made systems following a dual PL: number of hits received by the websites in category 

‘hobby’, according to uCoz Web Services (max size  = 9045; max rank  = 100). 

 

two distinct PLs with parameters ðCe1 ; a~1 Þ ¼ ð0:0383; 0:9232Þ and ðCe 2 ; a~2 Þ ¼ ð0:0065; 2:4665Þ fit  the data. The change in the 

behavior occurs at  the relative  value of  0:35, approximately. 

Two additional related similar cases are depicted in Figs. 5 and 6. The former refers to the rank/frequency log–log plot of 

the severity of worldwide terrorist attacks, in 2003. The number of people killed and injured in an event is used to quantify 

its severity. The data is available in the RAND Database of Worldwide Terrorism Incidents (RDWIT) (http://smapp.rand.org/ 

rwtid/). The latter (Fig. 6) represents the severity of tornadoes in the USA, during 2003. The total number of human victims 

(killed and injured) directly related to a given occurrence is used to quantify its severity. The used data is available at the U.S 

National   Oceanic   and   Atmospheric   Administration   (http://www.noaa.gov/),   National   Weather   Service,   Storm  Prediction 
Center     website     (http://www.spc.noaa.gov/).     Both     cases     reveal     a     dual     PL     behavior     with     parameters     ðCe 1 ; a~1 Þ ¼  

ð0:0063; 0:9650Þ;  ðCe 2 ; a~2 Þ ¼ ð0:0014; 1:7091Þ  and   ðCe 1 ; a~1 Þ ¼ ð0:0413; 0:5804Þ;  ðCe 2 ; a~2 Þ ¼ ð0:0100; 1:2374Þ.   The   change   in 

the behavior occurs at x ¼ 0:13 and x ¼ 0:11, respectively. 

The cumulative distribution of the number of hits received by the websites in category ‘hobby’, according to uCoz Web 

Services (http://top.ucoz.com/), is depicted in Fig. 7. The data was collected on the  20th  January,  2012.  Only  in  English 

written  websites  were  considered.  It  is  clear  that  a  dual  PL  behavior  holds.  The  PL   parameters   are   ðCe 1 ; a~1 Þ ¼ 

ð0:1414; 0:2228Þ; ðCe 2 ; a~2 Þ ¼ ð0:0082; 0:7779Þ, respectively. The two PLs switch at x ¼ 0:006. 

In conclusion, this study presented several examples of real world phenomena where a double PL behavior can be 

observed. We have discussed, with an analogy, how geometric fractals may be used to interpret phenomena defined by   PLs. 

 

5. Conclusion 

 
In this paper, we focused on the self-similar, fractal-like and PL behaviors of sets of real data. We presented examples of 

data that was fitted well by a single straight line and examples that were best described by two distinct PL distributions. We 

have related the fractal dimension with the exponent of some PL distributions, and have given an analogy for this case. More 

work is needed in order to find a general method that translates between PL coefficients and fractal dimensions in distinct 

real phenomena. 
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