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Abstract The indiscriminate use of antibiotics in food-

producing animals has received increasing attention as a

contributory factor in the international emergence of anti-

biotic-resistant bacteria (Woodward in Pesticide, veterinary

and other residues in food, CRC Press, Boca Raton, 2004).

Numerous analytical methods for quantifying antibacterial

residues in edible animal products have been developed

over years (Woodward in Pesticide, veterinary and other

residues in food, CRC Press, Boca Raton, 2004; Botsoglou

and Fletouris in Handbook of food analysis, residues and

other food component analysis, Marcel Dekker, Ghent,

2004). Being Amoxicillin (AMOX) one of those critical

veterinary drugs, efforts have been made to develop simple

and expeditious methods for its control in food samples. In

literature, only one AMOX-selective electrode has been

reported so far. In that work, phosphotungstate:amoxycil-

linium ion exchanger was used as electroactive material

(Shoukry et al. in Electroanalysis 6:914–917, 1994).

Designing new materials based on molecularly imprinted

polymers (MIPs) which are complementary to the size and

charge of AMOX could lead to very selective interactions,

thus enhancing the selectivity of the sensing unit. AMOX-

selective electrodes used imprinted polymers as electro-

active materials having AMOX as target molecule to

design a biomimetic imprinted cavity. Poly(vinyl chloride),

sensors of methacrylic acid displayed Nernstian slopes

(60.7 mV/decade) and low detection limits (2.9 9 10-5

mol/L). The potentiometric responses were not affected by

pH within 4–5 and showed good selectivity. The electrodes

were applied successfully to the analysis of real samples.
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Introduction

Aquaculture is one of the fastest growing food-producing

sectors, supplying approximately 40% of the world’s fish

food [4]. A wide range of antimicrobial compounds are

often used not only for prevention or treatment of diseases,

but also as growth promoters during the production of

animals for human consumption. The potential conse-

quences of this antibiotic use are the development of

antibiotic-resistant microorganisms, multiple antibiotic

resistance, resistance transfer to pathogenic bacteria, and

reduced efficacy of antibiotic treatment for diseases in

humans caused by resistant pathogens [5].

b–Lactamic antibiotics, like penicillins (including here

Amoxicillin, AMOX), cephalosporins, cephamycins, and

carbapenems are important antimicrobial agents that are

widely used to treat human infections and animal diseases

in aquaculture due to its broad spectrum and low cost

[6, 7]. AMOX is active against a wide range of Gram-

positive and a limited range of Gram-negative organisms. It

is usually the drug of choice within the class because it is

better absorbed, following oral administration, than other

b-lactam antibiotics [8]. AMOX has a bactericidal action

and inhibits the bacterial cell wall biosynthesis by binding

the enzymes that produce the protein cell wall [9, 10].

However, the improper applications of antibiotics may lead

to the occurrence of residues in food supplies. Farm ani-

mals treated with antibiotics required to be held for a



charge of a particular ion can lead to very selective inter-

actions. Therefore, MIPs may be used advantageously as

sensing materials of ion-selective electrodes (ISEs) [52]. In

addition, any existing membrane potential does not require

the template to be extracted from the membrane, and ionic

species do not have to diffuse through the membrane, pro-

viding no size restrictions on the template compound [53].

In this work, the development of AMOX MIP-based

ISEs was made. The sensors were synthesized with meth-

acrylic acid (MAA), 2-acrylamido-2-methyl-1-propane-

sulfonic acid (AAMPSO) and vinyl pyridine (VPY)

functional monomers, cross-linked by ethylene glycol

dimethacrylic acid (EGDMA) within the template mole-

cule. The influence of additives such as potassium tetra-

kis(4-chlorophenyl)borate (TpClPB) or 4-tert-octylphenol

(TOP) was also the target of the study. The sensing

materials were included in Poly(vinyl chloride, PVC),

plasticized with o-nitrophenyl octyl ether (oNPOE), and

the corresponding membranes evaluated in steady-state and

applied to the analysis of contaminated fish samples.

Experimental

Apparatus

All potential measurements were made in a Crison lpH

2002 decimilivoltammeter (±0.1 mV sensitivity), at room

temperature. Constant stirring was guaranteed by means of

a Crison, micro ST 2038. The output signal in steady-state

evaluations was transferred to a commutation unit and

reconnected to one of six ways out, enabling the simulta-

neous reading of six ISEs. The assembly of the potentio-

metric cell was as follows: conductive graphite | AMOX-

selective membrane | buffered solution (Hepes, 1.0 9 10-2

mol/L, pH 5) || electrolyte solution, KCl | AgCl(s) | Ag. The

reference electrode was an Orion Ag/AgCl double-junction

(Orion 90-02-00). The selective electrode was prepared in a

conventional shape for batch evaluations [52]. The devices

had no internal reference solution and epoxy-graphite as

used as solid contact.

When necessary, the pH was measured by a Crison CWL/

S7 combined glass electrode connected to a decimilivol-

tammeter Crison, pH meter, GLP 22. Fourier transform

infrared (FTIR) measurements were conducted in a Nicolet

6700 equipment attached to an Attenuated Total Reflection

(ATR) accessory. Spectrophotometric measurements were

made in a Thermo Scientific Evolution 300 BB.

Reagents

All chemicals were of analytical grade, and de-ionized water

(conductivity \ 0.1 lS cm-1) was employed. TpClPB,

specific withdrawal period until all residues are depleted to 
a safe level before the animal tissue or milk can be used for 
human consumption [11].

The use of antibiotics in aquaculture increased the 
concern not only about food security but also about the 
environment. When antibiotics and other therapeutic 
chemicals are added to feed, they can affect organisms for 
which they were not intended, for example, when the drugs 
are released in water, uneaten pellets decompose [12]. 
Nonetheless, many drugs used in fish farms have been 
found to have minimal (if any) deleterious effects on the 
aquatic environment [13]. For that reason, analytical 
methods are required for monitoring residues of this 
compound in aquatic environment.

Several analytical procedures are suggested in literature 
for AMOX, based on spectroscopy [14–19], capillary 
electrophoresis [20, 21], electrochemical methods [22–24] 
and high-performance liquid chromatography (HPLC)

[25–29] associated with fluorescence [30], UV [31, 32] and 
fluorimetric [33] detections employing pre-column [34] or  
post-column derivatization [35].

Although some of these methods offered very good sen-

sitivity, accuracy, and precision for the determination of 
AMOX, they present some disadvantages in routine control 
procedures. Routine determinations need quick answers, and 
these techniques are time-consuming, require complex 
instrumentation, large amount of high purity organic solvents, 
and long times for equilibration and derivatization treatment. 
Therefore, it is important to set up a simple, rapid and 
expeditious method that may provide specific and sensitive 
measurements of AMOX for its screening in food samples.

Molecularly imprinted polymers (MIPs) are capable of 
recognizing a specific molecule or a family of compounds, 
in a simple and rapid way. This technique is based on host–

guest interactions and is meant for specific binding just as 
antibody/antigen [36, 37]. MIPs are tailor-made polymeric 
materials that are able to bind wide range of target analytes 
and thus have been used in many different fields [38]. 
These areas include antibody mimics [39], liquid chroma-

tography [40, 41] chemical sensors [42, 43], and solid-

phase extraction [44–48]. Compared with the other 
methods, MIPs have the advantages of being inexpensive, 
showing resistant to elevated temperatures and pressures, 
and inert toward acids, bases, metal ions, and organic 
solvents [49]. Besides that, usually MIPs can be reused 
many times without losing their performance.

Ion-selective sensors have been replacing for a long time 
other wet analytical methods. They offer high precision and 
rapidity, low cost of analysis, enhanced selectivity and 
sensitivity over a wide range of concentrations [50, 51]. Still, 
the sensing material plays a key role in the sensitivity and 
selectivity of an ion-selective electrode (ISE). The design of 
sensing materials that are complementary to the size and



oNPOE, TOP (PVC) of high molecular weight, EGDMA,

VPY and MAA were purchased from Fluka. Benzoyl per-

oxide (BPO), methanol (MeOH) and tetrahydrofuran (THF)

were obtained from Riedel-deHäen. AMOX, AAMPSO

were from sigma–Aldrich. Acetic acid was bought from

Carlo Erba.

Synthesis of host-tailored polymers

For preparing MIPs, the template (0.5 mmol AMOX) was

placed in a glass tube (14.0 mm i.d) with the functional

monomer (5.0 mmol MAA, 5.0 mmol VPY and 5.0 mmol

AAMPSO), the cross-linker (24.5 mmol EGDMA) and the

radical initiator (0.32 mmol BPO), all dissolved in 3 mL

methanol. The mixture was sonicated, degassed with nitro-

gen for 5 min, and placed in a water bath at 70 8C for 30 min.

Non-imprinted polymers (NIP) was also prepared in a sim-

ilar way, excluding the template from the procedure.

The resulting polymers were ground and sieved to par-

ticle sizes ranging 50 to 150 lm. Extraction of the template

molecule and washout of non-reacted species was carried

out with methanol/acetic acid (4:1, v/v). All polymers

(MIP/MAA, NIP/MAA, MIP/AAMPSO, NIP/AAMPSO,

MIP/VPY and NIP/VPY were let dry at ambient temper-

ature before use.

Potentiometric sensor

The sensing membranes were prepared by mixing 200 mg of

PVC, 350 mg of oNPOE and 15 mg of the sensing polymer.

Some membranes were also added of 7.5 mg of different

additives, one acting as anionic additive (TpClPB) and the

other enabling hydrogen bridges with the analyte (TOP),

typically displaying a cationic behavior for attracting anio-

nic species [54] (Table 1). The mixture was stirred until the

PVC was well moistened and dispersed in 3.0 mL THF.

These membranes were placed in conductive supports of

conventional shapes. Membranes were let dry for 24 h and

placed in an AMOX solution 1 9 10-3 mol/L. The elec-

trodes were kept in this solution when not in use.

Potentiometric procedures

All potentiometric measurements were carried out at room

temperature. Emf values of each electrode were measured

in solutions of fixed pH and ionic strength. Increasing

concentration levels of AMOX were obtained by transfer-

ring 0.0200–5.0 mL aliquots of AMOX aqueous solutions

1.0 9 10-2 mol/L to a 100 mL beaker containing 50.0 mL

of 1.0 9 10-2 mol/L of suitable buffer. Potential readings

were recorded after stabilization to ±0.2 mV and emf was

plotted as a function of logarithm AMOX concentration.

Calibration graphs were used for subsequent determination

of unknown AMOX concentrations.

Binding experiments

The absence of AMOX in the MIP particles was previously

confirmed by measuring the absorbance of the washout

solution at 230 nm; the particles were repeatedly washed

until AMOX was no longer detected. The polymer was

dried after at 60 8C under vacuum until constant weight.

Binding experiments were carried out by placing

20.0 mg of MIP washed particles in contact with 10.0 mL

Table 1 Membrane composition of AMOX sensors casted in 200 mg of PVC and their potentiometric features in 1.0 9 10-2 mol L-1 Hepes

buffer, pH 5

ISE Membrane composition Slope

(mV/decade)

R2 (n = 5) LOD

(mol/L)

LLLR

(mol/L)

rv (mV) Cvw (%)

Active

ingredient

Plasticizer Additive Weight (mg)

I MIP/MAA oNFOE – 15:350 60.73 ± 2.68 0.999 2.94 9 10-5 4.86 9 10-5 2.33 5.45

II NIP/MAA oNFOE – 15:350 11.89 ± 4.69 0.994 1.82 9 10-5 3.29 9 10-5 28.14 108.15

III MIP/MAA oNFOE TpClPB 15:350:7.5 38.91 ± 12.98 0.975 1.85 9 10-4 2.82 9 10-4 11.31 8.31

IV MIP/MAA oNFOE TOP 15:350:7.5 57.17 ± 15.16 0.993 3.39 9 10-5 6.95 9 10-5 11.46 12.37

V MIP/AAMPSO oNFOE – 15:350 5.58 ± 2.37 0.994 3.16 9 10-5 3.99 9 10-5 52.33 35.17

VI NIP/AAMPSO oNFOE – 15:350 27.98 ± 8.86 0.995 3.35 9 10-5 1.28 9 10-4 17.82 82.62

VII MIP/AAMPSO oNFOE TpClPB 15:350:7.5 51.01 ± 16.33 0.987 2.30 9 10-4 3.75 9 10-4 5.87 2.81

VIII MIP/AAMPSO oNFOE TOP 15:350:7.5 73.34 ± 20.84 0.994 1.45 9 10-4 1.66 9 10-4 37.62 19.68

IX MIP/VPY oNFOE – 15:350 51.84 ± 17.07 0.994 2.37 9 10-5 3.36 9 10-5 3.54 21.83

X NIP/VPY oNFOE – 15:350 50.32 ± 10.31 0.994 1.51 9 10-4 2.59 9 10-4 37.76 21.74

XI MIP/VPY oNFOE TpClPB 15:350:7.5 45.86 ± 10.97 0.981 1.90 9 10-4 2.25 9 10-4 32.39 25.22

XII MIP/VPY oNFOE TOP 15:350:7.5 55.35 ± 10.98 0.993 4.56 9 10-5 3.86 9 10-5 5.16 11.57

Cvw coefficient variation if weekly calibration for 2.82 9 10-4mol/L



sites that are less oriented than those in covalent imprinting

but still with similar selectivity and sensitivity [57]. So, the

association between MIP and ISEs avoid the need of

template extraction from the host-tailored particle. This

extraction may leave vacant recognition sites, ready for

binding, which is a typical source of uncertainty at the

determination or a sensitivity-limiting factor.

In this work, electrostatic interactions between AMOX

and VPY, AAMPSO or MAA monomers were considered

to support the self-assembling of the sensor (that match the

shape of AMOX). Mostly hydrogen bonds were established

with the template compound. The contribution of mono-

mer, cross-linker and solvent to host–guest binding prop-

erties were studied. Figure 1 shows that AMOX has both

amino and carboxylic acid functions on its structure.

Theoretically, this turns it an ideal compound to interact

with MAA, AAMPSO and VPY monomers.

Binding characteristic of the MIP

To understand the way how small molecules interact with

adsorbent surface, the mode of binding and site distribu-

tions in the interaction, adsorption isotherms are an

important tool. They plot the equilibrium concentrations of

bound ligand (adsorbate) versus free ligand. In liquid-phase

applications of MIPs, a molecule in solution interacts with

binding sites in a solid adsorbent. In the liquid-phase and

after equilibrium the free ligand concentration becomes

constant and is easily quantified to plot the corresponding

adsorption isotherm.

According to that, synthesized particles were left in

solutions of several AMOX concentrations under continu-

ous stirring. The results of these equilibrium binding

experiments were plotted in Fig. 2a. The corresponding

experimental data was used to carry out the Scatchard

analysis and estimate the binding parameters of the MIP

particles. As revealed in Fig. 2b, the Scatchard plot was not

linear in all AMOX concentration range, indicating that the

binding sites in the MIP are non-uniform.

Most MIPs suffer from a heterogeneous distribution of

binding sites. This binding site heterogeneity results from

the amorphous nature of the polymer, with binding sites

that are not identical, somewhat similar to a polyclonal

preparation of antibodies. The sites may, for instance,

reside in domains with different cross-linking density and

accessibility.

Scatchard plot (Fig. 2b) shows two distinct sections

within the plot that can be regarded as straight lines. This

represents two different behaviors of binding sites in the MIP

of MAA, AAMPSO and VPY. For the MIP/MAA, the

equilibrium dissociation constant Kd and the apparent

maximum amount Qmax for the higher affinity binding sites

are 321 lmol/L and 587 lmol/g for dry polymer,

AMOX solutions ranging 0.2–5.0 mmol/L. The mixtures 
were stirred for 12 h at room temperature and the solid 
phase separated by centrifugation (3,000 rpm, 10 min). 
The concentration of free AMOX in the supernatant was 
detected by UV spectrophotometry at 230 nm. The amount 
of AMOX bound to the polymer was calculated by sub-

tracting the concentration of free AMOX from the initial 
AMOX concentration. The data obtained were used for 
Scatchard analysis.

FTIR

The infrared spectra from FTIR spectroscopy were recor-

ded after base line correction, each 30 min, accounting for 
the correction of the absorption of atmospheric molecules 
such as carbon dioxide. Each spectrum was the average of 
32 scans for the same sample. The plot represented wave 
number, with a range from 525 to 4,000 cm-1, in function 
of absorbance. The resolution of the device was 4.

Determination of AMOX in fish

Constant weights of well-ground fish (*2.0 mg) from 
aquaculture origin were transferred to 15-mL tubes. 
A 10 mL portion of 0.01 mol/L Hepes buffer pH 5 was 
added and thoroughly mixed with fish sample. A sonication 
period of 5 min ensured the extraction of the analyte. The 
supernatant was obtained by centrifugation at 1,000 rpm 
and transferred quantitatively to a 25-mL volumetric flask 
after filtration. Analytical measurements were conducted 
over this solution after completing the flask to the final 
volume with buffer.

For AMOX potentiometric analysis, a 25-mL aliquot of 
the fish solution was used. The direct potential method was 
applied to AMOX determination in fish samples.

Results and discussions

It is known that the ionophore or ion carrier is the key 
element in a polymeric membrane sensor, because the 
binding strength between it and the target analyte are 
responsible for the selectivity of the potenciometric sensor 
[55]. Among several other electroactive materials, MIPs 
may act as potentiometric sensing materials [52, 56]. MIPs 
are based on the formation of stable complexes between 
templates and their functional monomers, in the reaction 
mixture, as well as the preservation of these complexes in 
the resulting polymers. With that propose, mostly covalent 
bonds have been used for fixation of the template mole-

cules within the tailored cavities. However, fast and 
reversible binding requires low activation energies. This is 
achieved by means of non-covalent binding, leading to



respectively. By the same treatment, Kd and Qmax for the

lower affinity binding sites were 4096 lmol/L and

3,312 lmol/g, respectively. Comparatively, for MIP/VPY

the equilibrium dissociation constant Kd and the apparent

maximum amount Qmax for the higher affinity binding sites

are 126 lmol/L and 451 lmol/g for dry polymer, Kd and

Qmax is 1,984 lmol/L and 2,380 lmol/g, respectively.

Finally, for MIP/AAMPSO the equilibrium dissociation

constant Kd and the apparent maximum amount Qmax for the

higher affinity binding sites are 24 lmol/L and 191 lmol/g

for dry polymer, Kd and Qmax is 3,572 lmol/L and

3,567 lmol/g, respectively.

Sensors performances

AMOX sensors contained MIP or NIP particles as elec-

troactive materials dispersed in plasticizing solvent and

PVC. Characterization of their main analytical features

followed IUPAC recommendations [58] and was carried

out under static mode of operation. The results obtained are

represented in Table 1 and Fig. 3. AMOX sensors based on

MIP particles displayed different behaviors in terms of

sensitivity and detection limits. MIP sensors prepared with

MAA, AAMPSO and VPY showed, respectively, linear

response starting at 4.86 9 10-5, 3.99 9 10-5 and 3.36 9

10-5 mol/L AMOX, cationic slopes of 60.7 ± 2.7,

55.8 ± 2.4 and 51.8 ± 17.1 mV/decade and detection

limits of 2.9 9 10-5, 3.2 9 10-5 and 2.4 9 10-5 mol/L.

The corresponding NIP particles with monomer MAA and

AAMPSO displayed worse response than the response of

VPY sensor that presented a linear response starting at

2.59 9 10-4 mol/L AMOX, cationic slope of 50.32 ±

10.31 mV/decade and detection limits of 1.51 9 10-4

mol/L. In general terms, near-Nernstian behavior was

observed only for MIP sensors excepting for sensor with

MAA monomers added of anionic additive (TpClPB) and

AAMPSO, while the other sensors showed widest linear

response range. To improve the operating features of the

Monomers

AMOX
Template

MIP 1-MAA MIP 2-VPY

MIP 3-AAMPSO

EGDMA
Cross-Linker

Fig. 1 Chemical structure of monomers, cross-linker and molecularly imprinted polymers showing non-covalent binding sites to AMOX
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AMOX/AAMPSO and AMOX/VPY imprinted polymer. Q is the

amount of AMOX bond to 20.0 mg of polymer; t = 25 �C;

V = 10.00 mL; binding time: 20 h



previous membranes, the MIP-based sensors were added of

an anionic and cationic lipophilic compound. Usually, the

addition of these compounds of lipophilic nature to

potentiometric sensors reduces the anionic or cationic

interference and lowers the electrical resistance of the

membranes [59].

In this work, TpClPB and TOP were added to the

selective membrane, giving respectively anionic charges to

the membrane phase or displaying a ‘‘similar to cationic’’

effect in the membrane (Table 1). The sensors based on

MIP/MAA, MIP/AAMPSO and MIP/VPY with TOP

showed linear response ranges starting from 6.95 9 10-5,

1.66 9 10-4 and 3.86 9 10-5 mol/L, detection limits

with 3.39 9 10-5, 1.45 9 10-4 and 4.56 9 10-5 mol/L,

and cationic slopes of 57.17 ± 15.16, 73.34 ± 20.84 and

55.35 ± 10.98 mV/decade, respectively. Both MAA- and

VPY-based sensors presented near-Nernstian slope while

the AAMPSO sensor showed a supra-Nernstian behavior

(Fig. 3).

Moreover, the AAMPSO- and VPY-based sensors with

the additive TpClPB presented a linear response starting at

3.75 9 10-4 and 2.25 9 10-4 mol/L AMOX, cationic

slopes of 51.01 ± 16.33 and 45.86 ± 10.97 mV/decade and

detection limits of 2.30 9 10-4, 1.90 9 10-4 mol/L,

respectively. The MAA sensor with the same additive dis-

played worse response than without additive, presenting a

linear behavior starting at 2.82 9 10-4 mol/L, a cationic

slope of 38.91 ± 12.98 mV/decade and detection limit

1.85 9 10-4 mol/L. Comparing the results obtained for the

corresponding sensor with or without additive, a significant

improvement in terms of slope was observed for VPY sen-

sors, but the value of lower limit of linear range increased.

The anionic additive did not improve the behavior of the

sensor in terms of slope. The performance of sensor with

monomer AAMPSO improved in the presence of both

additives in terms of slope, detection limit and even in lin-

earity. So, comparing the responses of the sensors without

cationic or anionic additive, it seemed to show that the only

responsible for this is the additive. The behavior of the sensor

MAA became worse with the addition of both cationic and

anionic additive in terms of slope, lower limit of linear range

and even the detection limit.

Considering the previous observations, the selective

sensor based on MAA combined the best analytical per-

formance, showing the best slope and limit of detection.

Effect of amoxicillin degradation products

The experimental determinations were made in pH 4–5.

In acid medium, AMOX is positively charged in its amine

function but its degradation may occur, opening the four-

membered b-lactam ring and yielding the product amoxi-

cillin penicilloic acid. Assuming this compound as the

major degradation product of AMOX, it may interfere with

the response of the ISE by means of its amine group

(positively charged in acidic media) and due to structure

similarities with the main analyte. This was not observed

when repeated calibrations were made with the same

AMOX standard solution for two days. Thus, either

amoxicillin penicilloic acid does not affect the response of

the potentiometric sensor or it displays the same sensitivity

as AMOX itself. Considering that the proposed sensor is

used for screening AMOX in fish samples, if this last

condition occurs, a positive error is generated and no

serious risk posed to human safety.

Further degradation of amoxicillin penicilloic acid is the

formation of a new, stable, six-membered ring giving

diketopiperazine amoxicillin in low amounts. This com-

pound does not have the amino group (responsible for the

potential difference across the membrane), and thus this

degradation product does not interfere in the AMOX

detection.

Response time and lifetime

The time required to achieve a steady potential response

(±3 mV) using the proposed sensors in 1.96 9 10-4 to

7.41 9 10-4 mol/L AMOX solutions with a rapid tenfold

increase in concentration was \20 s. After the replicate

calibrations of each sensor, low potential drift, long-term

stability and negligible change in the response was

observed. The sensors were stored and conditioned in

-6 -5,5 -5 -4,5 -4 -3,5 -3 -2,5 -2

log[AMOX]

I II III IV

V VI VI VIII

IX X XI XII

40mV

Fig. 3 Potentiometric response of AMOX PVC membrane sensors

under static mode of operation in 0.01 mol/L Hepes buffer, pH 5



10-3 mol/L AMOX solution. With all sensors examined,

the detection limits, response times, linear ranges and

calibration slopes were reproducible of their original values

over a period of at least 4 weeks.

Effect of pH

The two dissociate constants (pKa) of AMOX are 2.4 and

7.3, respectively [60]. The significant effect of pH occurred

in the range of 3.0–6.0 as shown in Fig. 4. This result was

most probably due to the presence of AMOX in amphiprotic

form. The wider linear ranges with lower detection limits

were observed at pH 5. Thus, all subsequent studies were

carried at this pH, adjusted by a 0.01 mol/L Hepes buffer

solution.

Sensor selectivity

One of the most important potentiometric features in ana-

lytical application is the chemical selectivity of a sensor.

One component of the selective membrane that exerts great

influence upon this property is the electroactive material, as

pH4pH3

pH5 pH6
log[AMOX]

I II III IV

V VI VI VIII

IX X XI XII

60mV

I II III IV

V VI VI VIII

IX X XI XII
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log[AMOX]
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Fig. 4 Influence of pH in sensors response



interference in terms of selectivity. The sensor MIP with

monomer VPY but with TOP additive showed a different

behavior, sacarose was the compound with lower and cys-

teine with more interference in terms of selectivity, in the

determination of AMOX concentration.

The selectivity order for ISE I, sensor based on MAA

sensing materials was DP � Cys � Ct? [ SAC [ Fru [
Glu, for ISE II the corresponding sensor but contained NIP

particles, sensor II, was Ct?�DP � Fru � Sac [ Glu �
Cys. The behavior of ISE III and IV with both MAA

monomer and TpClPB and TOP additive displayed the fol-

lowing order of log KPOT: DP � Ct? � Cys [ Fru �
Sac [ Glu and Cys � Sa & DP � Glu [ Fru [ Ct?,

respectively. The selectivity order for ISE V, sensor based on

AAMPSO sensing materials was DP � Ct? � Sac [
Glu [ Fru � Cys, and the corresponding NIP (ISE VI)

present the following order Cys [ DP [ Ct? [ Sac �
Glu � Fru. The ISE VII and VIII with the monomer

AAMPSO added of TpClPB and TOP additive present

the log KPOT sequences of Ct? [ DP � Cys [ Sac [
Fru [ Glu and DP � Ct? � Cys [ Glu [ Sac ‘‘Fru,

respectively.

The ISE IX prepared with sensor based on VPY

sensing materials presented log KPOT order of DP �
Ct? [ Cys � Fru & Sac & Glu to the same sensor
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-7

-6

-5

-4

-3

-2

-1

0

1

2

Dopamine

X   XI   XII  IX  

Glucose

Creatinine

Frutose

Cysteine

Sacarose

I  

lo
g 

(K
P

O
T
)

II  III  IV   V  VI  VII   VIII  
Fig. 5 Potentiometric

selectivity coefficients (log

KPOT) by separation solutions

method, of AMOX membrane-

based sensors, in 0.01 mol/L

Hepes buffer, pH 5

the mechanism of selectivity is mainly governed by ste-

reospecific and electrostatic aspects. Thus, a different 
behavior is expected for each sensor.

Potentiometric selectivity coefficients were assessed for 
this purpose by the separate solution method (SSM) and 
used to compare selectivity properties of AMOX sensors. 
Log KPOT values were plotted in Fig. 5 and indicated the 
degree of preferential interaction for AMOX over different 
organic and inorganic species, common in biological and 
food samples. The former group included dopamine (DP), 
used in aquaculture, sacarose (Sac), frutose (Fru), glucose 
(Glu), cysteine (Cys), and creatinine (Ct?).

In general, all the sensors showed a different behavior in 
terms of log KPOT. ISE based on MAA sensing materials and 
in the presence of anionic additive showed that the com-

pound dopamine had the biggest interference in terms of 
selectivity and glucose the lower. The sensor MIP with the 
monomer MAA and TOP additive, as well as the corre-

sponding NIP, showed that the compound cysteine is the one 
that had bigger interference in AMOX determination and the 
creatinine had lower influence on it. The sensor based on 
AAMPSO showed a different behavior for all MIPs and NIP. 
Comparatively, the sensor MIP with monomer VPY only 
and in the presence of anionic additive as well as NIP showed 
that the compound glucose had lower and dopamine more



added of TpClPB and TOP their log KPOT sequences were

DP � Ct? � Cys � Sac & Fru [ Glu and Cys �
DP � Glu [ Ct? [ Fru & Sac. The ISE X contained

NIP particles in the sensing material and with the same

monomer presents the following log Kpot sequence

DP � Cys � Ct? � Fru & Sac [ Glu.

Generally, the addition of TpClPB decreased the selec-

tivity of the membranes when compared to the TOP

additive, the later acting probably as a kind of cationic

excluder. Sensors based on MIP AAMPSO and MIP/MAA

added of TOP additive provided the lower log KPOT.

Compounds with the amine group seemed to interfere more

than others without that group, but only in some ISEs.

Although these compounds of positively charged nitrogen

atoms presented more similarities to the chemical structure

of the main ion, their logarithm selectivity coefficients

were mostly below -1. This suggested small interference

in these ISEs from parent compounds of positively charged

nitrogen atoms, being the binding to AMOX the prevailing

process. In general, negligible interference was observed in

some AMOX-selective electrodes, enabling their applica-

tion in the analysis of fish.

FTIR

Selectivity of imprinted polymers is ensured by the for-

mation of stable complexes between templates and their

functional monomers in the reaction mixture as well as

their preservation in the resulting polymers. However,

energies of covalent binding are often too high for fast and

reversible binding. Electrostatic interaction with template

molecules should be suitable for potentiometric transduc-

ers. As the best monomer was MAA, FTIR analysis was

made just for it and the template molecule, AMOX. MAA

monomers establish hydrogen bonds with template mole-

cules. FTIR analysis is used to confirm the similarities

between produced particles of MIP and NIP. As we can see

in Fig. 6, the peaks that originated strong absorption bands

around 1,100 cm-1 indicated the ester function from the

cross-linker. The strong absorbance at 1,600 cm-1 was due

Fig. 6 FTIR spectra of AMOX and MIP and NIP polymers of MAA (average of 32 scans from 525 to 4,000 cm-1, with background correction,

and room temperature/humidity control)



the chromatographic methods that are used for routine

purposes.

The main goal of this new sensor is to be used as a

screening method; however, its detection limit is still

higher than desire. One direction to solve this dilemma

could be the use of pre-concentration procedures such as

solid-phase extraction (SPE) to increase the concentration

levels of the analyte in the analyzed sample. Another

alternative is the use of the same membranes applied over

miniaturized devices.
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