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ABSTRACT  

 
 

This work proposes different kind of solid-contact graphite-based electrodes for the selective determination   of sulphonamides (SPHs) in pharmaceuticals, 

biological fluids and aquaculture waters. Sulfadiazine (SDZ) and sulfamethoxazole (SMX) were selected for this purpose for being the most representative 

compounds      of this group. The template molecules were imprinted in sol–gel (ISG) and the resulting material was used as detecting element. This was made 

by employing it as either a sensing layer or an ionophore of PVC-based mem- branes and subsequent potentiometric transduction, a strategy never reported 

before. The corresponding non- imprinted sol–gel (NISG) membranes were used as blank. The effect of plasticizer and kind/charge of ionic lipo- philic additive was 

also studied. 

The best performance in terms of slope, linearity ranges and signal reproducibility and repeatability was achieved by PVC membranes including a high 

dielectric constant plasticizer and 15 mg of ISG particles.  The 

corresponding average slope was −51.4 and −52.4 mV/decade, linear responses were 9.0 × 10−6  and 

1.7 × 10−5 M,  and  limits of  detection were 0.74 and 1.3 μg/mL for  SDZ  and for  SMX,      respectively.  Good 

selectivity with log Kpotb−0.3 was observed for carbonate, chloride, fluoride, hydrogenocarbonate, nitrate, nitrite, phosphate, cyanide, sulfate, borate, 

persulphate, citrate, tartrate, salicylate, tetracycline, ciprofloxacin, sulphamerazine, sulphatiazole, dopamine, glucose, galactose, cysteine and creatinine. The 

best sensors were successfully applied to the analysis of real samples with relative errors ranging from −6.8 to +3.7%. 
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1. Introduction 

 
Sulphonamide (SPH) drugs were the first effective chemothera- 

peutic agents employed for preventing bacteria from synthesizing 

folic acid, an essential chemical to their growth and are among the 

most used antibiotics in aquaculture activities [1]. Their similarity 

with the structure of p-aminobenzoic acid (PABA, a key ingredient 

in bacterial synthesis of folic acid), makes bacteria to mistakenly con- 

vert the drug instead of PABA into folic acid, thus inhibiting the nor- 

mal growth of the microorganism. 

Due to the development of resistance in formerly susceptible mi- 

croorganisms, only a few sulpha drugs are used today, among which 

sulfadiazine (SDZ) and sulfamethoxazole (SMX) (Fig. 1). SDZ is used 

to treat toxoplasmosis as well as to prevent certain types of meningo- 

coccal meningitis [2]. SMX has been used successfully for the treat- 

ment of bacterial infections, including those of the respiratory   and 

 

 
urinary tract, as well as in the treatment of opportunistic infections 

in transplantation and for AIDS related complications [3]. They have 

been employed also as an antimicrobial in aquaculture environment, 

posing serious risks of food and environmental contamination [2], 

and subsequent drug resistance episodes [4]. 

Most methods for SPH determination in pharmaceutical samples 

require capillary electrophoresis with UV [5] or electrochemical de- 

tection [6], and optical [7–9] and electrochemical methods [10–12]. 

Other methods for SPH determination are meant for the analysis of 

food or feeding stuffs [13–15], and biological fluids [16]. Few methods 

have been devoted to environmental samples [17–20], and these con- 

cern complex and high cost pre-sampling procedures, unsuitable for 

in situ or for routine control of waters such as those in the fish tanks. 

Ion-selective electrodes (ISEs) could be an alternative to the previous 

methods, because they offer high precision and rapidity, low cost of 

analysis, and enhanced selectivity and sensitivity over a wide range of 

concentrations [21,22]. The binding between the ionophore and the tar- 

get ion is the molecular-level phenomenon, sensed by an ISE [23]. There- 

fore, the ISE selectivity towards several ions is regarded to derive from 

the difference in the binding strengths between the selected ionophore, 

to be used in the sensor, and the different ions. 
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selective electrodes were prepared in conventional configuration, with 

no internal reference solution and an epoxy–graphite solid contact [36]. 

 
2.2. Reagents and solutions 

 

 
 
 
 

 
Fig. 1. Binding isotherm (A) and Scatchard plot (B) for ISG particles. Q is the amount of 

ISG bound to 15.0 mg of polymer; t = 25 °C; V = 10.00 mL; binding time: 20 h. 

 
The ionophore or the ion carrier is thus a vital component in the 

selective membrane [23]. Ion exchangers and neutral macrocyclic 

compounds have been employed with success for this purpose over 

the past decades. However, the design of new sensing materials that 

are complementary to the size and charge of a particular ion may 

lead to very selective interactions [24–26]. This could be done by im- 

printing the target analyte (SDZ and SMX) on a solid surface [27,28]. 

Molecular imprinting (MI) allows the preparation of synthetic 

polymers with specific binding sites for a target molecule. This can 

be achieved if the target is present during the polymerization process, 

thus acting as a molecular template [29]. The template molecule is re- 

moved without disturbing the geometry of the solid matrix and the 

molecularly-imprinted polymer (MIP) keeps the ability to rebind it. 

Template rebind produces electrical, optical or mass changes in the 

nanostructured sensor, thus enabling its detection [30]. Essentially, 

there are two main routes to produce MIP structures: polymerization 

of vinyl monomers carrying different chemical functions or sol–gel 

technology, a useful method to prepare glass-like or ceramic materials 

through the hydrolysis and condensation of suitable metal alkoxides 

[31]. 

The sol–gel process can be described as the construction of an 

oxide network by progressive polycondensation reactions of molecu- 

lar precursors in a liquid medium. This technique is currently gaining 

importance [32] because it is a rather convenient and simple way to 

incorporate heat sensitive compounds in porous ceramic materials 

[33]. It also permits designing new materials with tailor-made pore 

sizes and shapes for specific analyte recognition. Inorganic materials 

prepared by a sol–gel process have been implemented into a variety 

of technologies, including nonlinear optical devices, luminescent 

solar concentrators, and chemical sensors. Still, the application of 

imprinted sol–gel materials to the production of potentiometryic sen- 

sors is in its infancy [34,35]. 

Thus, this work proposes the construction of SDZ and SMX selective 

electrodes based on ISG material. The ISG is also ground and used as 

electroactive material on PVC SDZ and SMX selective membranes. 

Non-imprinted sol–gel (NISG) materials were used as a blank control 

of the imprinting process. The sensors were evaluated in steady-state 

conditions and applied to the analysis of drugs, water and biological 

samples. 

 

2. Experimental 

 
2.1. Apparatus and electrodes 

 
All potential measurements were made by a Crison μpH 2002 deci- 

milivoltammeter, at room temperature, and under constant stirring, 

by means of a Crison, micro ST 2038. The output signal in steady state 

evaluations was transferred to a commutation unit and reconnected 

to one of six ways out, enabling the simultaneous reading of six ISEs. 

The assembly of the potentiometric cell was as follows: conductive 

graphite | SDZ selective membrane | buffered sample solution (HEPES, 

1×10−3 M, pH 5.0) || electrolyte solution, KCl | AgCl(s) | Ag. The reference 

electrode was an Orion Ag/AgCl double-junction (Orion 90-02-00). The 

All chemicals were of analytical grade and de-ionized water (con- 

ductivity b 0.1 μS cm−1) was employed. SDZ, SMX, p-tert-octylphenol 

(TOP), tetraoctylammonium bromide (TOABr), tetraphenylborate 

(TPB), o-nitrophenyloctyl ether (oNPOE), bis(2-ethylhexyl)sebacate 

(bEHS), dibutyl phthalate (DBP), poly (vinyl chloride) (PVC) of high 

molecular weight, 3-aminopropyltriethoxysilane (APTES), diphenyl- 

dimethoxysilan (DPTS), tetraethyl orthosilicate (TEOS) were pur- 

chased from Fluka. Methanol (MeOH) and tetrahydrofuran (THF) 

were obtained from Riedel-deHäen. Buffer solutions were 0.001 M 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). Inter- 

ference of other chemicals was evaluated for 1.2 × 10−4, 5.0 × 10−4, 

and 1.0 × 10−3 M solutions prepared in buffer. 

 
2.3. Synthesis of host-tailored sol–gel material and preparation of ISG 

membrane electrode 

 
The water/alkoxide ratio was set to 3, ensuring a transparent 

smooth surface without cracks and with suitable porosity for the 

intended purposes (higher ratios decrease the thickness, shrinkage, 

and pore volume [37] of the matrix). ISG polymers were obtained  

by dissolving 12.5 mg of each SPH in 1.5 mL of APTES and 1.5 mL of 

DPTS, acting as functional monomers, in 4.0 mL of methanol. This 

mixture was stirred for 30 min at room temperature. Then TEOS 

(0.5 mL), the reticulating agent, was added, followed by hydrochloric 

acid (0.1 M, 0.3 mL) and desionized water (2.5 mL) to produce the 

alkoxysilan hydrolysis. The sol was stirred for a further 7 h until a vis- 

cous solution was achieved. The conductive graphite surface of the 

electrodes was immersed into this solution for 7 s. The membranes 

obtained were dried at room temperature for 2 days. NISG sensor 

was prepared in a similar way, by excluding the template from the 

procedure. 

 
2.4. Preparation of the membrane electrodes 

 
Sol–gel membranes were obtained by coating a clean graphite 

support [25] with 200 μL of the viscous ISG solution. This solution 

was allowed to dry at room temperature. NISG electrodes were pre- 

pared similarly and acted as control of the imprinting effect. 

PVC membranes were prepared by including ISG particles inside 

the PVC matrix. For this purpose, the solid ISG material was grounded 

and sieved to particle sizes ranging 50−150 μm. SPH was removed 

from the ISG particles by washing them several times in water (the 

absence of SPH was confirmed by controlling the absorbance of the 

washout solution at 260 nm; the particles were repeatedly washed 

until SPH was no longer detected). The polymer was dried after at 

60 °C under vacuum until constant weight. Variable amounts of ISG 

particles for SDZ were then mixed with 350 mg of plasticizer 

(oNPOE, bEHS or DPB) (Table 1). Some membranes were also added 

of TOABr, TOP and TPB, acting as additive. The sensor solution was 

added to 210 mg of PVC previously dissolved in 5.0 mL THF. These 

membranes were applied over graphite conductive supports. Mem- 

branes were let dry for 24 h. NISG PVC membranes were prepared 

similarly as control. SMX selective membranes were prepared in paral- 

lel for some compositions, following similar procedures. 

 
2.5. Potentiometric  procedures 

 
All potentiometric measurements were carried out at room tem- 

perature. Emf values of each electrode were measured in solutions 

of fixed pH and ionic strength. Increasing concentration levels of 

SPH   were   obtained   by   transferring   0.02–10.0 mL   aliquots of 

 
SDZ SMX 



 

 

Table 1 

Composition SDZ selective electrodes of imprinted sol–gel and membrane sensors, main analytical features in 1×10
− 3 

mol L
− 1 

HEPES buffer, pH 5.0. 

Characteristic   ISE I ISE II ISE III ISE IV ISE V ISE VI ISE VII ISE VIII ISE IX ISE X ISE XI ISE XII ISE XIII 

Sensing 

material 

(SM) 

Amount of 

SM, mg 

MIP/ISG MIP/ISG NIP/ISG MIP/PVC MIP/PVC NIP/PVC MIP/PVC MIP/PVC MIP/PVC MIP/PVC MIP/PVC MIP/PVC MIP/PVC 

 
 

– – – 15.0 15.0 15.0 15.0 15.0 15.0 15.0 5.0 10.0 30.0 

Additive – TOP – – TOP – – – TOABr TPB – – – 

Plasticizer oNPOE oNPOE oNPOE oNPOE oNPOE oNPOE bEHS DPB oNPOE oNPOE oNPOE oNPOE oNPOE 

Slope, 

mV/decade 

−46.3 

± 1.5 

− 51.8 

± 1.5 

−44.2 

± 3.2 

− 51.4 

± 1.8 

−43.5 

± 1.1 

−32.3 

± 2.0 

−50.9 

± 1.6 

−43.3 

± 0.0 

−60.2 

± 0.3 

−12.0 

± 1.9 

−41.6 

± 1.3 

−39.6 

± 0.1 

−42.6 

± 3.9 

R
2 

(n= 3) 0.993 0.992 0.996 0.992 0.992 0.995 0.994 0.992 0.992 0.995 0.998 0.995 0.991 

Cvw (%) 6.1 7.3 3.2 8.0 0.8 1.0 5.3 0.0 1.8 9.1 4.4 4.4 6.4 

LOD, μg/mL 5.6 6.5 14 0.74 4.0 6.5 17 11 0.87 4.2 2.4 1.2 3.1 

LOD, mol/L 2.0 × 10
− 5    

2.4 × 10
− 5    

4.9 × 10
− 5    

2.7 × 10
− 6    

1.5 × 10
− 5    

2.4 × 10
− 5    

6.3 × 10
− 5    

4.0 × 10
− 5    

3.2 × 10
− 6    

1.5 × 10
− 5    

8.9 × 10
− 6    

4.5 × 10
− 6    

1.1 × 10
− 5

 

LLLR, μg/mL 19 9.0 14 2.5 9.0 11 4.4 25 4.1 21 3.3 4.4 6.4 

LLLR, mol/L 7.0 × 10
− 5   

3.3 × 10
− 5   

5.0 × 10
− 5   

9.0 × 10
− 6   

3.3 × 10
− 5   

4.0 × 10
− 5   

1.6 × 10
− 5   

9.0 × 10
− 5   

1.5 × 10
− 5   

7.6 × 10
− 5   

1.2 × 10
− 5   

1.6 × 10
− 5   

2.4 × 10
− 5

 

LOD: Limit of Detection, LLLR: Lower Limit of Linear range; R
2
: Squared correlation coefficient; SD: Standard deviation; Cvw: Reproducibility. 

 
1.0 × 10−3 M SPH aqueous solutions to a 100 mL beaker  containing 

50.0 mL of 1.0 × 10−3 M of buffer. Potential readings were recorded 

after stabilization to ±0.2 mV and emf was plotted as a function of 

logarithm SPH concentration. Calibration graphs were used for subse- 

quent determination of unknown SPH concentrations. 

 
2.6. Binding affinity assays between template/host molecules 

 
Binding experiments were carried out by placing 15.0 mg of ISG 

washed particles in contact with 8.0 mL of SPH solution with varying 

concentrations ranging 0.4−4 mM. The mixtures were shacked for 

12 h at room temperature and the solid phase separated by centrifu- 

gation (3000 rpm, 10 min). The concentration of free SPH in the su- 

pernatant was also detected by  UV spectrophotometry at   260 nm. 

 

environment in the sol–gel layer under sufficiently acidic media. 

This feature may enhance the sensitivity to negatively charged com- 

pounds, such as SDZ or SMZ in aqueous media. The selectivity of 

this material to a specific compound was attributed by MI technology. 

This was made by preparing the sol–gel in the presence of the tem- 

plate and removing it afterwards by suitable washout procedures. 

 
3.1. Rebinding properties of ISG particles 

 
Binding experiments were carried out by incubating fixed 

amounts of ISG particles with different concentrations of template 

until equilibrium was reached. The resulting binding capacity of ISG 

particles was calculated according to the following equation: 

The amount of SPH bound to the polymer was calculated by subtracting   

the concentration of free SPH from the initial SPH concentration. The 

data obtained was used for Scatchard analysis [38]. 

  

 
2.7. Determination of SDZ and SMX in serum, aquaculture water and 

pharmaceuticals 

 
Potentiometric analysis was carried out on oral dosage forms of 

pharmaceutical preparations, commercially available as Broncodia- 

zina® (Vitoria, Portugal), with a labeled amount of 3.6 g SDZ per 

100 mL. This suspension was dispersed in water by sonication and di- 

luted in buffer to a concentration within the linear range. 

For the analysis of aquaculture water or biological fluids, an 

amount of 250 μl of water or serum were placed in a 25 mL volumetric 

flask and diluted to final volume with 1.0 × 10−3 M HEPES (pH 5.0). The 

direct potential method was applied to determine SDZ and/or SMX in all 

samples. 

 

3. Results and discussions 

 
In the sol–gel process, a sol is first formed by mixing a liquid alkoxide 

precursor, water, a co-solvent (usually ethanol or methanol) and a cata- 

lyst (acid or base) at room temperature [39]. Through continuous mono- 

mer hydrolysis and condensation reactions, a porous gel network is thus 

obtained. Gel aging and drying can be conducted under controlled con- 

ditions in order to obtain dense solid matrices. The sol–gel route pro- 

vides a useful method to prepare glass-like or ceramic materials 

through the hydrolysis and condensation of suitable organically modi- 

fied precursors and permits the creation of an oxide network by pro- 

gressive polycondensation reactions of the molecular precursors in 

alcoholic medium. 

APTES was selected in this study to copolymerize with TEOS be- 

cause  an  amine  function  would  ensure  a  positive    electrostatic 

where Q is binding capacity of ISG (μmol/g), Ci the initial SPH concen- 

tration (μmol/mL), Cf the final SPH concentration (μmol/mL), Vs the 

volume of solution tested (mL), MISG the mass of dried ISG particles 

(mg). 

The binding capacities were plotted against the initial SPH concen- 

tration. The adsorption data showed that the binding capacity of par- 

ticles increased with the increasing of the initial concentration of SPH, 

reaching saturation for higher concentrations. 

The binding data were further processed with Scatchard analysis, 

using the equation 

  

where Q was the binding capacity; Cfree the free analytical concentration 

in equilibrium (μM); Qmax the maximum apparent binding capacity; and 

KD the dissociation constant at binding site. The equilibrium dissociation 

constant was calculated from the slopes and the apparent maximum 

number of binding sites from the y-intercepts in the linear plot of 

Q/Cfree versus Q. The Scatchard plots showed a tendency to a linear be- 

havior, suggesting the existence of a single kind of binding site in ISG 

particles. The corresponding equilibrium dissociation constants Kd for 

dry polymers were 1319 and 1410 μM for SDZ and SMX, respectively. 

 
3.2. Physical features of the polymer 

 
SEM analysis evidenced the formation of thick films without 

cracks, and with porous and rough structure. Images suggested that 

the thickness of the film was 846.1 nm and the diameter of the pore 

ranged approximately 27 and 52 nm (Fig. 2). The swelling of the 

membrane was about 3% in mass gain when in contact with   water 



 

 

 
 

Fig. 2. SEM images of ISG polymer. 

 

 

before calibration. FTIR spectra were made for grounded sol–gel ma- 

trix by an ATR accessory. The spectra displayed intense absorption 

band of ether bonds at about 1023 cm−1 (Fig.  3). 

 
3.3. Sensors performance 

 
The analytical data obtained for all ISEs is indicated in Tables 1 and 2. 

The reported limits of detection and linear behavior displayed relative 

standard deviations below 10%. 

First, sol–gel membranes  were  prepared  with  imprinted  (ISE  I) 

or non-imprinted (ISE III) matrices. The ISG sensors displayed linear re- 

sponses  after  7.0 ×10−5  and  4.0 ×10−5 M,  average  anionic  slopes   of 

−46.3 and −49.3 mV/decade and detection limit of 5.6 and 3.1 μg/mL, re- 

spectively. The NISG sensors displayed a similar behavior, as may be seen 

in Fig. 4. This pointed out that the analyte was recognized by general 

electrostatic interactions with the silica groups of the sol–gel  matrix. 

The possibility  of improving  the behavior by adding an additive   was 

tested also by preparing sol–gel membranes including TOP (ISE II). 

This additive has an acid–base character, being mostly anionic or 

neutral. Under acidic conditions the molecule is essentially neutral 

with strong positive polarization on the hydrogen atom. This additive 

improved the analytical performance of the sensors in terms  of  

slope and detection limit (Fig. 4A). Thus, it seems that the analyte 

was attracted to the membrane by hydrogen bonds [40], favoring  

the interaction of the anionic SPH with the hydrophobic membrane 

interface. 

Similar electrodes to ISEs I to III were prepared by including the 

same materials in a PVC matrix (ISEs IV to VI), in order to check the 

influence of the membrane material on the performance of the sen- 

sors. This was done by doping PVC membranes with about 5% of the 

same ISG material that was finely pulverized. MIP/PVC ISEs showed 

some improvements in terms of limit of detection, decreasing   from 

5.6 to 0.74 μg/mL for SDZ (Table 1) and 3.1 to 1.3 μg/mL for SMX 

(Table 2). The imprinting effect was only evident here, with PVC 

based membranes. NISG PVC membranes displayed lower slopes 

than the corresponding ISG membranes; when a sol–gel layer   was 

 

 

 

 
 

Fig. 3. FTIR spectra of the sol–gel matrix. 
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Table 2 

Composition SMX selective electrodes of imprinted sol–gel and membrane sensors, main analytical features in 1 × 10
− 3 

mol/L HEPES buffer, pH 5.0. 
 

Characteristic ISE I ISE II ISE III ISE IV ISE VI ISE VII ISE IX 

Sensing material (SM) MIP/ISG MIP/ISG NIP/ISG MIP/PVC NIP/PVC MIP/PVC MIP/PVC 

Amount of SM, mg – – – 15.0 15.0 15.0 15.0 

Additive – TOP – –  – TOABr 

Plasticizer oNPOE oNPOE oNPOE oNPOE oNPOE bEHS oNPOE 

Slope, mV/decade −49.3 ± 0.9 −51.1 ± 0.2 −41.9 ± 0.4 − 52.4 ± 0.6 −36.1 ± 1.1 −51.9 ± 0.3 −59.5 ± 1.4 

R
2 

(n= 3) 0.993 0.996 0.999 0.996 0,995 0.996 0.997 

Cvw (%) 1.8 0.32 0.91 1.2 3.1 0.61 2.4 

LOD, μg/mL 3.1 2.6 3.9 1.3 3.8 1.7 1.5 

LOD, mol/L 1.2 × 10
− 5

 1.0 × 10
− 5

 1.6 × 10
− 5

 5.1 × 10
− 6

 1.5 × 10
− 5

 6.7 × 10
− 6

 6.1 × 10
− 6

 

LLLR, μg/mL 10 8.4 13 4.3 13 5.1 5.1 

LLLR, mol/L 4.0 × 10
− 5

 3.3 × 10
− 5

 5.0 × 10
− 5

 1.7 × 10
− 5

 5.0 × 10
− 5

 2.0 × 10
− 5

 2.0 × 10
− 5

 

 

 
used no significant differences were observed between imprinted and 

non-imprinted versions. The TOP additive was not found relevant in 

the present case. 

The use of PVC implicated the presence of a plasticizer material, 

for which different kinds of plasticizers were tested: oNFOE, bEHS 

and DBP, corresponding to ISEs IV, VII and VIII. This test was only con- 

ducted for SDZ and suggested that higher dielectric constant mediating 

solvents favored the potentiometric response produced by the selective 

membrane. oNFOE was found the best plasticizer (Fig. 4B), with the cor- 

responding electrodes displaying the lower limits of detection. 

The effect of additive in PVC-based membranes was also tested 

(Fig. 4C) and, as in the previous studies, this test was only conducted 

for SDZ membranes. TOP, TOABr and TPB were used for this purpose, 

corresponding to ISEs V, IX and X. Typically, the addition of cationic 

compounds of lipophilic nature to potentiometric sensors reduces 

the anionic interference and lowers the electrical resistance of the 

membranes [41]. TOABr was selected for this purpose (Table 1). The 

corresponding sensors showed Nernstian responses but the limit of 

detection was higher than that obtained for the equivalent membrane 

without additive. When TOP was used as additive instead, no im- 

provements were observed. This compound is not ionized  within 

the membrane but is able to establish hydrogen-bonds to the target 

analyte. The benefits provided by a positively charged additive were 

confirmed by using an additive of opposite charge in the membrane. 

The observed analytical response in this case was hindered, which 

was most probably a result of the anionic exclusion role played by 

the membrane. 

 
15 mg was required to achieve higher slopes. Lower and higher values 

displayed narrower linear ranges and higher limits of detection. 

 
3.4. Response time and lifetime 

 
The time required to achieve a steady potential response (±3 mV) 

using the proposed sensors in 10− 6 to 10−4 M SDZ or SMX solutions 

with a rapid 10-fold increase in concentration was b 15 s. Replicate cali- 

brations for each sensor indicated low potential drift, long-term stability 

and negligible change in the response of the sensors. The sensors were 

stored and conditioned in 10−6 M SDZ or SMX solution of pH 5.0. 

With all sensors examined, the detection limits, response times, linear 

ranges and calibration slopes were reproducible within ±3% of their 

original values over a period of at least 1 week for ISG sensing surface 

or at least 2 months for PVC membranes. 

 
3.5. Sensor selectivity 

 
Selectivity tests were conducted for ISEs I, III and IV, with the pur- 

pose of observing the effect of the sol–gel matrix and the imprint ef- 

fect. ISE IX was also included as it was the best electrode found in this 

work. Selectivity was assessed by means of potentiometric selectivity 

coefficients (KPOT), calculated by the mixed solution method (MSM). 

The logarithmic values of log KPOT were indicated in Fig. 4. These were 

calculated by means of Eq. (3), 

The amount of ISG particles used as ionophore in the PVC mem- 

branes was also tested from 5 to 30 mg. The results pointed out that 

 

 

 

 
 

Fig. 4. Calibration plots of sol–gel and PVC membranes (A) with different plasticizers (B) and additives (C). 

A 
ISE I SDZ (MIP) 

ISE II SDZ (MIP+Additive) 

ISE III SDZ (NIP) 

ISE I SMX (MIP) 

ISE II SMX (MIP + Additive) 

ISE III SMX (NIP) 

B 
ISE IV SDZ (oNPOE) 

ISE V SDZ (bEHS) 

ISE VI SDZ (DBP) 

ISE IV SMX (oNPOE) 

ISE VI SMX (bEHS) 

C 

ISE IV SDZ (TOABr) 

ISE VII SDZ (TOP) 

ISE VIII SDZ (TPB) 

ISE IX SMX (TOABr) 

50 mV 50 mV 50 mV 

decade decade decade 

-5,5 -5,0 -4,5 -4,0 -3,5 -3,0 -2,5   -5,5 -5,0 -4,5 -4,0 -3,5 -3,0 -2,5  -5,5 -5,0 -4,5 -4,0 -3,5 -3,0 -2,5 

log [SPH], mol/L log [SPH], mol/L log [SPH], mol/L 



 

,J 

 

where aJ is 5.0×10−3 M of interfering species, Z the ionic charges of 

main and interfering ions and aSPH the intersection of the extrapolat- 

ed linear portions of the plot emf versus the logarithm of SPH concen- 

tration. In general, the values of log KPOT showed the degree of 

preferential interaction for SPH over different ionic species. Com- 

pounds that are commonly present in pharmaceuticals, biological or 

water samples were considered for this purpose. 

A wide range of inorganic anions was tested, including carbonate, 

chloride, fluoride, hydrogencarbonate, nitrate, nitrite, phosphate, cya- 

nide, sulfate, borate, persulphate, citrate, tartrate, and salicylate. 

These included species whose control in water is obliged and that 

may be present in biological fluids and pharmaceuticals. The obtained 

values were indicated in Table 3. In general, the results showed neg- 

ligible interference in both SDZ and SMX selective electrodes, with log 

KPOT values lying within a narrow range: −0.20 to −3.9 and −0.29 to 

−3.8 for SDZ and SMX selective electrodes, respectively. 

Several organic compounds were also selected, such as the antibiotics 

tetracycline, ciprofloxacin, others SPHs, namely sulphamerazine and 

sulphatiazole, dopamine, glucose, galactose, cysteine and creatinine. 

The selectivity of the ISEs against these species were evaluated only 

for SDZ because this was the only drug marketed alone (without tri- 

methoprim) for human use. Negligible interference was also observed 

for all electrodes. 

Overall, there was no evident difference between the observed be- 

haviors of ISG or PVC based membrane electrodes. 

 
 

3.6. Monitoring SDZ and SMX in serum, urine, drugs and aquaculture waters 

 
To assess the applicability of the proposed method to real samples, 

commercial drug (Broncodiazine® syrup, Vitoria, Portugal), serum 

and aquaculture waters were analyzed for SDZ and SMX contents. 

Only SDZ was tested for pharmaceuticals and biological samples, 

given that the use of SMX is not that common in this context or is 

not done alone. The real samples were spiked when no SPH was 

found. The analysis was carried out after calibration procedure. To as- 

sess the reliability of the results, each sample was analyzed in triplicate. 

The potentiometric results are given in Table 4. In general, the pro- 

posed sensors for SDZ and SMX operated suitably under laboratory 

conditions. The precision of the analysis of both SPHs were good  

and similar (Table 4). The relative standard deviations were always 

below 5%; for SDZ and SMX electrodes these results ranged from 0.6 

to 1.4% and from 0.2 to 3.9%. A satisfactory agreement was obtained 

between found and claimed amounts. The mean recovery of the 

amounts taken in the proposed method ranged from 99.7 to    103.7, 

93.2 to 94.8 and 97.4 to 105.6% for pharmaceuticals, serum samples 

and aquaculture waters, respectively. The corresponding relative er- 

rors varied from −0.3 to 3.7, −6.8 to −5.2 and 0.0 to 5.7%. 
The t-student test confirmed that there were no significant    dif- 

ferences between the means of claimed and potentiometric amounts 

of both SPHs (Table 4). The calculated t values (p) were 0.73 and 0.77 

for SDZ and SMZ. In both cases, p values were below the tabulated critical 

t (2.36 and 2.20, respectively) for a 95% confidence level, demonstrating 

that there are no significant differences between the claimed and the po- 

tentiometric amounts. 

 

4. Conclusions 

 
ISG technique was employed to produce SDZ and SMX host- 

tailored sensors for potentiometric transduction. The sol–gel 

imprinted layer was used first as sensory surface and compared 

later to PVC-based sensors carrying the same imprinted material as 

ionophore. The best performance was obtained by ISG particles dis- 

persed in PVC. A cationic additive offered some improvements in 

terms of analytical performance, although it was not essential to 

reach a near-Nernstian response. The sensors were found appropriate 

for a practical application to real samples. 

Advantages of these sensors include the simplicity in designing, 

low cost, quick response, reproducible and repeatable data,  low 

limit of detection and good selectivity. It also offers the possibility of 

high analytical trough output by adaptation to flow injection condi- 

tions. The proposed method is simple, cheap, precise, accurate and in- 

expensive regarding reagent consumption and equipment  involved. 

 

 
 

Table 3 

Average potentiometric selectivity coefficients of SDZ and SMX membrane sensors. 

 

Interfering KSPH−  
−POT 

 

 
 

3 

 
 

3 

3 

2 

4 

 
 

4 

species 
ISE I  ISE III  ISE IV  ISE IX  ISE I  ISE III  ISE IV  ISE IX  

 SDZ  SDZ  SDZ  SDZ  SMX  SMX  SMX  SMX  
CO2− 

−1.5 ± 0.16  −1.1 ± 0.065  −1.6 ± 0.067  −1.7 ± 0.044  −1.6 ± 0.059  −1.3 ± 0.032  −1.5 ± 0.071  −1.6 ± 0.034  
Cl

−
 −1.7 ± 0.078  −1.8 ± 0.024  −1.9 ± 0.045  −1.9 ± 0.077  −1.9 ± 0.022  −1.8 ± 0.054  −1.9 ± 0.063  −1.9 ± 0.046  

F− −1.5 ± 0.11  −1.5 ± 0.045  −1.7 ± 0.034  −1.7 ± 0.075  −1.7 ± 0.027  −1.6 ± 0.075  −1.8 ± 0.034  −1.9 ± 0.057  
HCO

−
 −1.6 ± 0.026  −1.3 ± 0.092  −1.7 ± 0.096  −1.7 ± 0.062  −1.8 ± 0.024  −1.7 ± 0.056  −1.7 ± 0.042  −1.7 ± 0.043  

NO
−

 − 0.95 ± 0.037  −0.85 ± 0.14  −1.3 ± 0.12  −1.4 ± 0.065  −1.3 ± 0.043  −1.2 ± 0.087  −1.4 ± 0.012  −1.6 ± 0.069  
NO

−
 − 1.02 ± 0.10  −0.99 ± 0.064  −1.4 ± 0.076  −1.5 ± 0.041  −1.5 ± 0.037  −1.3 ± 0.053  −1.4 ± 0.026  −1.8 ± 0.071  

PO3− −3.9 ± 0.025  −3.8 ± 0.083  −3.7 ± 0.046  −3.4 ± 0.091  −3.8 ± 0.012  −3.6 ± 0.013  −3.8 ± 0.069  −3.4 ± 0.039  
CN

−
 −1.2 ± 0.043  −1.3 ± 0.044  −1.2 ± 0.065  −1.2 ± 0.068  −1.3 ± 0.019  −1.2 ± 0.027  −1.0 ± 0.091  −1.2 ± 0.035  

SO2− − 0.51 ± 0.072  −3.3 ± 0.036  −3.2 ± 0.032  −3.5 ± 0.054  −3.2 ± 0.023  −3.4 ± 0.017  −3.5 ± 0.010  −3.4 ± 0.051  
Borate −2.9 ± 0.017  −3.0 ± 0.015  −2.9 ± 0.086  −3.0 ± 0.043  −3.0 ± 0.034  −3.1 ± 0.012  −2.9 ± 0.018  −3.0 ± 0.024  
Persulphate − 0.41 ± 0.95  −0.37 ± 0.098  −0.45 ± 0.12  −0.32 ± 0.10  −0.42 ± 0.11  −0.38 ± 0.058  −0.37 ± 0.011  −0.29 ± 0.022  
Citrate −2.8 ± 0.063  −2.6 ± 0.033  −2.9 ± 0.034  −2.5 ± 0.067  −2.2 ± 0.032  −2.7 ± 0.026  −2.5 ± 0.11  −2.7 ± 0.014  
Tartrate −2.7 ± 0.10  −2.5 ± 0.053  −2.4 ± 0.039  −2.7 ± 0.073  −2.5 ± 0.028  −2.7 ± 0.031  −2.5 ± 0.048  −2.5 ± 0.043  
Salicylate −1.7 ± 0.071  −1.9 ± 0.032  −1.7 ± 0.052  −1.7 ± 0.031  −1.7 ± 0.014  −1.7 ± 0.039  −1.9 ± 0.026  −1.6 ± 0.087  
Ciprofloxacin − 0.70 ± 0.025  −0.30 ± 0.023  −0.20 ± 0.026  −0.40 ± 0.013  –  –  –  –  
Creatinine −1.0 ± 0.063  −0.90 ± 0.041  −0.60 ± 0.057  −0.89 ± 0.022  –  –  –  –  
Cysteine −1.2 ± 0.032  −0.45 ± 0.049  −0.52 ± 0.085  −0.30 ± 0.037  –  –  –  –  
Dopamine −1.1 ± 0.044  −0.65 ± 0.078  −0.50 ± 0.091  −1.7 ± 0.093  –  –  –  –  
Galactose −1.0 ± 0.034  −0.90 ± 0.066  −0.30 ± 0.034  −1.5 ± 0.083  –  –  –  –  
Glucose −1.3 ± 0.012  −1.5 ± 0.071  −1.4 ± 0.043  −1.5 ± 0.042  –  –  –  –  
Sulphamerazine −1.1 ± 0.038  −1.5 ± 0.014  −0.70 ± 0.047  −0.50 ± 0.013  –  –  –  –  
Sulfathiazole − 0.50 ± 0.027  −0.81 ± 0.013  −0.50 ± 0.039  −0.53 ± 0.045  –  –  –  –  
Tetracycline − 0.90 ± 0.033  −0.90 ± 0.046  −0.58 ± 0.029  −0.30 ± 0.038  –  –  –  –  

 



 

 

Table 4 

Potentiometric determination of SDZ and SMX in commercial drugs, biological samples 

and aquaculture water. 

Sample Drug Concentration (μg/mL) Relative Recovery 
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The wastewaters generated by this experimental work are of small 

concern to the environment regarding its volume and composition. 
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