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Abstract 
Verification and testing are two of the most costly and time consuming steps during the development of safety 
critical systems. The advent of complex and sometimes partially unpredictable computing architectures such as 
multicore commercial-of-the-shelf platforms, together with the composable development approach adopted in 
multiple industrial domains such as avionics and automotive, rendered the exhaustive testing of all situations that 
could potentially be encountered by the system once deployed on the field nearly impossible. Run-time verification 
(RV) is a promising solution to help accelerate the development of safety critical applications whilst maintaining 
the high degree of reliability required by such systems. RV adds monitors in the application, which check at run-
time if the system is behaving according to predefined specifications. In case of deviations from the specifications 
during the runtime, safeguarding measures can be triggered in order to keep the system and its environment in a 
safe state, as well as potentially attempting to recover from the fault that caused the misbehaviour. Most of the 
state-of-the-art on RV essentially focused on the monitor generation, concentrating on the expressiveness of the 
specification language and its translation in correct-by-construction monitors. Few of them addressed the problem 
of designing an efficient and safe run-time monitoring (RM) architecture. Yet, RM is a key component for RV. The 
RM layer gathers information from the monitored application and transmits it to the monitors. Therefore, without 
an efficient and safe RM architecture, the whole RV system becomes useless, as its inputs and hence by 
extension its outputs cannot be trusted. In this paper, we discuss the design of a novel RM architecture suited to 
safety critical applications.  

 

© CISTER Research Center 
www.cister.isep.ipp.pt   

1 
 



A Novel Run-Time Monitoring Architecture for
Safe and Efficient Inline Monitoring

Geoffrey Nelissen, David Pereira, and Lúıs Miguel Pinho
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Abstract. Verification and testing are two of the most costly and time
consuming steps during the development of safety critical systems. The
advent of complex and sometimes partially unpredictable computing ar-
chitectures such as multicore commercial-of-the-shelf platforms, together
with the composable development approach adopted in multiple indus-
trial domains such as avionics and automotive, rendered the exhaustive
testing of all situations that could potentially be encountered by the
system once deployed on the field nearly impossible. Run-time verifica-
tion (RV) is a promising solution to help accelerate the development of
safety critical applications whilst maintaining the high degree of relia-
bility required by such systems. RV adds monitors in the application,
which check at run-time if the system is behaving according to prede-
fined specifications. In case of deviations from the specifications during
the runtime, safeguarding measures can be triggered in order to keep
the system and its environment in a safe state, as well as potentially at-
tempting to recover from the fault that caused the misbehaviour. Most of
the state-of-the-art on RV essentially focused on the monitor generation,
concentrating on the expressiveness of the specification language and its
translation in correct-by-construction monitors. Few of them addressed
the problem of designing an efficient and safe run-time monitoring (RM)
architecture. Yet, RM is a key component for RV. The RM layer gath-
ers information from the monitored application and transmits it to the
monitors. Therefore, without an efficient and safe RM architecture, the
whole RV system becomes useless, as its inputs and hence by extension
its outputs cannot be trusted. In this paper, we discuss the design of a
novel RM architecture suited to safety critical applications.

Keywords: Run-Time Monitoring, Run-Time Verification, Safety Critical Sys-
tems, Ada

1 Introduction

Run-time verification (RV) [7,16] entails adding pieces of code called monitors to
a running application. The monitors scrutinise the system behaviour and check
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if it respects associated specifications. The monitors can detect anomalies dur-
ing the execution of the application. That information may be logged and back
propagated to the system designer. It is therefore an efficient solution to detect
bugs and other deficiencies when a complete static verification of the system is
not possible. By keeping the monitors running in the system after its deploy-
ment, run-time verification can also be used as a tool to increase the safety and
reliability of systems during their operation, triggering counter-measures when
anomalies are detected and hence acting as a safety net around the monitored
application.

With the advent of more and more complex computing platforms (e.g., mul-
ticore processors, many-core accelerators, networks on chip, distributed sys-
tems interconnected with various communication networks) and the adoption
of new computing paradigms to exploit the power of those architectures, verify-
ing whether a system respects its functional (e.g., order of execution and validity
of results) and extra-functional (e.g., timing constraints) specifications became
a big challenge. Static verification (i.e., the formal proof that the system is cor-
rect) has proven limited either because of the state space explosion problem as
in the case of approaches based on model checking, or simply due to theoretical
limitations related to the expressivity and decidability of approaches based on
deductive verification. Furthermore, ensuring the correctness of extra-functional
properties before the system deployment is usually subject to a high degree of
pessimism, essentially because the data that must be manipulated (e.g., execu-
tion time, inter-arrival time or response time) are almost always available only
at run-time, and depend on specificities of the underlying hardware (e.g., com-
munication protocols on shared buses, replacement policies in caches, operation
ordering in execution pipelines), interactions with the external physical environ-
ment and interference caused by concurrent applications.

Testing and simulations are often presented as solutions to improve the con-
fidence in the final system. However, one can never ensure an exhaustive testing
of all the possible situations that may be encountered after deployment. There-
fore, successfully passing all the tests does not provide any guarantee that the
system is bug-free or that it will always respect all its requirements.

Furthermore, today’s practices in product development rely extensively on
distributed development. Multiple partners and subcontractors develop different
functionalities that are later integrated together to form the final product. As a
result, most of the components are black-boxes and none of the partners knows
exactly how they all have actually been implemented. Therefore, ensuring an
exhaustive testing and fully trusted verification of the system before its deploy-
ment becomes nearly impossible. Keeping monitors running together with the
applications in order to detect potential misbehaviours and trigger safe-guarding
measures should therefore be considered as a promising solution to accelerate
the product development cycle whilst maintaining the high safety requirements
associated to such systems.

Most of the state-of-the-art on run-time verification focuses on the design of
formal languages [3,15,18] for the specification of properties that must be verified
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at run-time. Those languages are then used to generate monitors in a correct-
by-construction manner. However, run-time verification cannot work without
appropriate mechanisms to actually monitor the system and extract meaningful
information that can then be used by the monitors to assert the respect of
the specifications. This basic infrastructure over which any run-time verification
framework is built has received much less attention from the research community.
Run-time monitoring is however a corner stone of an efficient and safe run-
time verification framework as it plays the interface between the monitors and
the monitored applications. Previous works have developed run-time monitoring
solutions as a part of full run-time verification frameworks. Most of them though,
put the accent on the specification language and the monitor generation process,
neglecting the implementation and run-time monitoring aspect. In this paper we
specifically focus on the run-time monitoring architecture and propose a new,
efficient and safe solution to integrate monitors with application code. The design
of the presented run-time monitoring framework is perfectly suited to safety
critical systems such as avionics, space, railway or automotive applications, as
well as any other embedded system.

Contribution. This paper introduces a novel reference architecture for inline
run-time monitoring. The presented solution has been designed in order to ful-
fil the requirements of safety critical systems. The architecture has been kept
simple so as to ease its implementation in various run-time environments. A
prototype, written in Ada, of this new reference architecture is presented and
experimental results show that the overhead caused by the instrumentation of
the code is constant w.r.t. the worst-case execution time of the tasks constituting
the monitored application.

Paper organisation. In Section 2, the requirements for the design of a reliable
and efficient run-time monitoring framework for safety critical systems are pre-
sented. In Section 3, those requirements are compared with the solutions existing
in the state-of-the-art. The strengths and limitations of each solution identified
during this analysis, are used in Section 4 to design a novel reference architecture
suited to the run-time monitoring of safety critical systems. Section 5 presents
the implementation of the reference architecture in Ada and Section 6 provides
results of experiments conducted on this first implementation.

2 Requirements

As later discussed in Section 3, most of the state-of-the-art solutions on run-
time monitoring and verification rely on software engineering concepts that are
not compatible with the requirements of safety critical systems. Therefore, with
the objective of providing an adequate solution for run-time monitoring, in this
section, we start by studying the requirements of safety critical systems. Those
will serve as a basis to build the foundations of our new run-time monitoring
framework presented in Section 4.
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2.1 Independent and composable development

Distributing the development of complex systems between different partners and
subcontractors became a common practice in the industry. Once delivered, the
components are integrated together to form the final product. This methodol-
ogy is well established in the industry and should not be reconsidered for the
development of monitors. Yet, it can only be achieved in an efficient manner if
both composability and compositionality are possible. Compositionality ensures
that the overall application behaviour can result from the composition of its
constituting subcomponents. On the other hand, composability enforces that
the behaviour of individual components remain unchanged when considered in
isolation and after their integration within the system.

In fact, the certification standards recommend the development and the ver-
ification of safety critical systems to be performed by different actors in order
to reduce the chances of undetected anomalies. The same principle should thus
be followed for the monitors generation. Indeed, if the same actor is responsible
for both the application development and the monitor generation, this would
increase the likelihood of common errors being introduced in the monitor speci-
fication and in the monitored application. The generated monitor would become
useless as the potential system misbehaviour would remain undetected during
the execution.

2.2 Time and space partitioning

Time and space partitioning is a way to ease the composable development of soft-
ware applications, as well as to improve the overall safety of the system. Spatial
partitioning ensures that a task in one partition is unable to change private data
of another task in another partition. Temporal partitioning, on the other hand,
guarantees that the timing characteristics of tasks, such as their worst-case exe-
cution times, are not affected by the execution of other tasks in other partitions.
Consequently, time and space partitioning enforces two important features:

– the properties of different components pertaining to different partitions and
integrated in the same system are not impacted by each other;

– because the tasks of different partitions are isolated, a fault in one partition
cannot propagate to another partition, thereby improving the reliability of
the whole system.

Therefore, it becomes evident that it should be possible to isolate monitors and
monitored applications through time and space partitioning. This would ensure
(i) that the newly introduced monitors do not modify the behaviour of the mon-
itored applications and (ii) that a fault happening in the monitored application
does not propagate to the monitors, which would prevent its detection and the
triggering of the appropriate safe-guarding measures.

In a completely safe design, it should also be possible to isolate monitors
from each other. Hence, a monitor misbehaving due, for instance, to corrupted
input data or other external causes, could not affect other monitors and their
own verification work.
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2.3 Simplicity

Although simplicity should always be one of the main concerns in any devel-
opment process, it is of special importance for safety critical systems. Indeed,
a simple design eases the understanding of the overall system, the writing of
detailed specifications and hence the potentially expensive and time consuming
certification or qualification processes.

Moreover, one of the advantages claimed by run-time verification is the accel-
eration of the system development by partially removing the need of a complete
verification of the system before its deployment. Indeed, correctly implemented
monitors that are cleverly introduced in the system will be responsible for keep-
ing safe the corresponding blocks of code that they observe, thereby acting as
a safety net in case of the manifestation of an untested execution scenario. It
would thus be contradictory to replace the complex and time consuming testing
and formal verification phase by a difficult process of code instrumentation and
monitor integration.

2.4 Efficiency and responsiveness

Monitors should be able to detect misbehaviours and respond in an acceptable
amount of time in order to be useful. It would be of poor interest to launch
counter-measures long after some anomalies have caused irremediable conse-
quences to the system. Therefore, an efficient implementation is required to
ensure that the information needed for the verification of the system correctness
reach the monitors as soon as needed.

3 Study of existing solutions

This section reviews the solutions for run-time monitoring that were already
considered in the literature. We relate each of them to the requirements derived
in Section 2 in order to extract their strengths and limitations. The results of this
study will then be used in Section 4 to design a run-time monitoring architecture
suited to safety critical systems.

All the works discussed in this paper, target the run-time monitoring of
software systems. In that context, we formally define an event and event instance
as follows:

Definition 1 (Event) An event is a set of conditions that must be encountered
during the system execution.

Definition 2 (Event instance) An event instance is the realisation of its as-
sociated event. An event instance is therefore characterised by a unique times-
tamp.
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while(true)	  {	  
	  	  	  	  …	  
	  	  	  	  buffer2.write(y);	  
	  	  	  	  Call_Mon1(	  writeBuf2);	  
	  	  	  	  …	  
	  	  	  	  WaitNextPeriod();	  
}	  

while(true)	  {	  
	  	  	  	  …	  
	  	  	  	  Call_Mon1(	  readBuf1);	  
	  	  	  	  buffer1.read(x);	  
	  	  	  	  Call_Mon1(	  readBuf2);	  
	  	  	  	  buffer2.read(y);	  
	  	  	  	  …	  
	  	  	  	  WaitNextPeriod();	  
}	  

while(true)	  {	  
	  	  	  	  	  …	  
	  	  	  	  	  buffer1.write(x);	  
	  	  	  	  	  Call_Mon1(	  writeBuf1	  );	  
	  	  	  	  	  …	  
	  	  	  	  	  WaitNextPeriod();	  
}	  

Task 1 Task 2 Task 3 

(a)

Tasks 

Tasks 

Buffer 

Monitor	  1	  

Monitor	  2	  

Monitor	  3	  
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Reads 

(b)

Fig. 1: State-of-the-art run-time monitoring architectures.

3.1 Code injection

The most common implementation of monitors in the state-of-the-art run-time
verification frameworks consists in injecting the monitoring code directly in the
application code. Fig. 1a illustrates that approach with three tasks. Two tasks
write data that are read by the third task. A monitor named Mon1 is called after
each write and before each read to check properties on the data exchange. In
such implementation, the monitoring procedure is executed as part of the three
tasks.

Eagle [1], Hawk [6], RuleR [2], MOP [4], TemporalRover [8], Rmor [9] and
RV [17] are examples of frameworks implementing that solution. Those moni-
toring frameworks are based on Aspect Oriented Programming [12] such as As-
pectJ [14], AspectC [5], or similar instrumentation mechanisms. The monitoring
procedures are directly called when the monitored application passes by pre-
specified positions in the source or compiled code. Whilst simple to implement,
this monitoring architecture exhibits multiple drawbacks as discussed below:

– Whereas space partitioning could still be enforced with such monitoring
architecture, the existing implementations of those frameworks simply do
not consider it. This lack of isolation is the cause of two major issues:
• Since the monitored application shares the same address space as the

monitors, a faulty application generating memory errors due, for exam-
ple, to stack overflows or wrong pointer manipulations, may corrupt the
data manipulated by the monitor and alter its correct behaviour. The
monitor would become unreliable, incapable to detect the fault or even
worse, outputting a wrong diagnosis, which may lead to the triggering
of counter-productive measures, thereby worsening the situation.

• Monitors have direct reading and writing access to globally defined enti-
ties of the monitored application (for example, Buffer1 and Buffer2 in
the example of Fig. 1a). A faulty monitor, wrongly implemented (volun-
tarily or not), could therefore modify and corrupt the content of the ap-
plication variable and hence impact its execution. This generates safety
and security threats for the overall system. This would be unacceptable
in safety-critical applications.
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– Such monitoring architecture does not allow any kind of timing isolation be-
tween monitors and monitored applications. Since the monitoring procedures
are directly included in the application code, the timing properties such as
the application worst-case execution time (WCET), are irremediably modi-
fied after the addition the monitoring code. For example, in the example of
Fig. 1a, if Task 1 has a WCET of 15ms before instrumentation and assum-
ing an execution time of 5ms for the procedure CallMon1(.) of Mon1, the
WCET of Task 1 becomes at least 20ms after integration of the monitor in
the system. It goes against the good practice of developing applications and
monitors independently and later integrating them in a composable manner
in the final system, and leads to two unwanted consequences:
• Any timing analysis that would have been performed before the monitor

integration are not valid anymore after their insertion. They should all
be redone, thus generating extra work, which may be expensive and
time-consuming.

• There is no assurance that the behaviour of the application is not im-
pacted by the addition of this extra-code. Therefore, it is impossible to
predict if a well-behaving application will still respect all its specifica-
tions and thus remain correct if the monitoring code was removed.

– Since the currently adopted approaches introduce monitors as pieces of se-
quential code in the target application, only one thread at a time can call
a given monitoring procedure, access a specific internal data, or change a
state variable. A synchronisation protocol must be introduced, thereby lim-
iting the parallelism in the monitored application. This makes this imple-
mentation particularly inefficient for multi-threaded applications such as the
one presented in Fig. 1a, where events generated by different threads (i.e.,
tasks) may be required by a same monitor. This is a major drawback of this
monitoring architecture in a context of generalisation of the use of multicore
processors in embedded and general purpose systems and considering the
common adoption of multi-threaded programming languages.

3.2 Independent monitors and buffered communications

The alternative to the monitoring architecture presented above is to implement
monitors as independent components that receive events information through
buffers (see Fig. 1b). It is the approach followed in Java-MaC [13], Java PathEx-
plorer [10] and Java MultiPathExplorer [19].

One global buffer The most straightforward implementation of this solution
would assume that all events are written in a shared buffer. In order to avoid the
need for every monitor to read all events stored in the buffer — including those
that are of no interest — an event dispatcher (see Fig. 1b) is usually attached
to the output of the buffer [10, 13]. The dispatcher reads the events pushed in
the buffer by the monitored application and redistributes them to the monitors
requiring them.
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Unfortunately, the use of a unique global shared buffer causes a bottleneck
in the flow of information. Indeed, only one event instance can be written in the
buffer at a time. This requires the use of a synchronisation mechanism among
different threads that would try to access the buffer concurrently. This may
lead to unwanted blocking of the tasks of the monitored application, thereby
impacting their timing properties and thus going against any sort of timing
isolation as their timing behaviours now become dependent on the number of
threads pushing events in the buffer. Moreover, forbidding parallel event writing
slows down the transfer of information to the monitors and hence their capacity
to detect anomalies in an acceptable amount of time (i.e., responsiveness).

One private buffer per monitor An alternative implementation would be
to provide a private buffer for each monitor. As a consequence, there is no need
for an event dispatcher anymore. Although diminishing the number of potential
concurrent accesses to the same buffer, a synchronisation mechanism is still
necessary when events generated by multiple threads are needed by the same
monitor. Furthermore, additional issues must now be considered:

– When an event is useful for multiple monitors, the monitored application
must be instrumented multiple times in order to push the event in the buffers
of each relevant monitor. This means that the instrumentation code is redun-
dant. Moreover, the same event instance might be copied in multiple buffers,
thereby increasing the memory footprint of the monitoring architecture.

– The monitors using the events must be known when instrumenting the ap-
plication. Adding, removing or replacing monitors require re-instrumenting
the code, even if they all use the same events and data. This impacts the
extensibility of the system as well as the independency between monitors
and monitored applications.

4 A novel reference architecture for run-time monitoring

Strong from the analysis performed in the two previous sections, we propose
a new reference architecture for run-time monitoring suited to safety critical
as well as non-critical applications. This reference architecture could then be
implemented in any language, as long as it respects the prescriptions discussed
below. The proposed run-time monitoring framework is depicted in Fig. 2. It
is composed of five main components: (1) the monitored application, (2) the
monitors, (3) buffers through which events are transmitted, (4) buffer writers
for writing events in a specific buffer and (5) buffer readers used by the monitors
to read events stored in a buffer. This structure may look straightforward, yet
multiple details discussed below, allow us to fulfil each and every requirement
presented in Section 2.

4.1 Event transmission

Whenever an event instance is generated during the execution of the monitored
application, the information must be transmitted to the monitors. However,
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Fig. 2: Proposed reference architecture for run-time monitoring.

unlike most of the run-time monitoring frameworks presented in the previous
section, in the proposed reference architecture, event instances are not directly
sent to the monitors using them. Instead, the timestamps of the event instances
are stored in an intermediate buffer specific to that event. That is, there is
one buffer per event rather than one buffer per monitor. As a consequence,
the monitored application is unaware of the existence of any potential monitor
using the transmitted information thanks to the buffers playing the role of an
interface. Moreover, the monitored application must be instrumented only once,
thereby reducing the dependency between the application instrumentation and
the monitors generation. Finally, it avoids any type of data or monitoring code
redundancy.

Efficient event reading As shown in Fig. 2, each event (i.e., the completion
of a task, the access to a data, the release of a semaphore, ...) is associated with
a different buffer. Each buffer can then be accessed by any monitor that would
require information about that specific event. Multiple monitors can access the
same buffer using different buffer readers. Buffer readers are independent from
each other. Indeed, each buffer reader uses its own pointer pointing to the oldest
data that has not yet been accessed. Because each buffer reader uses a different
pointer to read data in the buffer they are associated with, simultaneous accesses
to a same buffer is possible without any blocking time. Furthermore, a data read
by one buffer reader is not erased from the buffer and can thus still be accessed by
any other buffer reader that did not read it yet. This mechanism allows multiple
monitors to use the same events without using any synchronisation protocol nor
duplicating the events data for each monitor making use of it. Consequently,
there is a gain in terms of transmission time as well as required memory space.

Efficient event writing One of the major design choice in the reference ar-
chitecture of the proposed run-time monitoring framework is that only one task
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can have write accesses to a specific buffer. Those rights are granted by a buffer
writer. Only one buffer writer can be instantiated per buffer and only one task
can use that buffer writer. This added constraint avoids the need of synchronisa-
tion mechanisms since concurrent writing in the same buffer becomes impossible.

With the same objective of reducing the impact of the code instrumentation
on the application performances, the buffers are circular. That is, a task writing
an event in the buffer can never be blocked due to the buffer being full. In such a
situation, the oldest event instance in the buffer will simply be overridden with
the new data. It is therefore the role of the monitor developer to make sure that
(i) the buffer is large enough and (ii) the monitors are reading events frequently
enough to avoid missing any meaningful information.

4.2 Monitor implementation

In the proposed reference run-time monitoring architecture, a monitor is a task
which is periodically activated. At each activation, a monitor calls a monitoring
procedure, which is provided by the monitor designer. A monitoring procedure
is usually implemented as a finite state machine. It reads information about
some specific events and makes its state evolve. If the state machine reaches
an erroneous state, safe-guarding measures may be activated. The generation
of the monitoring procedure is however out of the scope of this paper as it
relates to the general run-time verification problem rather than the specific run-
time monitoring issue discussed in this paper. The interested reader may consult
the following (non-exhaustive) list of references for further information on that
topic [2–4,11,18].

Note that, because the monitors are implemented as periodic tasks, their
activation is completely independent from the execution of the monitored appli-
cation. Unlike the solutions based on Aspect Oriented Programming and similar
technologies, the execution of the monitored application is not delayed by the
execution of the monitor whenever an event instance is generated. Instead, the
monitor is periodically activated and checks all the meaningful information on
events that may have been realised during its last period of inactivity. Therefore,
implementing a monitor as an independent task rather than inserting code in the
application, keeps the properties of the monitored application unaffected by the
execution of the monitors, thereby allowing for the independent and composable
development of monitors and monitored applications.

However, because the monitors are isolated in time from the monitored ap-
plication (i.e., their executions are independent), there is a delay between the
realisation of an event and its treatment by the monitor. This latency impacts
the time needed to react to a system fault. However, because the monitors are
implemented as periodic tasks, and under the assumption that the system is
schedulable, this latency can be upper-bounded. Let T be the period of monitor
Mon1 and let t0 be the beginning of a period of Mon1. Mon1 can be executed at
any time between t0 and t0 + T . A second execution of Mon1 will then happen
between t0 + T and t0 + 2 × T . In the worst-case scenario, Mon1 executes right
at t0 and then at the end of its next period, that is, right before t0 + 2 × T . If
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an event instance is generated just after the first execution of Mon1, it will be
treated only during the second execution of the monitor at time t0 + 2×T . The
maximum latency can thus be upper-bounded by 2 × T (i.e., twice the period
of the monitor). As a consequence, the responsiveness of the monitor can be
configured by modifying its period of activation.

4.3 Events ordering

One of the major advantages of the architecture depicted on Fig. 2 is also one of
its major issues. Because different events are stored in different buffers, instances
of different events are not ordered (w.r.t. their timestamps). Yet, the order in
which events happen is often a key property to detect faults, bugs, deficiencies
or other execution anomalies. Since a monitor may need information from more
than one event, it becomes its job to reorder event instances stored in different
buffers before to treat them. In the proposed reference architecture, the monitor
performs this task by using synchronised buffer readers. The synchronised buffer
readers are instantiated inside the monitors. Synchronised buffer readers associ-
ated with a same monitor share a synchronisation variable. This variable stores
the timestamp of the last event instance read by the monitor in any buffer. This
information is used by all the synchronised event readers to determine which is
the next event instance that must be considered in their buffer. The use of the
synchronisation variable by the synchronised event readers is summarised in the
pseudo-code provided in Algorithm 1.

Algorithm 1: Pseudo-code of the function reading an event in a synchro-
nised buffer reader.
Data: Synch Variable; Current Index; End Buffer

1 while Current Index 6= End Buffer do
2 if Buffer[Current Index].timestamp ≥ Synch Variable then
3 Synch Variable ← Buffer[Current Index].timestamp;
4 Current Index ← Current Index+1;
5 return Buffer[Current Index−1];

6 end
7 Current Index ← Current Index+1;

8 end
9 return “Buffer empty”;

When accessing its buffer, the synchronised event reader looks for the first
event instance stored in the buffer with a timestamp larger than or equal to the
timestamp saved into the synchronisation variable. If such an element exists, the
timestamp of that event instance is saved in the synchronisation variable and the
event instance information are sent back to the monitor. Otherwise, the event
reader keeps the synchronisation variable unchanged and notify the monitor that
the buffer is empty.



12 Geoffrey Nelissen, David Pereira, and Lúıs Miguel Pinho

Note that because a monitor is implemented as a sequential task and because
all the synchronised event readers sharing the same synchronisation variable are
associated with the same monitor, only one synchronised event reader is called
at a time. Therefore, there cannot be concurrent accesses to the synchronisation
variable and no access protection mechanism is hence required.

4.4 Isolation

The architecture described above is particularly well designed to achieve the
complete isolation of the monitors from the monitored application. Indeed, each
monitor is an independent task which can be restricted to its own memory
address space, interacting with the application only through the unidirectional
communication channels implemented by the event buffers.

Furthermore, if the system was deployed on a multicore platform, monitors
could be executed on their own core(s), in parallel with the monitored application
thanks to the multi-threaded approach promoted in this architecture.

4.5 Additional remarks

As depicted on Fig. 2, the proposed architecture is quite flexible and thus allows
task of the monitored application, but also the run-time environment (usually an
operating system) and the monitors themselves to generate events and push them
in their own buffers. Since the monitors are isolated from the rest of the system,
they do not know anything about the architecture of the monitored application.
Therefore, from the viewpoint of one monitor, another monitor generating events
is seen as any other task pertaining to the monitored system. This paves the way
to the definition of parallel and hierarchical verification frameworks, in which big
monitoring procedures would be decomposed in a set of smaller monitors that
would implement the overall monitoring functionality by exchanging information
through event instances.

5 Library implementation and usage

A prototype of the monitoring architecture described in Section 4 has been
implemented in Ada.

The buffer is implemented as a generic package. Each instance of that package
is associated with a specific event. As shown in the example code below, it
requires the definition of two generic variables; the length of the circular buffer
and the type of an additional data that can be saved together with the timestamp
of each event instance. This data could be the identifier of a task, the value of
a counter or any other meaningful information for the monitors using it. For
safety reasons, and to keep external components from altering the buffer content
without using a buffer writer as prescribed in the reference architecture, the
package is entirely private, leaving no interface for the external world to interact
with it.
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1 package Buffer_1 is new

2 Buffer(Event_Info_Type => Integer , Buffer_Length => 20);

Implementing the buffers as a generic package rather than a generic type
(e.g., a record) may look unconventional. However, it allows us to implement the
buffer writer as a generic child package, thereby permitting the package to check
that there is only one buffer writer per buffer instance.

In order to be fully compliant with the proposed reference architecture, the
event writers should be instantiated as described in the example code provided
below, limiting the scope of the event writer to one task only.

1 task T1 with Priority => 10;

2 task body T1 is

3 package Buffer1_Writer is new Buffer_1.Writer;

4 T : Ada.Real_Time.Time;

5 begin

6 loop

7 T := Ada.Real_Time.Clock;

8 Buffer1_Writer.Write(Data => 1, TimeStamp => T);

9 (...)

10 end loop;

11 end T1;

The event writer interface provides only one procedure, which allows to write
an event instance in the associated buffer. The Write procedure (see line 8 in the
example code above) takes two parameters; the timestamp of the event instance
and a data that provides extra-information for the monitors.

The skeleton of any monitor is implemented in the generic Monitor package.
It implements the synchronised event readers and the periodic monitoring task
as two private nested packages. This isolates the monitor from the external
world, forbidding any external component to generate new monitoring tasks or
synchronised event readers that could mess with the synchronisation variable of
the monitor and hence with its correct behaviour.

To generate a new monitor, the system designer must first create a new child
package to the Monitor package. It is in that new package that the monitoring
procedure must be implemented and the periodic monitoring task calling that
procedure instantiated. An example of such monitor definition is provided below.

1 generic

2 package Monitor.Procedure1 is

3 (...)

4 end Monitor.Procedure1;

5
6 package body Monitor.Procedure1 is

7 procedure MonProc1 is

8 Data : Integer;

9 Timestamp : Ada.Real_Time.Time;

10 IsEmpty , HasGap : Boolean;
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11 package B1_Reader is

12 new Synchronized_Reader(Buffer_1 );

13 (...)

14 begin

15 B1_Reader.Pop(Data , Timestamp , IsEmpty , HasGap );

16 (...)

17 end MonProc1;

18
19 package MonTask1 is

20 new Monitoring_Task(Monitoring_Procedure => MonProc1 );

21 end Monitor.Procedure1;

The implementation of the monitoring procedure is left completely to the
monitor designer. This procedure may instantiate synchronised readers — as
exemplified at line 13 of the code above — to access the content of some specific
event buffers. The Synchronised_Reader package takes the buffer from which it
must read as a generic argument, and provides two procedures to extract infor-
mation from that buffer: Pop and Get. Pop implements the basic reading procedure
presented in the pseudocode of Algorithm 1. It finds the first event instance with
a timestamp larger than the value saved in the synchronisation variable, updates
the synchronisation variable and sends the data and timestamp associated with
the found event instance back to the monitoring procedure. Get, however, also
finds and sends back the information associated with the first meaningful event
instance in the buffer but does not update the synchronisation variable. The
monitoring procedure can use Get in order to read multiple times the same event
instance or to first compare the timestamps and data of events stored in differ-
ent buffers before deciding which event must actually be considered. Pop and Get

may set the two booleans given as parameters in order to notify if the buffer is
empty and if there is a gap in the trace stored in the buffer due to the circular
nature of that buffer.

Once the monitoring procedure is implemented, the monitor designer must
instantiate a monitoring task as described on line 21 of the example code pro-
vided above. This task will periodically call the monitoring procedure. Note that
only one task can be instantiated per monitor. If multiple instantiations were
attempted, then an exception would be raised.

Finally, the integration of the monitor in the system is done as shown below,
defining the period and the priority of the monitoring task as the values of the
two generic arguments of the Monitor package.

1 package Monitor1 is new Monitor(Period =>100, Priority =>61);

2 package Monitor1_Proc is new Monitor1.Procedure1;

6 Experimental Results

In order to evaluate the overhead generated by our run-time monitoring archi-
tecture, we conducted a set of experiments varying the number of monitored
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Tasks-Monitors-read/write 1-1-w 1-5-w 1-10-w 5-1-w 10-1-w 1-1-r 1-5-r 1-10-r 5-1-r 5-5-r

Average 0.74 0.69 0.58 0.62 0.82 0.53 0.81 0.70 0.94 0.83

Standard Deviation 0.48 0.53 0.5 0.49 0.52 0.50 0.54 0.52 0.34 0.47

Maximum 1 2 2 1 2 1 2 2 2 2

Table 1: Experimental results (values in µs).

tasks (from 1 to 10), event buffers (one per task) and monitors (from 1 to 10)
reading from a same buffer. For each configuration, the time needed to read
and write 100 event instances in their buffers has been monitored. The average
value, maximum value and the standard deviation have been computed for each
experiment. The experimental systems were implemented using the Ada proto-
type of the architecture presented in the previous section and compiled using
the gnat toolchain. The experiments were performed on a quad-core Intel i7
processor cadenced at 2.3GHz with 8GB of RAM memory and a 500 GB Solid
State SATA Drive. The results of the experiments are presented in Table 1. As
a consequence of the absence of protection mechanisms in the reference archi-
tecture, the variation on the cost of writing and reading event instances is small
and independent of the number of monitors and tasks generating events. Conse-
quently, the maximum overhead induced by the monitoring architecture can be
precisely calculated and hence included in the timing analysis of the application.

7 Conclusion

After the study of the requirements of safety critical systems and the extraction
of the limitiations in the solutions implemented in the existing run-time verifi-
cation frameworks, we presented a novel architecture for the implementation of
a safe and reliable run-time monitoring framework. We exposed how this new
design, whilst remaining simple and efficient, allows for the independent and
composable development of monitors and monitored applications, and improves
the safety and reliability of the overall system by making possible the complete
isolation of the monitors from the rest of the system. As a consequence, a fault in
the monitored application cannot propagate anymore to the monitors checking
its correct behaviour. A first implementation of the proposed reference archi-
tecture together with experimental results were presented in the paper, thereby
proving the feasibility of the promoted approach.
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4. Chen, F., Roşu, G.: Mop: An efficient and generic runtime verification frame-
work. In: Proceedings of the 22Nd Annual ACM SIGPLAN Conference on Object-
oriented Programming Systems and Applications. pp. 569–588. OOPSLA (2007)

5. Coady, Y., Kiczales, G., Feeley, M., Smolyn, G.: Using aspectc to improve the
modularity of path-specific customization in operating system code. SIGSOFT
Softw. Eng. Notes 26(5), 88–98 (Sep 2001)

6. d’Amorim, M., Havelund, K.: Event-based runtime verification of java programs.
SIGSOFT Softw. Eng. Notes 30(4), 1–7 (May 2005)

7. Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime software-
fault monitoring tools. IEEE Trans. Softw. Eng. 30(12), 859–872 (Dec 2004)

8. Drusinsky, D.: The temporal rover and the atg rover. In: Proceedings of the 7th
International SPIN Workshop on SPIN Model Checking and Software Verification.
pp. 323–330 (2000)

9. Havelund, K.: Runtime verification of c programs. In: Proceedings of the 20th IFIP
TC 6/WG 6.1 International Conference on Testing of Software and Communicating
Systems: 8th International Workshop. pp. 7–22. TestCom ’08 / FATES ’08 (2008)
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