
An Execution Model for

Fine-Grained Parallelism in Ada

Luís Miguel Pinho1 Brad Moore 2 Stephen Michell 3 S. Tucker Taft 4

1 CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Portugal, lmp@isep.ipp.pt

2 General Dynamics, Canada, brad.moore@gdcanada.com

3 Maurya Software Inc, Canada, stephen.michell@maurya.on.ca
4 AdaCore, USA, taft@adacore.com

Abstract. This paper extends the authors earlier proposal for providing Ada with

support for fine-grained parallelism with an execution model based on the con-

cept of abstract executors, detailing the progress guarantees that these executors

must provide and how these can be assured even in the presence of potentially

blocking operations. The paper also describes how this execution model can be

applied to real-time systems.

1 Introduction

This work is part of an ongoing effort to incorporate fine-grained parallelism models

and constructs into existing programming languages, such as CPLEX (for C Parallel

Language Extensions) [1], the C++ "Technical Specification for C++ Extensions for

Parallelism" [2], or, the topic of this work, the tasklet model for Ada [3,4,5].

The current proposal to extend Ada with a fine-grained parallelism model is based

on the notion of tasklets, which are non-schedulable computation units (similar to Cilk

[6] or OpenMP [7] tasks). However, in contrast to the C and C++ work, the principle

behind this model is that the specification of parallelism is an abstraction that is not

fully controlled by the programmer. Instead, parallelism is a notion that is under the

control of the compiler and the run-time. The programmer uses special syntax to indi-

cate where parallelism opportunities occur in the code, whilst the compiler and runtime

co-operate to provide parallel execution, when possible.

The work in [3] introduced the notion of a Parallelism OPportunity (POP). This is a

code fragment or construct that can be executed by processing elements in parallel. This

could be a parallel block, parallel iterations of a for loop over a structure or container,

parallel evaluations of subprogram calls, and so on. That work also introduced the term

tasklet to capture the notion of a single execution trace within a POP, which the pro-

grammer can express with special syntax, or the compiler can implicitly create.

This model is refined in [4], where each Ada task is seen as an execution graph of

execution of multiple control-dependent tasklets using a fork-join model. Tasklets can

be spawned by other tasklets (fork), and need to synchronize with the spawning tasklet

(join). The concept is that the model allows a complete graph of potential parallel exe-

cution to be extracted during the compilation phase. Together with the Global aspects

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47141471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:lmp@isep.ipp.pt
mailto:brad.moore@gdcanada.com
mailto:stephen.michell@maurya.on.ca

proposed in [5], it is thus possible to manage the mapping of tasklets and data alloca-

tion, as well as prevent unprotected parallel access to shared variables. Although not a

topic addressed in this paper, the work considers that issues such as data allocation and

contention for hardware resources are key challenges for parallel systems, and therefore

compilers and tools must have more information on the dependencies between the par-

allel computations, as well as data, to be able to generate more efficient programs.

Tasklets as defined are orthogonal to Ada tasks and execute within the semantic

context of the task from which they have been spawned, whilst inheriting the properties

of the task such as identification, priority and deadline. The model also specifies that

calls by different tasklets of the same task into the same protected object are treated as

different calls resulting in distinct protected actions; therefore synchronization between

tasklets could be performed using protected operations (in [5] it was restricted to non-

blocking operations)1.

As tasklets compete for the (finite) execution resources, an execution model is then

necessary. This paper provides the specification of the execution behavior of tasklets

based on the notion of abstract executors, which carry the actual execution of Ada tasks

in the platform. The goal of this abstraction is to to provide the ability to specify the

progress guarantees that an implementation (compiler and runtime) need to provide to

the parallel execution, without constraining how such implementation should be done.

This abstraction is then used to demonstrate how tasklet synchronization can be sup-

ported using potentially blocking operations.

The paper also shows how the approach can be applied for use in real-time systems

(under certain assumptions), and how a finer control of the tasklet execution can be

made available to the programmer.

The structure of the paper is as follows. Section 2 provides a short summary of the

previously proposed tasklet model for fine-grained parallelization of Ada code. Then,

Section 3 proposes the underlying executing model for tasklets, whilst Section 4 shows

how this model can be used in real-time systems and mentions some currently open

issues. Finally, Section 5 provides some conclusions.

2 The Tasklet Model

This work considers a model where an Ada task is represented as a fork-join Directed

Acyclic Graph (DAG) of potentially parallel code block instances (denoted as tasklets).

The DAG of a task represents both the set of tasklets of the task, as well as the control-

flow dependencies between the executions of the tasklets.

An Ada application can consist of several Ada tasks, each of which can be repre-

sented conceptually by a DAG. Therefore, an application might contain multiple (po-

tentially data dependent) DAGs. Dependencies between different DAGs relate to data

sharing and synchronization between Ada tasks (e.g. using protected objects, suspen-

sion objects, atomic variables, etc.).

1 Note that this is consistent with the current standard which already supports multiple concur-

rent calls by a single task in the presence of the asynchronous transfer of control capability [8,

section 9.7.4].

An Ada task might correspond to several different DAGs, but the actual execution

of the task will correspond to only one. Control-flow constructs indicate multiple dif-

ferent paths within the code, each one a different DAG, but during execution a single

flow is created.

Within this DAG, a terminology of relation between tasklets is defined, as follows:

 The spawning tasklet is referred to as the parent tasklet;

 The spawned tasklets are referred to as the children;

 Tasklets spawned by the same tasklet in the same POP are denoted siblings;

 Ancestor and descendant denote the nested hierarchical relationships, since

spawned tasklets may themselves spawn new tasklets.

Figure 1 shows code representing the body of execution of an Ada 202X task (ac-

cording to the syntax proposal in [5]), whilst Figure 2 provides its associated DAG.

task body My_Task is

begin

 -- tasklet A, parent of B, C, F and G, ancestor of D and E

 parallel

 -- tasklet B, child of A, parent of D and E

 parallel

 -- D, child of B, descendent of A, sibling of E

 and

 -- E, child of B, descendent of A, sibling of D

 end;

 and

 -- tasklet C, child of A, sibling of B, no relation to D and E

 end;

 -- tasklet A again

 parallel

 -- tasklet F, child of A, no relation to B,C,D and E

 and

 -- tasklet G, child of A, no relation to B,C,D and E

 end;

 -- tasklet A again

end;

Figure 1. Task body example (Ada 202X)

This model of tasklet execution is a fully strict fork-join, where new tasklets spawned

by the execution of a tasklet are required to complete execution before the spawning

tasklet is allowed to complete 2. Note that this model is mandatory for explicit parallel

constructs, such as parallel blocks and parallel loops, where the sibling tasklets are re-

quired to complete at the parallel construct “end” keyword, before the spawning (par-

ent) tasklet is allowed to continue past this construct.

2 A terminally strict fork join for implicit parallelization is left for future work. This is a model

where a spawned tasklet is required to join with one ancestor, but not forcibly the parent.

Figure 2. Task DAG example (rectangles denote tasklets,

dark circles fork points, and white circles join points)

In Figure 2, although there is no direct relation between F/G and B/C/D/E, the exe-

cution of F and G can actually only start after the completion of the latter. Implicit

parallelization by the compiler (as proposed in [5]) introduces additional fork-join

points (as if an explicit parallel block was being created). The grey parts within the

tasklets A and B represent the fact that the tasklet is waiting for the execution of its

children. As discussed later in this paper, this does not imply tasklet (or task) blocking.

3 The Tasklet execution model

The proposal of this paper is to define the DAG’s execution based on a pool of abstract

executors (Figure 3), which are required to serve the execution of tasklets while guar-

anteeing task progress, under certain assumptions.

An executor is an entity which is able to carry the execution of code blocks (the

notion of an executor entity is common to many systems, and can be traced back to the

SunOS lightweight processes [9]). Although we consider that most likely executors

would be operating system threads, the definition gives freedom to the implementers to

provide other underlying mechanisms to support this model. The justification for this

abstraction is that it allows implementations to provide the minimum functionality to

execute parallel computation, without requiring the full overhead associated with thread

management operation. In an extreme case, an executor can be the core itself, continu-

ally executing code blocks placed in a queue.3

3 Note that an executor cannot explicitly be an Ada Task, as it was proposed in earlier works

[10]. This would defeat the separation between the design model of concurrency around Ada

Tasks, and the platform model of parallelism around executors.

A

B C

F G

D E

Figure 3. Virtual stack of application, runtime and platform

The model presumes that the allocation of tasklets to executors, and of executors to

cores is left to the implementation. More flexible systems, that are compatible with this

model, might decide to implement a dynamic allocation of tasklets to executors, and a

flexible scheduling of these in the cores, whilst static approaches might determine an

offline-fixed allocation of the tasklets to the executors, and utilize partitioned schedul-

ing approaches for the executors within the cores. Also, in the general case it is left to

the implementation whether executor pools are allocated per task or globally to a given

dispatching domain or to the entire application.

The model of tasklet execution by the executors is a limited form of run-to-comple-

tion, i.e., when a tasklet starts to be executed by one executor, it is executed by this

same executor until the tasklet finishes. Limited because the model allows executing

tasklets to migrate to a different executor, but only in the case where the tasklet has

performed an operation that would require blocking or suspension. It would be too re-

strictive to force the executor to also block or suspend. Before starting to execute, task-

let migration is unrestricted.

Note that run-to-completion does not mean that the tasklet will execute uninterrupt-

edly or that it will not dynamically change the core where it is being executed, since

the executor itself might be scheduled in a preemptive, or quantum-based scheduler,

with global or partitioned scheduling.

3.1 Progress

The progress of a task is defined such that a task progresses if at least one of its tasklets

is being executed. Only if all tasklets of a task DAG are not being executed then the

task is considered not to be progressing. It might not be blocked, as it might simply be

prevented from being executed by other higher priority tasks being executed.

A task is only blocked when all its tasklets are blocked or have self-suspended. Task-

lets are considered to be blocked when they are waiting for a resource, which is not an

executor nor a core (e.g. executing an entry call) 4.

Considering this, we can identify different progress classes, and use them to define

the execution model, rather than the actual implementation [11] (our definition differs

from [11] in that we relate progress to tasklet execution and not to thread equivalence).

Implementations must guarantee one class of progress, as defined below:

 Immediate progress – when cores are available, tasklets which are ready to

execute can execute to completion in parallel (limited only by the number of

free cores);

 Eventual progress – when cores are available, ready tasklets might need to

wait for the availability of an executor, but it is guaranteed that one will be-

come available so that the tasklet will eventually be executed.

 Limited progress – even if cores are available, ready tasklets might need to

wait for the availability of an executor, and the runtime does not guarantee that

one will be eventually available. This means a bounded number of executors,

which may block when tasklets block.

Immediate progress is the strongest progress model, but it might require the implemen-

tation to create new executors, even if this would not be needed for progress. The main

difference from immediate to eventual progress, is that in the former, if no executor is

available, a new executor needs to be created (the implementation needs to be work-

conserving). In the latter, the implementation is allowed some freedom, as long as it

guarantees that tasklets will not starve.

Limited progress does not guarantee there will be an executor available. It is defined

for the cases where a bounded number of executors needs to be pre-determined, and the

implementation is such that executors block when tasklets block. In this case, offline

static analysis (considering the actual mapping of the tasklet DAG to the underlying

executors’ implementation) is needed to guarantee tasklets neither starve nor deadlock.

3.2 Use of Potentially Blocking Operations

The work in [5] left as an open issue whether to support potentially blocking operations

within tasklets, limiting parallelism to invoking subprograms where the Poten-

tially_Blocking aspect was set to False. Nevertheless, although the work considers

the use of locking in a parallel setting as heavily impacting performance, there are rea-

sons to support (but not recommend) the use of protected operations, such as supporting

the need to synchronize “stitching” operations where the results of computations of

neighboring regions are combined in the proper order. Moreover, parallel tasks them-

selves might need to wait for data or delay while within parallel constructs. In any case,

lock-free approaches [12] such be considered.

4 There are cases where the compiler is able to guarantee that this blocking is actually bounded

(e.g. a delay operation). It may be possible to allow an implementation in this case to consider

the tasklet not to be blocked. Nevertheless, in order to be consistent with the Ada standard,

these operations are also considered to be potentially blocking [8, section 9.5.1].

The use of blocking synchronization between tasklets introduces further risks of

deadlock, which is dependent on the method of tasklet allocation to the underlying ex-

ecutor. For example, the execution of the code in Figure 4 is safe if all iterations are

executed in real parallelism, or with some interleaving of iterations, but will deadlock

if all iterations of the loop are sequential and executed in order. The code in Figure 5

might appear to be safe for any order of iterations, but in fact it is not safe if the compiler

aggregates several iterations in the same tasklet 5. If, for instance, in a platform with

two cores, the compiler generates a DAG of 2 tasklets to execute the loop, both tasklets

will call the entry Wait in their first iteration, and will wait there indefinitely.

protected Obj is

 entry Wait;

 procedure Release;

private

 Open: Boolean := False;

end Obj;

protected body Obj is

 entry Wait when Open is

 begin

 null;

 end Wait;

 procedure Release is

 begin

 Open := True;

 end Release;

end Obj;

-- ...

begin

 for I in parallel 1..10 loop

 -- Phase 1 Work

 if I < 10 then

 Obj.Wait;

 else

 Obj.Release;

 end if;

 -- Phase 2 Work

 end loop;

end;

Figure 4. Deadlock example

5 “Chunking” of several iterations in the same tasklet is an optimization which is usually done

to reduce the parallelism overhead when each iteration in isolation is computationally small,

protected Obj is

 entry Wait;

private

 Open: Boolean := False;

end Obj;

protected body Obj is

 entry Wait when Wait’Count = 10 or Open is

 begin

 Open := True;

 end Wait;

end Obj;

-- ...

begin

 for I in parallel 1..10 loop

 -- Phase 1 Work

 Obj.Wait;

 -- Phase 2 Work

 end loop;

end;

Figure 5. Deadlock example

It is possible for tasklets to synchronize with protected operations (tasklets are

the "caller" as specified in the standard [8, section 9.5]), as long as the following con-

ditions are satisfied: (i) the implementation guarantees that all tasklets will eventually

be allowed to execute, and (ii) the implementation ensures that the behavior is as if each

call to a potentially blocking operation was allocated to a single tasklet.

Condition (i) is satisfied in implementations that provide immediate or eventual pro-

gress. In the limited progress model, condition (i) needs to be satisfied by complement-

ing the implementation with offline analysis.

Condition (ii) is satisfied by the compiler that generates an individual tasklet when-

ever a call could be performed to a potentially blocking operation [8, section 9.5.1] or

to a subprogram which has the Potentially_Blocking aspect set to True (note that

according to the rules specified in [5] this is the default value of the aspect). As tasklets

can be logical entities only, implementations may provide other means to guarantee (ii),

as long as the behavior is equivalent.

3.3 Implementation Issues

The model does not stipulate how an implementation provides these guarantees. Nev-

ertheless, this section discusses a few usage approaches, knowing that experience of

use may lead to more efficient mechanisms to implement the model.

The implementation may allocate multiple tasklets to the same executor, allowing

these tasklets to be executed sequentially by the executor (under a run-to-completion

model). As soon as a tasklet starts to be executed by a specific executor it continues to

be executed by this executor, until it completes, or blocks. It is nevertheless possible

that tasklets that are ready and that have not yet begun execution (but queued for one

executor), to be re-allocated (e.g. with work-stealing [13]) to a different executor.

In the general case it is implementation defined whether or not a tasklet, when it

blocks, releases the executor. The implementation may also block the executor, creating

a new executor, if needed, to serve other tasklets and guarantee the progress of the task,

or it may queue the tasklet for later resumption (in the same or different executor). In

the latter case, the implementation releases the executor to execute other tasklets but

maintain the state of the blocked tasklet in the executor, for later resumption.

In the immediate and eventual progress models, the implementation must allow a

blocked tasklet to resume execution, either by allocating it to an existing or new exec-

utor as soon as the tasklet is released, or by resuming it in the original executor (if it is

available). In the case of resuming in a different executor than the one that started the

computation, the implementation must guarantee that any tasklet-specific state that is

saved by the executor is migrated to the new executor.

Note that when a tasklet needs to join with its children (wait for the completion of

its children), it is not considered to be blocked, as long as one of its children is executing

(forward-progressing). Regardless of the implementation, the executor that was execut-

ing the parent tasklet may suspend it and execute one or more of its children, only

returning to the parent tasklet when all children have completed.

Note that in a fork-join model it is always safe to suspend a parent tasklet when it

forks children, releasing the executor to execute the children tasklets, and resuming the

parent tasklet in the same executor when all children tasklets have completed (since the

parent can only resume once the children complete). It might happen that other execu-

tors take some of the children tasklets. In that case, it might happen that the executor

that was executing the parent finishes the execution of children tasklets while other

executors are still executing other children of the same parent. In this case, the parent

needs to wait for other children tasklets still being executed in other executors, and the

implementation may spin, block or suspend the executor, or release it to execute other

unrelated tasklets (as described above).

Implementations may also use some form of parent-stealing [13]. In this case, the

suspended parent tasklet might be reallocated to a different executor, or its continuation

might be represented by a different tasklet. As before, the implementation must guar-

antee that tasklet-specific state is also migrated.

3.4 Tasklets and protected actions

When executing in protected actions, it is possible to allow tasklets to spawn new task-

lets, if we are able to guarantee that deadlock will not arise from different executors

accessing the same locks.

This is possible if: (i) the executor that is executing the parent tasklet (which owns

the lock of the protected action) is only allowed to execute children tasklets, suspending

or spinning if none are available for execution (this guarantees that the same executor

will not acquire another non-nested lock); and (ii) fully-strict fork-join is used thus all

nested children tasklets need to join with the ancestor that entered the protected action,

before it leaves the protected action; and (iii) executors for children tasklets inherit the

lock from the executor executing the parent, and do not acquire it again.

Note that protected operations are supposed to be very short. The time needed to

spawn tasklets might exceed the recommended time inside a protected operation.

3.5 Use of atomics and programmer specific synchronization

If the programmer uses atomic variables or some specific synchronization code outside

of the Ada synchronization features, then no guarantees can be provided as is the case

for the use of these mechanisms in the presence of concurrent Ada tasks.

4 Real-time

4.1 Model

We propose a model of real-time parallel programming where real-time tasks map one-

to-one with Ada tasks. The execution of the Ada task generates a (potentially recurrent)

DAG of tasklets, running on a shared memory multiprocessor. 6

The use of enhanced parallel programming models such as this one proposed for

Ada, will allow for the compiler (with optional parameters/annotations provided by the

programmer) to generate the task graphs (similar to the Parallel Control Flow Graphs

[14]) which can be used to perform the required schedulability analysis [15].

As specified in the model [4] and presented in the introduction, tasklets run at the

priority (and/or with the deadline) of the associated task. We consider that each Ada

task (or priority) is provided with a specific executor pool, where all executors carry

the same priority and deadline of the task and share the same budget and quantum.

Tasklets run-to-completion in the same executor where they have started execution,

although the executor can be preempted by higher-priority (or nearer deadline) execu-

tors, or even the same priority/deadline if the task’s budget/quantum is exhausted.

The executors and the underlying runtime guarantee progress as defined in section

3, and if only limited progress is available, offline analysis is able to determine the

minimum number of executors required for each task.

Each task, and therefore its DAG of tasklets, execute within the same dispatching

domain [8, section D.16.1]. A dispatching domain is a subset of the processors that is

scheduled independently from all other processors. Henceforth we focus on a single

dispatching domain, and when we talk of global scheduling we mean that the (on-line)

scheduling (dispatching) algorithm allows any given tasklet of a task to be scheduled

6 We recognize that it is difficult if not impossible to scale shared memory to hundreds or thou-

sands of cores. One possibility is to address scalability through clustering, where cores are

divided into shared memory clusters (current architectures use 4/8/16 cores per cluster), with

clusters communicating through a network on chip. Scalability is dependent on data place-

ment: if the problem is such that the compiler can partition the data into the local memory of

each core, the number of cores can actually increase. The communication can be explicit or

transparent (depending on design decisions, and the availability of tools to partition the data

set and create the required communication patterns).

on any processor within the task's dispatching domain, while fully partitioned schedul-

ing means that the on-line scheduling algorithm relies on tasklets being pre-assigned to

individual processors by some off-line analysis. We also can consider intermediary

strategies where some tasklet migration is permitted, but not necessarily sufficient to

ensure an absence of priority inversion within the domain. We consider part of being a

global scheduling approach that there is no priority inversion within the domain: at any

given time, there is never a tasklet running on a processor in the dispatching domain if

there are tasklets of tasks with a higher priority (or earlier deadline) awaiting execution.

Figure 6. Mapping of tasklet DAG (left) to a general DAG (middle) and

synchronous fork-join (right)

This model allows for the tasklet DAG to be converted (Figure 6) to a DAG of sub-

tasks (Figure 6 middle) as commonly used in the real-time systems domain [16, 17, 18].

Response-time analysis techniques can also be used [19, 20] (restricted to non-nested

tasklets), as the tasklet model is actually more restricted than the general real-time DAG

model, as it considers a fully-strict fork-join, thus a synchronous model can be used

[18] (Figure 6 right).

It is important to note that the challenges of providing high-reliability systems with

real-time guarantees in the presence of parallelized execution are still far from being

solved. When the number of processors increases, it is no longer possible to separate

schedulability and timing analyses. Execution time is highly dependent on the interfer-

ence on accessing hardware resources (e.g. memory) from other parallel tasks, which

is dependent on how these are mapped and scheduled. The analysis becomes potentially

unfeasible or extreme pessimism must be incorporated.

The work in this paper recognizes this challenge. The path of the work is to allow

the compiler, static tools and the underlying runtime to derive statically known tasklet

B2

A2

A1

B1 C

D E

A1

B1 C

D E

B2

A2

A1

B1 C

D E

B2

A2

graphs and use this knowledge to guide the mapping and scheduling of parallel compu-

tation, reducing the contention at the hardware level. Co-scheduling of communication

and computation [21] can further remove contention, and requires knowledge from the

application structure. But with the increased complexity and non-determinism of pro-

cessors, it is not easy to recognize a solution in the near future.

For less time-critical firm real-time systems, the model allows for more flexible

implementations, using less pessimistic execution time estimates (e.g. measurement-

based), and work-conserving scheduling approaches.

We note finally that, as described in section 2, an Ada task might potentially gener-

ate several different DAGs (actual execution will only generate one), and therefore the

offline schedulability analysis needs to take into consideration all potential DAGs.

Works that consider the general workload of a graph can still be used, by taking the

maximum workload and critical path length among all the potential graphs (with a less

optimal result), or approaches that use a single tighter worst-case graph can be consid-

ered [22], which allow one to reduce the complexity of the interference analysis.

4.2 Blocking issues and real-time

Common real-time models assume that tasks execute an infinite number of iterations

of the same code (each iteration being called a job), with each release of the code being

performed with specific time intervals (cyclic or periodic tasks), or triggered by an

event (aperiodic or sporadic). It is also common that blocking (or voluntary-suspension)

is not allowed inside the iteration of the loop. Blocking calls (such as delay-until or

entry calls) are only allowed at each iteration start, to suspend the task until release.

For such cases, parallel execution should follow the same rules as sequential, and

parallel code should not block or self-suspend during execution. However, as shown in

section 3, the notion of blocking in the parallel model is not as straightforward as in

sequential. In particular, calling a closed entry, which blocks a task in a sequential

setting, might not block the task in a parallel setting if the call is executed in the context

of a tasklet when other tasklets of the same task are progressing in parallel.

Another issue is that spawning tasklets might cause the executor of the parent tasklet

to need to wait for some of its children tasklets to finish before being able to proceed.

Although this is not considered blocking (see section 3), it is nevertheless a voluntary

suspension of execution.

Therefore, in order to simplify, we propose that for these systems, the following addi-

tional rules apply: (i) potentially blocking operations are not allowed when executing

in a potentially parallel setting (i.e. if more than one tasklet exists); and (ii) an executor

that spawns children tasklets, such as in a parallel block, or loop, is required to execute

children tasklets, if available, or spin as if executing the parent tasklet.

4.3 How to control parallelization

For the general case, the compiler is assumed to have the ability to make the best deci-

sions on how to manage the parallelism associated with each POP. For real-time sys-

tems however, it may be necessary to allow the programmer to have more control of

the parallelism, since the analysis might need to consider how the parallelism is imple-

mented in greater detail. Certain types of analysis might not work well with the default

choices made by the compiler, but by giving more control to the programmer, the pro-

grammer can guide the compiler to produce an implementation that supports the best

available analysis methods, in particular for more restricted models.

Table 1 summarizes a set of controls for the programmer to fine tune the parallelism,

and control its implementation, while Figure 7 presents examples of their use.

Table 1. Parallelism Controls

Control Interpretation Typical

Specification
Executors aspect of

task or task type

Restricts number of execu-

tors for task or task type, un-

less Unbounded is specified

Number of cores plus

number of tasklets that

might undergo unbounded

blocking

Max_Executors pa-

rameter for dispatching

domain Create oper-

ation

Restricts total number of ex-

ecutors that may be allocated

to the domain; sum of Ex-

ecutors aspects must not

exceed this value

Sum of Executors as-

pects for tasks in domain

Potentially_Un-

bounded_Block-

ing aspect of subpro-

gram

When False, disallows un-

timed, unconditional entry

calls; defaults to same value

as Potentially_Blocking as-

pect

Specifying False allows a

tasklet to perform delays

but not potentially un-

bounded entry calls.

No_Executor_Mi-

gration restriction

Disallows executor migra-

tion from one processor to

the next during its execution

Can be specified in a Re-

strictions pragma to re-

strict scheduling mecha-

nisms

Tasklet_Count as-

pect of a discrete sub-

type, an array type, an

iterator type, or an

iterable container type

Limits number of tasklets

that may be spawned in a

single iteration

Typically the number of

processors, or the number

of executors for the en-

closing task.

No_Im-

plicit_Paral-

lelism restriction

Restricts the compiler from

inserting parallelism at

places not explicitly identi-

fied as parallel

Can be specified in a Re-

strictions pragma to en-

sure tasklets are only

spawned at programmer-

defined points

No_Nested_Par-

allelism restriction

Restricts the programmer

from using nested explicitly

parallel constructs, and dis-

allows the compiler from

implicitly inserting such

constructs

Can be specified in a Re-

strictions pragma to en-

sure tasklet DAGs remain

one-level structures, to

simplify analysis

task My_Task with Executors => 4;

function Create (First, Last : CPU;

 Max_Executors : Natural) return Dispatching_Domain;

…

My_Domain : Dispatching_Domain := Create (1, 4, Max_Executors => 8);

procedure P with Potentially_Blocking => True,

 Potentially_Unbounded_Blocking => False;

subtype Loop_Iterator is Natural range 1 .. 1000

 with Tasklet_Count => 10;

…

for I in parallel Loop_Iterator loop

 Array (I) := Array (I) + I;

end loop;

pragma Restrictions (No_Implicit_Parallelism, No_Nested_Parallelism);

Figure 7. Examples of Parallelism Controls

4.4 Other Real-Time issues

4.4.1 Mixed Priorities and Per-Task Deadlines

There are approaches that require setting different priorities/deadlines for parallel com-

putation (e.g. some decomposition methods [18]), but the model considers all tasklets

to inherit the priority/deadline of the Ada task that contains the POP. It both simplifies

the creation and scheduling of tasklets (all tasklets share all attributes of the parent task,

including ID and priority), and allow for priority and deadline to represent the relative

urgency of the job executing. If priority/deadline boosting is required, it is only the

executor that is actually affected that will have this change.

4.4.2 Changing Task Priority and other task attributes

Under the rules proposed above, when a tasklet in a DAG executes Set_Priority, it is

the base priority of the parent task and all tasklets of that task currently executing that

are changed. Under Ada rules [8, section D.5.1], this change happens as soon as the

task is outside a protected action. Care should be taken that calls to change a priority or

deadline are executed by only a single tasklet, and ideally when it is the only active

tasklet. It is likely an error to let multiple tasklets change the priority or deadline, espe-

cially if with different values. The same applies to changing other task attributes.

4.4.3 Timing Events

A timing event [8, section D.15] is handled by a protected object, with a protected pro-

cedure called if the event occurs, and a protected procedure or entry used to handle the

event. Care is needed to ensure that the presence of multiple tasklets does not result in

multiple event creations, nor in multiple tasklets attempting to handle the same event.

4.4.4 Execution Time Timers

Execution time timers measure the amount of time that a single task (or group of tasks

or interrupt routine) uses and notifies a handler if that time is exceeded. Under our

proposal, the execution of a tasklet is reflected in the budget of its task. The overhead

of managing the parallel update of the budget may make this unfeasible, except if larger

quanta are used or budget updates are not immediate (which may lead to accuracy er-

rors). Specific per core quanta may be used to address this issue.

5 Conclusion

This paper presented an execution model for the execution of tasklet graphs (previously

proposed for fine-grained parallelism in Ada), based on the abstract notion of executors,

which allows reasoning about the execution model in terms of progress guarantees,

rather than on the actual implementation. The paper also shows how this model can be

used for real-time systems, complementing the model with a proposal for mechanisms

the programmer can use to explicitly specify the parallel behavior.

Although no implementation exists of the complete proposal, parallelism only

makes sense to provide faster computation. This work brings to the Ada world models

which are widely used in other fine-grained parallelization approaches, where for the

general case efficient solutions exist. For the case of real-time systems, addressing par-

allelism is still a challenge, and more research and experimentation is needed.

Acknowledgements

The authors would like to thank Ted Baker and the anonymous reviewers for the valu-

able comments and suggestions. This work was partially supported by General Dynam-

ics, Canada, the Portuguese National Funds through FCT (Portuguese Foundation for

Science and Technology) and by ERDF (European Regional Development Fund)

through COMPETE (Operational Programme ‘Thematic Factors of Competitiveness’),

within project FCOMP-01-0124-FEDER-037281 (CISTER) and ref. FCOMP-01-

0124-FEDER-020447 (REGAIN); by FCT and EU ARTEMIS JU, within project

ARTEMIS/0001/2013, JU grant nr. 621429 (EMC2), and European Union Seventh

Framework Programme (FP7/2007-2013) grant agreement n° 611016 (P-SOCRATES).

References

[1] CPLEX, C Parallel Language EXtensions study group, archives at

http://www.open-std.org/mailman/listinfo/cplex, last Accessed March 2015.

[2] Working Draft, “Technical Specification for C++ Extensions for Parallelism”, available

at http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf, last Accessed

March 2015.

[3] S. Michell, B. Moore, L. M. Pinho, “Tasklettes – a Fine Grained Parallelism for Ada on

Multicores”. International Conference on Reliable Software Technologies – Ada-Europe

2013, LNCS 7896, Springer, 2013.

[4] L. M. Pinho, B. Moore, S. Michell, “Parallelism in Ada: status and prospects”. Interna-

tional Conference on Reliable Software Technologies – Ada-Europe 2014, LNCS 8454,

Springer, 2014.

http://www.open-std.org/mailman/listinfo/cplex

[5] T. Taft, B. Moore, L. M. Pinho, S. Michell, “Safe Parallel Programming in Ada with Lan-

guage Extensions”. High-Integrity Language Technologies Conference, October 2014.

[6] Intel Corporation, Cilk Plus, https://software.intel.com/en-us/intel-cilk-plus, last Ac-

cessed March 2015.

[7] OpenMP Architecture Review Board, “OpenMP Application Program Interface”, Version

4.0, July 2013.

[8] ISO IEC 8652:2012. Programming Languages and their Environments – Programming

Language Ada. International Standards Organization, Geneva, Switzerland, 2012.

[9] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalingiah, M. Smith, D. Stein, J.

Voll, M. Weeks, and D.Williams, “Beyond Multiprocessing: Multithreading the SunOS

Kernel”. Proceedings of the Summer USENIX Conference, June 1992.

[10] B. Moore, S. Michell and L. M. Pinho, “Parallelism in Ada: General Model and Ra-

venscar”. 16th International Real-Time Ada Workshop, April 2013.

[11] T. Riegel, “Light-Weight Execution Agents”, October 2014, available at

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4156.pdf, last accessed

March 2015.

[12] G. Bosch, “Lock-free protected types for real-time Ada”. 16th International Real-Time

Ada Workshop, April 2013.

[13] R. D. Blumofe, C. E. Leiserson. “Scheduling multithreaded computations by work steal-

ing”. J. ACM, 46:720-748, September 1999.

[14] L. Huang, D. Eachempati, M. W. Hervey, B. Chapman, “Extending Global Optimizations

in the OpenUH Compiler for OpenMP”. Open64 Workshop at CGO, 2008.

[15] L. M. Pinho, E. Quiñones, M. Bertogna, A. Marongiu, J. Carlos, C. Scordino, M. Ram-

poni, “P-SOCRATES: a Parallel Software Framework for Time-Critical Many-Core Sys-

tems". Euromicro Conference on Digital System Design, August 2014.

[16] S. Baruah, “Improved multiprocessor global schedulability analysis of sporadic DAG task

systems”. 26th Euromicro Conference on Real-Time Systems, July 2014.

[17] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah. "Analysis of Federated and

Global Scheduling for Parallel Real-Time Tasks". 26th Euromicro Conference on Real-

Time Systems, July 2014.

[18] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill. "Multi-core real-time scheduling for

generalized parallel task models". Real-Time Systems Vol.49 No.4, July 2013.

[19] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho. "Response-time analysis of syn-

chronous parallel tasks in multiprocessor systems". 22nd International Conference on

Real-Time Networks and Systems, October 2014.

[20] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Dobel, and H. Hartig. "Response-time

analysis of parallel fork-join workloads with real-time constraints". 25th Euromicro Con-

ference on Real-Time Systems, July 2013.

[21] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, R. Kegley, “A Predicta-

ble Execution Model for COTS-based Embedded Systems”, 17th IEEE Real-Time and

Embedded Technology and Applications Symposium, April 2011.

 [22] J. Fonseca, V. Nélis, G. Raravi, L. M. Pinho, "A Multi-DAG Model for Real-Time Paral-

lel Applications with Conditional Execution", 30th ACM Symposium on Applied Com-

puting, April 2015.

https://software.intel.com/en-us/intel-cilk-plus
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4156.pdf

