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I. INTRODUCTION

Few years ago, the frontier separating the real-time embedded domain from the high-performance computing domain was neat
and clearly defined. Nowadays, many contemporary applications no longer find their place in either category as they manifest
both strict timing constraints and work-intensive computational demands. The only way forward to cope with such orthogonal
requirements is to embrace the parallel execution programming paradigm on the emergent scalable and energy-efficient multi-
core/many-core architectures.

Although the parallel programming paradigm is nothing fundamentally new, the real-time community has only recently started
to actively investigate the repercussions of using parallel tasks in the analysis of the worst-case behavior of the systems. Several
parallel task models and respective schedulability analysis have been proposed in order to enrich classical schedulability theory
with an answer to these new challenges [1]–[4]. Small steps have been taken so far, and the progress is still strongly coupled to
the well-established literature for sequential tasks.

The most general model studied by the real-time community is the Directed Acyclic Graph (DAG) model [3]. It reflects so-
phisticated types of dynamic, fine-grained and irregular parallelism that can be achieved by using, e.g., the OpenMP programming
model [5]. The resulting individual computational units (nodes of the DAG) are conventionally numerous and short-living for
speed up purposes. Moreover, the nodes are mapped to OpenMP threads, and then scheduled through OS threads, according to a
rather complex run-time dispatcher. Current works bypass all these run-time decisions and focus solely on the OS thread-to-core
scheduling in a black-box manner. Unfortunately, the dynamic nature of the standard run-time manager along with the flexibility
of the model complicate the derivation of accurate worst-case estimates both on execution time and on response time, which is
even further aggravated by the choice of global scheduling schemes. In the following we describe one of the major sources of
pessimism associated to such settings.

II. PROBLEM DESCRIPTION

Under the real-time DAG model, parallel tasks are typically characterized by a minimum inter-arrival time Ti, an end-to-
end relative deadline Di, and a directed acyclic graph Gi = (Vi, Ei). Each node v ∈ Vi represents a sequential sub-task and
is associated with a wost-case execution time (WCET), whereas each arc (va, vb) ∈ Ei represents a unidirectional precedence
constraint between two different nodes, with the interpretation that sub-task vb cannot begin execution until sub-task va completes.
No other restriction is imposed by the model (e.g., global synchronization points are not mandatory and there is no limit on
the degree of parallelism). Additionally, critical path Li and workload Wi are two metrics of interest also defined in the model.
Critical path corresponds to the longest (w.r.t. WCET) path of sub-tasks for which there are arcs connecting every two adjacent
sub-tasks. Workload is the maximum execution requirement of the task, i.e. the sum of all nodes WCETs. From a feasibility
perspective, only the following two necessary (but not sufficient) conditions must be met: 1) Li ≤ Di, and 2)

∑ Wi

Ti
≤ m, where

m is the number of cores in the system.

Regarding the priority assignment scheme, most of the schedulability-related works that assume the DAG model consider
a task- or job-level priority system, whether the priorities are static or dynamic. That is, no unique priorities are assigned to
the individual sub-tasks, and thus all sub-tasks are assumed to inherit the priority of the parent task/job (i.e. the priority of the
DAG). In this sense, the actual sub-task scheduling is unknown in the analysis. In practice, it is the run-time environment who
decides on-the-fly which sub-tasks are executed first. Without entering into details, FIFO or LIFO, in conjunction Breadth-First
Scheduling (BFS) or Work-First Scheduling (WFS), are the usual policies enforced by the run-time environment to arbitrate
the sub-task-to-thread assignment. Therefore the dispatching decisions greatly depend on the time instant at which sub-tasks are
released, which in turn varies according to the completion time of their predecessors. If on top of that we consider a global
scheduling algorithm, then broadly speaking, ready sub-tasks may execute anywhere and in many different orders.

Due to this flexibility, interference of a DAG task on itself (referred as “self-interference” hereinafter) becomes a problem
that should be considered by the scheduling algorithms and subsequently taken into account by the timing analysis in order to
improve the utilization of the systems. Self-interference corresponds to the unexpected delay caused on the response time of a
parallel task by its own sub-tasks. Although in general self-interference is an intrinsic property of parallel tasks, the main issue
under the specified settings is that self-interference is not static. Meaning that two non-dependent sub-tasks may delay each
other’s execution in different instances of the same DAG task. The self-interference is thus mutual. Consequently, every path is
penalized from a worst-case perspective. Let us consider a DAG task τi (as depicted in Fig. 1a) with deadline equal to 10 to
be globally scheduled on a 2 cores platform. No other tasks co-exist in the system. Fig. 1b shows a schedule when sub-tasks
v4 and v5 are dispatched first, resulting in a response time of 9 which clearly demonstrates that τi is feasible. However, it is
possible that sub-tasks v6 and v7 get picked ahead, for instance due to a marginal early completion of v3. In this scenario,
the produced schedule (see Fig. 1c) causes τi to miss its deadline by 1 time unit, making the overall system infeasible. The
fundamental difference resides on the self-interference shifted partially upon the critical path.



(a) DAG struture of τi. Li = 8 and
Wi = 16.

(b) A feasible global schedule for τi. (c) A infeasible global schedule for τi.

Fig. 1: Feasibility problem of a DAG task τi with Di = 10, under global scheduling.

While this simple example illustrates how dynamic self-interference may affect the feasibility of DAG tasks under global
scheduling, the problem is further exacerbated when other tasks contend for access to the cores. The main reason behind relates
to the fact that multiple paths contribute to the worst-case response time of lower priority tasks, and each one of such paths
must be previously bounded according to the self-interference pattern that delays them the most.

It should also be noted that, although this paper focuses on core-level scheduling problems, the concept of self-interference
propagates to the other sub-systems (e.g., memory access), posing even more challenges for WCET and overhead analysis.

III. DISCUSSION ON POTENTIAL SOLUTIONS

The self-interference problem has its roots on a too flexible software stack. In this section, we briefly argue about three
different ways to restrict this flexibility and thus confine the problem. The first solution focuses on the sub-task scheduling, the
second on the sub-task affinity, and the third on the DAG generation. Each one of the potential solutions minimizes the problem
to a limited extent, hence a combination of them may lead to more satisfactory results.

1) 2-level priorities. A separated fixed set of priorities is associated with the sub-tasks of each DAG task, so that the
sub-task-to-thread assignment is no longer decided on-the-fly and the task scheduling is unaffected. Primarily the tasks
dispute the cores, and only then the sub-tasks of the selected task contend for the access to its threads of execution.
Sub-tasks run to completion because the preemption cost is generally unbearable for fine-grained parallel programming
frameworks. Advantages: the self-interference is not completely static but it is easier to bound. Disadvantages: complexity
of the queue management; how to assign priorities to the sub-tasks?

2) Partitioned scheduling. Each sub-task can execute only in one core. Different sub-tasks of the same DAG task may
execute on different cores. The dispatching of sub-task is still done on a FIFO or LIFO basis. Advantages: the number
of self-interference scenario may be largely reduced; some cores can be dedicated to critical paths with minimal slack;
simplifies WCET-related analysis. Disadvantages: mapping problem is very likely to be NP-Hard.

3) Extra precedence constraints. Based on the feedback of timing analysis, create a procedure to provide the application’s
code with additional precedence constraints between certain sub-tasks. This kind of extra-functional dependencies
can be enforced using OmpSs [6]. Advantages: optimize worst-case paths by establishing some order of execution.
Disadvantages: cumbersome iterative process; restricts the degree of parallelism.
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