

Methodologies for the WCET Analysis

of Parallel Applications

on Many-core Architectures

Conference Paper

CISTER-TR-150607

2015/08/26

Vincent Nélis

Patrick Meumeu Yomsi

Luis Miguel Pinho

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47141464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Conference Paper CISTER-TR-150607 Methodologies for the WCET Analysis of Parallel ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Methodologies for the WCET Analysis of Parallel Applications on Many-core

Architectures

Vincent Nélis, Patrick Meumeu Yomsi, Luis Miguel Pinho

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: nelis@isep.ipp.pt, pamyo@isep.ipp.pt, lmp@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

There is an increasing eagerness to deploy and execute parallel applications on many-core infrastructures, pre-

serving the time-predictability of the execution as required by real-time practices to upper-bound the response

time of the embedded application. In this context, the paper discusses the application of the currently-available

WCET analysis techniques and tools on such platforms and with highly parallel activities. After discussing the pros

and cons of all different methodologies for WCET analysis, we introduce a new approach that is developed within

the P-SOCRATES project.

Methodologies for the WCET Analysis of Parallel
Applications on Many-core Architectures

Vincent Nélis, Patrick Meumeu Yomsi, Luı́s Miguel Pinho
CISTER/INESC-TEC, Polytechnic Institute of Porto, Portugal

Email: {nelis, pamyo, lmp}@isep.ipp.pt

Abstract—There is an increasing eagerness to deploy and
execute parallel applications on many-core infrastructures, pre-
serving the time-predictability of the execution as required by
real-time practices to upper-bound the response time of the
embedded application. In this context, the paper discusses the
application of the currently-available WCET analysis techniques
and tools on such platforms and with highly parallel activities.
After discussing the pros and cons of all different methodologies
for WCET analysis, we introduce a new approach that is
developed within the P-SOCRATES project.

I. INTRODUCTION

Traditionally, High Performance Computing (HPC) has
been the realm and primary focus of specialized industries
and specific groups within academia as it demands analytics
and simulation applications that require large amounts of data
to be processed. Similarly, researchers and industry in the
embedded computing (EC) domain have focused mainly on
specific systems with specialized and fixed set of functionali-
ties for which timing requirements prevailed over performance
requirements. Today, both the HPC and EC domains are
broadening their initial focus to other application areas due to
the ever-increasing availability of more powerful processing
platforms, but therefore they need affordable and scalable
software solutions [1], [2].

The need for energy-efficiency (in the HPC domain) and
flexibility (in the embedded computing domain), that come
along with Moore’s law greedy demand for performance
and the advancements in the semiconductor technology, have
progressively paved the way for the introduction of many-core
systems — i.e., multi-core chips containing a high number of
cores (tens to hundreds) — in both domains.

Today, many-core computing fabrics are being integrated
together with general purpose multi-core processors to provide
a heterogeneous architectural harness that eases the integra-
tion of previously hard-wired accelerators into more flexible
software solutions. The HPC computing domain has seen the
emergence of accelerated heterogeneous architectures, most
notably multi-core processors integrated with General Purpose
Graphic Processing Units (GPGPU) [3], [4]. Examples of
many-core architectures in the HPC domain include the Intel
MIC [5] and Intel Xeon Phi [6] (features 60 cores).

Similarly, the real-time embedded domain has seen the
emergence of the STMicroelectronics P2012/STHORM [7]
processor, which includes a dual-core ARM-A9 CPU coupled
with a many-core processor (the STHORM fabric); and the
Kalray MPPA (Multi-Purpose Processor Array) [8], which
includes four quad-core CPUs coupled with a many-core
processor. One can also cite the Parallela from Epiphany and
the Keystone II from Texas Instrument. In most cases, the
many-core fabric acts as a processing accelerator [9].

The introduction of such platforms has set up the basic
environment that allowed for the deployment of new types of
applications sharing objectives and requirements from both the
EC and HPC domains. For such applications, the correctness
of the result depends on both performance and real-time
requirements, and the failure to meet those is critical to the
functioning of the system. Real-time Complex Event Process-
ing (CEP) systems1 [10] are an example of such applications;
they challenge the performance capabilities by crossing the
boundaries between the two domains.

It is in that context that the project P-SOCRATES started
in October 2013. P-SOCRATES stands for “Parallel Software
Framework for Time-Critical Many-core Systems”. It is an
European project which intends to allow current and future
applications with high-performance and real-time requirements
to fully exploit the huge performance opportunities brought
by the most advanced many-core processors, whilst ensuring
a predictable performance and maintaining (or even reduc-
ing) development costs of applications. The purpose of P-
SOCRATES is to develop an entirely new design framework,
from the conceptual design of the system functionality to
its physical implementation, to facilitate the deployment of
standardized parallel architectures in all kinds of systems. We
refer the reader to [11] for the details about the software stack
and computation model proposed by the project consortium
to parallelize applications on a many-core architecture while
providing guarantees on their response times.

The application use-cases investigated in P-SOCRATES
share both high performance and real-time requirements. That
is, they demand for massive parallel execution and are subject
to strict timing requirements according to which they must
be guaranteed to “react” within pre-defined time bounds. The
said “reaction” may be understood as simply outputting the
results of a basic computation, but may also mean engaging
in complex interactions with the surrounding environment.
Here we can see that these two requirements are somewhat
orthogonal. While strict timing requirements advocate the use
of simple and predictable hardware architectures that allow
for the computation of tight upper-bounds on the software
response time, the high performance requirements demand
for more computational performance, which weighs in favor
of specialized, complex, and optimized multi-core and many-
core processors on which the execution of the application can
be massively parallelized. However, it is not straightforward
how event-based embedded applications can be structured in
order to take advantage and fully exploit the parallelization
opportunities and achieve higher performance and energy-

1A real-time CEP system is a system in which the data coming from mul-
tiple event streams are correlated in order to extract and provide meaningful
information.

efficient computing.

The P-SOCRATES project envisions this necessity to
bring together next-generation many-core accelerators from the
embedded computing domain with the programming models
and techniques from the high-performance computing domain,
supporting this with real-time methodologies to provide timing
predictability. Among the many technical challenges set up by
the goals and objectives of the projects, there is the need of
designing new techniques to provide guarantees on the worst-
case execution time (WCET) of the application. There are
different approaches to WCET analysis, commonly referred
to as static, measurement-based, hybrid, and probabilistic. The
objective of this paper is twofold.

1) We want to summarize these methodologies and discusses
their up and downsides.

2) We investigate if and how these techniques could be applied
when considering an execution environment as complex as that
defined within the P-SOCRATES project.

Organization—The rest of the paper is organized as follows.
Section II presents an overview of the state-of-the-art WCET
techniques. Specifically, this section discusses the advantages
and drawbacks of static, measurement-based, hybrid and prob-
abilistic WCET analysis approaches. Then, Section III out-
lines the application model and software stack defined in P-
SOCRATES. Section IV discusses which of the summarized
methodologies could be suitable and applicable in the con-
text of P-SOCRATES. Section V presents the P-SOCRATES
envisioned methodology and its innovative aspect and finally,
Section VI concludes the paper.

II. OVERVIEW OF THE STATE-OF-THE-ART WCET
TECHNIQUES

Most of timing analysis tools focus only on determining
an upper-bound on the (WCET) of a program or a code
fragment that runs without interruption and in isolation, i.e.
these tools do not consider all the interferences that the
analyzed program may suffer when run concurrently with other
tasks or programs on the same hardware platform. This means
that those tools typically ignore all execution interferences
due to the contention for shared software resources (e.g., data
shared between several tasks) and shared hardware resources
(e.g., shared interconnection network). Interferences from the
operating system (OS) which frequently re-schedules and
interrupts the programs are also ignored by WCET analyzers.
All these interactions between the analyzed task and the OS,
and between the analyzed task and all the other tasks running
in the system, are usually handled and analyzed separately and
factored in the analysis at a later stage, e.g. in the schedula-
bility analysis. In any case, for the timing requirements to be
fulfilled, by no means these interferences can be ignored at the
schedulability analysis level.

WCET analysis can be performed in a number of ways
using different tools, but the main methodologies employed
can be broadly classified in four categories: (1) Static anal-
ysis techniques, (2) Measurement-based analysis techniques,
(3) Hybrid analysis techniques, and (4) Probabilistic analysis
techniques. Note that the first three methodologies are usually
recognized as equally important and efficient whereas the
fourth one is more recent and thus less results are available
as of now. Broadly speaking, measurement-based techniques
are suitable for software that is less time-critical and for which

Fig. 1. Example distribution of execution time (picture taken from [12])

the average-case behavior (or a rough WCET estimate) is more
meaningful or relevant than an accurate estimate. For example,
systems where the worst-case scenario is extremely unlikely
to occur and/or the system can afford to ignore it if it does
occur. For highly time-critical software, where every possible
execution scenario must be covered and handled, the WCET
estimate must be as reliable as possible and static or hybrid
methods are therefore more appropriate. Probabilistic analysis
techniques are also designed for safety-critical systems to
derive safe estimated execution time bounds but in our opinion
they are not yet sufficiently mature to report on their efficiency
and applicability.

Figure 1 illustrates how different timing estimates relate to
the WCET and best-case execution time (BCET) for a single
sequential program run in isolation. This contrived example
illustrates the dependence of the execution time of a program
on (1) the value of its input parameters and (2) its interactions
with the system resources. The dark bars show the actual
probability distribution of its execution time, delimited by its
minimum (the BCET) and maximum (the WCET). The lighter
bars show the set of execution times that have been measured
during simulations, which is a subset of all executions. Even
in “simple” single-core systems, for both static analysis tools
and measurements-based tools, in most cases the program
state space and the hardware complexity are too large to
exhaustively explore all possible execution scenarios of the
program. This means that the measured times are likely to be
optimistic and the estimated times are likely to be pessimistic,
i.e., the measured times will in many cases overestimate the
actual BCET and underestimate the actual WCET, while the
approximated estimated times will in many cases underesti-
mate the actual BCET and overestimate the actual WCET.
The next four sections introduce each methodology and discuss
their respective benefits and drawbacks.

A. Static WCET analysis techniques

Phase 1: Flow analysis. During this phase all the informa-
tion about the potential program execution paths is derived.
Specifically this phase builds a control flow graph that cap-
ture all these execution paths with the aim of identifying
the worst path w.r.t the execution time. The flow analysis
mostly focuses on computing upper bounds on the number of
iterations in each loop and on the depth of every recursive call.
Although automatic methods to compute these bounds have
been proposed by the research community, most of the tools
that are available today still require the code to be annotated
by the application developer. Another main objective of the
flow analysis is to identify infeasible execution paths, i.e. paths
that are executable in theory according to the control flow
analysis, but not in practice considering the semantics of the

program and the set of possible values of the input arguments.
Discarding infeasible paths at an early stage of the analysis
considerably reduces the search space when trying to identify
the longest path.

Phase 2: Low-level analysis. During this phase the execution
time of every atomic part of the code (e.g., instructions, basic
blocks or larger code sections) is estimated from a model of the
target architecture. Low-level analysis methods typically use
models of all the hardware components and their arbitration
policies, including CPU caches, cache replacement policies,
write policies, instruction pipeline, memory bus and their
arbitration policies, etc. These models are usually expressed
in the form of complex mathematical abstraction for which a
worst-case behavior can be inferred.

Phase 3: Final WCET estimation. During this phase, the
derived flow (Phase 1) and timing information (Phase 2) are
combined into a WCET estimate.

Pros & Cons There are few advantages and drawbacks of
using static analysis techniques that rely on mathematical
models.

It eliminates the need of having the actual hardware
available, which removes the non-negligible effort and cost
of acquiring and setting up the target platform.

It enables safe WCET upper-bounds to be derived without
actually running the program on the target platform while still
considering the influence of the state changes in the underlying
hardware [13]. State changes include, e.g. a cache line being
evicted, a pipeline being totally flushed out, etc.

These approaches rely heavily on having an accurate model
of the timing behavior of all the components of the target
hardware architecture as well as their management policies,
including modeling features like pipelines and caches that
substantially affect the execution time of the code being exe-
cuted. Although the embedded market used to be traditionally
dominated by simple and predictable processors (which used
to be moderately “easy” to model and allowed for deriving
safe and tight bounds), with the increased computational
needs of modern embedded systems, designers have moved to
more complex processors which are now mainly designed for
performance and not for predictability. For this new generation
of processors, designing an accurate hardware model is very
challenging, as all the intricacies contributing to the variation
in the tasks execution time (e.g., caches, pipelines, out-of-order
execution, branch prediction, automatic hardware prefetching,
etc.) should be captured by the model to provide safe and
sufficiently tight bounds. Because it is hardly feasible to
accurately model all these acceleration mechanisms and their
operation, static methods typically forbid their use and are
struggling to adapt to modern hardware architectures.

Besides the difficulty of modelling all these performance-
enhancement hardware features, it must also be noted that
generally, chip manufacturers do not publish the details of their
internal workings, which further complicates/makes impossible
the design of an accurate model.

Although static approaches have the advantage of providing
safe WCET bounds, they can be very pessimistic at times.
This is because generally, each hardware resource is modelled
separately and all the local worst-case estimates are then
composed together to form the final WCET bound. However

at runtime, it is often impossible for all these individual worst-
case execution scenarios to occur at the same time.

The hardware model must be thoroughly verified to ensure
that it indeed reflects the target hardware; failing to cap-
ture inherent performance enhancing features may result in
overestimations of the execution times, whereas capturing all
system states in a complex machine may lead to unacceptably
long analysis times. Besides, building and verifying the timing
model for each processor variant is expensive, time consuming,
and error prone. Custom variants and different versions of pro-
cessors often have subtle different timing behaviors rendering
timing models either incorrect, or unavailable.

It is very important to stress at this point that static
analysis techniques have been designed primarily to analyse
simple software codes meant to run on simple and predictable
hardware architectures. These targeted codes are typically
implemented by using high-level programming languages and
by obeying strict and specific coding rules to reduce the
likelihood of programmer error. This is one of the reasons why,
although those methods are very efficient for well-structured
safety-critical systems built on predictable and highly con-
trolled architectures, we came to the conclusion that they are
not appropriate for the type of applications and platforms
considered in P-SOCRATES. We will further detail this point
in Section V.

The modelling framework adopted by static analysis lends
itself to formal proofs which help in establishing whether the
obtained results are safe. Today, there are several static WCET
tools that are commercially available, including aiT [14] and
Bound-T [15]. There also exist several research prototypes,
including Chronos [16], developed at National University of
Singapore, Heptane [17], developed at the French National In-
stitute for Research in Computer Science and Control (INRIA)
IRISA in France, SWEET [18], developed at Malardalen Real-
Time Research Center (MRTC) in Sweden, and OTAWA [19]
from IRIT in France.

B. Measurement-based WCET analysis techniques

The traditional and most common method in industry to
determine program timing is by measurements. The basic
principle of this method follows the mantra that “the processor
is the best hardware model”. The program is executed many
times on the actual hardware, with different inputs and in
isolation, and the execution time is measured for each run by
instrumenting the source code at different points [20]. Each
measurement run exercises one execution path throughout the
program, and thus for a same set of input values several
thousands of program runs must be carried out to capture
variations in execution time due to the fluctuation in system
states. For those measurement-based approaches, the main
challenge is essentially to identify the set of input arguments
of the application that leads to its WCET.

Pros & Cons

Measurements are often immediately at the disposal of the
programmer, and are useful mainly when the average case
timing behavior or an approximate WCET value is of interest.

Most types of measurements have the advantage of being
performed on the actual hardware, which avoids the need to
construct a hardware model and hence reduce the tremendous
effort and cost of deriving the estimates.

Measurements require that the hardware is available, which
might not be the case for systems for which the hardware is
developed in parallel with the software.

It may be problematic to set up an environment which acts
like the final system.

The integrity of the actual code to be deployed in the
target hardware is somehow depleted by the addition of the
intrusive instrumentation code to measure the time, i.e., the
measurements themselves add to the execution time of the
analyzed program. This problem can be reduced, e.g., by
using hardware measurement tools with no or very small
intrusiveness, or by simply letting the added measurement
code (and thus the extra execution time) remain in the final
program. When doing measurements, possible disturbances,
e.g., interrupts, also have to be identified and compensated
for.

For most programs, the number of possible execution
paths is too large to do exhaustive testing and therefore,
measurements are carried out only for a subset of the possible
input values, e.g., by giving potential “nasty” inputs which
are likely to provoke the WCET, based on some manual
inspection of the code. Unfortunately, the measured times
will in many cases underestimate the WCET, especially when
complex software and/or hardware are being analyzed. To
compensate for this, it is common to add a safety margin to the
worst-case measured timing, in the hope that the actual WCET
lies below the resulting augmented WCET estimate. The main
issue is whether the extra safety margin provably provides a
safe bound, since it is based on some informed estimates. A
very high margin will result in resource over-dimensioning,
leading to very low utilization whereas a small margin could
lead to unsafe/under-estimated WCET bounds.

C. Hybrid WCET techniques

Hybrid approaches, as the name implies, combines the
merits of static and measurement-based analysis techniques.
First, they borrow the flow analysis phase from static methods
to construct a control flow-graph of the given program and
identify a set of feasible and potentially worst execution paths
(w.r.t. the execution time). Next, unlike static methods that use
mathematical models of the hardware components, hybrid tools
borrow their second phase from measurement-based techniques
and determine the execution time of the basic blocks of those
paths by executing them on the target platform or in cycle-
accurate simulators. To do so, the source code of the applica-
tion is instrumented with expressions (instrumentation points)
that indicate that a specific section of code has been executed.
These instrumentation points are typically placed along the
paths identified in the first phase as potentially leading to a
WCET. The application is then executed on the target hardware
platform or on the simulator to collect execution traces. These
traces are a sequence of time-stamped values that show which
parts of the application has been executed and for how much
time. Hybrid tools then produce performance metrics for each
part of the executed code and, by using the performance data
and knowledge of the code structure, they estimate the worst-
case execution time of the program.

Pros & Cons

Hybrid approaches do not rely on complex abstract models
of the hardware architecture.

They generally provide safe WCET estimates (i.e. higher
than the actual WCET) and those are tighter than the estimates
returned by static approaches (i.e. closer to the actual WCET).

The uncertainty of covering the worst-case behavior by the
measurement remains since it cannot be guaranteed that the
maximum interference and the worst-case execution scenario
has been experienced when collecting the traces during the
second phase.

It is required to instrument the application source code,
which may potentially pose the same issue of intrusiveness as
in measurement-based approaches.

Examples of hybrid WCET analysis tools include
RapiTime [21] and MTime, a research prototype from the Real-
Time Systems Group at Vienna University of Technology.

D. Probabilistic techniques

With the current hardware designs, the execution time of
a given application depends on the states of the hardware
components, and those states depend in turn on what has
been executed previously. A classic example of such a tight
relationship between the application and the underlying hard-
ware architecture is the execution time discrepancy that can be
observed when a program executes on a processor equipped
with a cache subsystem. During the first execution of the
program, every request to fetch instructions and data results
in a cache miss and must be loaded from the main memory.
At the second execution, most of these information are already
in the cache and need not to be reloaded from the memory,
which results in an execution time considerably shorter than
during the first run.

Because of this dependence to past events, the set of
measured execution times of a same program cannot be seen
as an i.i.d. (independent and identically distributed) random
variable and most statistical tools cannot be applied to analyse
the collected execution traces. The objective of probabilistic
techniques is to break this dependence to past events, so that
one can sample the execution behavior of an application and
then derive probabilistic estimates from that sample that are
not biased (or with an upper-bounded maximum bias) when
applied to the overall population, i.e. to the execution behavior
of the application under all circumstances and in all situations.

To achieve this ambitious goal, researchers are nowadays
working on modifying the hardware components and their
arbitration policies to make them behave in a stochastic
manner, without losing too much of their performance. For
example, by replacing the traditional LRU or pseudo-LRU
cache replacement policy for a policy that randomly chooses
the cache line to be evicted (and assume that every cache line
has the same probability to get evicted), the time overhead due
to cache penalties and cache line evictions can be analysed as
an i.i.d. random variable with a known distribution (see [22],
[23], [24] for examples of such techniques). If every source
of interference exhibits a randomized behavior with a known
distribution then the execution time itself can be analysed
statically.

Probabilistic approaches come in two flavors: static and
measurement-based. Both of them are deeply rooted in the
concept of ETP (Execution Time Profile) that represent the

probabilistic timing behavior of an execution component2. An
ETP is a pair of vector: a timing vector that enumerates all
possible times that the execution of that component may take,
and a probability vector that lists the probability of occurrence
for each execution time. Static probabilistic approaches derive
the ETPs of the individual execution components analytically,
from a mathematical model of the system. Individual ETPs are
then combined by convolutions to derive the timing behavior
of higher-level components, and this is done all the way
up till the ETP of the overall application is computed. In
contrast, measurement-based probabilistic techniques define
the timing and probability vectors of an ETP (typically the
ETPs are defined at the instruction level) by collecting runtime
measurements. Then, the current trend is to apply results
from the extreme value theory (EVT) framework to these
ETPs [26], [27]. In a nutshell these EVT-based solutions
organize the sample into multiple groups/intervals, analyse the
distribution of the local maxima within these intervals and
then estimate how far the execution time may deviate from the
average of that “distribution of the extremes”. Although recent,
probabilistic techniques have been the object of tremendous
research efforts in the last few years. Most of the breakthroughs
in that discipline have been made in the scope of the European
projects PROARTIS [28] and PROXIMA [29].

Pros & Cons

Probabilistic techniques provide safe and potentially tighter
WCET estimates than static and hybrid techniques.

They provide information not only on the WCET of a
program but on the complete spectrum of the distribution of
its execution time.

Require to modify the hardware to ensure that the compo-
nents exhibit a stochastic behavior.

As the i.i.d. requirement is hardly verified in currently
available platforms (especially COTS platforms), the applica-
bility of probabilistic techniques is limited as briefly discussed
in [30].

III. OVERVIEW OF THE P-SOCRATES APPLICATION
MODEL

In the P-SOCRATES project, the application comprises all
the software parts of the systems that operate at the user-
level and that have been explicitly defined by the user. The
application is the software implementation (i.e., the code) of
the functionality that the system must deliver to the end-user.
It is organized as a collection of real-time tasks.

A real-time (RT) task is a recurrent activity that is a part
of the overall system functionality to be delivered to the end-
user. Every RT task is implemented and rendered parallelizable
using OpenMP 4.0, the de facto standard parallel programming
model used in shared memory-based architectures such as the
Kalray MPPA. OpenMP version 4.0 has evolved from previous
versions to consider very sophisticated types of dynamic, fine-
grained and irregular parallelism.

A RT task is characterized by a software procedure that
must carry out a specific operation such as processing data,

2“An execution component represents at the finest granularity, an access to
a resource and at the highest, the entire program. In between, we can find
instructions (which may access several resources), basic blocks, functions,
etc.” (definition taken from [25])

computing a specific value, sampling a sensor, etc. It is also
characterized by a few (user-defined or computed) parameters
related to its timing behavior such as its worst-case execution
time, the frequency of its activation (aka period), the time
frame in which it must complete (aka its deadline), etc. Every
RT task comprises a collection of task regions whose inter-
dependencies are captured and modeled by a graph called the
extended task dependency graph (eTDG). We refer the reader
to [31] for a description of how to extract the TDG from an
OpenMP program.

A task region is defined at run-time by the syntactic
boundaries of an openMP task construct. For example:

#pragma omp task
{
// The brackets identify the boundaries
// of the task region

}

Since the task regions are defined in the code through the
openMP task constructs, we will henceforth refer to them as
openMP tasks.

An openMP task part (or simply, a task part) is a non-pre-
emptible (at least from the OpenMP view of the world) portion
of an openMP task. Specifically, consecutive task scheduling
points (TSP) such as the beginning/end of a task construct,
the synchronization directives, etc., identify the boundaries of
an openMP task part. In the plain OpenMP task scheduler
a running openMP task can be suspended at each TSP (not
between any two TSPs), and the thread previously running
that openMP task can be re-scheduled to a different openMP
task (subject to the task scheduling constraints).

In practice, very small programs (RT tasks) can potentially
create at runtime a very high number of tasks and thus task
parts that will all compete for the cores and the other shared
resources of the processor. The mapping of the task parts to the
OS threads and the scheduling of those threads on the cores
are typically very dynamic as they are carried out in the way
that balances the workload and maximizes the utilization of
the resources. As a consequence, it is practically infeasible to
know, at design time, which task parts will execute concur-
rently, which further complicates the interference analysis.

IV. WHICH TIMING ANALYSIS METHOD COULD BE USED
IN P-SOCRATES?

To re-iterate, the ultimate goal of P-SOCRATES is to
enable the use of practices coming from the high-performance
computing domain and apply them in a time predictable way
considering COTS many-core architectures. It is important
to note at this point something very important that is never
denied but often overlooked. WCET and interference analysis
in multi-cores is still a very active topic today. Despite all
the work and results in multi-core scheduling theory that
have been obtained in the last decade, there is currently no
industrially-accepted, sound and verified results whatsoever
(academic works aside) that is able to compute tight and safe
estimates of the WCET of program executed in a multi-core
environment. This is why our first step in P-SOCRATES was
an exploratory phase in which we endeavoured to figure out
which methodology could be used in the context of the project.
We investigated the current practices in WCET analysis and
came to the following conclusions.

For highly complex platforms and execution model as
that of P-SOCRATES (see [11] for the details on the P-
SOCRATES software stack), it is practically infeasible to
derive tight WCET estimates by using static timing anal-
ysis techniques. This is because the complexity of the P-
SOCRATES execution environment combined to the intrinsic
complexity of typical COTS hardware components, and also
sometimes the non-availability of their specification details,
make it difficult, if not impossible, to derive accurate models
of the execution environment. Static timing analysis tools are
designed primarily for applications safety-critical embedded
executed sequentially. Those systems generally provide a very
time-predictable and “inflexible” environment in which every
mapping and scheduling decision is statically taken at design-
time and is then final. Unlike those systems, the P-SOCRATES
software stack offers a much more complex and dynamic
runtime environment composed of multiple conceptual layers:
the code of the real-time tasks is executed in parallel by
being fractioned into OpenMP tasks, those tasks are mapped
to clusters, then to threads inside the clusters, and then these
threads are scheduled dynamically on the cores. The dynamic-
ity of the processor resource usage ensures a decent application
throughput (by maximizing the utilization of the available
computing resources) but it naturally impacts adversely on
its time-predictability. Besides, using static timing analysis
techniques in P-SOCRATES would also defeat one of the main
goals of the project: develop a flexible and generic framework
which can be “easily” ported to other platforms.

Traditional hybrid approaches are also not applicable as
the complexity of the software stack makes the static control
flow analysis step impossible. Since the workload execute in
parallel, even using static mapping approaches the total order
of execution of task parts is only determined at run-time, thus it
is infeasible to investigate all possible scenarios at design-time
to identify the worst-case execution flow/path. It is important to
re-iterate that traditional timing analysis techniques have been
designed primarily to analyse simple software codes executed
on simple and predictable hardware architectures, typically
implemented by using high-level programming language and
by obeying strict and specific coding rules to reduce the
likelihood of programmer error. The P-SOCRATES framework
clearly targets much more complex software applications that
exhibit a high degree of flexibility and dynamicity in their
execution.

Probabilistic approaches are also not applicable since
typical COTS components and architectures (like the ones
studied in P-SOCRATES) do not provide the required features
that confer a stochastic runtime behavior on the application.

By proceeding by elimination, the only remaining can-
didates are the “pure” measurement-based approaches. Our
proposed methodology relies solely on timing-related data
collected at runtime, by running the application on the target
hardware. This way, we avoid both the burden of modelling
the various hardware components (which takes considerable
effort and time) as in static timing analysis tools and the
pitfalls and pessimism associated to the over-approximations
resulting from the confidentiality, and thus the non-availability,
of specific information related to the internal configuration of
the components. In addition, the fact that our approach is not
tied to specific hardware infrastructures and application de-
signs makes it benefit from a higher flexibility and portability
than static timing analysis methods and it considerably reduces
the time-to-model and time-to-result. Before we discuss the

specifics of our method, we shall briefly discuss how we
propose to overcome or at least mitigate the negative aspects
inherent to measurement-based techniques. Those downsides
listed in the previous section are repeated below.

Measurements require that hardware is available, which
might not be the case for systems for which the hardware
is developed in parallel with the software.

Several research partners of P-SOCRATES have acquired
an MPPA-256 board. Besides, a representative of Kalray is
member of the IAB (International Advisory Board), which fa-
cilitates the communication with the company when assistance
is needed (without mentioning the responsive and high-quality
hotline service of the company).

It may be problematic to set up an environment which acts
like the final system. It is common in practice that the whole
application software is not available during the validation and
testing of each software component.

To solve this severe issue, recent works such as [32] propose
to capture the resource[s] usage of each component (called
the “signature” of the component) and implement specific
programs that reproduce that signature. These specialized
programs are then used during the testing phase of the program
under analysis, to simulate the execution environment of the
final system by reproducing a similar interference/resource
usage pattern from the other applications that will eventually
run concurrently. We envisage to use such or similar techniques
during the validation phase of the project.

The integrity of the actual code to be deployed in the
target hardware is somehow depleted by the addition of the
intrusive instrumentation code to measure the time, i.e., the
measurements themselves add to the execution time of the
analyzed program. This problem can be reduced, e.g., by
using hardware measurement tools with no or very small
intrusiveness, or by simply letting the added measurement
code (and thus the extra execution time) remain in the final
program. When doing measurements, possible disturbances,
e.g., interrupts, also have to be identified and compensated
for.

The MPPA 256 platform considered in our testing phasing
provides a lightweight and non-intrusive trace system that
enables to collect execution traces in predefined time bounds.
By using this system we are able to collect meaningful traces
of execution without generating too much disturbances in the
regular timing behavior of the analyzed application.

For most programs, the number of possible execution paths
is too large to do exhaustive testing and therefore, measure-
ments are carried out only for a subset of the possible input
values, e.g., by giving potential “nasty” inputs which are likely
to provoke the WCET, based on some manual inspection of
the code. Unfortunately, the measured times will in many cases
underestimate the WCET, especially when complex software
and/or hardware are being analyzed. To compensate for this, it
is common to add a safety margin to the worst-case measured
timing, in the hope that the actual WCET lies below the
resulting WCET estimate. The main issue is whether the extra
safety margin provably provides a safe bound, since it is based
on some informed estimates. A very high margin will result
in resource over-dimensioning, leading to very low utilization
and while a small margin could lead to an unsafe system.

Traditionally, the safety margin applied to the WCET
bounds is an educated estimation of the interference (from the
system or from other applications) that has not been observed
during the testing phase but that the analyzed application
could potentially incur at runtime. For single-core systems, this
estimation is usually built on past experience. For example, in
the IEC 61508 standard related to functional safety of electri-
cal/electronic/programmable electronic safety-related systems,
in order to ensure that the working capacity of the system is
sufficient to meet the specified requirements it is said that:

“For simple systems an analytic solution may be sufficient,
while for more complex systems some form of simulation
may be more appropriate to obtain accurate results. Before
detailed modelling, a simpler ‘resource budget’ check can
be used which sums the resources requirements of all the
processes. If the requirements exceed designed system capacity,
the design is infeasible. Even if the design passes this check,
performance modelling may show that excessive delays and
response times occur due to resource starvation. To avoid this
situation, engineers often design systems to use some fraction
(for example 50%) of the total resources so that the probability
of resource starvation is reduced.”

IEC 61508 [33], 2nd Edition, Part 7.
Requirement C.5.20 (Performance modelling), page 99.

Unfortunately, on multicore and manycore architectures there
is currently no past experience to rely upon for experts to
estimate safe margins. Hence we have to build a new body
of knowledge and investigate novel approaches to produce
trustworthy timing estimates, and we must motivate these
approaches and justify why we believe in their reliability.

Our first move towards this ambitious goal is to reconsider
the very concept of a safety margin. As explained above, it
is a common practice in single-core systems to simply add
a margin of 50% (or any other percentage depending on
the design preferences/constraints and his confidence in those
margins) to the maximum execution time observed. With this
approach only two undesired scenarios may happen:

1) The simulation process failed to identify the set of input
arguments that takes the longest execution path throughout the
program and leads to its WCET.

2) The simulation process found the path[s] leading to the
WCET but it did not generate the maximal possible interfer-
ence while exercising those paths.

In the former case the percentage applied as a safety
margin is somewhat meaningless, because the longest exe-
cution path[s] that have been undetected may a priori take
an arbitrarily long time to finish, whereas in the latter case
the actual WCET has not been observed only because the
interference patterns generated during the simulations did
not put the application into the worst execution conditions.
Very little can be done to handle the first case except from
optimizing the worst-input-arguments-finder algorithm. On the
other hand, to avoid the second case, it is relevant to design
a method capable of extracting and isolating the part of the
execution time that is due to the interference with the other
applications or with the system itself, from the part of the
execution time that is intrinsic to the execution path taken.
Doing so would allow us to apply a safety margin not on the
overall execution time as done in single-core systems, but only
on the time-overhead caused by the interference endured by

the analyzed application at runtime. This is the main objective
of our envisioned approach.

V. THE P-SOCRATES ENVISIONED METHODOLOGY AND
ITS INNOVATIVE ASPECT

Our method executes many times the RT task to be
analysed on the actual hardware, over multiple input sets and in
different execution conditions for each input. The source code
of the RT task is instrumented at different points. Specifically,
a “trace-point” is added at the beginning and at the end of
every OpenMP task part, which enables to record and compute
the time taken to execute the body of every task part at
runtime. Obtaining those traces was our first challenge for
which we developed a software tool that (1) instruments the
source code with appropriate trace-points (this part is still
under development), (2) uploads the instrumented code on the
MPPA-256 (the test-platform used in the project), (3) prepares
and sets up the runtime environment to activate the trace
system, (4) re-compiles the application source code, (5) runs
the RT task, (6) collects, decodes, and processes the traces,
and finally (7) returns the traces in an appropriate and readable
format.

Typically, feeding the RT task to be analysed with different
sets of input arguments modifies its runtime behavior: some
task parts execute for longer, others execute for less time, some
do or do not execute at all, etc. Even the order and the way the
task parts are mapped to the OS threads is affected as distinct
input sets are given to the analysed task because the overall
execution time of the task parts ends up being very different
from one input set to another. That is, the execution time of the
whole RT task is extremely sensitive to the context in which
it is executed.

Each measurement run exercises only one execution path
throughout the RT task, and thus for a same set of input values
several hundreds or even thousands of runs must be carried out
to capture variations in the execution time due to the fluctuation
in system states. Assuming that the collection of input values
contains those that lead to the WCET, it is now a matter of
separating from the total execution time of each measurement
run the fraction of time due to the interference on the shared
resources. After separating these two components, i.e. the
intrinsic execution time of the task part and the overhead
caused by the interference, we envisage to model this overhead
through kernel smoothing techniques.

A kernel smoother is a statistical technique for estimating
a real valued function by using its noisy observations, when
no parametric model for this function is known. In short, for
each set of input values we will run the application thousands
of times before applying a kernel smoother on the thousands
of measured execution times obtained for every task parts that
have been exercised, and specifically on the time-overhead due
to the interference. This way we will estimate the function
that characterizes the time-penalty assigned to every task part
for sharing the processor resources. The estimated function is
smooth and its level of smoothness is set by a single parameter
called the bandwidth. Traditional statistical techniques (based
on the MSE for example) can then be used to evaluate the
goodness of fit of the kernel. The higher the bandwidth, the
more over-approximate the data fitting, and vice-versa. In the
context of P-SOCRATES, for each set of input values we
will use the bandwidth parameter as a mean to set up the
desired safety margin within the model of the time-overhead

due to the interference. Then we will use some “goodness-
of-fit” evaluation techniques to evaluate the degree of over-
approximation resulting from the chosen bandwidths.

VI. CONCLUSION

In a nutshell the paper discussed the application of the
currently-available WCET analysis techniques and tools within
the context of the P-SOCRATES project. After discussing
the pros and cons of each methodology, we introduced the
approach that we intend to research upon for computing WCET
estimates in the project, considering many-cores architectures
and highly parallelized applications.

ACKNOWLEDGEMENTS

This work was partially supported by National Funds
through FCT/MEC (Portuguese Foundation for Science and
Technology) and when applicable, co-financed by ERDF
(European Regional Development Fund) under the PT2020
Partnership, within project UID/CEC/04234/2013 (CISTER
Research Centre); and also by the European Union under
the Seventh Framework Programme (FP7/2007-2013), grant
agreement n 611016 (P-SOCRATES).

REFERENCES

[1] S. Girbal, M. Moretó, A. Grasset, J. Abella, E. Quiñones, F. Cazorla,
and S. Yehia, “The next convergence: High-performance and mission-
critical markets,” in 1st Workshop on High-performance and Real-time
Embedded Systems (HiRES), 2013.

[2] L. Pinho, E. Quiñones, M. Bertogna, A. Marongiu, J. Pereira-Carlos,
C. Scordino, and M. Ramponi, “P-socrates: A parallel software frame-
work for time-critical many-core systems,” in Proceedings of the 17th
Euromicro Conference on Digital System Design (DSD), 2014.

[3] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan, “Larrabee: A many-core x86 architecture for
visual computing,” in ACM SIGGRAPH 2008 papers, vol. 27(3), 2008,
pp. 1–15.

[4] H. Wong, A. Bracy, E. Schuchman, T. Aamodt, J. Collins, P. Wang,
G. Chinya, A. Khandelwal-Groen, H. Jiang, and H. Wang, “Pangaea: A
tightly-coupled IA32 heterogeneous chip multiprocessor,” in Proceed-
ings of the 17th ACM International Conference on Parallel Architectures
and Compilation Techniques, 2008, pp. 52–61.

[5] Intel Many Integrated Core Architecture - Advanced,
Intel Corporation, last access 8 April 2015, [online]
http://www.intel.com/content/www/us/en/architecture-and-
technology/many-integrated-core/intel-many-integrated-core-
architecture.html.

[6] Intel Xeon Phi Product Family, Intel Cor-
poration, last access 8 April 2015, [online]
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-
detail.html.

[7] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012: building
an ecosystem for a scalable, modular and high-efficiency embedded
computing accelerator,” in Proceedings of the Conference on Design,
Automation and Test in Europe, 2012, pp. 983–987.

[8] Kalray, Kalray Corporation, last access 8 April 2015, [online]
http://www.kalrayinc.com.

[9] L. Pinho, E. Quiñones, M. Bertogna, A. Marongiu, J. Pereira-Carlos,
C. Scordino, and M. Ramponi, “Time criticality challenge in the pres-
ence of parallelised execution,” in 2nd Workshop on High-performance
and Real-time Embedded Systems (HiRES), 2014.

[10] D. Luckham, “The power of events: An introduction to complex
event processing in distributed enterprise systems,” in Addison-Wesley
Longman Publishing Co. Inc., 2001.

[11] V. Nélis, P. M. Yomsi, L. M. Pinho, E. Quinones, M. Bertogna,
A. Marongiu, P. Gai, and C. Scordino, “A system model and stack for
the parallelization of time-critical applications on many-core architec-
tures,” in 3rd Workshop on High-performance and Real-time Embedded
Systems, 2015.

[12] A. Ermedahl and J. Engblom, “Execution time analysis for embedded
real-time systems,” in Ed. Insup Lee, Jospeh Y-T. Leung, Sang H. Son,
vol. Chapman and Hall-CRC - Taylor and Francis Group, 2007.

[13] P. Lokuciejewski and P. Marwedel, “Worst-case execution time aware
compilation techniques for real-time systems - summary and future
work,” in Springer Netherlands, 2011, pp. 229–234.

[14] How Does WCET Analysis with aiT Work?, AbsInt GmbH, last access
8 April 2015, [online] http://www.absint.com/ait/analysis.htm.

[15] Bound-T time and stack analyser, Tidorum Ltd, last access 8 April
2015, [online] http://www.bound-t.com/.

[16] Chronos, NUS, last access 8 April 2015, [online]
http://www.comp.nus.edu.sg/ rpembed/chronos/.

[17] Heptane static WCET estimation tool, IRISA, last access 8 April 2015,
[online] https://team.inria.fr/alf/software/heptane/.

[18] SWEET, MRTC, last access 8 April 2015, [online]
http://www.mrtc.mdh.se/projects/wcet/sweet/DocBook/out/webhelp/
index frames.html.

[19] Computing a WCET - Otawa, IRIT, last access 8 April 2015,
[online] http://www.irit.fr/recherches/ARCHI/MARCH/OTAWA/
doku.php?id=doc:computing a wcet.

[20] R. Kirner, P. Puschner, and I. Wenzel, “Measurement-based worst-case
execution time analysis using automatic test-data generation,” in 4th
Euromicro International Workshop on WCET Analysis, 2004, pp. 67–
70.

[21] How does RapiTime work?, Rapita Systems LTD, last access 8 April
2015, [online] http://www.rapitasystems.com/products/rapitime/how-
does-rapitime-work.

[22] D. Griffin, B. Lesage, A. Burns, and R. I. Davis, “Static probabilistic
timing analysis of random replacement caches using lossy compres-
sion,” in Proceedings of the 22Nd International Conference on Real-
Time Networks and Systems, 2014, p. 289:298.

[23] R. I. D. Sebastian Altmeyer, Liliana Cucu-Grosjean, “Static probabilis-
tic timing analysis for real-time systems using random replacement
caches,” Real-Time Systems, vol. 51, no. 1, pp. 77–123, 2013.

[24] E. Mezzetti, M. Ziccardi, T. Vardanega, J. Abella, E. Quiones, and F. J.
Cazorla, “Randomized caches can be pretty useful to hard real-time
systems,” Leibniz Transactions on Embedded Systems (LITES), vol. 2,
no. 1, pp. 77–123, 2015.

[25] J. Abella, D. Hardy, I. Puaut, E. Quinones, and F. Cazorla, “On the com-
parison of deterministic and probabilistic wcet estimation techniques,”
in 26th Euromicro Conference on Real-Time Systems (ECRTS), July
2014, pp. 266–275.

[26] L. Carnevali, A. Melani, L. Santinelli, and G. Lipari, “Probabilistic
deadline miss analysis of real-time systems using regenerative transient
analysis,” in Proceedings of the 22nd International Conference on Real-
Time Networks and Systems, 2014, pp. 299–308.

[27] L. Santinelli, J. Morio, G. Dufour, and D. Jacquemart, “On the sus-
tainability of the extreme value theory for WCET estimation,” in 14th
International Workshop on Worst-Case Execution Time Analysis, 2014,
pp. 21–30.

[28] Proartis: Probabilistically Analysable Real-Time Systems, Proartis, last
access 8 April 2015, [online] http://www.proartis-project.eu/.

[29] Probabilistic real-time control of mixed-criticality multicore and
manycore systems, PROXIMA, last access 8 April 2015, [online]
http://www.proxima-project.eu/.

[30] D. Griffin and A. Burns, “Realism in Statistical Analysis of Worst
Case Execution Times,” in 10th International Workshop on Worst-Case
Execution Time Analysis (WCET 2010), 2010, pp. 44–53.

[31] R. Vargas, E. Quinones, and A. Marongiu, “Openmp and timing
predictability: A possible union?” in Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition, 2015, pp. 617–
620.

[32] G. Fernandez, J. Jalle, J. Abella, E. Q. nones, T. Vardanega, and F. J.
Cazorla, “Resource usage templates and signatures for COTS multicore
processors,” in 52nd Design Automation Conference (DAC), 2015.

[33] The International Electrotechnical Commission, IEC 61508: Functional
safety of electrical/electronic/programmable electronic safety-related
systems, 2010.

