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ABSTRACT  

 
 

 

A novel optical disposable probe for screening fluoroquinolones in fish farming waters is presented, having Norfloxacin (NFX) as target compound. 

The colorimetric reaction takes place in the solid/liquid interface consisting of a plasticized PVC layer carrying the colorimetric reagent and the sample 

solution. NFX solutions dropped on top of this solid-sensory surface provided a colour change from light yellow to dark orange. 

Several metals were tested as colorimetric reagents and Fe(III) was selected. The main parameters affecting the obtained colour were assessed  

and  optimised  in  both  liquid  and  solid phases. The corresponding studies were conducted by visible spectrophotometry and digital image 

acquisition. The three coordinates of the HSL model system of the collected image (Hue, Saturation and Lightness) were obtained by simple image 

management (enabled in any computer). 

The analytical response of the optimised solid-state optical probe against concentration was tested for several mathematical transformations of the 

colour coordinates. Linear behaviour was observed for logarithm NFX concentration against Hue þ Lightness. Under this condition, the sensor exhibited 

a limit of detection below 50 mM (corresponding to about 16 mg/mL). Visual inspection also enabled semi-quantitative information. The selectivity 

was ensured against drugs from other chemical groups than fluoroquinolones. 

Finally, similar procedure was used to prepare an array of sensors for NFX, consisting on different metal species. Cu(II), Mn(II) and aluminon were 

selected for this purpose. The sensor array was used to detect NFX in aquaculture water, without any prior sample   manipulation. 
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1. Introduction 

 
Aquaculture is an important sector worldwide, granting fish 

meat to future generations at relatively low costs. Its great 

success comes however with many chemicals disposed through- 

out the environment, with great danger to finite water resources. 

This includes antibiotics, fungicidal, pesticides, hormones, anaes- 

thetics, various pigments, minerals and vitamins. 

Antibiotics are drugs with the ability to kill or inhibit the 

growth of microorganisms. Their use in meat producing animals 

has been controversial. The benefits of their use are obvious, but 

their abusing use leads to the accumulation of residues in 

different environmental sections and an increased risk for growth 

and   promotion   of   bacterial   resistance   (Pico  ́   and Andreu, 

 

2007;Beausse, 2004; Karthikeyan and Meyer, 2006). Furthermore, 

their wastes are potentially persistent and can be found in fish 

and water (Beausse, 2004; Karthikeyan and Meyer, 2006; Dı́ az- 

Cruz et al., 2003). The first measure to avoid this scenario is to 

prevent drug spread by having a strict control of the applied 

doses. This can be established by monitoring the waters from the 

tanks where the fish are being farmed. This should be done 

regularly and with a low cost/quick procedure. The drug concen- 

tration changes from the time of administration and additional 

costs in the fish production must be kept to a minimum. 

Fluoroquinolones are one of such groups of antibiotics used in 

fish farming, already correlated to the emergence of resistant 

bacteria (Hoope, 2001). Many techniques have been employed for 

their determination in farmed fish and waters. These include the 

classical microbiological methods (Cabello, 2004; Park et al., 2007) 

that have the disadvantage of taking too long to produce an 

analytical result and being subject to biological variability. Separa- 

tive methods based in liquid-chromatographic techniques coupled 

to mass-spectrometry (Kassab et al., 2005; Dufresne et al.,   2007), 
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fluorescence (Zhang et al., 2007; Chui-Shiang et al., 2008) and/or a 

combination of these (Schneider et al., 2005), and electrophoresis 

(McCourt et al., 2003) have also been used. These are great in terms 

of accuracy and robustness, but unable to carry out on-site analysis. 

Surface Plasmon Resonance and fluorimetric sensors have also been 

descried (Hueta et al., 1989; Jeon et al., 2008), but they use highly 

expensive and/or not-portable equipment. 

An alternative procedure for field evaluations is a coloured sensing 

strip, made with low cost materials and allowing easy performance 

and quick response for a specific target analyte (Guerreiro and Sales, 

2011). This is a kind of an optical sensor, where an immobilized 

reagent must be accessible to interact with the analyte (Wolfbeis, 

2008). There are several strategies for reagent immobilization (Khezri 

et al., 2008; Jeronimo et al., 2007; Narayanaswamy, 2006), with 

polymeric entrapment by plasticized PVC allowing an easy cast 

procedure with relatively inexpensive  material. 

The reagent to immobilize must form a coloured complex with 

the target analyte. Many colouring agents exist in the literature 

for fluoroquinolones, including NFX (Kaur et al., 2008; Issopoulos, 

1898). These include iron chloride(III), aluminon, cupper sulfa- 

te(II) and manganese chloride(II). To produce a useful optical 

probe, the colouring agent should also have a relative hydrophilic 

character. It must diffuse from the solid matrix towards the 

aqueous phase deposited on top of the sensory surface in  order 
to meet the analyte and react with it. Metal species are always a 

2.2. Metal selection 

 
The colorimetric reaction was tested between NFX and Fe(III), 

Al(III), Pb(II), Aluminon, Mo(II), Mn(II), Ni(II), Cu(II), Co(II), Sn(IV) 

e V(V). Acidic and near neutral conditions were tested by prepar- 

ing  all  solutions  in  0.05 M  H2SO4   and/or  1.0 x 10- 2 M  HEPES 

buffer. 

The  complexes  were  investigated  by  recording  the  visible 

spectra  of  individual  and  mixed  components.  Single  or  mixed 

solutions  of  6.7 x 10- 4 M  NFX  and  3.3 x 10- 3 M  metal  species 

were used for this purpose. 

 
2.3. Characterization/optimization of the coloured complex 

 
2.3.1. pH effect 

The effect of pH on the formation of metal/NFX complex was 

tested for 1.0 x 10- 3 M acetate buffer with variable pHs: 2.4; 3.3; 

4.1; 5.0 or 6.1. Metal standard solutions ranged from 1.1 x 10- 5 to 

2.1 x 10- 4 M  with  a  NFX  concentration  set  to  1.0 x 10- 4 M. 

Absorbance  was  examined  at  the  wavelength  of  maximum 

absorbance (lmax) and plotted against concentration. 

 
2.3.2. Molar ratio 

Several  solutions  were  prepared  with  varying  amounts of 

good choice under these circumstances. metal (from 2.5 x 10-
 
5 to 2.5 x 10 - 4 M) and a fixed NFX concen- 

Thus, a novel colour disposable probe is presented for on-site tration (1.02 x 10-
 
4 M) in pH 3 acetate buffer. The   absorbance 

detection of NFX. A selected metal is selected among several 

colouring agents and immobilized on a PVC membrane containing 

a plasticizer. It is deposited later over a polycarbonate solid 

support. NFX contacts with the immobilized metal and grants 

the formation of a coloured product detected by human eye. The 

same principle was applied to additional colouring agents, allow- 

ing multiple responses for the same target analyte. 

 

 
2. Experimental 

 
2.1. Apparatus and reagents 

 
Spectrophotometric measurements were made in a Thermos 

Scientific,  Evolution  300,  spectrophotometer,  carrying  a  1 cm 

glass cell. The digital image of the solid surfaces was acquired 

by a digital camera Nikon. The Paint program of Windows was 

used for gaining the coordinates Hue, Saturation and Lightness of 

the HSL space. This specific colour model was used because it is 

available in any computer program of windows. 

The pH of buffer solutions was measured in a pH Meter GLP 22, 

Crisons, connected to a  combined electrode Consort. An  ultra- 

sonic  bath,  Fungilab  SA,  and/or  a  magnetic  stirrer,  Agimatic-N, 

were used to promote the dissolution of the solids. Commercial 

polycarbonate plates (Kartell) with 200 mL wells were used to cast 

the PVC-based probe. 

All chemicals were pro-analysis grade and the ionised-water 

was employed (conductivity o 0.1 mS/cm). NFX, bis(ethylhexyl)- 

sebacate (BES), O-nitrophenyl octyl ether (oNPOE), di-n-octyl 

phthalate (DOP), dibutyl phthalate (DBP), bis(ethylhexyl)phtha- 

late (BEP), phenyl glycil ether (PGE), poly(vinyl chloride) (PVC) of 

high molecular weight and manganese chloride were purchased 

from Fluka. Tetrahydrofuran (THF) was obtained from Panreac. 

Iron(III) chloride hexahydrate, aluminon and copper(II) chloride 

were purchased to Merck. Aluminum nitrate, lead(II) nitrate, 

ammonium molybdate tetrahydrate, nickel nitrate hexahydrate, 

cobalt(II) nitrate hexahydrate, tin(IV) chloride, vanadium(V), tetra- 

cycline, sulfadiazine, chlorpromazine, enrofloxacine, trimethoprim 

and oxytetracycline were produced by Sigma. 

readings for lmax were plotted against metal concentration. 

 
2.3.3. Stability within time 

The absorbance of several solutions was monitored over 24 h. 

The concentration of NFX was always 1.03 x 10- 4 M, prepared in 

acetate  buffer  1 x 10- 3 M,  pH  3.  Metal  concentrations  ranged 

from 3.33 x 10- 5  to 6.67 x 10- 4 M. 

 
2.3.4. Selection of metal concentration 

NFX solutions ranging from 2 x 10- 5  to 7 x 10- 4 M and were 

prepared   in   pH   3.0   buffer   and   fixed   metal   concentrations 

(1.2 x 10- 2, 1.3 x 10- 3  or 3.8 x 10- 4 M). The absorbance values 

in lmax were plotted against NFX concentration. 

 
2.3.5. Effect of interfering species 

The interfering analysis was conducted for 3.50 x 10- 5 M NFX 

solutions of pH 3.0, carrying an exceeding amount of the previously 

selected  ligand  (1.0 x 10- 3 M)  and  an  additional  divalent  metal. 

Ba(II), Pb(II), Hg(II), Mn(II), Cu(II), Zn(II), Cd(II) and Fe(II) used. 

Absorbance was read at lmax  of the coloured complex. The 

degree of interference of each species was the relative error 

produced in the absorbance signal. 

 
2.4. Solid-state probe 

 
2.4.1. Preparation 

Sensory surfaces were prepared by mixing specific amounts of 

metal, PVC and plasticizer. The mixture was stirred until the PVC was 

well moistened, and dispersed in 2 mL of THF. A volume of 50 mL was 

casted on each cavity of a polycarbonate plate and let dry for 30 min. 

Variable amounts of the selected metal (0.50, 1.00, 1.50    or 

0.25 g) were tested with 0.050 g of PVC, and 0.100 g of plasticizer. 

Different plasticizers were also employed using only the pre- 

viously selected amount of metal: BES, oNPOE, DOP, DBP, BEP and 

PGE. Following, different amounts of plasticizer were tested for 

the previously chosen plasticizer: 0.02, 0.030, 0.05, 0.10 and 

0.15 g. Each condition was tested in at least two independent 

probes. 
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2.4.2. Analytical procedure 

NFX standard or sample (150 mL of solutions ranging    from 

5.0 x 10- 5   to  1.0 x 10- 2 M)  was  added  to  each  probe  on  the 

polycarbonate  plate.  A  blank  with  buffer  solution  was  used  as 

control. The obtained colour was measured by taking a picture 

with a digital camera against a white background and treating the 

results with the Paint program of Windows. The HSL model was 

selected for this purpose, using Hue, Saturation and Lightness as 

coordinates. These values were manipulated to reach a linear or 

second degree function against NFX concentration. All measure- 

ments corresponded to the average of, at least, three assays with 

two probes. 

 
2.5. Cross-response to other antibiotics 

 
The response of the sensor was tested against other antibiotics 

used in aquaculture activities: tetracycline, sulfadiazine, chlor- 

promazine, enrofloxacin, trimethoprim and oxytetracycline.   An 

aliquot  of  150 mL  of  1 x 10- 3 M  antibiotic  solution  was  casted 

over the solid-state probe and the colour (kind/intensity) com- 

pared to the corresponding NFX standard. 

 
2.6. Array preparation 

 
The optimized composition of the colour-probe was applied to 

three  additional  metals.  Overall,  the  array  consisted  on  Fe(III), 

aluminon, Cu(II) and Mn(II) colouring agents deposited in differ- 

ent wells of the polycarbonate plate. It was calibrated for NFX 

concentrations ranging from 5 x 10- 5  to 1 x 10- 2 M. 

 
2.7. Application to water analysis 

 
The array of probes was applied to the analysis of water. Each 

probe was covered with 150 mL of sample or standard solutions 

without any prior preparation. Each calibration was carried out 

simultaneously with the sample analysis and required four 

probes: three standard solutions and one blank. The NFX con- 

centration in each sample was determined by using the calibra- 

tion curve data (slope and O.O.) for each metal tested. 

 
 

3. Results and discussion 

 
3.1. Coloured complex 

 
The coloured complex may be formed when a fluoroquinolone 

such as NFX meets a suitable complexing agent that is inside the 

solid-state probe. This means that either NFX diffuses inside the 

polymeric matrix of the probe or the complexing agent diffuses 

outside to the sample aqueous phase. The former possibility is 

hindered by NFX size but the later may be favoured by choosing a 

complexing agent with a strong hydrophilic character. 

 
3.1.1. Ligand 

In general, several metals were tested as possible complexing 

agents for NFX: Fe(III), Al(III), Pb(II), Aluminon, Mo(II), Mn(II), 

Ni(II), Cu(II), Co(II), Sn(IV) and V(V). Each species was tested in 

acidic and near-neutral conditions because the kind/intensity of a 

coloured product varies with the pH. Alkaline conditions were not 

evaluated because, in general, metals form highly insoluble 

compounds with hydroxides. 

The main results are listed in Table 1. Only Fe(III), Aluminon, 

Mn(II) and Cu(II) ligands showed colour changes that may fit a 

screening application of NFX on a solid-state probe. Fe(III) gave 

the strongest colour intensity change, in both pH conditions 

tested, and was therefore selected for further studies. 

 
3.2. pH effect 

 
The form and degree of protonation of iron species is strongly 

dependent on the pH. Iron becomes insoluble from Fe(OH)3 species, 

occurring for pH42.5. In pH 6, the insolubility of iron is almost 

complete, remaining in solution a very small fraction of Fe(OH)þ 

and Fe3 þ . Accordingly, a pH transition from 6 to 2 increases the 

fraction of soluble iron, accounting for the formation of novel iron 

species, such as Fe(OH)2 þ   and Fe2(OH)4 þ   (Marti et al., 2000). 

In general, the absorbance increased for increasing concentra- 

tions of iron (ensuring of course exceeding and constant amounts of 

NFX) in all pH ranges. This was exactly as expected because 

increasing amounts of Fe(III) allowed the formation of a greater 

amount of complex, which in turn resulted in increased absorbance. 

The  exact  behaviour  was  different  in  each  pH  condition. 

The colour of the blank solution (without NFX) changed in a 

different way than that of the complex (Fig. S1), and a linear trend 

was only observed for pH3. The linear pattern was found    from 

1.1 x 10- 5    and  1.7 x 10- 4 M  with  a  molar  extinction  (e)  of 

812.2 L/mol x cm. pH 3 was therefore selected for further trials. 

 
3.2.1. Molar ratio 

Several solutions containing a fixed amount of NFX and 

variable concentration of Fe(III) ( 7 10 times NFX molar concen- 

tration) were tested. The absorbance of each complex solution 

was subtracted from that of solutions prepared without NFX. 

 

Table 1 

Preliminary tests of NFX with several possible complexing  agents. 
 

 

Colouring agent Reagent Acidic medium (0.05 M H2SO4) Close-to-neutral (1 x 10
- 2 

M HEPES) 
 

  

Without NFX With NFX Without NFX With NFX 
 

 
 

Colour 
 

OP 
 

Colour 

 

OP  
 

Colour 
 

OP  
 

Colour 
 

OP  
 

Fe(III) FeCl3.6H2O — — 
 

Orange —  — —  
 

Orange —  
Al(III) Al(NO3)3.H2O — — — —  — —  — —  
Pb(II) Pb(NO3)2 White þ White þ  — —  White þþ  
Aluminon Triammonium salt Dark orange þþ Dark orange þþ  Dark orange —  Dark Pink —  
Mo(II) (NH4)6Mo7O24.4H2O — — Light green þþ  — —  White þ  
Mn(II) MnCl2.4H2O — — — —  — —  Light brown —  
Ni(II) N2NiO6.6H2O Light green — Light green —  Light green —  Light green þþ  
Cu(II) CuCl2.2H2O — — — —  Light blue —  Green —  
Co(II) Co(NO3)2.6H2O Light pink — Light pink —  Light pink —  Light violet —  
Sn(IV) SnCl4 — — — —  — —  — —  
V(V) XXX Light green — — —  Light green —  — —  

OP: Observed Precipitate. 



 

 

This was a necessary procedure because Fe(III) displayed a small 

yellow colour that intensified for increasing concentrations and 

absorbed at the lmax  of the complex. 

The differential absorbance obtained was plotted in (Fig. S2) and 

two linear segments could be found. One segment had a positive 

slope, corresponding to an increase of the complex concentration. 

This was observed until no more free NFX was available. After that, 

the absorbance could no longer increase. It remained nearly con- 

stant,  leading  to  the  second  linear  segment  (zero  slope).  The 

intercept  point  of  these  two  segment  corresponded  to  an  iron 

concentration  of  1.0 x 10- 4 M.  Since  NFX  in  the  solution  was 

1.0 x 10- 4 M, the molar ratio of the Fe(III)/NFX complex was 1:1. 

 
3.2.2. Formation constant 

The formation constant (Kf) of the complex was calculated by 

applying a suitable mathematical treatment (Ghosh and Sharma, 

2005) to the previous data. For this purpose, log[(Amax - Ax)/ 

(Ax - A0)] was plotted against log[Fe(III),M], where A0 and Amax 

were minimum and maximum absorbancies, respectively, and Ax 

the given absorbance for a specific Fe(III) concentration. The x- 

axis intercept of the corresponding linear trend corresponded to 

the log Kf value. Kf was therefore 14,420, pointing out that the 

complex was formed in a high extent. 

(Decreto-lei 243/2001, 2001), Fe(II), Mn(II), Cu(II), Zn(II),  Cd(II), 

Pb(II), Hg(II) and Ba(II) were studied as possible interfering 

species. These were selected considering the metal species that 

may be found in environmental waters and that NFX may form 

complexes with divalent species. Some of the concentrations 

tested followed the limiting values of Portuguese environmental 

waters (Decreto-lei 243/2001, 2001). 

The interference of each foreign ion was measured by means of 

the positive or negative errors induced in NFX readings (Table S2). 

The obtained values ranged from - 9.6 to þ 7.9%. Only Mn(II) 

Cd(II) e Pb(II) were outside this range, but the corresponding 

concentrations are in general higher than those expected in 

environmental waters. 

 
3.5. Solid-state probe preparation 

 
The probe consisted on Fe(III) included in a plasticized PVC 

membrane. The exact composition was established after selecting 

the amount of ligand and the kind/amount of plasticizer ensuring 

the best analytical performance. 

 
3.5.1. Ligand concentration 

Different percentages of iron were included in the membrane 

ranging from 61 to 91% (w/w). All these were tested in duplicate 
3 

3.2.3.   Reading time for  a  set  of  NFX  standard  solutions,  between  1 x 10-
 and 

The  reading  time  of  the  coloured  complex  started  after a 1 x 10-
 
5 M. A ‘‘zero’’ concentration standard was used as blank. 

steady absorbance was reached and ended when the colour 

started fading or changing. After monitoring the changes in the 

absorbance over time (Table S1), it was clear that the complex 

was formed almost instantaneously and remained stable within 

90 min. After that, the absorbance was monitored on the follow- 

ing day and decreased significantly, mostly for the higher con- 

centrations. Thus, any analytical information relying on colour 

measurement was taken within 1–90 min. 

 
3.3. Ligand concentration 

 
An  exceeding  concentration  of  Fe(III)  should  guarantee  and 

promote  the  rapid  complexation  of  NFX  molecules  in  a  wide 

concentration range. To find out the necessary excess leading to 

analytical  advantages,  several  calibrations  were  plotted  for  a 

range  of  NFX  solutions  (1.8 x 10- 5   to  7.1 x 10- 4 M)  prepared 

with a constant concentration of Fe(III), lying between 4 x 10- 4 

and  1 x 10- 2 M  (Fig.  S3).  The  exact  concentration  of  iron  used 

corresponded to 17, 1.9 and 0.5 times that required to complex all 

NFX molecules in the most concentrated standard. 

For  the  highest  concentration  of  iron,  the  molar    extinction 

coefficient was 2959.3 L/mol x cm from 1.8 x 10- 5  to 7.1 x 10- 4 M 

NFX  solutions.  The  intermediate  iron  concentration  gave  lower  e 
values (1800 L/mol x cm) and narrower linear ranges (7.1 x 10- 5 and 

7.1 x 10- 4 M). The lowest iron concentration displayed an even lower 

slope  (838.0 L/mol x cm)  linked  to  narrower  NFX  concentration 

ranges. 

The above results pointed out that a great excess of iron over 

NFX ensured higher slope, widened the linear range and 

decreased the concentration after which the system responded 

linearly. Thus, all further experiments were carried out with a 

great excess of iron. 

 
3.4. Aqueous-based selectivity 

 
Other divalent/trivalent metals regularly found in environ- 

mental waters may interfere in the formation of the coloured 

complex between Fe(III) and NFX (Gao et al., 1995; Wallis et al., 

1996). Following the usual chemical requirements for waters 

The obtained results were indicated in Fig. 1. 

It seemed obvious that a higher amount of iron would favour the 

formation of the coloured complex. However, the yellow colour of 

the blank probe turned out more intense for increasing amounts of 

ligand, which hindered the perception of the colour changes within 

different NFX concentrations (Fig. 1). The probe became also difficult 

to manipulate, showing an heterogeneous pattern in some cases. 

Although this is difficult to see in the presented pictures, it was clear 

in the laboratory that the highest and more consistent colour 

gradient was obtained when 72% of iron was included in the 

membrane. This condition was set in further experiments. 

 
3.5.2.  Plasticizer 

The plasticizer favoured the ion-exchange between the mem- 

brane and the aqueous phase. It affected the permittivity and 

porosity of the membrane, for which the kind/amount of mediat- 

ing solvent were carefully selected. 

BES, oNPOE, DOP, DBP, BEP e PGE were tested as plasticizers. The 

iron salt was not soluble in oNPOE/PVC solutions, forming irregular 

clumps after THF evaporation. Conversely, the PGE allowed com- 

plete dissolution of the metal salt, giving an intense orange colour to 

the final membrane. The other membranes showed an intermediate 

behaviour (Fig. 2, top-left). After dropping NFX solutions of increas- 

ing concentrations on top of each probe, the colour gradient was 

evident for all plasticizers, except PGE (Fig. 2, top-rigth). BES was 

selected because it was the one showing the higher sensitivity, with 

a more intense colour gradient. 

The amount of BES was selected after checking the behaviour 

of 3–23% plasticized-PVC membranes (Fig. 2, down). In general, 

only membranes with the higher amount of BES behaved differ- 

ently: the final probe showed a more homogeneous pattern but 

the colour gradient became less perceptible. Thus, BES was set to 

16%, ensuring a homogenous membrane changing the colour 

more intensely with the concentration. 

 

3.6. Analytical features of the solid-state probe 

 
3.6.1. Calibration parameters 

The  optical-probe  was  prepared  with  about  0.500 g    Fe(III), 

0.050 g PVC and 0.100 g BES in 2 mL THF. The analytical response 



 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 
Fig. 1.  Solid-state probes prepared with different amounts of iron. 

 

of the solid-state probe was tested by casting over each well 200 mL 

of  a  specific  NFX  standard  solution:  1.00 x 10- 2,  4.00 x 10- 3; 

2.00 x 10- 3; 1.00 x 10- 3; 5.00 x 10- 4  and 5.00 x 10- 5 M. The final 

colour (Fig. 3, top) was reached in less than 1 min. The results 

showed   a  clear   colour   gradient   for   all   concentrations; even 

5.00 x 10- 5 M was different from the blank test that was carried 

out by depositing only buffer. 

For analytical purposes, the colour was measured by photo- 

graphing the probes with a regular digital camera and opening the 

file on the Paint program. The colour coordinates were taken for 

each probe in several points of the picture using the HSL model. As 

expected, the results did not display a linear trend between 

concentration and any of the coordinates. Several mathematical 

approaches were then taken on these variables. A linear correlation 

was established when the logarithm of the concentration of NFX 

was changed against (Hueþ Lightness), as indicated in Fig. 3, top. 

A more detailed colour gradient was also obtained by preparing a 

higher number of standards within the same concentration range 

indicated above. Extraction of the corresponding colours enabled the 

production of a ‘‘colour card’’ that may be used in field applications 

by direct colour comparison (Fig. S4). The pictures of the corre- 

sponding sensory platforms are also presented in Fig. S5. 

 

 
3.6.2. Selectivity against fluoroquinolones 

The response of the sensor probe against other members of the 

fluoroquinolone group was checked with enrofloxacin. The cross- 

response to other antibiotics belonging to different chemical 

groups was also checked in parallel. This study was conducted by 

depositing on independent optimised probes solutions of   NFX, 

 
tetracycline, sulfadiazine, chlorpromazine, enrofloxacin, trimetho- 

prim and oxytetracycline, of equal concentrations. The results 

obtained are depicted in Fig. 3, bottom. 

As expected, enrofloxacin showed the same orange colour as 

NFX, indicating that the reaction involved is typical of the 

fluoroquinolone group. The different colour intensities observed 

in these two members had no effect in terms of quantitative 

information. First these are not used in combination for veter- 

inary therapy and second the fish farmer knows the drug that was 

applied to the fish. 

Trimethoprim and sulfadiazine, used in association for human 

or veterinary therapy, were very close to the control (blank), 

indicating that they did not reacted with the Fe(III) or the extent 

of reaction was too small to be detected. Chlorpromazine showed 

a pink colour, very different from the other observed colours. The 

two tetracyclines (oxytetracycline and tetracycline) gave similar 

results, producing a compound of brown colour. In essence, the 

presence of non-fluoroquinolone drugs can be easily and quickly 

detected, because they originate very different colours in the 

probe. In addition, in case no information about the drug in the 

tank exists, the probe may always help producing qualitative data 

about the chemical drug in use. 

 
3.7. Solid-state probe array 

 
With the purpose of increasing the accuracy of the determina- 

tion, an array of optical probes was developed. Ligands with the 

ability of forming coloured compounds with NFX (Section 3.1.1) 

were now immobilized in plasticized PVC. Aluminon, Cu(II) and 

Mn(II) were selected for this purpose. Only preliminary experiments 
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Fig. 2.  Solid-state probes prepared with different kind of plasticizer and different amounts of BES. 

 
 

CALIBRATION for NFX (M) degree function. These additional probes required further opti- 

mization steps, as the colour gradient is not very intense along the 
Blank 5.0x10-5 5.0x10-4 1.0x10-3 2.0x10-3 4.0x10-3 1.0x10-2 

NFX concentration range studied. 
 

 

 
(Hue + Lightness) = -28.759 log [NFX, M] + 34.384      (R2  =  0.99) 

 

SELECTIVITY TRIAL(1.0x10-3   M) 

3.8. Application 

 
The array of optical probes was tested on environmental water 

samples. These had no drugs and had to be spiked with NFX. The 
calibration and the sample readings are indicated in Fig. 5. The 

Tetracycline Chlorpromazine Trimethoprim 
obtained relative errors are also indicated in the same figure. In 

general, the results pointed out that only the iron probe provided 

accurate results, with relative errors (RE) below 10%. The  other 

Blank NFX Sulfadiazine Enrofloxacin Oxytetracycline probes served only to increase the selectivity of the determina- 

tion, as different drugs would provide different colours. It    was 
Fig. 3.  Calibration of the optimised Fe(III) probe and its response against    other 

antibiotic drugs. 
 

 

were carried out, using the previously selected mass composition to 

prepare the membrane probes. 

Calibration curves were carried out by depositing in each well 

a solution of NFX lying within the same concentration range as 

that indicated in Section 3.5.1. The obtained colour gradient, the 

corresponding digital images and the equation curves are indi- 

cated in Fig. 4. In general, Aluminon and Cu(II) probes behaved 

similarly  to  Fe(III),  and  only  Mn(II)  probe  required  a second 

also apparent that specific optimization procedures would be 

required to improve the analytical performance of these addi- 

tional probes. 

In essence, the array may be use to fast screen fluoroquino- 

lones/NFX or identify other drug in aquaculture fish-farming 

activities. The concentration range of the sample was perceptible 

to human eye, but it could be more accurately estimated after 

digital image acquisition. It is important to ensure that the 

reading time of about 1 min is correct when a new kind of sample 

is tested for the first time. In this case, the colour stability within 

time should be checked first. 
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Fig. 4.  Typical analytical response of the array of solid-state optical probes coming from the digital  images. 

 

 Probe     NFX standards (M)     Samples (M)   selectivity  in  field  applications,  although  additional optimization 
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steps are required for practical use. 
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Fig. 5. Array calibration with three NFX standards and the analysis of two 

samples, along with the corresponding relative errors (RE) in %. 

 
 
 

4. Conclusions 

 
A low cost disposable optical probe was developed for quick 

screening fluoroquinolones in aquaculture environment, being this 

concept applied to NFX determination. It consisted on immobilizing 

Fe(III) in a PVC/BES matrix. Surface colour changes were obtained 

quickly and easily detected by naked eye. The resulting colour 

intensity observed by a digital camera was directly proportional to 

log of NFX concentration allowing a more accurate quantification. 

The probe displayed a high selectivity for the target analyte and 

helped identifying other antibiotic drugs. A preliminary array was 

developed with additional NFX ligands originating coloured pro- 

ducts. It showed great potential to enhance the accuracy and    the 

Appendix A.  Supplementary Information 

 
Supplementary data associated with this article can be found in 

the online version at  http://dx.doi.org/10.1016/j.bios.2012.04.018. 
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